WO2016143736A1 - 水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品 - Google Patents

水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品 Download PDF

Info

Publication number
WO2016143736A1
WO2016143736A1 PCT/JP2016/056967 JP2016056967W WO2016143736A1 WO 2016143736 A1 WO2016143736 A1 WO 2016143736A1 JP 2016056967 W JP2016056967 W JP 2016056967W WO 2016143736 A1 WO2016143736 A1 WO 2016143736A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
water
liquid
mixed liquid
metal salt
Prior art date
Application number
PCT/JP2016/056967
Other languages
English (en)
French (fr)
Inventor
佑介 松原
遼 吉本
祥 赤羽
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56879173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016143736(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to EP16761704.2A priority Critical patent/EP3269757A4/en
Priority to KR1020177027864A priority patent/KR102577371B1/ko
Priority to MYPI2017703061A priority patent/MY178845A/en
Priority to JP2017505323A priority patent/JP6722654B2/ja
Priority to US15/556,383 priority patent/US20180105655A1/en
Priority to CN201680014525.8A priority patent/CN107428948A/zh
Publication of WO2016143736A1 publication Critical patent/WO2016143736A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or Groups 11 to 13 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or Groups 14 to 16 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a method for producing aqueous liquid absorbent resin particles, an aqueous liquid absorbent resin particle obtained by this production method, an absorbent body using the same, and an absorbent article.
  • aqueous sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads are widely used as absorbents based on aqueous liquid absorbent resins mainly composed of hydrophilic fibers such as pulp and acrylic acid (salt).
  • hydrophilic fibers such as pulp and acrylic acid (salt).
  • the crosslink density of the aqueous liquid absorbent resin surface is increased by specifically cross-linking the surface of the SAP (Super Absorbent Polymer) to suppress deformation of the swollen gel surface.
  • SAP Super Absorbent Polymer
  • a method for efficiently forming a gap is already known (see, for example, Patent Document 1).
  • the liquid permeability between the swollen gels is not sufficiently satisfactory only by the conventional surface crosslinking.
  • a method of forming a gel gap by suppressing the coalescence of swollen gels by surface treatment with a polymer and (3) a method of adding aluminum sulfate, aluminum lactate, etc. are already known (for example, patent documents) 2, see Patent Literature 3 and Patent Literature 4).
  • An object of the present invention is to provide a method for producing water-based liquid absorbent resin particles capable of achieving both liquid permeability between swollen gels and absorption performance under load even after passing through a transport and diaper production process. is there.
  • the present invention provides a water-soluble vinyl monomer (a1) and / or a crosslinked polymer having a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and a crosslinking agent (b) as essential constituent units (A ) Containing the resin particles (B) using the polyhydric alcohol (c) having 4 or less carbon atoms, the polyvalent metal salt (d) and the polyvalent glycidyl compound (e), the following methods [I] to [III
  • Method [I] Method for surface-treating resin particles (B) using a mixed liquid (W1) containing a polyhydric alcohol (c) having 4 or less carbon atoms, a polyvalent metal salt (d), a polyvalent glycidyl compound (e) and water .
  • a method comprising any of the following steps (1) to (3): (1) The step of surface-treating the resin particles (B) with the mixed liquid (W2), and then performing the surface treatment with the mixed liquid (W3) with or without heat treatment; (2) The step of surface-treating the resin particles (B) with the mixed solution (W3), and then performing the surface treatment with the mixed solution (W2) with or without heat treatment; (3) The process of surface-treating simultaneously with liquid mixture (W2) and liquid mixture (W3).
  • the aqueous liquid absorbent resin particles (P) obtained by the production method of the present invention are broken at the time of transportation or diaper production process because at least a part of the surface thereof is coated with a polyvalent metal salt.
  • breaking resistance the absorption under load after passing through the transportation and diaper manufacturing process, and the liquid permeability between swollen gels are very excellent, Even in the situation, stable and excellent absorption performance (for example, liquid diffusibility, absorption speed and absorption amount) is exhibited, and fogging is unlikely to occur.
  • the method for producing the aqueous liquid absorbent resin particles (P) of the present invention includes a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis and a crosslinking agent (b).
  • the water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and an ethylenic group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are disclosed.
  • Vinyl monomers having a saturated group for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers
  • anionic vinyl monomers disclosed in JP-A-2003-16583, paragraphs 0009 to 0024 nonionic Selected from the group consisting of a carboxylic group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group and an ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982
  • At least one Vinyl monomer having can be used.
  • Vinyl monomer (a2) which becomes water-soluble vinyl monomer (a1) by hydrolysis [hereinafter also referred to as hydrolyzable vinyl monomer (a2). ]
  • vinyl monomers having at least one hydrolyzable substituent which becomes a water-soluble substituent by hydrolysis disclosed in paragraphs 0024 to 0025 of Japanese Patent No. 3648553,
  • At least one hydrolyzable substituent [1,3-oxo-2-oxapropylene (—CO—O—CO—) group, acyl group and cyano group disclosed in paragraphs 0052 to 0055 of JP-A-2005-75982 Vinyl monomer having a group etc.] can be used.
  • the water-soluble vinyl monomer means a vinyl monomer that dissolves at least 100 g in 100 g of water at 25 ° C.
  • the hydrolyzability in the hydrolyzable vinyl monomer (a2) means a property that is hydrolyzed by the action of water and, if necessary, a catalyst (an acid or a base) to become water-soluble. Hydrolysis of the hydrolyzable vinyl monomer (a2) may be performed either during the polymerization, after the polymerization, or both of these. From the viewpoint of the absorption performance of the resulting aqueous liquid absorbent resin particles (P), polymerization is performed. The latter is preferred.
  • water-soluble vinyl monomers (a1) are preferable from the viewpoint of absorption performance, and more preferable are anionic vinyl monomers, carboxy (salt) groups, sulfo (salt) groups, amino groups, carbamoyl groups, and ammonio groups.
  • a vinyl monomer having a mono-, di- or tri-alkylammonio group more preferably a vinyl monomer having a carboxy (salt) group or a carbamoyl group, particularly preferably (meth) acrylic acid (salt) and (meta ) Acrylamide, particularly preferred is (meth) acrylic acid (salt), most preferred is acrylic acid (salt).
  • the “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”.
  • (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate
  • (meth) acrylamide means acrylamide or methacrylamide.
  • the salt include alkali metal (such as lithium, sodium and potassium) salts, alkaline earth metal (such as magnesium and calcium) salts and ammonium (NH 4 ) salt.
  • alkali metal salts and ammonium salts are preferable from the viewpoint of absorption performance and the like, more preferable are alkali metal salts, and particularly preferable are sodium salts.
  • the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) When either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) is used as a structural unit, one kind of each may be used alone as a structural unit, and if necessary, two or more kinds may be used as a structural unit. good. The same applies when the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units.
  • the content molar ratio [(a1) / (a2)] is preferably 75/25 to 99/1. The ratio is more preferably 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
  • crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), other vinyl monomers (a3) copolymerizable therewith are used as the structural unit. Can do. Other vinyl monomers (a3) may be used alone or in combination of two or more.
  • the other copolymerizable vinyl monomer (a3) is not particularly limited, and is known (for example, a hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883).
  • 0025 paragraph and vinyl monomer disclosed in JP-A-2005-75982, paragraph 0058, etc. can be used.
  • the following vinyl monomers (i) to (iii) Can be used.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen substituted products of styrene such as vinylnaphthalene and dichlorostyrene.
  • C2-C20 aliphatic ethylenic monomer Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isopren
  • monoethylenically unsaturated monomer such as pinene, limonene and indene
  • polyethylene vinyl monomer such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene.
  • the content (mol%) of the other vinyl monomer (a3) unit is based on the total number of moles of the water-soluble vinyl monomer (a1) unit and hydrolyzable vinyl monomer (a2) unit from the viewpoint of absorption performance and the like. 0 to 5, more preferably 0 to 3, particularly preferably 0 to 2, particularly preferably 0 to 1.5. From the viewpoint of absorption performance, the content of other vinyl monomer (a3) units is preferably Most preferably, it is 0 mol%.
  • the cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in Japanese Patent No. 3648553, paragraphs 0031 to 0034, and a water-soluble substituent.
  • a crosslinking agent having at least one functional group and having at least one ethylenically unsaturated group, and a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent Japanese Patent Application Laid-Open No.
  • Crosslinking agents such as disclosed crosslinkable vinyl monomer can be used to.
  • a crosslinking agent having two or more ethylenically unsaturated groups is preferable, and more preferable is triallyl cyanurate, triallyl isocyanurate, and a poly (poly (2) having 2 to 10 carbon atoms).
  • Meta) allyl ethers particularly preferred are triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferred pentaerythritol triallyl ether.
  • a crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together.
  • the content (mol%) of the crosslinking agent (b) unit is preferably 0.001 to 5, based on the total number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Preferably it is 0.005 to 3, particularly preferably 0.01 to 1. Within this range, the absorption performance is further improved.
  • Examples of the method for producing the resin particles (B) containing the crosslinked polymer (A) include known aqueous solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method and the like; JP-A-55-133413), and the like.
  • a hydrogel polymer (consisting of a crosslinked polymer and water) obtained by reverse phase suspension polymerization (JP-B-54-30710, JP-A-56-26909, JP-A-1-5808, etc.) Can be obtained by heat drying and grinding if necessary.
  • the cross-linked polymer (A) contained in the resin particles (B) may be a single type or a mixture of two or more types.
  • the solution polymerization method is preferable, and it is advantageous in terms of production cost because it is not necessary to use an organic solvent. Therefore, the aqueous solution polymerization method is particularly preferable, and the water retention amount is large and water-soluble.
  • the aqueous liquid absorptive polymerization method is most preferable because an aqueous liquid absorbent resin with a small amount of components can be obtained and temperature control during polymerization is unnecessary.
  • a mixed solvent containing water and an organic solvent can be used.
  • the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these.
  • the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less, based on the weight of water.
  • a conventionally known radical polymerization catalyst can be used, for example, an azo compound [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis (2-amidinopropane) hydrochloride.
  • Etc. inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide, etc.
  • Oxides and di (2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts alkali metal sulfites or bisulfites, ammonium sulfites, ammonium bisulfites, ascorbic acids and the like, and alkali metal persulfates, Oxidation of ammonium persulfate, hydrogen peroxide and organic peroxides And the like).
  • These catalysts may be used alone or in combination of two or more thereof.
  • the amount (% by weight) of the radical polymerization catalyst used is preferably from 0.0005 to 5, more preferably from 0.001 to 5, based on the total weight of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2). 2.
  • the polymerization may be performed in the presence of a conventionally known dispersant or surfactant, if necessary.
  • a conventionally known dispersant or surfactant if necessary.
  • polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane and normal heptane.
  • the polymerization start temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100 ° C., more preferably 5 to 80 ° C.
  • the solvent such as an organic solvent and water
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably based on the weight of the crosslinked polymer (A). Is 0-3, most preferably 0-1. Within this range, the absorption performance of the aqueous liquid absorbent resin particles (P) is further improved.
  • the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-8. Within this range, the absorption performance is further improved.
  • the hydrogel polymer obtained by polymerization can be shredded as necessary.
  • the size (longest diameter) of the gel after chopping is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
  • Shredding can be performed by a known method, and can be performed using a normal shredding device (for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher, and roll crusher). .
  • a normal shredding device for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher, and roll crusher.
  • the content and water content of the organic solvent were measured using an infrared moisture meter [for example, JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V , 40 W], from the weight loss of the measurement sample when heated.
  • an infrared moisture meter for example, JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V , 40 W
  • a method of distilling off the solvent including water
  • a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C. a thin film drying method using a drum dryer heated to 100 to 230 ° C., (heating ) Vacuum drying, freeze drying, infrared drying, decantation, filtration, etc. can be applied.
  • Resin particles (B) can be pulverized after drying.
  • the pulverization method is not particularly limited, and a normal pulverizer (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, and a shet airflow pulverizer) can be used.
  • the pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
  • the resin particles (B) containing the cross-linked polymer (A) when screened if necessary contain the cross-linked polymer (A) as a main component. Some ingredients may be included.
  • the weight average particle diameter ( ⁇ m) of the resin particles (B) is preferably 100 to 800, more preferably 200 to 700, next preferably 250 to 600, particularly preferably 300 to 500, and most preferably 350 to 450. is there. Within this range, the absorption performance is further improved.
  • the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book, 1984). , Page 21). That is, JIS standard sieves are combined in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and a tray from the top. About 50 g of the measured particles are put in the uppermost screen and shaken for 5 minutes with a low-tap test sieve shaker.
  • the absorption performance is better when the content of the fine particles contained in the resin particles (B) is smaller, it is 106 ⁇ m or less (preferably accounting for the total weight of the resin particles (B) containing the crosslinked polymer (A)).
  • the content (% by weight) of the fine particles of 150 ⁇ m or less is preferably 3 or less, more preferably 1 or less.
  • the content of the fine particles can be determined using a graph created when determining the above-mentioned weight average particle diameter.
  • the shape of the resin particle (B) is not particularly limited, and examples thereof include an irregularly crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, from the viewpoint of good entanglement with the fibrous material for use as a disposable diaper and no fear of dropping off from the fibrous material, an irregularly crushed shape is preferable.
  • the resin particles (B) containing the crosslinked polymer (A) may be treated with a hydrophobic substance as necessary, and a method described in JP2013-231199A can be used.
  • Examples of the polyhydric alcohol (c) having 4 or less carbon atoms in the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, glycerin, 1,4-butanediol and the like. Of these, propylene glycol and glycerin are preferable from the viewpoint of safety and availability, and propylene glycol is more preferable.
  • the coverage of the resin particles with the polyvalent metal salt (d) is improved, and the breakage resistance of the resin particles is improved.
  • (C) may be used individually by 1 type, and may use 2 or more types together.
  • the amount (% by weight) of the polyhydric alcohol (c) having 4 or less carbon atoms is preferably 0.05 to 5 and more preferably based on the weight of the resin particles (B) from the viewpoint of absorption performance and breakage resistance. Is from 0.1 to 3, particularly preferably from 0.2 to 2.
  • Examples of the polyvalent metal salt (d) in the present invention include an inorganic acid salt of zirconium, aluminum or titanium.
  • Examples of the inorganic acid forming (d) include sulfuric acid, hydrochloric acid, nitric acid, hydrobromic acid, and iodide. Examples include hydrogen acid and phosphoric acid.
  • Examples of the inorganic acid salt of zirconium include zirconium sulfate and zirconium chloride.
  • Examples of the inorganic acid salt of aluminum include aluminum sulfate, aluminum chloride, aluminum nitrate, ammonium aluminum sulfate, potassium aluminum sulfate, and aluminum aluminum sulfate.
  • Examples of the inorganic acid salt of titanium include titanium sulfate, titanium chloride, and titanium nitrate.
  • inorganic acid salts of aluminum and inorganic acid salts of titanium are preferable, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate, and sodium aluminum sulfate are particularly preferable.
  • aluminum sulfate and sodium aluminum sulfate are particularly preferable.
  • the polyvalent metal salt (d) By using the polyvalent metal salt (d), at least a part of the surface of the resin particle (B) is coated with (d), and the fracture resistance of the resin particle is improved.
  • (D) may be used individually by 1 type and may use 2 or more types together.
  • the use amount (% by weight) of the polyvalent metal salt (d) is preferably 0.05 to 5, more preferably 0.1 based on the weight of the resin particles (B) from the viewpoint of absorption performance and breakage resistance. To 3, particularly preferably 0.2 to 2.
  • polyvalent glycidyl compound (e) in the present invention examples include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether, glycerin triglycidyl ether, and sorbitol polyglycidyl ether. From the viewpoint of performance, it is from 2 to 8, more preferably from 2 to 3, and the number of glycidyl groups per molecule is preferably from 2 to 10, more preferably from 2 to 4, from the viewpoint of absorption performance. (E) may be used individually by 1 type, and may use 2 or more types together.
  • polyhydric alcohols such as ethylene glycol diglycidyl ether, glycerin triglycidyl ether, and sorbitol polyglycidyl ether. From the viewpoint of performance, it is from 2 to 8, more preferably from 2 to 3, and the number of glycidyl groups per molecule is preferably from 2 to 10, more preferably from 2 to 4, from the viewpoint of
  • the use amount (% by weight) of the polyvalent glycidyl compound (e) is preferably 0.001 to 3, more preferably 0.005 to 2, particularly preferably 0.005 to 2, based on the weight of the resin particles (B) from the viewpoint of absorption performance. Preferably it is 0.01-1.
  • the resin particles (B) containing the crosslinked polymer (A) are surfaced using a polyhydric alcohol (c) having 4 or less carbon atoms, a polyvalent metal salt (d) and a polyvalent glycidyl compound (e).
  • a polyhydric alcohol (c) having 4 or less carbon atoms examples include the following methods [I] to [III].
  • -Method [I] Method for surface-treating resin particles (B) using a mixed liquid (W1) containing a polyhydric alcohol (c) having 4 or less carbon atoms, a polyvalent metal salt (d), a polyvalent glycidyl compound (e) and water .
  • a method comprising any of the following steps (1) to (3): (1) The step of surface-treating the resin particles (B) with the mixed liquid (W2), and then performing the surface treatment with the mixed liquid (W3) with or without heat treatment; (2) The step of surface-treating the resin particles (B) with the mixed solution (W3), and then performing the surface treatment with the mixed solution (W2) with or without heat treatment; (3) The process of surface-treating simultaneously with liquid mixture (W2) and liquid mixture (W3).
  • [I] is preferable from the viewpoint of productivity.
  • method [I] include, for example, a cylindrical mixer, a screw mixer, a screw extruder, a turbulator, a nauter mixer, a double-arm kneader, a fluid mixer, and a V mixer.
  • a mixing device such as a minced mixer, a ribbon type mixer, a fluid type mixer, an airflow type mixer, a rotating disk type mixer, a conical blender and a roll mixer
  • Examples thereof include a method in which the mixed liquid (W1) containing the polyvalent metal salt (d), the polyvalent glycidyl compound (e) and water and the resin particles (B) are uniformly mixed.
  • the temperature for the surface treatment by the method [I] is not particularly limited, but is preferably 10 to 150 ° C, more preferably 20 to 100 ° C, and particularly preferably 25 to 80 ° C.
  • the heating temperature is preferably 100 to 150 ° C., more preferably 110 to 145 ° C., and particularly preferably 125 to 140 ° C. from the viewpoint of breakage resistance of the resin particles. Heating at 150 ° C. or lower is advantageous in terms of equipment because indirect heating using steam is possible, and absorption performance may deteriorate at heating temperatures below 100 ° C.
  • the heating time can be appropriately set depending on the heating temperature, but is preferably 5 to 60 minutes, more preferably 10 to 40 minutes from the viewpoint of absorption performance.
  • specific examples of the method of surface-treating the resin particles with the mixed liquids (W2) to (W4) include the same methods as the specific examples in the above method [I].
  • Examples include a method in which the resin particles (B) are charged into the mixing apparatus, and the mixed liquid (W2) and the mixed liquid (W3), or the mixed liquid (W2) and the mixed liquid (W4) are separately and simultaneously added and uniformly mixed. .
  • the heating temperature and the heating time are the same as those described above. This is the same as the heating temperature and heating time in the heat treatment after the surface treatment of [I].
  • the step (4) of the method [III] if the heat treatment is performed between the surface treatment with the mixed solution (W2) and the surface treatment with the mixed solution (W4), the fracture resistance is lowered. After the surface treatment with the liquid (W2), it is necessary to perform the surface treatment with the mixed liquid (W4) without performing the heat treatment.
  • heat treatment is usually performed.
  • the heating temperature and heating time at that time are the same as the heating temperature and heating time in the heat treatment after the surface treatment of the method [I].
  • a step of surface-treating the resin particles using the inorganic particles (f) can be included, and the aqueous liquid absorbent resin particles (P) are surface-treated with the inorganic particles (f). It may be.
  • surface treatment with inorganic particles (f) liquid permeability is improved.
  • Examples of the inorganic particles (f) include colloidal silica, fumed silica, clay and talc. Colloidal silica and silica are preferable from the viewpoint of availability, ease of handling, and absorption performance, and colloidal is more preferable. Silica. (F) may be used individually by 1 type, and may use 2 or more types together.
  • the amount (% by weight) of the inorganic particles (f) used is preferably from 0.01 to 5, more preferably from 0.05 to 1, particularly preferably from the viewpoint of absorption performance, based on the weight of the resin particles (B). 0.1 to 0.5.
  • the surface treatment with the inorganic particles (f) may be performed on the resin particles (B) containing the crosslinked polymer (A), and the method (II), step (1), step (2), and In the steps (4) and (5) of [III], the resin particles may be applied to the resin particles after the first surface treatment and before the surface treatment, or the above method [I].
  • the resin particles after the surface treatment of [III] may be performed.
  • the mixed solution (W1) in the method [I] contains the inorganic particles (f), the mixed solution in the method [II] ( W2) and / or a method of containing the inorganic particles (f) in the mixed solution (W3) and a method of containing the inorganic particles (f) in the mixed solution (W2) and / or the mixed solution (W4) in the method [III]. Is preferred.
  • the aqueous liquid absorbent resin particles (P) in the present invention may be further subjected to surface crosslinking treatment with a surface crosslinking agent, if necessary.
  • a surface crosslinking agent include known polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds and polyvalent isocyanate compounds described in JP 59-189103 A, JP 58-180233 A and JP Polyhydric alcohols disclosed in JP-A-61-16903, silane coupling agents described in JP-A-61-211305 and JP-A-61-225212, alkylene carbonates described in JP-A-5-508425,
  • the polyvalent oxazoline compounds described in JP-A-11-240959 and the polyvalent metals described in JP-A-51-136588 and JP-A-61-257235 can be used.
  • polyvalent glycidyl compounds, polyhydric alcohols and polyhydric amines are preferred, polyvalent glycidyl compounds and polyhydric alcohols are more preferred, and many are particularly preferred.
  • Valent glycidyl compounds, most preferred are ethylene glycol diglycidyl ethers.
  • a surface crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
  • the amount (% by weight) of the surface cross-linking agent is not particularly limited because it can be variously changed depending on the type of surface cross-linking agent, the conditions for cross-linking, the target performance, etc. In view of the above, it is preferably 0.001 to 3, more preferably 0.005 to 2, particularly preferably 0.01 to 1, based on the weight of the resin particles (B).
  • the surface crosslinking treatment is a surface treatment of resin particles (B) containing a crosslinked polymer (A) with a polyhydric alcohol (c) having 4 or less carbon atoms, a polyvalent metal salt (d) and a polyvalent glycidyl compound (e). It can be performed simultaneously or separately, before or after the surface treatment.
  • the method of the surface cross-linking treatment is known (for example, Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-2005). 75982 and JP-A-2005-95759) can be applied.
  • the aqueous liquid absorbent resin particles (P) obtained by the production method of the present invention may contain additives (for example, known (described in JP-A-2003-225565, JP-A-2006-131767, etc.) antiseptics, if necessary) Agents, fungicides, antibacterial agents, antioxidants, ultraviolet absorbers, colorants, fragrances, deodorants, liquid permeability improvers, organic fibrous materials, and the like.
  • the content (% by weight) of the additive is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the crosslinked polymer (A).
  • it is 0.05 to 1, most preferably 0.1 to 0.5.
  • the aqueous liquid absorbent resin particles (P) obtained by the production method of the present invention have at least a part of their surfaces coated with the polyvalent metal salt (d).
  • the coverage of the resin particle surface with the polyvalent metal salt (d) is preferably 50 to 100%, more preferably 75 to 100%, particularly preferably 80% to 100%, most preferably from the viewpoint of fracture resistance. Preferably, it is 90% to 100%.
  • the coverage is measured by a method described later (that is, for example, an element mapping method using an energy dispersive X-ray analysis method).
  • the apparent density (g / ml) of the aqueous liquid absorbent resin particles (P) obtained by the production method of the present invention is preferably 0.54 to 0.70, more preferably 0.56 to 0.65, and particularly preferably. Is 0.58 to 0.60. Within this range, the anti-fogging property of the absorbent article is further improved.
  • the apparent density of (P) is measured at 25 ° C. according to JIS K7365: 1999.
  • the crosslinking weight having the water-soluble vinyl monomer (a1) and / or the vinyl monomer (a2) that becomes the water-soluble vinyl monomer (a1) by hydrolysis and the crosslinking agent (b) as essential constituent units. 50% to 100% coverage of the particle surface containing the coalesced (A) and the polyvalent metal salt (d) and obtained by elemental mapping using energy dispersive X-ray analysis by the polyvalent metal salt (d) Aqueous liquid absorbent resin particles can be obtained.
  • the water absorbent liquid absorbent resin particles may further contain inorganic particles (f).
  • the absorber of the present invention contains aqueous liquid absorbent resin particles (P) obtained by the production method of the present invention.
  • the aqueous liquid absorbent resin particles (P) may be used alone, or may be used together with other materials as the absorber. Examples of other materials include fibrous materials.
  • the structure and production method of the absorbent when used together with the fibrous material are the same as those known (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
  • Preferred as the fibrous material are cellulose fibers, organic synthetic fibers, and a mixture of cellulose fibers and organic synthetic fibers.
  • cellulosic fibers examples include natural fibers such as fluff pulp, and cellulosic chemical fibers such as viscose rayon, acetate, and cupra.
  • raw materials conifers, hardwoods, etc.
  • production methods chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.
  • bleaching methods etc. of this cellulose-based natural fiber.
  • organic synthetic fibers examples include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). And a fiber obtained by compounding at least two of the above into a sheath core type, an eccentric type, a parallel type, and the like, a fiber obtained by blending at least two kinds of the above fibers, and a fiber obtained by modifying the surface layer of the above fibers).
  • fibrous base materials preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible composite fibers, and mixed fibers thereof, and more preferable are obtained.
  • the fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof are used in that the shape-retaining property of the obtained water-absorbing agent after water absorption is excellent.
  • the length and thickness of the fibrous material are not particularly limited and can be suitably used as long as the length is 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier.
  • the shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, and a web shape.
  • the weight ratio of the aqueous liquid absorbent resin particles (P) to the fibers is It is preferably 40/60 to 90/10, more preferably 70/30 to 80/20.
  • the absorbent article of the present invention includes the above-described absorber.
  • the absorbent article is applicable not only to sanitary articles such as paper diapers and sanitary napkins, but also to various uses such as absorption of various aqueous liquids described below, use as a retention agent, and use as a gelling agent.
  • the manufacturing method and the like of the absorbent article are the same as known ones (described in JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.).
  • EDS analysis energy dispersive X-ray analysis
  • JSM-7000 An electron microscope “JSM-7000” was set. The magnification was 150 times, one particle was displayed on the screen, and EDS analysis was performed in element mapping mode.
  • the detection area of the characteristic element of the polyvalent metal salt (d) (for example, aluminum and sulfur in the case of aluminum sulfate or sodium aluminum sulfate) is S1
  • the characteristic element of the aqueous liquid absorbent resin particles (P) usually sodium polyacrylate Since it is a salt, the detection area of sodium
  • Coverage (%) (S1 / S0) ⁇ 100
  • the coverage of each element was averaged to obtain the coverage. Five grains were measured for one type of measurement sample, and the average value was taken as the coverage of the measurement sample. Note that, as the detection areas S0 and S1, values obtained by outputting frequency distributions of detection intensities of the respective characteristic elements as histograms were used.
  • ⁇ Measurement method of water retention amount> 1.00 g of a measurement sample is placed in a tea bag (20 cm long, 10 cm wide) made of a nylon net having a mesh size of 63 ⁇ m (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (saline concentration 0.9%). The sample was immersed for 1 hour without stirring and then pulled up, suspended for 15 minutes and drained. Thereafter, each tea bag was placed in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to obtain the water retention amount from the following formula. In addition, the temperature of the used physiological saline and measurement atmosphere was 25 degreeC +/- 2 degreeC. Water retention amount (g / g) (h1) ⁇ (h2) In addition, (h2) is the weight of the tea bag measured by the same operation as described above when there is no measurement sample.
  • a pressure shaft 9 (heavy weight) on which the circular wire mesh 8 (mesh size 150 ⁇ m, diameter 25 mm) is coupled perpendicularly to the wire mesh surface on the swollen gel particles 2. 22 g in length and 47 cm in length) were placed so that the wire mesh and swollen gel particles were in contact with each other, and a weight 10 (88.5 g) was placed on the pressure shaft 9 and allowed to stand for 1 minute.
  • ⁇ Breakability test method> A measurement sample was weighed in an amount of 15 g, put into a fiber mixer manufactured by Panasonic, and stirred for 1 second with the low-speed / high-speed switch set at low speed.
  • Example 1 Acrylic acid (a1-1) ⁇ Mitsubishi Chemical Co., Ltd., purity 100% ⁇ 131 parts, Cross-linking agent (b-1) ⁇ Pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd. ⁇ 0.44 parts and deionized water 362 The part was kept at 3 ° C. with stirring and mixing. After flowing nitrogen into this mixture to reduce the dissolved oxygen amount to 1 ppm or less, 0.5 part of 1% aqueous hydrogen peroxide solution, 1 part of 2% aqueous ascorbic acid solution and 2% 2,2′-azobisamidinopropane Polymerization was started by adding and mixing 0.1 part of a dihydrochloride aqueous solution. After the temperature of the mixture reached 80 ° C., a water-containing gel was obtained by polymerization at 80 ⁇ 2 ° C. for about 5 hours.
  • Example 2 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( a mixed solution of 0.6 part of propylene glycol as c), 0.09 part of ethylene glycol diglycidyl ether and 1.1 part of water as the polyvalent glycidyl compound (e), and a polyhydric alcohol having 4 or less carbon atoms (c ), 0.5 parts of propylene glycol as a polyvalent metal salt, 1.2 parts of sodium aluminum sulfate 12 hydrate as a polyvalent metal salt (d), and 2.3 parts of water are simultaneously added and mixed uniformly. The mixture was heated at 130 ° C. for 30 minutes to obtain aqueous liquid absorbent resin particles (P-2) of the present invention.
  • high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm high speed stirring
  • Example 3 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( c) propylene glycol 0.6 part, polyvalent glycidyl compound (e) 0.09 part ethylene glycol diglycidyl ether, inorganic particles (f) Klebosol 30cal25 (AZ Material colloidal silica) 1 part and water 1.1 parts mixed liquid, 0.5 parts propylene glycol as polyhydric alcohol (c) having 4 or less carbon atoms, sodium aluminum sulfate dodecahydrate 1.2 as polyvalent metal salt (d) And a mixture of 2.3 parts of water and 2.3 parts of water were added at the same time and mixed uniformly, then heated at 130 ° C. for 30 minutes, To obtain a sexual liquid-absorbent resin particles (P-3).
  • Example 4 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( After adding a mixed liquid in which 1.2 parts of propylene glycol as c), 0.09 part of ethylene glycol diglycidyl ether as the polyvalent glycidyl compound (e) and 3.5 parts of water were mixed and uniformly mixed, 130 After heating at ° C for 30 minutes and cooling to room temperature, 0.5 parts of propylene glycol as polyhydric alcohol (c) having 4 or less carbon atoms, sodium aluminum sulfate dodecahydrate 1 as polyvalent metal salt (d) A mixture of 2 parts and 2.3 parts of water was added at the same time, mixed uniformly, and then heated at 130 ° C. for 30 minutes to obtain the aqueous liquid absorbent resin particles (P- ) Was obtained.
  • Example 5 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( 2.0 parts of propylene glycol as c), 1.2 parts of sodium aluminum sulfate decahydrate as the polyvalent metal salt (d), 0.12 part of ethylene glycol diglycidyl ether as the polyvalent glycidyl compound (e) And a mixed solution of 4.3 parts of water were added and mixed uniformly, and then heated at 130 ° C. for 30 minutes to obtain aqueous liquid absorbent resin particles (P-5) of the present invention.
  • high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
  • a polyhydric alcohol having 4 or less carbon atoms 2.0 parts of propylene glycol as c
  • Example 6 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( 4.5 parts of propylene glycol as c), 2.4 parts of sodium aluminum sulfate 12 hydrate as the polyvalent metal salt (d), 0.18 parts of ethylene glycol diglycidyl ether as the polyvalent glycidyl compound (e) Then, a mixed solution in which 6.1 parts of water was mixed was added and mixed uniformly, and then heated at 130 ° C. for 30 minutes to obtain the aqueous liquid absorbent resin particles (P-6) of the present invention.
  • high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
  • a polyhydric alcohol having 4 or less carbon atoms 4.5 parts of
  • Example 7 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( 3.0 parts of propylene glycol as c), 3.6 parts of sodium aluminum sulfate decahydrate as the polyvalent metal salt (d), 0.12 part of ethylene glycol diglycidyl ether as the polyvalent glycidyl compound (e) And 7.9 parts of water were added and mixed uniformly, followed by heating at 130 ° C. for 30 minutes to obtain aqueous liquid absorbent resin particles (P-7) of the present invention.
  • high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
  • a polyhydric alcohol having 4 or less carbon atoms 3.0 parts of propylene glycol as c
  • Example 8 While 100 parts of the resin particles (B-1) obtained in the same manner as in Example 1 were stirred at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), a polyhydric alcohol having 4 or less carbon atoms ( c) 0.2 parts of propylene glycol as the polyvalent metal salt (d) 0.4 parts of sodium aluminum sulfate 12 hydrate, 0.08 parts of ethylene glycol diglycidyl ether as the polyvalent glycidyl compound (e) Then, a mixed solution in which 1.5 parts of water was mixed was added, mixed uniformly, and then heated at 150 ° C. for 30 minutes to obtain aqueous liquid absorbent resin particles (P-8) of the present invention.
  • high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
  • a polyhydric alcohol having 4 or less carbon atoms c
  • sodium aluminum sulfate dodecahydrate 1 as a polyvalent metal salt (d) 1 while further stirring at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm) Add a mixture of 2 parts and 2.3 parts of water, mix uniformly, and then heat at 130 ° C. for 30 minutes to produce a comparative aqueous liquid absorbent resin particle (R-1) was obtained.
  • silica (Aerosil 200 manufactured by Aerosil Co.) as inorganic particles (f) was further added while stirring at a high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm). After adding 2 parts and mixing uniformly, the mixture was heated at 130 ° C. for 30 minutes to obtain comparative aqueous liquid absorbent resin particles (R-2).
  • Table 1 shows the rate and performance evaluation results (water retention amount before and after the breakability test, absorption amount under load, gel permeability, and change rate of each measured value before and after the breakability test).
  • the aqueous liquid absorbent resin particles obtained by the production method of the present invention can achieve both liquid permeability between swollen gels and absorption performance under load, and can be absorbed by applying to various absorbers. Because it can be made into an absorbent article with excellent reversibility and surface dryness, disposable diapers (children's diapers, adult diapers, etc.), napkins (sanitary napkins, etc.), paper towels, pads (for incontinence) It is suitably used for sanitary goods such as a pad and a surgical underpad) and a pet sheet (pet urine absorbing sheet), and is particularly suitable for a paper diaper.
  • the aqueous liquid absorbent resin particles obtained by the production method of the present invention are not only sanitary products, but also pet urine absorbents, urine gelling agents for portable toilets, freshness-keeping agents such as fruits and vegetables, and drip absorption for meat and seafood. It is also useful for various applications such as agents, cooling agents, disposable warmers, gelling agents for batteries, water retention agents such as plants and soil, anti-condensation agents, water-stopping materials and packing materials, and artificial snow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 輸送やオムツ製造工程を経た後でも、膨潤したゲル間の通液性及び荷重下での吸収性能の両立が可能な水性液体吸収性樹脂粒子の製造方法を提供する。本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子(B)を、炭素数4以下の多価アルコール(c)、多価金属塩(d)、多価グリシジル化合物(e)を用いて特定の方法で表面処理することを特徴とする水性液体吸収性樹脂粒子(P)の製造方法及び水性液体吸収性樹脂粒子(P)である。

Description

水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品
 本発明は水性液体吸収性樹脂粒子の製造方法、この製造方法により得られる水性液体吸収性樹脂粒子並びにこれを用いた吸収体及び吸収性物品に関するものである。
 現在、紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等とを主原料とする水性液体吸収性樹脂が吸収体として幅広く利用されている。近年のQOL(quality of life)向上の観点からこれら衛生材料はより軽量かつ薄型のものへと需要が遷移しており、これに伴って親水性繊維の使用量低減が望まれるようになってきた。そのため、これまで親水性繊維が担ってきた吸収体中での液拡散性や初期吸収の役割を水性液体吸収性樹脂それ自体に求められるようになり、加重下での吸液性及び膨潤したゲル間の通液性の高い水性液体吸収性樹脂が必要とされてきた。
 膨潤ゲル間の通液性を向上させる手法として、SAP(Super Absorbent Polymer)表面を特異的に架橋することにより水性液体吸収性樹脂表面の架橋密度を高め、膨潤ゲル表面の変形を抑制し、ゲル間隙を効率的に形成する方法が既に知られている(例えば、特許文献1参照)。しかしながら従来の表面架橋だけでは膨潤ゲル間の通液性は十分満足いくものではなかった。
 膨潤ゲル間の通液性を向上させる手法として(1)シリカ及びタルク等の無機化合物を添加することにより物理的なスペースを形成させる方法、(2)変性シリコーン等の表面自由エネルギーの小さい疎水性高分子で表面処理することにより、膨潤ゲル同士の合着を抑制してゲル間隙を形成させる方法及び(3)硫酸アルミニウムや乳酸アルミニウム等を添加する方法が既に知られている(例えば、特許文献2、特許文献3及び特許文献4参照)。しかし上記の方法では、膨潤したゲル間の通液性を向上させることができるものの、荷重下での吸収量が低下するという問題や、輸送やオムツ製造工程の際に樹脂粒子が壊れてしまい、通液性が低下してしまうという問題があった。
国際公開第00/053664号 特開2012-161788号公報 特開2013-133399号公報 特開2014-512440号公報
 本発明の目的は、輸送やオムツ製造工程を経た後でも、膨潤したゲル間の通液性及び荷重下での吸収性能の両立が可能な水性液体吸収性樹脂粒子の製造方法を提供することである。
 本発明者は、上記目的を達成すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子(B)を、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び多価グリシジル化合物(e)を用いて以下の方法[I]~[III]のいずれかで表面処理することを特徴とする水性液体吸収性樹脂粒子(P)の製造方法;前記製造方法により得られ、エネルギー分散型X線分析法を用いた元素マッピングにより求められる粒子表面の多価金属塩(d)による被覆率が50~100%である水性液体吸収性樹脂粒子;前記製造方法を用いて製造される水性液体吸収性樹脂粒子を含む吸収体;前記吸収体を備えた吸収性物品である。
方法[I]:
 炭素数4以下の多価アルコール(c)、多価金属塩(d)、多価グリシジル化合物(e)及び水を含有する混合液(W1)を用いて樹脂粒子(B)を表面処理する方法。
方法[II]:
 炭素数4以下の多価アルコール(c)、多価グリシジル化合物(e)及び水を含有し、多価金属塩(d)を含有しない混合液(W2)と、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び水を含有し、多価グリシジル化合物(e)を含有しない混合液(W3)とを用いて樹脂粒子(B)を表面処理する方法であって、以下の(1)~(3)の工程のいずれかを含む方法:
(1)混合液(W2)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W3)で更に表面処理する工程;
(2)混合液(W3)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W2)で更に表面処理する工程;
(3)混合液(W2)と混合液(W3)で同時に表面処理する工程。
方法[III]:
 炭素数4以下の多価アルコール(c)、多価グリシジル化合物(e)及び水を含有し、多価金属塩(d)を含有しない混合液(W2)と、多価金属塩(d)及び水を含有し、炭素数4以下の多価アルコール(c)及び多価グリシジル化合物(e)を含有しない混合液(W4)とを用いて樹脂粒子(B)を表面処理する方法であって、以下の(4)~(6)の工程のいずれかを含む方法:
(4)混合液(W2)で樹脂粒子(B)を表面処理した後、加熱処理を行わずに混合液(W4)で更に表面処理する工程;
(5)混合液(W4)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W2)で更に表面処理する工程;
(6)混合液(W2)と混合液(W4)で同時に表面処理する工程。
 本発明の製造方法により得られる水性液体吸収性樹脂粒子(P)は、その表面の少なくとも一部が多価金属塩で被覆されていることにより輸送やオムツ製造工程の際に樹脂粒子が壊れることが抑制され(以下、壊れにくさを耐壊れ性という)、輸送やオムツ製造工程を経た後での加重下での吸収性及び膨潤ゲル間の通液性が非常に優れており、さまざまの使用状況においても安定して優れた吸収性能(例えば液拡散性、吸収速度及び吸収量)を発揮し、カブレが生じにくい。
ゲル通液速度を測定するための濾過円筒管を模式的に表した断面図である。 ゲル通液速度を測定するための加圧軸及びおもりを模式的に表した斜視図である。
 本発明の水性液体吸収性樹脂粒子(P)の製造方法は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子(B)を、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び多価グリシジル化合物(e)を用いて表面処理することを特徴とする。
 本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。
 加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)[以下、加水分解性ビニルモノマー(a2)ともいう。]は特に限定はなく、公知{例えば、特許第3648553号公報の0024~0025段落に開示されている加水分解により水溶性置換基となる加水分解性置換基を少なくとも1個有するビニルモノマー、特開2005-75982号公報の0052~0055段落に開示されている少なくとも1個の加水分解性置換基[1,3-オキソ-2-オキサプロピレン(-CO-O-CO-)基、アシル基及びシアノ基等]を有するビニルモノマー}のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、25℃の水100gに少なくとも100g溶解するビニルモノマーを意味する。また、加水分解性ビニルモノマー(a2)における加水分解性とは、水及び必要により触媒(酸又は塩基等)の作用により加水分解され、水溶性になる性質を意味する。加水分解性ビニルモノマー(a2)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる水性液体吸収性樹脂粒子(P)の吸収性能の観点から、重合後が好ましい。
 これらの内、吸収性能等の観点から好ましいのは水溶性ビニルモノマー(a1)、より好ましいのはアニオン性ビニルモノマー、カルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマー、更に好ましいのはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、特に好ましいのは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、とりわけ好ましいのは(メタ)アクリル酸(塩)、最も好ましいのはアクリル酸(塩)である。
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。
 水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ1種を単独で構成単位としてもよく、また、必要により2種以上を構成単位としても良い。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比[(a1)/(a2)]は、75/25~99/1が好ましく、更に好ましくは85/15~95/5、特に好ましくは90/10~93/7、最も好ましくは91/9~92/8である。この範囲内であると、吸収性能が更に良好となる。
 架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。その他のビニルモノマー(a3)は1種を単独で用いても、2種以上を併用してもよい。
 共重合可能なその他のビニルモノマー(a3)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
 その他のビニルモノマー(a3)単位の含有量(モル%)は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の合計モル数に基づいて、0~5が好ましく、更に好ましくは0~3、特に好ましくは0~2、とりわけ好ましくは0~1.5であり、吸収性能等の観点から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。
 架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート及び炭素数2~10のポリオールのポリ(メタ)アリルエーテル、特に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.01~1である。この範囲であると、吸収性能が更に良好となる。
 架橋重合体(A)を含有する樹脂粒子(B)の製造方法としては、公知の水溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)によって得られる含水ゲル重合体(架橋重合体と水とからなる。)を必要により加熱乾燥、粉砕することで得ることができる。樹脂粒子(B)が含有する架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。
 重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない水性液体吸収性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。
 水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。
 重合に触媒を用いる場合、従来公知のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
 ラジカル重合触媒の使用量(重量%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
 重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは5~80℃である。
 重合に溶媒(有機溶媒及び水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、更に好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、水性液体吸収性樹脂粒子(P)の吸収性能が更に良好となる。
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、更に好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能が更に良好となる。
 重合によって得られる含水ゲル重合体は、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。
 細断は、公知の方法で行うことができ、通常の細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。
 なお、有機溶媒の含有量及び水分は、赤外水分測定器[例えば、(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。
 溶媒(水を含む。)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。
 樹脂粒子(B)は、乾燥後に粉砕することができる。粉砕方法については、特に限定はなく、通常の粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。
 必要によりふるい分けした場合の、架橋重合体(A)を含有する樹脂粒子(B)は、架橋重合体(A)を主成分として含有するが、場合によって、残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。樹脂粒子(B)の重量平均粒子径(μm)は、100~800が好ましく、更に好ましくは200~700、次に好ましくは250~600、特に好ましくは300~500、最も好ましくは350~450である。この範囲であると、吸収性能が更に良好となる。
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順等に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。
 また、樹脂粒子(B)に含まれる微粒子の含有量は少ない方が吸収性能が良好となるため、架橋重合体(A)を含有する樹脂粒子(B)の合計重量に占める106μm以下(好ましくは150μm以下)の微粒子の含有率(重量%)は3以下が好ましく、更に好ましくは1以下である。微粒子の含有量は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。
 樹脂粒子(B)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらの内、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。
 架橋重合体(A)を含有する樹脂粒子(B)は、必要に応じて疎水性物質で処理してもよく、特開2013-231199等に記載の方法を利用出来る。
 本発明における炭素数4以下の多価アルコール(c)としては、エチレングリーコル、プロピレングリコール、1,3-プロパンジオール、グリセリン、1,4-ブタンジオール等が挙げられる。これらの内、安全性や入手の容易さの観点から、プロピレングリコール及びグリセリンが好ましく、更に好ましいのはプロピレングリコールである。(c)を用いることにより多価金属塩(d)による樹脂粒子の被覆率が向上し、樹脂粒子の耐壊れ性が向上する。(c)は1種を単独で用いても良いし、2種以上を併用しても良い。
 炭素数4以下の多価アルコール(c)の使用量(重量%)は、吸収性能及び耐壊れ性の観点から樹脂粒子(B)の重量に基づいて、0.05~5が好ましく、更に好ましくは0.1~3、特に好ましくは0.2~2である。
 本発明における多価金属塩(d)としては、ジルコニウム、アルミニウム又はチタニウムの無機酸塩が挙げられ、(d)を形成する無機酸としては、硫酸、塩酸、硝酸、臭化水素酸、ヨウ化水素酸及びリン酸等が挙げられる。ジルコニウムの無機酸塩としては、硫酸ジルコニウム及び塩化ジルコニウム等が挙げられ、アルミニウムの無機酸塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、硫酸アンモニムアルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム等が挙げられ、チタニウムの無機酸塩としては、硫酸チタニウム、塩化チタニウム及び硝酸チタニウム等が挙げられる。
 これらの内、入手の容易性や溶解性の観点から、アルミニウムの無機酸塩及びチタニウムの無機酸塩が好ましく、更に好ましいのは硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム、特に好ましいのは硫酸アルミニウム及び硫酸ナトリウムアルミニウム、最も好ましいのは硫酸ナトリウムアルミニウムである。
 多価金属塩(d)を使用することにより、樹脂粒子(B)の表面の少なくとも一部が(d)で被覆され、樹脂粒子の耐壊れ性が向上する。(d)は1種を単独で用いても良いし、2種以上を併用しても良い。
 多価金属塩(d)の使用量(重量%)は、吸収性能及び耐壊れ性の観点から樹脂粒子(B)の重量に基づいて、0.05~5が好ましく、更に好ましくは0.1~3、特に好ましくは0.2~2である。
 本発明における多価グリシジル化合物(e)としては、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル及びソルビトールポリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル等が挙げられ、多価アルコールの価数は吸収性能の観点から2~8価、更に好ましくは2~3価であり、1分子当たりのグリシジル基の個数は、吸収性能の観点から好ましくは2~10、更に好ましくは2~4である。(e)は1種を単独で用いても良いし、2種以上を併用しても良い。
 多価グリシジル化合物(e)の使用量(重量%)は、吸収性能の観点から樹脂粒子(B)の重量に基づいて、0.001~3が好ましく、更に好ましくは0.005~2、特に好ましくは0.01~1である。
 本発明において、架橋重合体(A)を含有する樹脂粒子(B)を炭素数4以下の多価アルコール(c)、多価金属塩(d)及び多価グリシジル化合物(e)を用いて表面処理する方法としては、以下の[I]~[III]の方法等が挙げられる。
・方法[I]:
 炭素数4以下の多価アルコール(c)、多価金属塩(d)、多価グリシジル化合物(e)及び水を含有する混合液(W1)を用いて樹脂粒子(B)を表面処理する方法。
・方法[II]:
 炭素数4以下の多価アルコール(c)、多価グリシジル化合物(e)及び水を含有し、多価金属塩(d)を含有しない混合液(W2)と、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び水を含有し、多価グリシジル化合物(e)を含有しない混合液(W3)とを用いて樹脂粒子(B)を表面処理する方法であって、以下の(1)~(3)の工程のいずれかを含む方法:
(1)混合液(W2)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W3)で更に表面処理する工程;
(2)混合液(W3)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W2)で更に表面処理する工程;
(3)混合液(W2)と混合液(W3)で同時に表面処理する工程。
・方法[III]:
 炭素数4以下の多価アルコール(c)、多価グリシジル化合物(e)及び水を含有し、多価金属塩(d)を含有しない混合液(W2)と、多価金属塩(d)及び水を含有し、炭素数4以下の多価アルコール(c)及び多価グリシジル化合物(e)を含有しない混合液(W4)とを用いて樹脂粒子(B)を表面処理する方法であって、以下の(4)~(6)の工程のいずれかを含む方法:
(4)混合液(W2)で樹脂粒子(B)を表面処理した後、加熱処理を行わずに混合液(W4)で更に表面処理する工程;
(5)混合液(W4)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W2)で更に表面処理する工程;
(6)混合液(W2)と混合液(W4)で同時に表面処理する工程。
 方法[I]~[III]の内、生産性の観点から好ましいのは[I]である。
 方法[I]の具体例としては、例えば、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて炭素数4以下の多価アルコール(c)、多価金属塩(d)、多価グリシジル化合物(e)及び水を含有する混合液(W1)と樹脂粒子(B)を均一混合する方法が挙げられる。
 方法[I]により表面処理する際の温度は特に限定されないが、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。
 方法[I]により表面処理した後、通常、加熱処理を行う。加熱温度は、樹脂粒子の耐壊れ性の観点から好ましくは100~150℃、更に好ましくは110~145℃、特に好ましくは125~140℃である。150℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利であり、100℃未満の加熱温度では吸収性能が悪くなる場合がある。また、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分、更に好ましくは10~40分である。
 方法[II]及び[III]において、混合液(W2)~(W4)で樹脂粒子を表面処理する方法の具体例としては、上記方法[I]における具体例と同様の方法が挙げられる。
 なお、方法[II]において混合液(W2)と混合液(W3)で同時に表面処理する方法及び方法[III]において混合液(W2)と混合液(W4)で同時に表面処理する方法としては、上記混合装置に樹脂粒子(B)を仕込み、混合液(W2)と混合液(W3)、又は混合液(W2)と混合液(W4)を別々かつ同時に投入して均一混合する方法が挙げられる。
 方法[II]の工程(1)及び(2)並びに方法[III]の工程(5)において、異なる混合液での表面処理の間に加熱処理する場合、その加熱温度及び加熱時間は、上記方法[I]の表面処理後の加熱処理における加熱温度及び加熱時間と同様である。
 なお、方法[III]の工程(4)においては、混合液(W2)での表面処理と混合液(W4)での表面処理の間で加熱処理を行うと耐壊れ性が低下するため、混合液(W2)での表面処理後、加熱処理を行わずに混合液(W4)で表面処理する必要がある。
 方法[II]及び[III]により表面処理した後、通常、加熱処理を行う。その際の加熱温度及び加熱時間は上記方法[I]の表面処理後の加熱処理における加熱温度及び加熱時間と同様である。
 本発明においては、無機粒子(f)を用いて樹脂粒子を表面処理する工程を含むことができ、水性液体吸収性樹脂粒子(P)は、無機粒子(f)で樹脂粒子が表面処理されてなるものでもよい。無機粒子(f)で表面処理されることにより、通液性が向上する。
 無機粒子(f)としては、コロイダルシリカ、フュームドシリカ、クレー及びタルク等が挙げられ、入手の容易性や扱いやすさ、吸収性能の観点から、コロイダルシリカ及びシリカが好ましく、更に好ましいのはコロイダルシリカである。(f)は1種を単独で用いても良いし、2種以上を併用しても良い。
 無機粒子(f)の使用量(重量%)は、吸収性能の観点から樹脂粒子(B)の重量に基づいて、0.01~5が好ましく、更に好ましくは0.05~1、特に好ましくは0.1~0.5である。
 無機粒子(f)での表面処理は、架橋重合体(A)を含有する樹脂粒子(B)に対して行ってもよいし、上記方法[II]の工程(1)、工程(2)及び[III]の工程(4)、工程(5)において、1回目の表面処理が終わった後であって更に表面処理を行う前の樹脂粒子に行ってもよいし、あるいは、上記方法[I]~[III]の表面処理を行った後の樹脂粒子に行ってもよい。
 樹脂粒子(B)を無機粒子(f)を用いて表面処理する場合、上記方法[I]における混合液(W1)に無機粒子(f)を含有させる方法、上記方法[II]における混合液(W2)及び/又は混合液(W3)に無機粒子(f)を含有させる方法並びに上記方法[III]における混合液(W2)及び/又は混合液(W4)に無機粒子(f)を含有させる方法が好ましい。
 本発明における水性液体吸収性樹脂粒子(P)は、必要に応じて、更に表面架橋剤により表面架橋処理されていてもよい。表面架橋剤としては、公知(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58-180233号公報及び特開昭61-16903号公報の多価アルコール、特開昭61-211305号公報及び特開昭61-252212号公報に記載のシランカップリング剤、特表平5-508425号公報に記載のアルキレンカーボネート、特開平11-240959号公報に記載の多価オキサゾリン化合物並びに特開昭51-136588号公報及び特開昭61-257235号公報に記載の多価金属等)の表面架橋剤等が使用できる。これらの表面架橋剤の内、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンが好ましく、更に好ましいのは多価グリシジル化合物及び多価アルコール、特に好ましいのは多価グリシジル化合物、最も好ましいのはエチレングリコールジグリシジルエーテルである。表面架橋剤は1種を単独で用いても良いし、2種以上を併用しても良い。
 表面架橋処理をする場合、表面架橋剤の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、樹脂粒子(B)の重量に基づいて、0.001~3が好ましく、更に好ましくは0.005~2、特に好ましくは0.01~1である。
 表面架橋処理は、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び多価グリシジル化合物(e)による架橋重合体(A)を含有する樹脂粒子(B)の表面処理と同時に行うことも、別々に、上記表面処理の前又は後に、行うこともできる。
 表面架橋処理を(c)~(e)による表面処理工程と同時に行う方法としては、表面架橋剤を上記方法[I]~[III]における混合液(W1)~(W4)に添加する方法が挙げられる。
 表面架橋処理を(c)~(e)による表面処理工程とは別に行う場合、表面架橋処理の方法は、公知(たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報)の方法が適用できる。
 本発明の製造方法で得られる水性液体吸収性樹脂粒子(P)は、必要に応じて、添加剤(例えば、公知(特開2003-225565号及び特開2006-131767号等に記載)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤、通液性向上剤及び有機質繊維状物等)を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.001~10が好ましく、更に好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。
 本発明の製造方法で得られる水性液体吸収性樹脂粒子(P)は、その表面の少なくとも一部が多価金属塩(d)で被覆されている。多価金属塩(d)による樹脂粒子表面の被覆率は、耐壊れ性の観点から50~100%であることが好ましく、更に好ましくは75~100%、特に好ましくは80%~100%、最も好ましくは90%~100%である。なお、被覆率は後述の方法(すなわち、例えば、エネルギー分散型X線分析法を用いた元素マッピング法等)によって測定される。
 本発明の製造方法で得られる水性液体吸収性樹脂粒子(P)の見掛け密度(g/ml)は、0.54~0.70が好ましく、更に好ましくは0.56~0.65、特に好ましくは0.58~0.60である。この範囲であると、吸収性物品の耐カブレ性が更に良好となる。なお、(P)の見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。
 本発明の製造方法によれば、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単位とする架橋重合体(A)と多価金属塩(d)とを含有し、エネルギー分散型X線分析法を用いた元素マッピングにより求められる粒子表面の多価金属塩(d)による被覆率が50~100%である水性液体吸収性樹脂粒子を得ることができる。上記吸水性液体吸収性樹脂粒子はさらに無機粒子(f)を含有してもよい。
 本発明の吸収体は、本発明の製造方法で得られる水性液体吸収性樹脂粒子(P)を含有する。吸収体としては、水性液体吸収性樹脂粒子(P)を単独で用いても良く、他の材料と共に用いて吸収体としても良い。
 他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
 上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。
 セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビスコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。
 有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。
 これらの繊維状基材の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。
 上記繊維状物の長さ、太さについては特に限定されず、長さは1~200mm、太さは0.1~100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。
 水性液体吸収性樹脂粒子(P)を、繊維状物と共に吸収体とする場合、水性液体吸収性樹脂粒子(P)と繊維の重量比率(水性液体吸収性樹脂粒子の重量/繊維の重量)は40/60~90/10が好ましく、更に好ましくは70/30~80/20である。
 本発明の吸収性物品は上記吸収体を備える。吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、後述する各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部、%は重量%を示す。なお、水性液体吸収性樹脂粒子の多価金属塩(d)による被覆率、生理食塩水に対する保水量、荷重下吸収量及びゲル通液速度は以下の方法により測定し、壊れ性試験は以下の方法で行った。
<多価金属塩(d)による被覆率の測定方法>
 カーボンテープを貼った試料台に測定試料を10粒以上、粒子同士が重ならないように固定し、Oxford社製エネルギー分散型X線分析(EDS分析)装置を付属した、JEOL社製電界放出型走査電子顕微鏡「JSM-7000」にセットした。倍率を150倍にし、粒子1粒を画面に表示し、元素マッピングモードでEDS分析を行った。多価金属塩(d)の特徴元素(例えば、硫酸アルミニウム又は硫酸ナトリウムアルミニウムならばアルミニウム及び硫黄)の検出面積をS1、水性液体吸収性樹脂粒子(P)の特徴元素(通常はポリアクリル酸ナトリウム塩であるため、ナトリウム)の検出面積をS0とし、次式から被覆率を求めた。
 被覆率(%)=(S1/S0)×100
特徴元素が複数ある場合はそれぞれの元素の被覆率を平均し被覆率とした。1種類の測定試料につき5粒の測定を行い、平均値を測定試料の被覆率とした。なお、検出面積S0及びS1として、それぞれの特徴元素の検出強度の頻度分布をヒストグラムとして出力した値を用いた。
<保水量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
保水量(g/g)=(h1)-(h2)
 なお、(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。
<荷重下吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、30メッシュふるいと60メッシュふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:310.6g、外径:24.5mm、)を乗せた。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置した。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した水を一箇所に集めて水滴として垂らすことで余分な水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から加圧下吸収量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
荷重下吸収量(g/g)={(M2)-(M1)}/0.16
<ゲル通液速度の測定方法>
 図1及び図2で示される器具を用いて以下の操作により測定した。
 測定試料0.32gを150ml生理食塩水1(食塩濃度0.9%)に30分間浸漬して膨潤ゲル粒子2を調製した。そして、垂直に立てた円筒3{直径(内径)25.4mm、長さ40cm、底部から60mlの位置及び40mlの位置にそれぞれ目盛り線4及び目盛り線5が設けてある。}の底部に、金網6(目開き106μm、JIS Z8801-1:2006)と、開閉自在のコック7(通液部の内径5mm)とを有する濾過円筒管内に、コック7を閉鎖した状態で、調製した膨潤ゲル粒子2を生理食塩水と共に移した後、この膨潤ゲル粒子2の上に円形金網8(目開き150μm、直径25mm)が金網面に対して垂直に結合する加圧軸9(重さ22g、長さ47cm)を金網と膨潤ゲル粒子とが接触するように載せ、更に加圧軸9におもり10(88.5g)を載せ、1分間静置した。引き続き、コック7を開き、濾過円筒管内の液面が60ml目盛り線4から40ml目盛り線5になるのに要する時間(T1;秒)を計測し、次式よりゲル通液速度(ml/min)を求めた。
 ゲル通液速度(ml/min)=20ml×60/(T1-T2)
 なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行い、T2は測定試料の無い場合について上記と同様の操作により計測した時間である。
<壊れ性試験の方法>
 測定試料を15g量り採り、Panasonic社製ファイバーミキサーに入れ、低速・高速の切り替えスイッチを低速として1秒攪拌する処理を行った。
<実施例1>
 アクリル酸(a1-1){三菱化学株式会社製、純度100%}131部、架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、ダイソ-株式会社製}0.44部及び脱イオン水362部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.5部、2%アスコルビン酸水溶液1部及び2%の2,2’-アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約5時間重合することにより含水ゲルを得た。
 次にこの含水ゲルをミンチ機(ROYAL社製12VR-400K)で細断しながら、45%水酸化ナトリウム水溶液162部を添加して混合・中和し、中和ゲルを得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体を含む樹脂粒子(B-1)を得た。
 ついで、得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール1.2部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物1.2部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.09部及び水3.5部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-1)を得た。
<実施例2>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール0.6部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.09部及び水1.1部の混合液と、炭素数4以下の多価アルコール(c)としてのプロピレングリコール0.5部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物1.2部及び水2.3部を混合した混合液を同時に添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-2)を得た。
<実施例3>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール0.6部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.09部、無機粒子(f)としてのKlebosol30cal25(AZマテリアル社製コロイダルシリカ)1部及び水1.1部を混合した混合液と、炭素数4以下の多価アルコール(c)としてのプロピレングリコール0.5部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物1.2部及び水2.3部を混合した混合液を同時に添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-3)を得た。
<実施例4>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール1.2部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.09部及び水3.5部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、炭素数4以下の多価アルコール(c)としてのプロピレングリコール0.5部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物1.2部及び水2.3部を混合した混合液を同時に添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-4)を得た。
<実施例5>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール2.0部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物1.2部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.12部及び水4.3部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-5)を得た。
<実施例6>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール4.5部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物2.4部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.18部及び水6.1部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-6)を得た。
<実施例7>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール3.0部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物3.6部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.12部及び水7.9部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-7)を得た。
<実施例8>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに炭素数4以下の多価アルコール(c)としてのプロピレングリコール0.2部、多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物0.4部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.08部及び水1.5部を混合した混合液を添加し、均一混合した後、150℃で30分間加熱して、本発明の水性液体吸収性樹脂粒子(P-8)を得た。
<比較例1>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、炭素数4以下の多価アルコール(c)としてのプロピレングリコール1.2部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.09部及び水3.5部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら多価金属塩(d)としての硫酸ナトリウムアルミニウム12水和物1.2部及び水2.3部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱して、比較用の水性液体吸収性樹脂粒子(R-1)を得た。
<比較例2>
 実施例1と同様にして得られた樹脂粒子(B-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、炭素数4以下の多価アルコール(c)としてのプロピレングリコール1.2部、多価グリシジル化合物(e)としてのエチレングリコールジグリシジルエーテル0.09部及び水3.5部を混合した混合液を添加し、均一混合した後、130℃で30分間加熱し、室温まで冷却した後、更に高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら無機粒子(f)としてのシリカ(アエロジル社製Aerosil200)を0.2部添加し均一混合した後、130℃で30分間加熱して、比較用の水性液体吸収性樹脂粒子(R-2)を得た。
 実施例1~8の水性液体吸収性樹脂粒子(P-1)~(P-8)及び比較例1~2の水性液体吸収性樹脂粒子(R-1)~(R-2)についての被覆率及び性能評価結果(壊れ性試験前後の保水量、荷重下吸収量及びゲル通液性並びに壊れ性試験前後の各測定値の変化率)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法により得られる水性液体吸収性樹脂粒子は、膨潤したゲル間の通液性及び荷重下での吸収性能の両立が可能であり、各種の吸収体に適用することにより、吸収量が多く、逆戻り性や表面ドライ感に優れた吸収性物品にすることができることから、紙おむつ(子供用紙おむつ及び大人用紙おむつ等)、ナプキン(生理用ナプキン等)、紙タオル、パッド(失禁者用パッド及び手術用アンダーパッド等)及びペットシート(ペット尿吸収シート)等の衛生用品に好適に用いられ、特に紙おむつに最適である。なお、本発明の製造方法により得られる水性液体吸収性樹脂粒子は衛生用品のみならず、ペット尿吸収剤、携帯トイレの尿ゲル化剤、青果物等の鮮度保持剤、肉類及び魚介類のドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物及び土壌等の保水剤、結露防止剤、止水材やパッキング材並びに人工雪等、種々の用途にも有用である。
1 生理食塩水
2 含水ゲル粒子
3 円筒
4 底部から60mlの位置の目盛り線
5 底部から40mlの位置の目盛り線
6 金網
7 コック
8 円形金網
9 加圧軸
10 おもり

Claims (7)

  1.  水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子(B)を、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び多価グリシジル化合物(e)を用いて以下の方法[I]~[III]のいずれかで表面処理することを特徴とする水性液体吸収性樹脂粒子(P)の製造方法;
    方法[I]:
     炭素数4以下の多価アルコール(c)、多価金属塩(d)、多価グリシジル化合物(e)及び水を含有する混合液(W1)を用いて樹脂粒子(B)を表面処理する方法;
    方法[II]:
     炭素数4以下の多価アルコール(c)、多価グリシジル化合物(e)及び水を含有し、多価金属塩(d)を含有しない混合液(W2)と、炭素数4以下の多価アルコール(c)、多価金属塩(d)及び水を含有し、多価グリシジル化合物(e)を含有しない混合液(W3)とを用いて樹脂粒子(B)を表面処理する方法であって、以下の(1)~(3)の工程のいずれかを含む方法:
    (1)混合液(W2)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W3)で更に表面処理する工程;
    (2)混合液(W3)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W2)で更に表面処理する工程;
    (3)混合液(W2)と混合液(W3)で同時に表面処理する工程;
    方法[III]:
     炭素数4以下の多価アルコール(c)、多価グリシジル化合物(e)及び水を含有し、多価金属塩(d)を含有しない混合液(W2)と、多価金属塩(d)及び水を含有し、炭素数4以下の多価アルコール(c)及び多価グリシジル化合物(e)を含有しない混合液(W4)とを用いて樹脂粒子(B)を表面処理する方法であって、以下の(4)~(6)の工程のいずれかを含む方法:
    (4)混合液(W2)で樹脂粒子(B)を表面処理した後、加熱処理を行わずに混合液(W4)で更に表面処理する工程;
    (5)混合液(W4)で樹脂粒子(B)を表面処理した後、加熱処理を行い又は加熱処理を行わずに、混合液(W2)で更に表面処理する工程;
    (6)混合液(W2)と混合液(W4)で同時に表面処理する工程。
  2.  無機粒子(f)を用いて樹脂粒子を表面処理する工程を含む請求項1記載の製造方法。
  3.  方法[I]における混合液(W1)が無機粒子(f)を含有し、方法[II]における混合液(W2)及び/又は混合液(W3)が無機粒子(f)を含有し、方法[III]における混合液(W2)及び/又は混合液(W4)が無機粒子(f)を含有する請求項2記載の製造方法。
  4.  多価金属塩(d)がジルコニウム、アルミニウム又はチタニウムの無機酸塩である請求項1~3のいずれか記載の製造方法。
  5.  請求項1~4のいずれか記載の製造方法により得られ、エネルギー分散型X線分析法を用いた元素マッピングにより求められる粒子表面の多価金属塩(d)による被覆率が50~100%である水性液体吸収性樹脂粒子。
  6.  請求項1~4のいずれか記載の製造方法を用いて製造される水性液体吸収性樹脂粒子を含む吸収体。
  7.  請求項6記載の吸収体を備えた吸収性物品。
PCT/JP2016/056967 2015-03-10 2016-03-07 水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品 WO2016143736A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16761704.2A EP3269757A4 (en) 2015-03-10 2016-03-07 METHOD FOR PRODUCING AQUEOUS LIQUID ABSORBING RESIN PARTICLES, AQUEOUS LIQUID ABSORBING RESIN PARTICLE, ABSORBENT, AND ABSORBENT ARTICLE
KR1020177027864A KR102577371B1 (ko) 2015-03-10 2016-03-07 수성 액체 흡수성 수지 입자의 제조 방법, 수성 액체 흡수성 수지 입자, 흡수체 및 흡수성 물품
MYPI2017703061A MY178845A (en) 2015-03-10 2016-03-07 Process for producing aqueous-liquid absorbing resin particles, aqueous-liquid absorbing resin particles, absorbent, and absorbent article
JP2017505323A JP6722654B2 (ja) 2015-03-10 2016-03-07 水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品
US15/556,383 US20180105655A1 (en) 2015-03-10 2016-03-07 Process for producing aqueous-liquid absorbing resin particles, aqueous-liquid absorbing resin particles, absorbent, and absorbent article
CN201680014525.8A CN107428948A (zh) 2015-03-10 2016-03-07 水性液体吸收性树脂颗粒的制造方法、水性液体吸收性树脂颗粒、吸收体和吸收性物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046979 2015-03-10
JP2015046979 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143736A1 true WO2016143736A1 (ja) 2016-09-15

Family

ID=56879173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056967 WO2016143736A1 (ja) 2015-03-10 2016-03-07 水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品

Country Status (7)

Country Link
US (1) US20180105655A1 (ja)
EP (1) EP3269757A4 (ja)
JP (1) JP6722654B2 (ja)
KR (1) KR102577371B1 (ja)
CN (1) CN107428948A (ja)
MY (1) MY178845A (ja)
WO (1) WO2016143736A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127508A (ja) * 2017-02-06 2018-08-16 Sdpグローバル株式会社 吸収性樹脂粒子及びその製造方法
CN109610241A (zh) * 2019-01-17 2019-04-12 佛山市益贝达卫生材料有限公司 一种用于液体吸收的薄型无尘纸及其制备方法
EP3521343A4 (en) * 2017-12-08 2020-01-08 LG Chem, Ltd. ABSORBENT POLYMER AND PRODUCTION METHOD THEREFOR
WO2020059762A1 (ja) * 2018-09-18 2020-03-26 株式会社日本触媒 粒子状吸水剤の製造方法及び粒子状吸水剤
CN111433258A (zh) * 2017-12-08 2020-07-17 三大雅株式会社 吸收性树脂颗粒、吸收体和吸收性物品、以及吸收性树脂颗粒的制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112150A1 (ko) * 2017-12-08 2019-06-13 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
CN110117372A (zh) * 2018-02-07 2019-08-13 上海华谊新材料有限公司 吸收颗粒、其制备方法和用途
CN111868145B (zh) * 2018-03-29 2023-07-28 三大雅株式会社 吸水性树脂颗粒及其制造方法
US11925916B2 (en) 2018-11-28 2024-03-12 Baxter International Inc. Method and composition for removing uremic toxins
US11253849B2 (en) 2018-11-28 2022-02-22 Baxter International Inc. Systems and methods for onsite sorbent material reuse
US11090421B2 (en) 2018-11-28 2021-08-17 Baxter International Inc. Systems and methods for batch sorbent material reuse
WO2020115988A1 (ja) * 2018-12-04 2020-06-11 Sdpグローバル株式会社 吸水性樹脂粒子およびその製造方法
KR102603201B1 (ko) 2018-12-11 2023-11-16 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
CN113543877A (zh) * 2019-03-08 2021-10-22 住友精化株式会社 吸水性树脂颗粒、吸收体、吸收性物品、吸水性树脂颗粒的通液维持率的测定方法及吸水性树脂颗粒的制造方法
CN111995706B (zh) * 2020-08-11 2022-06-21 中颉化工科技(上海)有限公司 一种吸收性树脂颗粒及其制备方法和吸收性制品
CN111995707A (zh) * 2020-08-11 2020-11-27 中颉化工科技(上海)有限公司 一种吸收性树脂颗粒、其制备方法及吸收制品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501960A (ja) * 2001-09-07 2005-01-20 ビーエーエスエフ アクチェンゲゼルシャフト 特定の粒径分布を有する高吸水性ヒドロゲル
WO2008108277A1 (ja) * 2007-03-01 2008-09-12 Nippon Shokubai Co., Ltd. 吸水性樹脂を主成分とする粒子状吸水剤
JP2010539272A (ja) * 2007-09-12 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体の計量供給方法
WO2012102407A1 (ja) * 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2014021388A1 (ja) * 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法
WO2014041968A1 (ja) * 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615574B2 (ja) * 1987-08-26 1994-03-02 積水化成品工業株式会社 吸水性樹脂の製造方法
DE19909653A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
KR100819613B1 (ko) 2003-09-19 2008-04-07 가부시키가이샤 닛폰 쇼쿠바이 수분 흡수제와 그 제조방법
EP1960440B1 (de) * 2005-12-05 2017-01-11 Basf Se Verfahren zur herstellung wasserabsorbierender polymere mit hoher absorptionskapazität und hoher permeabilität
CN105771945A (zh) * 2009-09-29 2016-07-20 株式会社日本触媒 颗粒状吸水剂及其制造方法
WO2012043821A1 (ja) * 2010-09-30 2012-04-05 株式会社日本触媒 粒子状吸水剤及びその製造方法
US8802786B2 (en) 2011-04-21 2014-08-12 Evonik Corporation Particulate superabsorbent polymer composition having improved performance properties
JP2013133399A (ja) 2011-12-26 2013-07-08 Kao Corp 吸水性ポリマー粒子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501960A (ja) * 2001-09-07 2005-01-20 ビーエーエスエフ アクチェンゲゼルシャフト 特定の粒径分布を有する高吸水性ヒドロゲル
WO2008108277A1 (ja) * 2007-03-01 2008-09-12 Nippon Shokubai Co., Ltd. 吸水性樹脂を主成分とする粒子状吸水剤
JP2010539272A (ja) * 2007-09-12 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体の計量供給方法
WO2012102407A1 (ja) * 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2014021388A1 (ja) * 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法
WO2014041968A1 (ja) * 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127508A (ja) * 2017-02-06 2018-08-16 Sdpグローバル株式会社 吸収性樹脂粒子及びその製造方法
EP3521343A4 (en) * 2017-12-08 2020-01-08 LG Chem, Ltd. ABSORBENT POLYMER AND PRODUCTION METHOD THEREFOR
JP2020504191A (ja) * 2017-12-08 2020-02-06 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法
CN111433258A (zh) * 2017-12-08 2020-07-17 三大雅株式会社 吸收性树脂颗粒、吸收体和吸收性物品、以及吸收性树脂颗粒的制造方法
US11278866B2 (en) 2017-12-08 2022-03-22 Lg Chem, Ltd. Super absorbent polymer and its preparation method
CN111433258B (zh) * 2017-12-08 2023-06-20 三大雅株式会社 吸收性树脂颗粒、吸收体和吸收性物品、以及吸收性树脂颗粒的制造方法
WO2020059762A1 (ja) * 2018-09-18 2020-03-26 株式会社日本触媒 粒子状吸水剤の製造方法及び粒子状吸水剤
CN109610241A (zh) * 2019-01-17 2019-04-12 佛山市益贝达卫生材料有限公司 一种用于液体吸收的薄型无尘纸及其制备方法
CN109610241B (zh) * 2019-01-17 2021-08-03 佛山市益贝达卫生材料有限公司 一种用于液体吸收的薄型无尘纸及其制备方法

Also Published As

Publication number Publication date
KR20170125388A (ko) 2017-11-14
EP3269757A1 (en) 2018-01-17
JP6722654B2 (ja) 2020-07-15
CN107428948A (zh) 2017-12-01
KR102577371B1 (ko) 2023-09-11
JPWO2016143736A1 (ja) 2018-01-25
EP3269757A4 (en) 2019-01-16
US20180105655A1 (en) 2018-04-19
MY178845A (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2016143736A1 (ja) 水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品
WO2016143739A1 (ja) 水性液体吸収性樹脂粒子の製造方法並びに吸収体及び吸収性物品
WO2018147317A1 (ja) 吸水性樹脂粒子並びにこれを用いた吸収体及び吸収性物品
WO2017057706A1 (ja) 吸水性樹脂粒子及びその製造方法
JP2017206646A (ja) 吸水性樹脂粒子、これを含有してなる吸収体及び吸収性物品
JP6419550B2 (ja) 吸収性樹脂粒子、これを含む吸収体及び吸収性物品
JP6744792B2 (ja) 水性液体吸収性樹脂粒子の製造方法
JPWO2020137241A1 (ja) 吸水性樹脂粒子及びその製造方法
WO2019188669A1 (ja) 吸水性樹脂粒子及びその製造方法
JP6808391B2 (ja) 吸水性樹脂粒子及びその製造方法
JP7291686B2 (ja) 吸水性樹脂粒子及びその製造方法
JP2018021090A (ja) 吸収性樹脂粒子及びその製造方法
JP2018021133A (ja) 吸収性樹脂組成物粒子及びその製造方法
JP7187220B2 (ja) 吸収性樹脂粒子及びその製造方法
JP7453918B2 (ja) 吸水性樹脂粒子およびその製造方法
JP6935996B2 (ja) 水性液体吸収性樹脂粒子並びにこれを用いた吸収体及び吸収性物品
JP2019141754A (ja) 吸水性樹脂粒子、これを用いた吸収体及び吸収性物品、並びに吸水性樹脂粒子の製造方法
JPWO2018225815A1 (ja) 吸水性樹脂粒子及びその製造方法
JP6979759B2 (ja) 水性液体吸収性樹脂粒子並びにこれを用いた吸収体及び吸収性物品
CN111094441B (zh) 吸水性树脂组合物及其制造方法
JP2023038963A (ja) 吸水性樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505323

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15556383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027864

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761704

Country of ref document: EP