WO2016143114A1 - 交流電力調整器及び出力制御方法 - Google Patents
交流電力調整器及び出力制御方法 Download PDFInfo
- Publication number
- WO2016143114A1 WO2016143114A1 PCT/JP2015/057272 JP2015057272W WO2016143114A1 WO 2016143114 A1 WO2016143114 A1 WO 2016143114A1 JP 2015057272 W JP2015057272 W JP 2015057272W WO 2016143114 A1 WO2016143114 A1 WO 2016143114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- value
- load
- input
- power
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/12—Regulating voltage or current wherein the variable actually regulated by the final control device is ac
- G05F1/40—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
- G05F1/44—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
- G05F1/45—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
Definitions
- the present invention relates to an AC power regulator and an output control method for variably outputting power supplied from an input AC power source to a load.
- While the voltage (effective value) of a commercial AC power supply is a predetermined value (for example, 200 V), the power required for various electrical devices (loads) varies depending on the operating state.
- An AC power regulator that adjusts the voltage of an AC power supply and supplies the load to a load is used.
- Such a power regulator includes a phase control method, a time division control method, an amplitude control method, and the like as its control method.
- a conventional technique relating to a time division control method is disclosed in Patent Document 1
- a conventional technique relating to switching between a time division control method and a phase control method is disclosed in Patent Document 2.
- the amplitude control method controls the output voltage without problems such as harmonic interference (noise generation) and flicker generation (arbitrary voltage of 0% to 100% is a sinusoidal waveform) It is excellent in that it can output. However, for some loads, it is preferable that the applied voltage does not fall below a predetermined effective value (or the applied power does not fall below a predetermined value). When the amplitude control method is used for such a load, the amplitude of the output voltage also decreases when the operation amount decreases according to the operating state, so that “the applied voltage does not fall below a predetermined effective value”. I can't be satisfied.
- a halogen heater is capable of obtaining a halogen cycle at a predetermined temperature or higher, an effective value voltage that prevents the halogen cycle from being lower than a temperature at which the halogen cycle is obtained as much as possible, that is, a predetermined voltage or higher is set. It is preferable to give (a power higher than a predetermined value is given).
- tungsten evaporated from the filament reacts with the halogen gas in the halogen heater to produce a tungsten-halogen compound. When this tungsten-halogen is carried to the vicinity of the filament by thermal convection, It is decomposed into halogen gas, tungsten returns to the filament, and the free halogen gas repeats the same reaction again.
- the amplitude control method when adopted for such a halogen heater, the amplitude of the output voltage decreases (that is, the output power decreases) when the operation amount decreases according to the operation state, and the halogen heater
- the temperature tends to be lower than the temperature at which the halogen cycle can be obtained.
- the present invention provides an effective output voltage for a load that is preferable to prevent an applied voltage from falling below a predetermined effective value (or an applied power from falling below a predetermined value) as in a halogen heater.
- An object of the present invention is to provide an AC power regulator capable of suppressing a value from falling below a predetermined value (or output power from falling below a predetermined value).
- An AC power regulator that variably outputs power supplied from an input AC power source to a load, provided between the input AC power source and the load, and from the input AC power source to the load based on an operation control signal
- An output operation unit that controls the output of the power supply, a power supply voltage detection unit that detects the voltage and cycle of the input AC power supply, and the output set value is greater than or equal to a predetermined operation switching threshold based on the input output set value
- the operation control signal is generated by the first control method based on the output setting value, and when the output setting value is less than a predetermined operation switching threshold, the operation control signal is set based on the operation switching threshold.
- AC power regulator characterized in that it comprises a part, a.
- (Configuration 2) An AC power regulator that variably outputs power supplied from an input AC power source to a load, provided between the input AC power source and the load, and from the input AC power source to the load based on an operation control signal
- An output operation unit that controls the output of the power supply, a power supply voltage detection unit that detects the voltage and cycle of the input AC power supply, an output current detection unit that measures the current of the load, and an output voltage detection that measures the voltage of the load And a value based on the current value and the voltage value obtained from the output current detection unit and the output voltage detection unit is equal to or greater than a predetermined operation switching threshold value, the first value based on the input output setting value
- the operation control signal is generated by a control method, and when a value based on a current value and a voltage value obtained from the output current detection unit and the output voltage detection unit is less than a predetermined operation switching threshold, a predetermined output value is set.
- Base that generates the operation control signal based on the output set value by turning on /
- An AC power regulator that variably outputs power supplied from an input AC power source to a load, provided between the input AC power source and the load, and from the input AC power source to the load based on an operation control signal
- An output operation unit that controls the output of the power supply, a power supply voltage detection unit that detects the voltage and cycle of the input AC power supply, a temperature information input unit that receives temperature information of the halogen heater that is the load, and the temperature information
- the operation control signal is generated by the first control method based on the input output setting value when the operation information is equal to or higher than the predetermined operation switching threshold, and the temperature information is less than the predetermined operation switching threshold.
- the control signal generated by the first control method based on a predetermined output value is turned on / off in units of cycles detected by the power supply voltage detection unit, so that the output setting value is set.
- Ku AC power regulator characterized in that it comprises an output control unit for generating said operation control signals.
- An output control method comprising: outputting desired power to a load by turning on / off a control signal generated based on the first control method based on a cycle unit of the input AC power supply.
- the power supplied from the input AC power supply to the load is basically controlled by the first control method (for example, the amplitude control method) which is an arbitrary control method. If the input output setting value (operation amount (MV)) falls below the threshold value while being variably output, the first control method outputs the output value so that it exceeds the threshold value. Since the output corresponds to the output set value (operation amount (MV)) by dividing, it is possible to prevent the effective value of the output voltage from falling below the predetermined value (or the output power below the predetermined value).
- the first control method for example, the amplitude control method
- the first control method outputs the output value so that it exceeds the threshold value. Since the output corresponds to the output set value (operation amount (MV)) by dividing, it is possible to prevent the effective value of the output voltage from falling below the predetermined value (or the output power below the predetermined value).
- FIG. 1 is a schematic block diagram showing an AC power regulator according to Embodiment 1 of the present invention.
- the AC power regulator 1 according to Embodiment 1 variably outputs power supplied from an input AC power supply 2 to a halogen heater 3 that is a load.
- the halogen heater 3 is a heating unit that heats the control target 4 to a desired temperature
- the temperature controller 5 is a feedback control (for example, PID) based on temperature information obtained from a temperature sensor 41 provided in the control target 4.
- the output set value S1 (operation amount (MV)) to the AC power regulator 1 is generated and output by control or the like. That is, the AC power regulator 1 controls the output from the input AC power source 2 to the halogen heater 3 based on the output set value S1 input from the temperature controller 5.
- the AC power regulator 1 As shown in FIG. 1, the AC power regulator 1 according to the first embodiment is provided on a power supply line from the input AC power supply 2 to the halogen heater 3, and the halogen is supplied from the input AC power supply 3 based on the operation control signal S3.
- An output operation unit 12 that controls output to the heater 3, an output control unit 11 that generates an operation control signal S3 input to the output operation unit 12, and a voltage and a cycle (for example, zero cross point) of the input AC power supply 2 are detected.
- the output operation unit 12 is a switching circuit that switches power supply from the input AC power supply 2 to the halogen heater 3, and the output control unit 11 outputs an operation control signal S 3 that is a signal for controlling the switching operation of the output operation unit 12. , Generate.
- the output control unit 11 generates an operation control signal S3 based on the input output set value S1, and includes an output voltage amplitude control unit 111 and an output voltage on / off determination unit 112. Thereby, the generation method of the operation control signal S3 is switched depending on whether or not the output set value S1 exceeds a predetermined “operation switching threshold value” set and stored in advance.
- the output voltage amplitude control unit 111 When the output setting value S1 is equal to or greater than a predetermined operation switching threshold, the output voltage amplitude control unit 111 generates a control signal S2 based on the amplitude control method (first control method) based on the output setting value S1. On the other hand, when the output set value S1 is less than the predetermined operation switching threshold, the control signal S2 by the amplitude control method (first control method) is generated based on the operation switching threshold.
- the control signal S2 is a comb waveform that is input to the output operation unit 12 that is a switching circuit for amplitude control. In the generation of the signal, the output voltage detection unit 14 and the output current detection unit 15 appropriately Feedback using the obtained voltage value and current value is performed.
- the output voltage on / off determination unit 112 directly uses the control signal S2 input from the output voltage amplitude control unit 111 as the operation control signal S3.
- the control signal S2 input from the output voltage amplitude control unit 111 is changed to a power supply according to the ratio between the output set value S1 and the operation switching threshold.
- the operation control signal S3 is generated by turning on / off in cycle units (in this embodiment, one cycle of the power supply voltage) detected by the voltage detection unit 13.
- D ( ⁇ / ⁇ ) ⁇ 2 ⁇ 100 [%] ⁇ ⁇ ⁇ Equation 1
- ⁇ is the output set value [%]
- ⁇ is the operation switching threshold [%]. This is the case where the output set value S1 conforms to the voltage (how much the effective value voltage is output with respect to the input AC power supply voltage), and the case where it conforms to the power is different. The concept is similar.
- FIG. 9 is a diagram for explaining the relationship between the output operation by the conventional AC power regulator and the halogen cycle.
- the halogen cycle is a chemical circulation reaction that occurs at a predetermined temperature or higher in the bulb of a halogen bulb or a halogen heater. This halogen cycle suppresses deterioration such as thinning of the filament, and is long. Life expectancy is achieved. Conversely, if the use at a temperature at which this halogen cycle does not occur continues, the life of the halogen heater will be shortened.
- a conventional AC power regulator in FIG.
- the amplitude control method and the phase control method are shown as an example), for example, the load factor continues to be low (the operation amount (MV) from the temperature controller is low).
- the state where the output power is low is maintained, and the use state in which the temperature of the halogen heater is lower than the temperature at which the halogen cycle occurs is continued. There is. As a result, degradation such as thinning of the filament may have progressed (FIG. 9 shows a case where the manipulated variable (MV) from the temperature controller is maintained at 25% as an example).
- FIG. 2 is a diagram for explaining the relationship between the output operation by the AC power regulator 1 of this embodiment and the halogen cycle.
- the control signal S2 generated based on the operation switching threshold is generated.
- the operation control signal S3 based on the output set value is generated by turning on / off in units of cycles according to the ratio between the output set value S1 and the operation switching threshold. Therefore, as shown in FIG. 2, the amplitude of the output voltage by the operation control signal S3 is maintained to be equal to or higher than the value based on the operation switching threshold (in FIG. 2, the amplitude is 50% as an example), and this is intermittently turned on / off.
- the tungsten filament can be supplied intermittently, there is a period in which the tungsten filament reaches the temperature at which the halogen cycle occurs, and degradation such as thinning of the filament can be suppressed.
- the method of the present embodiment not only a “period of reaching the temperature at which a halogen cycle occurs”, which has not been obtained in the past, but also a period in which no current flows due to intermittent control, It is possible to shorten as much as possible the “energization period in a state where the generated temperature is not reached.” From this point of view, it is possible to further suppress deterioration such as thinning of the filament and to extend the life of the halogen heater. Is.
- Soft start is to start by saving the output so that the inrush current does not become too large when supplying power to a load having a small resistance value when the temperature is low, such as a halogen heater.
- FIG. 10 shows an outline of the soft start operation of the conventional AC power regulator. As shown in the figure, by controlling the operation amount (MV) by ramp control, an excessive inrush current is prevented from flowing at the time of startup.
- the process proceeds to S002, where the output set value S1 (operation amount (MV)) is ramp-controlled and input to the output voltage amplitude control unit 111. .
- S002 is skipped and the process proceeds to S003 (that is, the output set value S1 is directly input to the output voltage amplitude control unit 111).
- the output voltage amplitude controller 111 controls the amplitude based on the operation switching threshold (first control method).
- the control signal S2 (comb waveform) is generated by (S004).
- the output voltage on / off determination unit 112 detects the control signal S2 input from the output voltage amplitude control unit 111 by the power supply voltage detection unit 13 in accordance with the ratio between the output set value S1 and the operation switching threshold value.
- the operation control signal S3 is generated by turning on / off in a cycle unit (in this embodiment, one cycle unit of the power supply voltage), and is output to the output operation unit 12 (S007). That is, as described above, the power necessary to exceed the temperature at which the halogen cycle occurs is intermittently supplied.
- FIG. 4 is a diagram for explaining this.
- the output set value S1 operation amount (MV)
- the output set value S1 operation amount (MV)
- FIG. 5 is a diagram for explaining the relationship between the output operation and the halogen cycle at the time of startup.
- the halogen cycle is generated earlier than in the conventional method.
- the temperature can be reached and the life of the halogen heater can be extended.
- the output voltage amplitude control unit 111 controls the amplitude control method (first value) based on the output set value S1.
- the control signal S2 is generated by the control method (S006), and is output to the output operation unit 12 as it is (S007).
- the operation switching threshold value is obtained by, for example, measuring the relationship between the output voltage and the surface temperature of the halogen heater in advance to obtain the amplitude of the output voltage necessary for achieving the halogen cycle temperature.
- a value corresponding to the obtained output setting value S1 (operation amount (MV)) may be calculated and set in the output control unit 11 in advance. Since the operation switching threshold value is a value that can change depending on the specifications of the halogen heater, etc., the above-described pre-processing is performed on various halogen heaters to obtain the operation switching threshold value corresponding to each halogen heater condition, and this is displayed in a table. May be set in the output control unit 11.
- the optimum operation switching threshold value may be selected by the user in accordance with the appropriately connected halogen heater (the necessary input unit and display unit are provided). As long as the relationship between the halogen heater condition and the operation switching threshold can be formulated, an optimum operation switching threshold may be calculated.
- the first control method uses an amplitude control method by the output voltage amplitude control unit 111 as an example.
- an arbitrary control method may be used.
- a phase control method may be used as shown in the lower part of FIG. 2 or FIG. 4 (in this case, an output voltage phase control unit is provided instead of the output voltage amplitude control unit).
- FIG. 9 and FIG. 10 of the conventional method the same effect can be obtained.
- the AC power regulator 1 of the present embodiment for example, even in a case where the load factor remains low (the operation amount (MV) from the temperature controller is maintained at a low value), Continued use in a state where the temperature of the halogen heater is lower than the temperature at which the halogen cycle occurs is suppressed, degradation of the filament can be suppressed, and the life of the halogen heater can be extended. it can. Similarly, during the soft start process to suppress the inrush current (especially immediately after startup), the power necessary to exceed the temperature at which the halogen cycle is intermittently supplied is also supplied. The temperature at which the halogen cycle occurs can be reached earlier, and the life of the halogen heater can be extended.
- the amplitude control method is used as the first control method, and the output voltage on / off determination unit 112 is turned on / off in units of one cycle of the power supply voltage. It is also excellent in that the occurrence of harmonic interference (noise generation) is suppressed. In addition, since the power supply voltage is turned on / off in units of one cycle, it is possible to suppress problems such as the occurrence of electrolytic corrosion and corrosion of terminals. If these are not so problematic, a phase control method or the like may be used as the first control method, and the unit of on / off by the output voltage on / off determination unit 112 is from one cycle.
- the control in the output voltage on / off determination unit 112 is based on the time-division control method, but may be a time proportional on / off control method.
- the operation switching threshold value is not limited to a fixed value, and may be one that dynamically changes or switches.
- the operation switching threshold at the time of soft start may be different from the normal operation switching threshold.
- an operation switching threshold different from the normal time is determined in consideration of a trade-off relationship between supplying power that generates a halogen cycle and the magnitude of the inrush current. Similar to the ramp control of the operation amount (MV) at the time of soft start, the operation switching threshold value may be dynamically changed (increased stepwise).
- FIG. 6 is a schematic block diagram showing an AC power regulator according to the second embodiment of the present invention. Constituent elements having the same concept as in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted or simplified.
- the AC power regulator 1 of Embodiment 2 measures the resistance value of the halogen heater 3 and performs on / off control by the output voltage on / off determination unit 112 when the resistance value is below a predetermined value. . That is, the operation switching threshold is set as a value corresponding to the resistance value.
- the resistance value of the halogen heater 3 changes according to the temperature. Therefore, it is possible to estimate the temperature by measuring the resistance value. Based on this, while controlling the resistance value, the temperature of the halogen heater 3 is controlled so as not to be lower than the temperature necessary for the halogen cycle. Therefore, for example, the resistance value of the halogen heater 3 at the temperature required for the halogen cycle is used as the operation switching threshold.
- the AC power regulator 1 includes a load resistance value calculation unit 16, and is measured by the output voltage detection unit 14 and the voltage value measured by the output voltage detection unit 14. Based on the current value, the resistance value of the halogen heater 3 is calculated.
- FIG. 7 is a flowchart illustrating an outline of a processing operation of the AC power regulator according to the second embodiment. Since the processing concept is the same as that of the first embodiment (FIG. 3), detailed description is omitted.
- the resistance value of the halogen heater 3 calculated by the load resistance value calculation unit 16 is compared with the operation switching threshold value. When this is less than the operation switching threshold, the process proceeds to S004, where the output voltage amplitude control unit 111 controls the control signal S2 (comb waveform) based on the amplitude control method (first control method) based on the “predetermined output value”. Is generated.
- the “predetermined output value” is basically the same as the operation switching threshold in the first embodiment.
- the relationship between the output set value S1 (operation amount (MV)) and the surface temperature of the halogen heater is measured in advance.
- a value corresponding to the output set value S1 (operation amount (MV)) necessary to reach the temperature at which the halogen cycle occurs is obtained, and this is set as the “predetermined output value” in the output control unit 11 in advance. It is something to keep.
- the control signal S2 input from the output voltage amplitude control unit 111 is detected by the output voltage on / off determination unit 112 according to the ratio between the output set value S1 and the “predetermined output value”.
- the operation control signal S3 is generated by turning on / off in cycle units (in this embodiment, one cycle unit of the power supply voltage) detected by the unit 13 (basically the same concept as in the first embodiment). .
- the threshold value of the on / off control switching (switching to intermittent output operation) by the output voltage on / off determination unit 112 is set to the value of the halogen heater 3. Except for the point based on the resistance value, it is basically the same as in the first embodiment, and therefore, the same effect as in the first embodiment can be obtained.
- the operation switching threshold and the “predetermined output value” are not limited to fixed values, but may be dynamically changed or switched, which is the same concept as in the first embodiment.
- a plurality of resistance values are set as the operation switching threshold values, and different “predetermined output values” are associated with the respective operation switching threshold values (resistance values).
- the output voltage on / off determination unit 112 may perform on / off control based on the “predetermined output value”. If the relationship between the operation switching threshold value (resistance value) and the “predetermined output value” can be formulated, the “predetermined output value” corresponding to the measured resistance value is calculated. Also good.
- the resistance value of the halogen heater 3 is calculated based on the voltage value measured by the output voltage detection unit 14 and the current value measured by the output current detection unit 15, and is calculated as the output voltage.
- the example used as a threshold value for switching on / off control by the on / off determination unit 112 the voltage value measured by the output voltage detection unit 14 and the current value measured by the output current detection unit 15 are used. Based on this, the power value may be calculated and used as a threshold for switching on / off control by the output voltage on / off determination unit 112 (in this case, an output power calculation unit is provided instead of the load resistance value calculation unit).
- FIG. 8 shows another example of the AC power regulator according to the present invention.
- the same reference numerals as those in the first and second embodiments are used for components having the same concept as those in the first and second embodiments.
- the AC power regulator 1 shown in the figure includes a temperature information input unit 17 to which temperature information from a temperature sensor 31 provided in the halogen heater 3 is input.
- the temperature of the halogen heater 3 is measured, and when the temperature is below a predetermined value, the output voltage on / off determination unit 112 performs on / off control. That is, the operation switching threshold value is set as a value corresponding to the temperature of the halogen heater 3.
- the temperature itself required for the halogen cycle is used as the operation switching threshold value.
- the processing operation of the AC power regulator 1 is the same as that in the second embodiment (FIG. 7), and the determination in S003 is the temperature information of the halogen heater 3 input to the temperature information input unit 17 and the operation switching threshold value. The only difference is that it is done by comparison.
- the threshold value of the on / off control switching (switching to intermittent output operation) by the output voltage on / off determination unit 112 is based on the temperature information of the halogen heater 3. Except for this, it is basically the same as in the first embodiment, and therefore, the same effects as in the first embodiment can be obtained. In addition, since the AC power regulator 1 in FIG. 8 uses the temperature information of the halogen heater 3, it is possible to perform control to maintain the temperature necessary for the halogen cycle more directly.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、入力された出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することにより、ハロゲンヒータのように印加電圧が所定の実効値を下回らない(若しくは印加電力が所定値を下回らない)ようにすることが好ましい負荷に対し、出力電圧の実効値が所定値を下回る(若しくは出力電力が所定値を下回る)ことを抑止する。
Description
本発明は、入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器及び出力制御方法に関する。
商用の交流電源の電圧(実効値)が所定の値(例えば200V)であるのに対し、種々の電気機器(負荷)では動作状態に応じて必要な電力が変化するものがあるため、商用の交流電源の電圧を調整して負荷に供給する交流電力調整器が利用されている。
このような電力調整器では、その制御方法として、位相制御方式や時分割制御方式、振幅制御方式などがある。
このような制御方式に関し、時分割制御方式に関する従来技術が特許文献1によって開示されており、時分割制御方式と位相制御方式を切り替えるものに関する従来技術が特許文献2によって開示されている。
このような電力調整器では、その制御方法として、位相制御方式や時分割制御方式、振幅制御方式などがある。
このような制御方式に関し、時分割制御方式に関する従来技術が特許文献1によって開示されており、時分割制御方式と位相制御方式を切り替えるものに関する従来技術が特許文献2によって開示されている。
位相制御方式や時分割制御方式に対し、振幅制御方式は、高調波障害(ノイズ発生)やフリッカの発生といった問題なく出力電圧を制御する(0%~100%の任意の電圧を正弦波波形で出力する)ことができる点において優れている。
しかしながら、負荷によっては、印加電圧が所定の実効値を下回らないこと(若しくは印加電力が所定値を下回らないこと)が好ましいものも存在する。このような負荷に対して振幅制御方式を利用した場合、動作状態に応じて操作量が小さくなる際に出力電圧の振幅も小さくなるため、「印加電圧が所定の実効値を下回らないこと」を満足することはできない。
例えば、ハロゲンヒータは、所定温度以上においてハロゲンサイクルが得られるものであるため、可能な限りハロゲンサイクルが得られる温度以下とならないようにすること、即ち、所定温度以上となるような実効値電圧を与えること(所定値以上の電力が与えられること)が好ましい。
なお、ハロゲンサイクルとは、ハロゲンヒータにおいて、フィラメントから蒸発したタングステンがハロゲンガスと反応してタングステン-ハロゲン化合物が生成され、このタングステン-ハロゲンが熱対流によってフィラメント付近に運ばれるとフィラメントの熱によってタングステンとハロゲンガスに分解され、タングステンはフィラメントに戻り、自由になったハロゲンガスは再び同じ反応を繰り返すという、一連のサイクルを指す。
例えば、このようなハロゲンヒータに対して、振幅制御方式を採用した場合、動作状態に応じて操作量が小さくなる際に、出力電圧の振幅が小さくなり(即ち出力電力が小さくなり)、ハロゲンヒータが、ハロゲンサイクルを得られる温度以下となってしまい易くなる傾向があるものであった。
しかしながら、負荷によっては、印加電圧が所定の実効値を下回らないこと(若しくは印加電力が所定値を下回らないこと)が好ましいものも存在する。このような負荷に対して振幅制御方式を利用した場合、動作状態に応じて操作量が小さくなる際に出力電圧の振幅も小さくなるため、「印加電圧が所定の実効値を下回らないこと」を満足することはできない。
例えば、ハロゲンヒータは、所定温度以上においてハロゲンサイクルが得られるものであるため、可能な限りハロゲンサイクルが得られる温度以下とならないようにすること、即ち、所定温度以上となるような実効値電圧を与えること(所定値以上の電力が与えられること)が好ましい。
なお、ハロゲンサイクルとは、ハロゲンヒータにおいて、フィラメントから蒸発したタングステンがハロゲンガスと反応してタングステン-ハロゲン化合物が生成され、このタングステン-ハロゲンが熱対流によってフィラメント付近に運ばれるとフィラメントの熱によってタングステンとハロゲンガスに分解され、タングステンはフィラメントに戻り、自由になったハロゲンガスは再び同じ反応を繰り返すという、一連のサイクルを指す。
例えば、このようなハロゲンヒータに対して、振幅制御方式を採用した場合、動作状態に応じて操作量が小さくなる際に、出力電圧の振幅が小さくなり(即ち出力電力が小さくなり)、ハロゲンヒータが、ハロゲンサイクルを得られる温度以下となってしまい易くなる傾向があるものであった。
本発明は、上記の点に鑑み、ハロゲンヒータのように印加電圧が所定の実効値を下回らない(若しくは印加電力が所定値を下回らない)ようにすることが好ましい負荷に対し、出力電圧の実効値が所定値を下回る(若しくは出力電力が所定値を下回る)ことを抑止することが可能な交流電力調整器を提供することを目的とする。
(構成1)
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、入力された出力設定値に基づいて、当該出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、を備えることを特徴とする交流電力調整器。
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、入力された出力設定値に基づいて、当該出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、を備えることを特徴とする交流電力調整器。
(構成2)
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、前記負荷の電流を測定する出力電流検出部と、前記負荷の電圧を測定する出力電圧検出部と、前記出力電流検出部及び出力電圧検出部から得られる電流値及び電圧値に基づく値が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、前記出力電流検出部及び出力電圧検出部から得られる電流値及び電圧値に基づく値が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、を備えることを特徴とする交流電力調整器。
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、前記負荷の電流を測定する出力電流検出部と、前記負荷の電圧を測定する出力電圧検出部と、前記出力電流検出部及び出力電圧検出部から得られる電流値及び電圧値に基づく値が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、前記出力電流検出部及び出力電圧検出部から得られる電流値及び電圧値に基づく値が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、を備えることを特徴とする交流電力調整器。
(構成3)
前記負荷がハロゲンヒータであることを特徴とする構成1又は構成2に記載の交流電力調整器。
前記負荷がハロゲンヒータであることを特徴とする構成1又は構成2に記載の交流電力調整器。
(構成4)
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、前記負荷であるハロゲンヒータの温度情報が入力される温度情報入力部と、前記温度情報が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、前記温度情報が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、を備えることを特徴とする交流電力調整器。
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、前記負荷であるハロゲンヒータの温度情報が入力される温度情報入力部と、前記温度情報が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、前記温度情報が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、を備えることを特徴とする交流電力調整器。
(構成5)
前記第1の制御方法は振幅制御方法であることを特徴とする構成1から構成4の何れかに記載の交流電力調整器。
前記第1の制御方法は振幅制御方法であることを特徴とする構成1から構成4の何れかに記載の交流電力調整器。
(構成6)
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、入力された出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することを特徴とする出力制御方法。
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、入力された出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することを特徴とする出力制御方法。
(構成7)
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、前記負荷の電流値及び電圧値に基づく値が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、前記負荷の電流値及び電圧値に基づく値が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することを特徴とする出力制御方法。
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、前記負荷の電流値及び電圧値に基づく値が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、前記負荷の電流値及び電圧値に基づく値が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することを特徴とする出力制御方法。
(構成8)
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、前記負荷であるハロゲンヒータの温度情報が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって所望の電力をハロゲンヒータに出力し、前記負荷であるハロゲンヒータの温度情報が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力をハロゲンヒータに出力することを特徴とする出力制御方法。
入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、前記負荷であるハロゲンヒータの温度情報が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって所望の電力をハロゲンヒータに出力し、前記負荷であるハロゲンヒータの温度情報が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力をハロゲンヒータに出力することを特徴とする出力制御方法。
(構成9)
前記第1の制御方法は振幅制御方法であることを特徴とする構成6から構成8の何れかに記載の出力制御方法。
前記第1の制御方法は振幅制御方法であることを特徴とする構成6から構成8の何れかに記載の出力制御方法。
本発明の交流電力調整器によれば、基本的には任意の制御方法である第1の制御方法(例えば振幅制御方式)にて制御することで入力交流電源から供給される電力を負荷に対して可変出力しつつ、入力された出力設定値(操作量(MV))が閾値を下回った場合には、第1の制御方法によって閾値以上となるように出力させた上で、この出力を時分割することにより出力設定値(操作量(MV))に対応する出力とさせるため、出力電圧の実効値が所定値を下回る(若しくは出力電力が所定値を下回る)ことを抑止することができる。
以下、本発明の実施態様について、図面を参照しながら具体的に説明する。なお、以下の実施態様は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。
(実施形態1)
図1は、本発明に係る実施形態1の交流電力調整器を示す概略ブロック図である。
実施形態1の交流電力調整器1は、入力交流電源2から供給される電力を負荷であるハロゲンヒータ3に対して可変出力するものである。
ハロゲンヒータ3は、制御対象4が所望の温度となるように加熱する加熱手段であり、温度制御器5は、制御対象4に備えられる温度センサ41から得られる温度情報に基づくフィードバック制御(例えばPID制御等)により、交流電力調整器1への出力設定値S1(操作量(MV))を生成・出力する。
即ち、交流電力調整器1は、温度制御器5から入力される出力設定値S1に基づいて、入力交流電源2からハロゲンヒータ3への出力を制御するものである。
図1は、本発明に係る実施形態1の交流電力調整器を示す概略ブロック図である。
実施形態1の交流電力調整器1は、入力交流電源2から供給される電力を負荷であるハロゲンヒータ3に対して可変出力するものである。
ハロゲンヒータ3は、制御対象4が所望の温度となるように加熱する加熱手段であり、温度制御器5は、制御対象4に備えられる温度センサ41から得られる温度情報に基づくフィードバック制御(例えばPID制御等)により、交流電力調整器1への出力設定値S1(操作量(MV))を生成・出力する。
即ち、交流電力調整器1は、温度制御器5から入力される出力設定値S1に基づいて、入力交流電源2からハロゲンヒータ3への出力を制御するものである。
実施形態1の交流電力調整器1は、図1に示されるように、入力交流電源2からハロゲンヒータ3への電力供給ライン上に設けられ、動作制御信号S3に基づいて入力交流電源3からハロゲンヒータ3への出力を制御する出力操作部12と、当該出力操作部12へ入力する動作制御信号S3を生成する出力制御部11と、入力交流電源2の電圧とサイクル(例えばゼロクロス点)を検出する電源電圧検出部13と、負荷であるハロゲンヒータ3の電圧と電流をそれぞれ測定する出力電圧検出部14、出力電流検出部15と、を備える。
出力操作部12は、入力交流電源2からハロゲンヒータ3への電力供給をスイッチングするスイッチング回路であり、出力制御部11は、出力操作部12のスイッチング動作を制御する信号である動作制御信号S3を、生成する。
出力操作部12は、入力交流電源2からハロゲンヒータ3への電力供給をスイッチングするスイッチング回路であり、出力制御部11は、出力操作部12のスイッチング動作を制御する信号である動作制御信号S3を、生成する。
出力制御部11は、入力された出力設定値S1に基づいて動作制御信号S3を生成するものであり、出力電圧振幅制御部111と、出力電圧オン/オフ判断部112と、を備える。これにより、出力設定値S1が、予め設定・記憶されている所定の「動作切替閾値」を超えているか否かによって、動作制御信号S3の生成方法を切り替えるものである。
出力電圧振幅制御部111は、出力設定値S1が所定の動作切替閾値以上である場合には、出力設定値S1に基づいて振幅制御方式(第1の制御方法)による制御信号S2を生成する。
一方、当該出力設定値S1が所定の動作切替閾値未満である場合には、動作切替閾値に基づいて振幅制御方式(第1の制御方法)による制御信号S2を生成する。
なお、制御信号S2は、振幅制御するためにスイッチング回路である出力操作部12へ入力される櫛形波形であり、当該信号の生成においては、適宜、出力電圧検出部14、出力電流検出部15から得られる電圧値や電流値を用いたフィードバックが行われる。
一方、当該出力設定値S1が所定の動作切替閾値未満である場合には、動作切替閾値に基づいて振幅制御方式(第1の制御方法)による制御信号S2を生成する。
なお、制御信号S2は、振幅制御するためにスイッチング回路である出力操作部12へ入力される櫛形波形であり、当該信号の生成においては、適宜、出力電圧検出部14、出力電流検出部15から得られる電圧値や電流値を用いたフィードバックが行われる。
出力電圧オン/オフ判断部112は、出力設定値S1が所定の動作切替閾値以上である場合には、出力電圧振幅制御部111から入力される制御信号S2をそのまま動作制御信号S3とする。
一方、当該出力設定値S1が所定の動作切替閾値未満である場合には、出力電圧振幅制御部111から入力される制御信号S2を、出力設定値S1と動作切替閾値の比に応じて、電源電圧検出部13によって検出されるサイクル単位(本実施形態では、電源電圧の1周期単位)でオン/オフすることで、動作制御信号S3を生成する。
「出力設定値S1と動作切替閾値の比に応じてオン/オフする」につき、具体的には、下記の比率Dにてオン/オフ制御する。
D = (θ/φ)^2 ×100[%] ・・・式1
式1において、θ:出力設定値[%]、φ:動作切替閾値[%]である。なお、これは出力設定値S1が電圧に準拠する場合(入力交流電源電圧に対して、どれだけの割合の実効値電圧を出力するか)のものであり、電力に準拠する場合等については異なった式となるが、概念としては同様のものである。
一方、当該出力設定値S1が所定の動作切替閾値未満である場合には、出力電圧振幅制御部111から入力される制御信号S2を、出力設定値S1と動作切替閾値の比に応じて、電源電圧検出部13によって検出されるサイクル単位(本実施形態では、電源電圧の1周期単位)でオン/オフすることで、動作制御信号S3を生成する。
「出力設定値S1と動作切替閾値の比に応じてオン/オフする」につき、具体的には、下記の比率Dにてオン/オフ制御する。
D = (θ/φ)^2 ×100[%] ・・・式1
式1において、θ:出力設定値[%]、φ:動作切替閾値[%]である。なお、これは出力設定値S1が電圧に準拠する場合(入力交流電源電圧に対して、どれだけの割合の実効値電圧を出力するか)のものであり、電力に準拠する場合等については異なった式となるが、概念としては同様のものである。
以上の構成を備える本実施形態の交流電力調整器1の特徴的な動作(ハロゲンサイクルとの関係)について、従来の交流電力調整器と対比して説明する。
図9は、従来の交流電力調整器による出力動作とハロゲンサイクルとの関係を説明する図である。
前述のごとく、ハロゲンサイクルとは、ハロゲン電球やハロゲンヒータの管内において、所定の温度以上で起こる化学的な循環反応のことであり、このハロゲンサイクルにより、フィラメントの細りなどの劣化が抑制され、長寿命化が図られるものである。逆に言えば、このハロゲンサイクルが生じない温度での使用が続くと、ハロゲンヒータの寿命を短くすることとなる。
従来の交流電力調整器(図9には振幅制御方式と位相制御方式を例として示した)においては、例えば負荷率が低い状態が続く(温度制御器からの操作量(MV)が低い値で維持される)ような場合、図9に示されるように、出力電力が小さい状態が維持されてしまい、ハロゲンヒータの温度がハロゲンサイクルの生じる温度を下回った状態での使用状態が続いてしまう場合がある。結果、フィラメントの細りなどの劣化が進んでしまう場合があった(図9は例として、温度制御器からの操作量(MV)が25%の状態で維持されている場合を示している)。
図9は、従来の交流電力調整器による出力動作とハロゲンサイクルとの関係を説明する図である。
前述のごとく、ハロゲンサイクルとは、ハロゲン電球やハロゲンヒータの管内において、所定の温度以上で起こる化学的な循環反応のことであり、このハロゲンサイクルにより、フィラメントの細りなどの劣化が抑制され、長寿命化が図られるものである。逆に言えば、このハロゲンサイクルが生じない温度での使用が続くと、ハロゲンヒータの寿命を短くすることとなる。
従来の交流電力調整器(図9には振幅制御方式と位相制御方式を例として示した)においては、例えば負荷率が低い状態が続く(温度制御器からの操作量(MV)が低い値で維持される)ような場合、図9に示されるように、出力電力が小さい状態が維持されてしまい、ハロゲンヒータの温度がハロゲンサイクルの生じる温度を下回った状態での使用状態が続いてしまう場合がある。結果、フィラメントの細りなどの劣化が進んでしまう場合があった(図9は例として、温度制御器からの操作量(MV)が25%の状態で維持されている場合を示している)。
図2は、本実施形態の交流電力調整器1による出力動作とハロゲンサイクルとの関係を説明する図である。
本実施形態の交流電力調整器1によれば、出力設定値S1(操作量(MV))が所定の動作切替閾値未満である場合には、動作切替閾値に基づいて生成される制御信号S2を、出力設定値S1と動作切替閾値の比に応じてサイクル単位でオン/オフすることで、出力設定値に基づく動作制御信号S3が生成される。従って、図2に示されるように、動作制御信号S3による出力電圧の振幅が動作切替閾値に基づく値以上(図2では例として振幅50%)に維持され、これを間欠的にオン/オフすることで、温度制御器5からの出力設定値S1に対応する出力がなされるものである。
ハロゲンヒータは、発熱源であるタングステンフィラメントの熱容量が小さいことから、通電とほぼ同時にエネルギーが立ち上がり、きわめて高速な昇温特性を有する。従って、図2に示されるように、ハロゲンサイクルが生じる温度を超えるのに必要な電力を与えることにより、高い応答性をもって必要な温度に達するものである。
即ち、何れも温度制御器からの操作量(MV)が25%の状態で維持されている場合を例として示している図2と図9を対比すると明らかなように、図9の従来方式では、ハロゲンサイクルが生じる温度を超えるのに必要な電力に至らない状態が維持されてしまうのに対し、図2の本実施形態の方式によれば、ハロゲンサイクルが生じる温度を超えるのに必要な電力を間欠的に供給することができるため、タングステンフィラメントがハロゲンサイクルの生じる温度に達する期間が生じ、フィラメントの細りなどの劣化を抑制することができるものである。
本実施形態の方式によれば、従来では得られなかった「ハロゲンサイクルの生じる温度に達する期間」を得られるだけでなく、間欠的な制御によって電流が流れない期間が生じるため、「ハロゲンサイクルが生じる温度に達しない状態での通電期間」を可及的に短縮することが可能であり、この観点からもさらにフィラメントの細りなどの劣化を抑制することができ、ハロゲンヒータの長寿命化を図れるものである。
本実施形態の交流電力調整器1によれば、出力設定値S1(操作量(MV))が所定の動作切替閾値未満である場合には、動作切替閾値に基づいて生成される制御信号S2を、出力設定値S1と動作切替閾値の比に応じてサイクル単位でオン/オフすることで、出力設定値に基づく動作制御信号S3が生成される。従って、図2に示されるように、動作制御信号S3による出力電圧の振幅が動作切替閾値に基づく値以上(図2では例として振幅50%)に維持され、これを間欠的にオン/オフすることで、温度制御器5からの出力設定値S1に対応する出力がなされるものである。
ハロゲンヒータは、発熱源であるタングステンフィラメントの熱容量が小さいことから、通電とほぼ同時にエネルギーが立ち上がり、きわめて高速な昇温特性を有する。従って、図2に示されるように、ハロゲンサイクルが生じる温度を超えるのに必要な電力を与えることにより、高い応答性をもって必要な温度に達するものである。
即ち、何れも温度制御器からの操作量(MV)が25%の状態で維持されている場合を例として示している図2と図9を対比すると明らかなように、図9の従来方式では、ハロゲンサイクルが生じる温度を超えるのに必要な電力に至らない状態が維持されてしまうのに対し、図2の本実施形態の方式によれば、ハロゲンサイクルが生じる温度を超えるのに必要な電力を間欠的に供給することができるため、タングステンフィラメントがハロゲンサイクルの生じる温度に達する期間が生じ、フィラメントの細りなどの劣化を抑制することができるものである。
本実施形態の方式によれば、従来では得られなかった「ハロゲンサイクルの生じる温度に達する期間」を得られるだけでなく、間欠的な制御によって電流が流れない期間が生じるため、「ハロゲンサイクルが生じる温度に達しない状態での通電期間」を可及的に短縮することが可能であり、この観点からもさらにフィラメントの細りなどの劣化を抑制することができ、ハロゲンヒータの長寿命化を図れるものである。
次に、本実施形態の交流電力調整器1の処理動作の概略を、図3を参照しつつ説明する。
S001では、起動時のソフトスタート期間であるか否かを判別する。
「ソフトスタート」とは、ハロゲンヒータのような温度が低いときには抵抗値が小さい負荷への電力供給において、突入電流が大きくなり過ぎないように、出力をセーブしてスタートさせるものである。
図10に従来の交流電力調整器のソフトスタートの動作の概略を示した。同図に示されるように、操作量(MV)をランプ制御することにより、起動時に過大な突入電流が流れることを抑止しているものである。
「ソフトスタート」とは、ハロゲンヒータのような温度が低いときには抵抗値が小さい負荷への電力供給において、突入電流が大きくなり過ぎないように、出力をセーブしてスタートさせるものである。
図10に従来の交流電力調整器のソフトスタートの動作の概略を示した。同図に示されるように、操作量(MV)をランプ制御することにより、起動時に過大な突入電流が流れることを抑止しているものである。
S001における判別の結果、ソフトスタート期間である場合には、S002へと移行して出力設定値S1(操作量(MV))を、ランプ制御して、これを出力電圧振幅制御部111に入力する。一方、ソフトスタート期間を過ぎている場合には、S002をスキップして、S003へ移行する(即ち、出力設定値S1がそのまま出力電圧振幅制御部111に入力される)。
続くS003では、出力設定値S1(操作量(MV))が、動作切替閾値未満であるか否かを判別し、動作切替閾値未満である場合にはS004へ、動作切替閾値以上である場合にはS006へと、それぞれ移行する。
出力設定値S1(操作量(MV))が、動作切替閾値未満であった場合(S003:Yes)、出力電圧振幅制御部111において動作切替閾値に基づいて振幅制御方式(第1の制御方法)による制御信号S2(櫛形波形)の生成が行われる(S004)。続くS005では、出力電圧オン/オフ判断部112によって、出力電圧振幅制御部111から入力される制御信号S2を、出力設定値S1と動作切替閾値の比に応じて、電源電圧検出部13によって検出されるサイクル単位(本実施形態では、電源電圧の1周期単位)でオン/オフすることで、動作制御信号S3の生成が行われ、これが出力操作部12へ出力される(S007)。
即ち、先に説明したように、ハロゲンサイクルが生じる温度を超えるのに必要な電力を間欠的に供給するものである。
即ち、先に説明したように、ハロゲンサイクルが生じる温度を超えるのに必要な電力を間欠的に供給するものである。
なお、図3のフローチャートからも明らかなように、この処理動作は、ソフトスタート期間においても同様に適用される。これを説明する図が図4である。S001~S002の処理によって、従来と同様に出力設定値S1(操作量(MV))がランプ制御されるが、このランプ制御により、出力設定値S1(操作量(MV))が動作切替閾値より小さくなる場合には、ハロゲンサイクルが生じる温度を超えるのに必要な電力を間欠的に供給する処理が実行されるものである。
図5は、起動時における出力動作とハロゲンサイクルとの関係を説明する図である。同図に示されるように、本実施形態によれば、ソフトスタート期間においてもハロゲンサイクルが生じる温度を超えるのに必要な電力が供給されるため、従来方式に比してより早くハロゲンサイクルが生じる温度に到達することができ、ハロゲンヒータの長寿命化を図ることができる。
図5は、起動時における出力動作とハロゲンサイクルとの関係を説明する図である。同図に示されるように、本実施形態によれば、ソフトスタート期間においてもハロゲンサイクルが生じる温度を超えるのに必要な電力が供給されるため、従来方式に比してより早くハロゲンサイクルが生じる温度に到達することができ、ハロゲンヒータの長寿命化を図ることができる。
図3のフローチャートの説明を続ける。
出力設定値S1(操作量(MV))が、動作切替閾値以上であった場合には(S003:No)、出力電圧振幅制御部111によって、出力設定値S1に基づいて振幅制御方式(第1の制御方法)による制御信号S2が生成され(S006)、これがそのまま出力操作部12へ出力される(S007)。
出力設定値S1(操作量(MV))が、動作切替閾値以上であった場合には(S003:No)、出力電圧振幅制御部111によって、出力設定値S1に基づいて振幅制御方式(第1の制御方法)による制御信号S2が生成され(S006)、これがそのまま出力操作部12へ出力される(S007)。
以上の処理動作が繰り返される(S007の後にS001へ戻って処理が繰り返される)ことで、出力設定値S1に応じた電力が、負荷であるハロゲンヒータ3に対して出力される。
なお、動作切替閾値は、例えば、事前に出力電圧とハロゲンヒータの表面温度の関係を測定することにより、ハロゲンサイクルが生じる温度となるのに必要な出力電圧の振幅を得ておき、当該振幅が得られる出力設定値S1(操作量(MV))に相当する値を算出することにより予め出力制御部11に設定しておくようにすればよい。
動作切替閾値は、ハロゲンヒータの仕様などによって変化し得る値であるため、各種のハロゲンヒータに対して上記の事前処理を行って各ハロゲンヒータ条件に対応する動作切替閾値を取得し、これをテーブルとして出力制御部11に設定しておくようにしてもよい。これにより、適宜接続されたハロゲンヒータに応じて、最適な動作切替閾値をユーザに選択させるようにしてもよい(そのために必要な入力部や表示部を備えさせる)。ハロゲンヒータ条件と動作切替閾値との関係を定式化できるようであれば、これによって最適な動作切替閾値を算出させるようなものであってもよい。
動作切替閾値は、ハロゲンヒータの仕様などによって変化し得る値であるため、各種のハロゲンヒータに対して上記の事前処理を行って各ハロゲンヒータ条件に対応する動作切替閾値を取得し、これをテーブルとして出力制御部11に設定しておくようにしてもよい。これにより、適宜接続されたハロゲンヒータに応じて、最適な動作切替閾値をユーザに選択させるようにしてもよい(そのために必要な入力部や表示部を備えさせる)。ハロゲンヒータ条件と動作切替閾値との関係を定式化できるようであれば、これによって最適な動作切替閾値を算出させるようなものであってもよい。
本実施形態においては、第1の制御方法として、出力電圧振幅制御部111による振幅制御方式を用いるものを例としているが、第1の制御方法としては任意の制御方法を用いるものであってよい。例えば、図2や図4の下段において波形を併記しているように、位相制御方式を用いてもよい(この場合、出力電圧振幅制御部に替えて出力電圧位相制御部を備える)。従来方式の図9や図10との対比からも明らかなように、同様の効果を得られるものである。
以上のごとく、本実施形態の交流電力調整器1によれば、例えば負荷率が低い状態が続く(温度制御器からの操作量(MV)が低い値で維持される)ような場合においても、ハロゲンヒータの温度がハロゲンサイクルの生じる温度を下回った状態での使用状態が続いてしまうことが抑止され、フィラメントの細りなどの劣化を抑制することができ、ハロゲンヒータの長寿命化を図ることができる。
また、突入電流をおさえるためのソフトスタート処理時(特に起動直後)においても、同様に、間欠的にハロゲンサイクルが生じる温度を超えるのに必要な電力が供給されるため、従来方式に比してより早くハロゲンサイクルが生じる温度に到達することができ、ハロゲンヒータの長寿命化を図ることができる。
また、突入電流をおさえるためのソフトスタート処理時(特に起動直後)においても、同様に、間欠的にハロゲンサイクルが生じる温度を超えるのに必要な電力が供給されるため、従来方式に比してより早くハロゲンサイクルが生じる温度に到達することができ、ハロゲンヒータの長寿命化を図ることができる。
本実施形態の交流電力調整器1では、第1の制御方法として振幅制御方式を用い、且つ、出力電圧オン/オフ判断部112によって、電源電圧の1周期単位でオン/オフしているため、高調波障害(ノイズ発生)の発生が抑止される点でも優れている。また、電源電圧の1周期単位でオン/オフしていることにより、電食現象が生じて端子の腐食が進むなどの問題を抑止することができる。
なお、これらをあまり問題としないような場合には、第1の制御方法として位相制御方式などを用いても良いし、出力電圧オン/オフ判断部112によるオン/オフの単位を、1周期より短い単位で行うようなものであってもよい(即ち、本発明における「サイクル単位」とは、1サイクル単位に限定されるものでは無く、例えば、半サイクル単位等の、1サイクル未満の期間を含む概念である)。
また、本実施形態では、出力電圧オン/オフ判断部112での制御を時分割制御方式によるものとしているが、時間比例オンオフ制御方式としてもよい。
なお、これらをあまり問題としないような場合には、第1の制御方法として位相制御方式などを用いても良いし、出力電圧オン/オフ判断部112によるオン/オフの単位を、1周期より短い単位で行うようなものであってもよい(即ち、本発明における「サイクル単位」とは、1サイクル単位に限定されるものでは無く、例えば、半サイクル単位等の、1サイクル未満の期間を含む概念である)。
また、本実施形態では、出力電圧オン/オフ判断部112での制御を時分割制御方式によるものとしているが、時間比例オンオフ制御方式としてもよい。
本実施形態では、動作切替閾値が予め出力制御部11に設定されているものを例として説明したが、これは製品として出荷時に設定されているものだけでなく、ユーザ等によって事後的に設定されるものも含むものである(そのための入力部が装置に備えられる)。
また、動作切替閾値は、固定的な値に限られるものでなく、動的に変化若しくは切り替わるようなものであってもよい。例えば、ソフトスタート時の動作切替閾値を、通常の動作切替閾値とは違うものとしても良い。ソフトスタート時については、ハロゲンサイクルが生じるような電力を供給することと、突入電流の大きさとのトレードオフの関係性を考慮して、通常時とは異なる動作切替閾値を定めるもの等である。ソフトスタート時の操作量(MV)のランプ制御と同様に、動作切替閾値を動的に変化させる(段階的に引き上げる)ようなものとしてもよい。
また、動作切替閾値は、固定的な値に限られるものでなく、動的に変化若しくは切り替わるようなものであってもよい。例えば、ソフトスタート時の動作切替閾値を、通常の動作切替閾値とは違うものとしても良い。ソフトスタート時については、ハロゲンサイクルが生じるような電力を供給することと、突入電流の大きさとのトレードオフの関係性を考慮して、通常時とは異なる動作切替閾値を定めるもの等である。ソフトスタート時の操作量(MV)のランプ制御と同様に、動作切替閾値を動的に変化させる(段階的に引き上げる)ようなものとしてもよい。
なお、図2や図4に示されるように、本発明にかかる制御方式によれば、出力設定値S1が動作切替閾値未満である際において、ハロゲンヒータ3の温度制御にある程度の温度リップルが生じるものであるが、制御したいのは制御対象4の温度であり、ハロゲンヒータ3における温度リップルがそのまま制御対象4の温度リップルとなるものではないため、基本的に問題はない。
(実施形態2)
図6は、本発明に係る実施形態2の交流電力調整器を示す概略ブロック図である。
実施形態1と同様の概念となる構成要素については、実施形態1と同じ符号を使用し、ここでの説明を省略若しくは簡略化する。
図6は、本発明に係る実施形態2の交流電力調整器を示す概略ブロック図である。
実施形態1と同様の概念となる構成要素については、実施形態1と同じ符号を使用し、ここでの説明を省略若しくは簡略化する。
実施形態2の交流電力調整器1は、ハロゲンヒータ3の抵抗値を測定し、これが所定の値を下回っている場合において、出力電圧オン/オフ判断部112によるオン/オフ制御を行うものである。即ち、動作切替閾値が抵抗値に相当する値として設定されるものである。
ハロゲンヒータ3は温度に応じて抵抗値が変化するものであり、従って、抵抗値を測定することにより、その温度を推定することが可能である。これに基づき、抵抗値を測定しつつ、ハロゲンヒータ3の温度が、ハロゲンサイクルに必要な温度をなるべく下回らないように制御するものである。従って、動作切替閾値は、例えば、ハロゲンサイクルに必要な温度における、ハロゲンヒータ3の抵抗値が用いられる。
ハロゲンヒータ3は温度に応じて抵抗値が変化するものであり、従って、抵抗値を測定することにより、その温度を推定することが可能である。これに基づき、抵抗値を測定しつつ、ハロゲンヒータ3の温度が、ハロゲンサイクルに必要な温度をなるべく下回らないように制御するものである。従って、動作切替閾値は、例えば、ハロゲンサイクルに必要な温度における、ハロゲンヒータ3の抵抗値が用いられる。
図6に示されるように、実施形態2の交流電力調整器1は、負荷抵抗値演算部16を備え、出力電圧検出部14によって測定される電圧値と、出力電流検出部15によって測定される電流値に基づいて、ハロゲンヒータ3の抵抗値を算出する。
図7は、実施形態2の交流電力調整器の処理動作の概略を示すフローチャートである。処理概念は実施形態1(図3)と同様であるため、詳しい説明は省くが、S003の処理では、負荷抵抗値演算部16が算出するハロゲンヒータ3の抵抗値が、動作切替閾値と比較され、これが動作切替閾値未満である場合、S004へと移行して、出力電圧振幅制御部111において「所定出力値」に基づいて振幅制御方式(第1の制御方法)による制御信号S2(櫛形波形)の生成が行われる。
「所定出力値」は、基本的には実施形態1における動作切替閾値と同様であり、例えば、事前に出力設定値S1(操作量(MV))とハロゲンヒータの表面温度の関係を測定することにより、ハロゲンサイクルが生じる温度となるのに必要な出力設定値S1(操作量(MV))に相当する値を得て、これを「所定出力値」として、予め出力制御部11に設定しておくものである。
S004に続くS005では、出力電圧オン/オフ判断部112によって、出力電圧振幅制御部111から入力される制御信号S2を、出力設定値S1と「所定出力値」の比に応じて、電源電圧検出部13によって検出されるサイクル単位(本実施形態では、電源電圧の1周期単位)でオン/オフすることで、動作制御信号S3の生成が行われる(基本的に実施形態1と同様の概念)。
「所定出力値」は、基本的には実施形態1における動作切替閾値と同様であり、例えば、事前に出力設定値S1(操作量(MV))とハロゲンヒータの表面温度の関係を測定することにより、ハロゲンサイクルが生じる温度となるのに必要な出力設定値S1(操作量(MV))に相当する値を得て、これを「所定出力値」として、予め出力制御部11に設定しておくものである。
S004に続くS005では、出力電圧オン/オフ判断部112によって、出力電圧振幅制御部111から入力される制御信号S2を、出力設定値S1と「所定出力値」の比に応じて、電源電圧検出部13によって検出されるサイクル単位(本実施形態では、電源電圧の1周期単位)でオン/オフすることで、動作制御信号S3の生成が行われる(基本的に実施形態1と同様の概念)。
以上のごとく、実施形態2の交流電力調整器1によれば、出力電圧オン/オフ判断部112によるオン/オフ制御の切り替え(間欠的な出力動作への切り替え)の閾値が、ハロゲンヒータ3の抵抗値に基づく点以外は、基本的に実施形態1と同様であり、従って、実施形態1と同様の効果を得る事が出来る。
動作切替閾値や「所定出力値」について、固定的な値に限られるものでなく、動的に変化若しくは切り替わるようなものであってもよい点は、実施形態1と同様の概念である。例えば、動作切替閾値として複数の抵抗値が設定され、それぞれの動作切替閾値(抵抗値)に対して、異なる「所定出力値」が対応付けられ、各動作切替閾値(抵抗値)ごとに異なる「所定出力値」によって出力電圧オン/オフ判断部112によるオン/オフ制御が実行されるもの等であってもよい。動作切替閾値(抵抗値)と「所定出力値」との関係を定式化できるようであれば、これによって、測定される抵抗値に対応する「所定出力値」を算出させるようなものであってもよい。
なお、本実施形態では、出力電圧検出部14によって測定される電圧値と、出力電流検出部15によって測定される電流値に基づいて、ハロゲンヒータ3の抵抗値を算出し、これを、出力電圧オン/オフ判断部112によるオン/オフ制御の切り替えの閾値として利用するものを例としたが、出力電圧検出部14によって測定される電圧値と、出力電流検出部15によって測定される電流値に基づいて、電力値を算出しこれを、出力電圧オン/オフ判断部112によるオン/オフ制御の切り替えの閾値としてもよい(この場合、負荷抵抗値演算部に替えて出力電力演算部を備える)。
即ち、例えば、事前に電力値とハロゲンヒータの表面温度の関係を測定することにより、ハロゲンサイクルが生じる温度となるのに必要な電力値に相当する値を得て、これを動作切替閾値とするものである(その他については、実施形態2と同じ)。
即ち、例えば、事前に電力値とハロゲンヒータの表面温度の関係を測定することにより、ハロゲンサイクルが生じる温度となるのに必要な電力値に相当する値を得て、これを動作切替閾値とするものである(その他については、実施形態2と同じ)。
図8には、本発明に係る交流電力調整器の別の例を示した。実施形態1や実施形態2と同様の概念となる構成要素については、実施形態1や2と同じ符号を使用している。
同図に示される交流電力調整器1は、ハロゲンヒータ3に備えられる温度センサ31からの温度情報が入力される温度情報入力部17を備える。これにより、ハロゲンヒータ3の温度を測定し、これが所定の値を下回っている場合において、出力電圧オン/オフ判断部112によるオン/オフ制御を行うものである。即ち、動作切替閾値がハロゲンヒータ3の温度に相当する値として設定されるものである。
動作切替閾値には、例えば、ハロゲンサイクルに必要な温度そのものが用いられる。
同図に示される交流電力調整器1は、ハロゲンヒータ3に備えられる温度センサ31からの温度情報が入力される温度情報入力部17を備える。これにより、ハロゲンヒータ3の温度を測定し、これが所定の値を下回っている場合において、出力電圧オン/オフ判断部112によるオン/オフ制御を行うものである。即ち、動作切替閾値がハロゲンヒータ3の温度に相当する値として設定されるものである。
動作切替閾値には、例えば、ハロゲンサイクルに必要な温度そのものが用いられる。
当該交流電力調整器1の処理動作は、実施形態2(図7)と同様であり、S003における判別が、温度情報入力部17に入力されるハロゲンヒータ3の温度情報と、動作切替閾値との比較によって行われる点で相違するだけである。
図8の交流電力調整器1によれば、出力電圧オン/オフ判断部112によるオン/オフ制御の切り替え(間欠的な出力動作への切り替え)の閾値が、ハロゲンヒータ3の温度情報に基づく点以外は、基本的に実施形態1と同様であり、従って、実施形態1と同様の効果を得る事が出来る。
また、図8の交流電力調整器1では、ハロゲンヒータ3の温度情報を用いているため、より直接的にハロゲンサイクルに必要な温度を維持するような制御を行うことができる。
また、図8の交流電力調整器1では、ハロゲンヒータ3の温度情報を用いているため、より直接的にハロゲンサイクルに必要な温度を維持するような制御を行うことができる。
1...交流電力調整器
11...出力制御部
111...出力電圧振幅制御部
112...出力電圧オン/オフ判断部
12...出力操作部
13...電源電圧検出部
14...出力電圧検出部
15...出力電流検出部
16...負荷抵抗値演算部
17...温度情報入力部
2...入力交流電源
3...ハロゲンヒータ(負荷)
31...ハロゲンヒータ(負荷)用温度センサ
4...制御対象
41...制御対象用温度センサ
5...温度制御器
S1...出力設定値
S2...制御信号(第1の制御方法によって生成される制御信号)
S3...動作制御信号
11...出力制御部
111...出力電圧振幅制御部
112...出力電圧オン/オフ判断部
12...出力操作部
13...電源電圧検出部
14...出力電圧検出部
15...出力電流検出部
16...負荷抵抗値演算部
17...温度情報入力部
2...入力交流電源
3...ハロゲンヒータ(負荷)
31...ハロゲンヒータ(負荷)用温度センサ
4...制御対象
41...制御対象用温度センサ
5...温度制御器
S1...出力設定値
S2...制御信号(第1の制御方法によって生成される制御信号)
S3...動作制御信号
Claims (9)
- 入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、
前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、
前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、
入力された出力設定値に基づいて、当該出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、
前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、
を備えることを特徴とする交流電力調整器。 - 入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、
前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、
前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、
前記負荷の電流を測定する出力電流検出部と、
前記負荷の電圧を測定する出力電圧検出部と、
前記出力電流検出部及び出力電圧検出部から得られる電流値及び電圧値に基づく値が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、
前記出力電流検出部及び出力電圧検出部から得られる電流値及び電圧値に基づく値が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、
を備えることを特徴とする交流電力調整器。 - 前記負荷がハロゲンヒータであることを特徴とする請求項1又は請求項2に記載の交流電力調整器。
- 入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器であって、
前記入力交流電源と負荷との間に設けられ、動作制御信号に基づいて前記入力交流電源から負荷への出力を制御する出力操作部と、
前記入力交流電源の電圧とサイクルを検出する電源電圧検出部と、
前記負荷であるハロゲンヒータの温度情報が入力される温度情報入力部と、
前記温度情報が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって前記動作制御信号を生成し、
前記温度情報が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記電源電圧検出部によって検出されるサイクル単位でオン/オフすることで、前記出力設定値に基づく前記動作制御信号を生成する出力制御部と、
を備えることを特徴とする交流電力調整器。 - 前記第1の制御方法は振幅制御方法であることを特徴とする請求項1から請求項4の何れかに記載の交流電力調整器。
- 入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、
入力された出力設定値が所定の動作切替閾値以上である場合には、前記出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、
前記出力設定値が所定の動作切替閾値未満である場合には、前記動作切替閾値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することを特徴とする出力制御方法。 - 入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、
前記負荷の電流値及び電圧値に基づく値が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって所望の電力を負荷に出力し、
前記負荷の電流値及び電圧値に基づく値が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力を負荷に出力することを特徴とする出力制御方法。 - 入力交流電源から供給される電力を負荷に対して可変出力する交流電力調整器において、
前記負荷であるハロゲンヒータの温度情報が、所定の動作切替閾値以上である場合には、入力された出力設定値に基づいて第1の制御方法によって所望の電力をハロゲンヒータに出力し、
前記負荷であるハロゲンヒータの温度情報が、所定の動作切替閾値未満である場合には、所定出力値に基づいて第1の制御方法によって生成される制御信号を、前記入力交流電源のサイクル単位でオン/オフすることで、所望の電力をハロゲンヒータに出力することを特徴とする出力制御方法。 - 前記第1の制御方法は振幅制御方法であることを特徴とする請求項6から請求項8の何れかに記載の出力制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/057272 WO2016143114A1 (ja) | 2015-03-12 | 2015-03-12 | 交流電力調整器及び出力制御方法 |
JP2017504518A JPWO2016143114A1 (ja) | 2015-03-12 | 2015-03-12 | 交流電力調整器及び出力制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/057272 WO2016143114A1 (ja) | 2015-03-12 | 2015-03-12 | 交流電力調整器及び出力制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016143114A1 true WO2016143114A1 (ja) | 2016-09-15 |
Family
ID=56878848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057272 WO2016143114A1 (ja) | 2015-03-12 | 2015-03-12 | 交流電力調整器及び出力制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016143114A1 (ja) |
WO (1) | WO2016143114A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018059979A (ja) * | 2016-10-03 | 2018-04-12 | コニカミノルタ株式会社 | 画像形成装置 |
JP2020003594A (ja) * | 2018-06-27 | 2020-01-09 | コニカミノルタ株式会社 | 画像形成装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151720A (ja) * | 2001-11-16 | 2003-05-23 | Canon Inc | 加熱装置、及びこれを備えた画像形成装置 |
JP2006164615A (ja) * | 2004-12-03 | 2006-06-22 | Canon Inc | ヒータ電力制御方法、および画像形成装置 |
JP2011257604A (ja) * | 2010-06-09 | 2011-12-22 | Ricoh Co Ltd | ヒータ制御装置、画像形成装置、ヒータ制御方法およびプログラム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05249778A (ja) * | 1992-03-06 | 1993-09-28 | Canon Inc | 画像形成装置 |
JP2006156294A (ja) * | 2004-12-01 | 2006-06-15 | Canon Inc | 加熱装置及び画像形成装置 |
JP2006184418A (ja) * | 2004-12-27 | 2006-07-13 | Canon Inc | 定着装置 |
JP5015342B2 (ja) * | 2005-10-14 | 2012-08-29 | 株式会社リコー | 画像形成装置 |
JP5019814B2 (ja) * | 2005-10-14 | 2012-09-05 | 株式会社リコー | 画像形成装置および電力制御方法 |
JP5211594B2 (ja) * | 2007-09-12 | 2013-06-12 | 株式会社リコー | 画像形成装置 |
WO2012157117A1 (ja) * | 2011-05-19 | 2012-11-22 | 理化工業株式会社 | 交流電力調整器 |
JP5760907B2 (ja) * | 2011-09-28 | 2015-08-12 | 株式会社リコー | 加熱装置及び加熱方法 |
JP6136611B2 (ja) * | 2013-06-14 | 2017-05-31 | コニカミノルタ株式会社 | 画像形成装置 |
-
2015
- 2015-03-12 JP JP2017504518A patent/JPWO2016143114A1/ja active Pending
- 2015-03-12 WO PCT/JP2015/057272 patent/WO2016143114A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151720A (ja) * | 2001-11-16 | 2003-05-23 | Canon Inc | 加熱装置、及びこれを備えた画像形成装置 |
JP2006164615A (ja) * | 2004-12-03 | 2006-06-22 | Canon Inc | ヒータ電力制御方法、および画像形成装置 |
JP2011257604A (ja) * | 2010-06-09 | 2011-12-22 | Ricoh Co Ltd | ヒータ制御装置、画像形成装置、ヒータ制御方法およびプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018059979A (ja) * | 2016-10-03 | 2018-04-12 | コニカミノルタ株式会社 | 画像形成装置 |
JP2020003594A (ja) * | 2018-06-27 | 2020-01-09 | コニカミノルタ株式会社 | 画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016143114A1 (ja) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107430411B (zh) | 加热元件的控制 | |
KR20110068641A (ko) | 전력 캡슐을 이용한 화상형성장치의 정착기 온도제어 방법 및 장치와 이를 구비하는 화상형성장치 | |
JP2017073896A5 (ja) | ||
WO2016143114A1 (ja) | 交流電力調整器及び出力制御方法 | |
JP2008131712A (ja) | モータ駆動装置 | |
JP2017174139A (ja) | 電力制御装置 | |
JP2017045592A (ja) | Led調光装置及びled調光方法 | |
KR20160028232A (ko) | 화상형성장치 및 위상 제어 방법 | |
JP3899773B2 (ja) | 電力調整器 | |
JP2006271089A (ja) | 昇圧チョッパ装置及び昇圧チョッパ装置のスイッチング周波数制御方法 | |
JP5023821B2 (ja) | 電力制御方法および電力制御装置 | |
JP5860672B2 (ja) | 定着器アセンブリの電力を制御する方法 | |
JP5125190B2 (ja) | 位相制御方法および位相制御装置 | |
JP2014155232A (ja) | 位相制御装置 | |
JP2004200179A (ja) | 電気ヒータ制御装置 | |
JP6320059B2 (ja) | 電力調整器 | |
JP2008288180A (ja) | ヒーターの温度調節器 | |
JP2006156294A (ja) | 加熱装置及び画像形成装置 | |
JP2008111632A (ja) | 熱処理炉 | |
JP5906454B2 (ja) | 誘導加熱装置とその制御方法 | |
KR102020364B1 (ko) | 공기 조화기의 인버터 장치 | |
JP6521174B2 (ja) | 交流電力調整器及び交流電力制御方法 | |
JP2019027708A (ja) | 電気湯沸器 | |
DK1801684T3 (da) | Fremgangsmåde til opvarmning og regulering af varmeeffekten og varmeanordningen | |
JP2006136196A (ja) | スイッチング電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15884604 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017504518 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15884604 Country of ref document: EP Kind code of ref document: A1 |