WO2016141870A1 - 一种消除雾化合金粉末空心缺陷的方法 - Google Patents

一种消除雾化合金粉末空心缺陷的方法 Download PDF

Info

Publication number
WO2016141870A1
WO2016141870A1 PCT/CN2016/075835 CN2016075835W WO2016141870A1 WO 2016141870 A1 WO2016141870 A1 WO 2016141870A1 CN 2016075835 W CN2016075835 W CN 2016075835W WO 2016141870 A1 WO2016141870 A1 WO 2016141870A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ball
alloy powder
ball mill
atomized
Prior art date
Application number
PCT/CN2016/075835
Other languages
English (en)
French (fr)
Inventor
刘祖铭
苏鹏飞
黄伯云
段清龙
麻梦梅
郭旸
陈仕奇
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to US15/556,619 priority Critical patent/US10486233B2/en
Publication of WO2016141870A1 publication Critical patent/WO2016141870A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys

Definitions

  • the invention relates to a method for eliminating hollow defects of atomized alloy powder, and belongs to the field of powder metallurgy materials.
  • Melt gas atomization is the main preparation method of powder metallurgy superalloy raw material powder.
  • the main problem of the gas atomized powder is that a large amount of pores containing a closed gas filled with an atomizing medium are easily present inside the powder, and the powder containing the pores is called a hollow powder. Due to powder Hollow The defects are completely closed and are difficult to remove during subsequent powder forming processes, leaving holes in the material to form. At the same time, the residual gas in the closed hollow defects will expand during the subsequent heat treatment and service, forming heat-induced holes, or inducing cracks, which seriously reduce the mechanical properties of the powder metallurgical materials, especially powder superalloys. Therefore, hollow powder is one of the main sources of pores in powder materials, which has a serious impact on the mechanical properties of the alloy.
  • the powder hollow ratio of the particle diameter exceeding 75 ⁇ m (200 mesh) is relatively high, and the small particle powder has a low hollow ratio.
  • powder sieving has been used in the art to remove hollow powder.
  • high-temperature alloys are mainly prepared by using atomized powders of 53 ⁇ m (-270 mesh) or 45 ⁇ m (-325 mesh) to reduce the adverse effects of powder hollow defects on the properties of the alloy, and the powder utilization rate is only about 50%.
  • the large-size hollow powder can be removed by sieving, but the powdered hollow powder cannot be completely removed, because the sieved small-sized powder may also be hollow.
  • the method for sieving and removing the hollow powder has low powder utilization rate, serious waste, and the alloy preparation cost is greatly improved.
  • the hollowness ratio is mainly reduced by controlling the atomization process.
  • the plasma rotating electrode process ( PREP ) Milling mainly to reduce the bar speed and atomizing gas pressure in the rotating electrode process. Reduce the bar speed, reduce the hole, but the coarse powder content is high, the fine powder yield is low, and the hole size is correspondingly increased; the bar speed is increased, the hole is increased, but the fine powder yield is high, and the hole size is also reduced accordingly. .
  • the atomization gas pressure is reduced, the amount of hollow powder is reduced, but the coarse powder content is high, and the fine powder yield is low.
  • a method for eliminating hollow defects of atomized alloy powder, mechanically ball milling the atomized alloy powder, and eliminating hollow defects inside the alloy powder particles uses one of a planetary ball mill, a stirring ball mill, and a drum ball mill.
  • the mechanical ball milling is configured by using at least three different diameter grinding balls according to a mass ratio
  • the mechanical ball milling uses 4 kinds of grinding balls, and the diameter of the grinding balls are 9-11mm, 7-9mm, 5-7mm, 4-6mm respectively. 4 kinds of grinding balls are arranged according to the mass ratio from large to small 1:2.5-3.5:0.5-1.5:4-6;
  • the diameters of the four kinds of grinding balls are 10mm, 8mm, 6mm, 5mm, 4 respectively.
  • the grinding balls are arranged in a mass ratio of 1:3:1:5 from large to small;
  • the ball to material ratio (8 ⁇ 12) : 1
  • the ball milling speed is 250 ⁇ 350r/min, and the time is 1 ⁇ 4h;
  • the ball to material ratio (8 ⁇ 15): 1, under the protection of inert gas, ball milling in agitating ball mill, the ball milling speed is
  • time is 2 ⁇ 6h.
  • the invention performs short-time mechanical ball milling on the atomized alloy powder.
  • the alloy powder is deformed, the hollow powder collapses and ruptures, and the gas enclosed in the hollow of the powder is released, thereby eliminating the hollow defects inside the alloy powder particles, and obtaining a completely solid powder.
  • the invention adopts different diameter grinding balls for compatibility, and controls the ball milling energy by controlling the diameter of the grinding ball and the ball-to-batch ratio, and then controlling the powder deformation amount with the ball milling time control; controlling the powder by controlling the ratio of the grinding balls of different diameters Azimuth stereo impact, to achieve powder sphericity control, Obtain a solid spherical powder.
  • the large-size hollow unqualified powder removed by sieving can be changed into a qualified powder to eliminate the sieving. Hollow defects and solidified shrinkage cavities appearing in small particle size powders.
  • the atomized powder is deformed by ball milling to effectively improve the solidification structure of the powder.
  • the invention adopts a ball milling process, By controlling the diameter of the grinding ball, the mass ratio of the grinding balls of different diameters and the ratio of the ball to the ball, and then controlling the ball milling time, the powder is subjected to multi-dimensional stereo impact to realize the sphericity control of the powder to obtain a solid spherical powder.
  • the invention solves the problem of powder hollow in the field for a long time, improves the powder utilization rate to more than 85%, has short ball milling time, and has simple process method, and is favorable for large-scale preparation and application.
  • Fig. 1 is a scanning electron microscope (SEM) image of a gas atomized powder of a nickel-base superalloy according to an embodiment 1 of the present invention.
  • Embodiment 2 is a scanning electron microscopy (SEM) image of a powder cross section of a nickel-based superalloy gas atomized powder according to Embodiment 1 of the present invention after mechanical ball milling.
  • SEM scanning electron microscopy
  • Gas atomized nickel-based prealloyed powder Ni-20.6Co-13Cr-3.8Mo-2.1W-3.4Al-3.9Ti-2.4Ta-0.9Nb (wt%) was placed in a ball mill tank with a ball-to-batch ratio of 8:1.
  • the ball milling speed was 250 r/min, and the ball milling time was 3 h, and a nickel-base superalloy powder having no hollow defects was obtained.
  • FIG. 1 is a scanning electron microscopy (SEM) image of a nickel-based superalloy gas atomized powder before the ball milling treatment of the present embodiment.
  • SEM scanning electron microscopy
  • FIG. 2 is a cross-sectional SEM image of the powder of the nickel-based superalloy gas atomized powder of the present embodiment after mechanical ball milling, and no powder hollow phenomenon is observed.
  • mechanical ball milling can eliminate The alloy powder particles have hollow defects inside and a completely solid powder is obtained.
  • Gas atomized nickel-based prealloyed powder Ni-20.6Co-13Cr-3.8Mo-2.1W-3.4Al-3.9Ti-2.4Ta-0.9Nb (wt%) was placed in a ball mill tank with a ball-to-batch ratio of 10:1. Grinding balls with a diameter of 9, 7, 5, 4 mm and a mass ratio of 1:3.5:1.5:6, vacuumed and filled with argon as a protective atmosphere, ball mill in a planetary ball mill The ball milling speed was 300 r/min, and the ball milling time was 2 h, and a nickel-base superalloy powder having no hollow defects was obtained.
  • Gas atomized nickel-based prealloyed powder Ni-20.6Co-13Cr-3.8Mo-2.1W-3.4Al-3.9Ti-2.4Ta-0.9Nb (wt%) was placed in a ball mill tank with a ball-to-batch ratio of 10:1. Grinding balls with a diameter of 11, 9, 7, 6 mm and a mass ratio of 1:2.5:0.5:4, in an argon atmosphere, in a ball mill with agitating ball mill The ball milling speed was 100 r/min, and the ball milling time was 3 h, and a nickel-base superalloy powder having no hollow defects was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Crushing And Grinding (AREA)

Abstract

一种消除雾化合金粉末空心缺陷的方法。对雾化合金粉末进行球磨处理,消除粉末颗粒内部空心缺陷。通过控制磨球的直径、不同直径磨球的质量配比和球料比,再配合球磨时间的控制,对粉末进行多方位立体撞击,实现粉末球形度控制,获得实心球形粉末,提高粉末利用率,球磨时间短,工艺方法简单。

Description

一种消除雾化合金粉末空心缺陷的方法
技术领域
本发明涉及一种消除雾化合金粉末空心缺陷的 方法, 属于粉末冶金材料领域。
背景技术
熔体气体雾化是粉末冶金高温合金原料粉末的主要制备方法。但是,气体雾化粉末的主要问题是大量粉末内部易出现含有闭合的、充满雾化介质气体的孔洞,这种含有孔洞的粉末称为空心粉末。由于粉末的 空心 缺陷是完全封闭的,在后续粉末成形过程中难以消除,残留在材料内部形成孔洞。同时,封闭的空心缺陷中残留的气体,会在随后的热处理及服役过程中会发生膨胀,形成热诱导孔洞,或诱发裂纹,严重降低粉末冶金材料的力学性能,特别是粉末高温合金。因此,空心粉末是粉末材料孔洞的主要来源之一,对合金的力学性能会产生严重影响。
目前雾化工艺制备的高温合金粉末中,粒径超过75μm(200目)的粉末空心率比较高,小颗粒粉末则空心率较低。长期以来,本领域采取粉末筛分的方法去除空心粉。美国、俄罗斯等国家主要使用小于等于53μm(-270目)或45μm(-325目)的雾化粉末制备高温合金,以降低粉末空心缺陷对合金性能的不利影响,粉末利用率只有50%左右。采取筛分的方法可以去除大尺寸空心粉末,但仍然不能完全去除粉末空心粉末,因为过筛的小尺寸粉末也可能出现空心现象。筛分去除空心粉末方法的粉末利用率低,浪费严重,合金制备成本大幅度提高。
在粉末制备方面,针对雾化粉末出现的空心缺陷问题,主要通过控制雾化工艺来降低空心率。对于等离子旋转电极工艺( PREP )制粉,主要是降低旋转电极工艺中棒料转速和雾化气体压力。降低棒料转速,孔洞减少,但粗粉含量高,细粉收得率低,孔洞尺寸也相应增大;提高棒料转速,孔洞增多,但细粉收得率高,孔洞尺寸也相应减小。降低雾化气体压力,空心粉末数量减少,但粗粉含量高,细粉收得率低。由于雾化气体压力降低,降低了熔体的凝固速度,使得粉末的凝固组织变得粗大。对于氩气雾化制粉( AA ),则未见消除粉末空心缺陷的具体工艺措施报道。因此,雾化工艺特点决定了控制雾化工艺只能降低粉末空心率,不能完全消除粉末空心缺陷。
至今为止,国内外未见消除雾化合金粉末空心缺陷的方法的公开报道。
发明内容
本发明的目的在于提供一种 消除雾化合金粉末空心缺陷的方法 。
一种消除雾化合金粉末空心缺陷的方法, 对雾化 合金 粉末进行机械球磨, 消除合金粉末颗粒内部 空心 缺陷, 机械球磨采用行星式球磨机、搅拌式球磨机、滚筒式球磨机中的一种 。
所述机械球磨采用至少 3 种不同直径的磨球按质量配比进行配置;
所述机械球磨采用 4 种磨球,磨球直径分别为 9-11mm 、 7-9mm 、 5-7mm 、 4-6mm , 4 种磨球按直径从大至小的质量配比为 1:2.5-3.5:0.5-1.5:4-6 进行配置;
所述 4 种磨球直径分别为 10mm 、 8mm 、 6mm 、 5mm , 4 种磨球按直径从大至小的质量配比为 1:3:1:5 进行配置;
将雾化合金粉末入球磨罐,球料比 : (8~12) : 1 ,在惰性气体保护下,在行星式球磨机中球磨,球磨转速为 250~350r/min, 时间为 1~4h;
将雾化合金粉末入球磨罐,球料比 : (8~15) : 1,在惰性气体保护下,在搅拌球磨机中球磨,球磨转速为
60~150r/min, 时间为 2 ~ 6h。
本发明的优点和积极效果:
本发明通过 对雾化合金粉末进行短时间 机械 球磨 , 使合金粉末发生变形,空心粉末发生塌陷、破裂,并使封闭在粉末空心中的气体得到释放,从而消除合金粉末颗粒内部 空心 缺陷,获得完全实心粉末。
本发明采用不同直径磨球进行配伍,通过控制磨球的直径和球料比进行球磨能量控制,再配合球磨时间控制,实现粉末变形量控制;通过控制不同直径磨球的比例,对粉末进行多方位立体撞击,实现粉末球形度控制, 获得实心球形粉末 。
雾化粉末经过球磨处理,可 将筛分去除的大粒径空心不合格粉末变为合格粉末,消除 过筛 的小粒径粉末中出现的空心缺陷和凝固缩孔。
雾化粉末经球磨产生变形,使粉末的凝固组织得到有效改善。
本发明采用球磨工艺, 通过控制磨球的直径、不同直径磨球的质量配比和球料比,再配合球磨时间的控制,对粉末进行多方位立体撞击,实现粉末球形度控制, 获得实心球形粉末。 解决了长期困扰本领域的粉末空心问题,将粉末利用率提高到 85% 以上,球磨时间短,工艺方法简单,有利于规模化制备和应用。
附图说明
附图1是本发明实施实例1镍基高温合金气体雾化粉末截面扫描电镜(SEM)图片。
附图2是本发明实施实例1镍基高温合金气体雾化粉末经机械球磨后,粉末截面扫描电镜(SEM)图片。
从附图1的SEM观察结果可知,实施例1 部分气体雾化粉末出现了明显的空心缺陷,图中粉末1、2、3、4内部出现的空心缺陷,其粒径与同一视场的其他粉末差别不大。
从附图2的SEM观察结果可知,实施例1气体雾化粉末经机械球磨后,没有观察到粉末空心现象,即粉末空心缺陷消失,粉末的球形度保持良好。
具体实施方式
下面结合具体实施方式对本发明作进一步说明。
实施例1:
将气体雾化镍基预合金粉末(成分为 Ni-20.6Co-13Cr-3.8Mo-2.1W-3.4Al-3.9Ti-2.4Ta-0.9Nb ( wt% ) )装入球磨罐中,球料比为8:1,采用 直径为10、8、6、5mm并按1:3:1:5质量比搭配的磨球, 抽真空后充入氩气作为保护气氛, 在行星式球磨机中球磨 ,球磨转速为250r/min,球磨时间为3h, 得到无空心缺陷的镍基高温合金粉末。
附图1为本实施例球磨处理前的镍基高温合金气体雾化粉末截面扫描电镜(SEM)图片,附图1中可以观察到粉末出现了明显的空心缺陷,其粒径与同一视场的其他粉末差别不大;附图2为本实施例的镍基高温合金气体雾化粉末经机械球磨后的粉末截面SEM图,没有观察到粉末空心现象。说明机械球磨可以消除 合金粉末颗粒内部 空心 缺陷,获得完全实心粉末。
实施例2:
将气体雾化镍基预合金粉末(成分为 Ni-20.6Co-13Cr-3.8Mo-2.1W-3.4Al-3.9Ti-2.4Ta-0.9Nb ( wt% ) )装入球磨罐中,球料比为10:1,采用 直径为9、7、5、4mm并按1:3.5:1.5:6质量比搭配的磨球, 抽真空后充入氩气作为保护气氛, 在行星式球磨机中球磨 ,球磨转速为300r/min,球磨时间为2h, 得到无空心缺陷的镍基高温合金粉末。
实施例3:
将气体雾化镍基预合金粉末(成分为 Ni-20.6Co-13Cr-3.8Mo-2.1W-3.4Al-3.9Ti-2.4Ta-0.9Nb ( wt% ) )装入球磨罐中, 球料比为 10: 1 , 采用 直径为11、9、7、6mm并按1:2.5:0.5:4质量比搭配的磨球, 在氩气保护气氛中, 在搅拌式球磨机中球磨 ,球磨转速为100r/min,球磨时间为3h, 得到无空心缺陷的镍基高温合金粉末。

Claims (8)

1 、一种消除雾化合金粉末空心缺陷 的方法,其特征在于,所述方法是对雾化合金 粉末进行机械球磨, 消除合金粉末颗粒内部空心缺陷。
2 、 根据权利要求 1 所述的一种 消除雾化合金粉末空心缺陷 的方法 ,其特征在于:球磨在惰性气体保护下进行。
3 、根据权利要求 2 所述的一种消除雾化合金粉末空心缺陷 的方法 ,其特征在于:机械球磨采用行星式球磨机、搅拌式球磨 机 、滚筒式球磨机中的一种。
4 、根据权利要求 3 所述的一种消除雾化合金粉末空心缺陷的方法,其特征在于:机械球磨采用至少 3 种不同直径的磨球按质量配比进行配置。
5 、根据权利要求 3 所述的一种消除雾化合金粉末空心缺陷的方法,其特征在于:机械球磨采用 4 种磨球,磨球直径分别为 9-11mm 、 7-9mm、 5-7mm、 4-6mm, 4 种磨球按直径从大至小的质量配比为 1:2.5-3.5:0.5-1.5:4-6 进行配置。
6 、根据权利要求 5 所述的一种消除雾化合金粉末空心缺陷的方法,其特征在于: 4 种磨球直径分别为 10mm 、 8mm 、 6mm 、 5mm , 4 种磨球按直径从大至小的质量配比为 1:3:1:5 进行配置。
7 、根据权利要求 1-6 任意一项所述的一种 消除雾化合金粉末空心缺陷 的方法 ,其特征在于:行星球磨时,将雾化粉末入行星式球磨机的球磨罐,球料比为 (8~12) : 1 ,在行星式球磨机中球磨,球磨转速为 250~350r/min , 时间为 1 ~ 4h 。
8 、根据权利要求 1-6 任意一项所述的一种 消除雾化合金粉末空心缺陷 的方法 ,其特征在于:搅拌球磨时,将雾化粉末入搅拌球磨机的球磨罐,球料比为 (8~15) : 1 ,在搅拌球磨机中球磨,球磨转速为 60~150r/min , 时间为 2 ~ 6h 。
PCT/CN2016/075835 2015-03-09 2016-03-08 一种消除雾化合金粉末空心缺陷的方法 WO2016141870A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,619 US10486233B2 (en) 2015-03-09 2016-03-08 Method for eliminating hollow defect in atomized alloy powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510103202 2015-03-09
CN201510103202.3 2015-03-09
CN201510884690.6 2015-12-03
CN201510884690.6A CN105344436B (zh) 2015-03-09 2015-12-03 一种消除雾化合金粉末空心缺陷的方法

Publications (1)

Publication Number Publication Date
WO2016141870A1 true WO2016141870A1 (zh) 2016-09-15

Family

ID=55320578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075835 WO2016141870A1 (zh) 2015-03-09 2016-03-08 一种消除雾化合金粉末空心缺陷的方法

Country Status (3)

Country Link
US (1) US10486233B2 (zh)
CN (1) CN105344436B (zh)
WO (1) WO2016141870A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884487A (zh) * 2021-08-23 2022-01-04 中国科学院金属研究所 一种增材制造用超细粉末空心粉率的检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344436B (zh) * 2015-03-09 2017-11-21 中南大学 一种消除雾化合金粉末空心缺陷的方法
CN106824404B (zh) * 2016-12-20 2019-01-08 宁夏中色新材料有限公司 通过干法球磨过筛提高ito粉末松装密度和振实密度的方法
CN108611507B (zh) * 2018-04-25 2020-06-05 北京航空航天大学 一种基于粉末再加工的热等静压近净成形方法
CN108907210B (zh) * 2018-07-27 2020-04-07 中南大学 一种制备增材制造用实心球形金属粉末的方法
CN109046622B (zh) * 2018-09-13 2020-11-03 彩虹(合肥)液晶玻璃有限公司 基板碎玻璃的球磨加工方法
WO2020059059A1 (ja) * 2018-09-19 2020-03-26 技術研究組合次世代3D積層造形技術総合開発機構 金属積層造形用粉末およびその製造方法と、積層造形装置およびその制御プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073012A (ja) * 1999-07-21 2001-03-21 Korea Mach Res Inst 超微粒WC/TiC/Co複合超硬粉末の製造方法
CN1358593A (zh) * 2000-12-09 2002-07-17 甘肃雷诺换热设备有限公司 一种降低雾化铜粉松装密度的方法
US20040042922A1 (en) * 2002-09-04 2004-03-04 Firooz Rasouli Methods for modifying oxygen content of atomized intermetallic aluminide powders and for forming articles from the modified powders
CN103433480A (zh) * 2013-07-31 2013-12-11 江苏麟龙新材料股份有限公司 含有La,Pr和Nd的鳞片状多元铝锌硅合金粉末及其制备方法
CN103551568A (zh) * 2013-11-13 2014-02-05 北京科技大学 一种鳞片状纳米晶高温微波吸收剂的制备方法
CN105344436A (zh) * 2015-03-09 2016-02-24 中南大学 一种消除雾化合金粉末空心缺陷的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG81940A1 (en) * 1998-11-12 2001-07-24 Univ Singapore Method of laser casting copper-based composites
US9816157B2 (en) * 2011-04-26 2017-11-14 University Of Utah Research Foundation Powder metallurgy methods for the production of fine and ultrafine grain Ti and Ti alloys
US9468972B2 (en) * 2011-09-30 2016-10-18 Gm Global Technology Operations, Llc Method of making Nd—Fe—B sintered magnets with reduced dysprosium or terbium
CN103611618A (zh) * 2013-12-06 2014-03-05 中南大学 一种分段磨矿的控制方法
WO2015100244A1 (en) * 2013-12-26 2015-07-02 Drexel University Soft magnetic composites for electric motors
CN106032554A (zh) * 2015-03-09 2016-10-19 中南大学 消除粉末冶金高温合金原始颗粒边界和孔洞缺陷的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073012A (ja) * 1999-07-21 2001-03-21 Korea Mach Res Inst 超微粒WC/TiC/Co複合超硬粉末の製造方法
CN1358593A (zh) * 2000-12-09 2002-07-17 甘肃雷诺换热设备有限公司 一种降低雾化铜粉松装密度的方法
US20040042922A1 (en) * 2002-09-04 2004-03-04 Firooz Rasouli Methods for modifying oxygen content of atomized intermetallic aluminide powders and for forming articles from the modified powders
CN103433480A (zh) * 2013-07-31 2013-12-11 江苏麟龙新材料股份有限公司 含有La,Pr和Nd的鳞片状多元铝锌硅合金粉末及其制备方法
CN103551568A (zh) * 2013-11-13 2014-02-05 北京科技大学 一种鳞片状纳米晶高温微波吸收剂的制备方法
CN105344436A (zh) * 2015-03-09 2016-02-24 中南大学 一种消除雾化合金粉末空心缺陷的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884487A (zh) * 2021-08-23 2022-01-04 中国科学院金属研究所 一种增材制造用超细粉末空心粉率的检测方法
CN113884487B (zh) * 2021-08-23 2024-03-01 中国科学院金属研究所 一种增材制造用超细粉末空心粉率的检测方法

Also Published As

Publication number Publication date
US10486233B2 (en) 2019-11-26
CN105344436A (zh) 2016-02-24
CN105344436B (zh) 2017-11-21
US20180056398A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2016141870A1 (zh) 一种消除雾化合金粉末空心缺陷的方法
CN109434117B (zh) 一种3d打印用球形锆铌合金粉的制备方法
US20170216919A1 (en) Method for removing prior particle boundary and hole defect of powder metallurgy high-temperature alloy
CN103785846B (zh) 一种钛合金各级球形粉末的制备方法
CN105834437B (zh) 3d打印用金属粉体的制备方法
CN108247074A (zh) 一种用于制备低成本高纯净度球形金属粉体的装置及方法
WO2020056535A1 (zh) 基于3d打印技术制备钨颗粒增强金属基复合材料的方法
JP2006525222A (ja) 高純度一酸化ニオブ(NbO)の製造及びそれから作ったコンデンサ製品
CN107486560A (zh) 一种在正压冷却气氛环境下制备球形金属粉末的方法
JP5733732B2 (ja) ルテニウム(Ru)ターゲット製造のためのルテニウム粉末製造方法
CN106670482A (zh) 一种超细高等级球形gh4133合金粉末的制备方法
JP2560565B2 (ja) 水素吸蔵合金の製造方法
CN116765380B (zh) 一种增材制造用形状记忆高熵合金粉末及其制备方法
CN105931777B (zh) 一种高韧性钐钴永磁体的制备方法
CN107130129A (zh) 一种铝合金的复合精炼剂及其制备方法
CN110653376A (zh) 3d打印用镍基合金粉末的制备方法
JP5577454B2 (ja) 共晶合金を用いたタンタル(Ta)粉末の製造方法
JP2560567B2 (ja) 水素吸蔵合金の製造方法
CN110592428B (zh) 一种3d打印钛合金球形粉末的制备方法
CN113695579B (zh) 一种用于铌基合金表面的高温抗氧化涂层
CN115990669B (zh) 一种用于增材制造的钪铝合金粉末及其制备方法
CN112045195B (zh) 一种3d打印用金属粉末及金属粉末表面纳米改性方法
JP5408267B2 (ja) 非水電解質二次電池の負極材料およびその製造方法
CN112794733A (zh) 一种锆膜研磨材料的制备方法
JP3063014B2 (ja) チタン粉の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761097

Country of ref document: EP

Kind code of ref document: A1