WO2016140093A1 - 残留応力推定方法及び残留応力推定装置 - Google Patents

残留応力推定方法及び残留応力推定装置 Download PDF

Info

Publication number
WO2016140093A1
WO2016140093A1 PCT/JP2016/055065 JP2016055065W WO2016140093A1 WO 2016140093 A1 WO2016140093 A1 WO 2016140093A1 JP 2016055065 W JP2016055065 W JP 2016055065W WO 2016140093 A1 WO2016140093 A1 WO 2016140093A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual stress
analysis
strain
analysis range
distribution
Prior art date
Application number
PCT/JP2016/055065
Other languages
English (en)
French (fr)
Inventor
圭介 沖田
知和 中川
真理子 山田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201680013826.9A priority Critical patent/CN107407605A/zh
Priority to ES16758787T priority patent/ES2774503T3/es
Priority to KR1020177024629A priority patent/KR101949070B1/ko
Priority to US15/554,025 priority patent/US10156506B2/en
Priority to EP16758787.2A priority patent/EP3267167B1/en
Publication of WO2016140093A1 publication Critical patent/WO2016140093A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies

Definitions

  • the present invention relates to a residual stress estimation method and a residual stress estimation apparatus for estimating the residual stress of a structure based on the inherent strain method.
  • the residual stress generated in the structure may cause damage such as fatigue cracks, and it is important to accurately grasp the distribution of the residual stress in the structure.
  • a method for estimating the residual stress of a structure a method using an inherent strain method is known (for example, see Patent Documents 1 and 2).
  • the conventional method for estimating residual stress based on the inherent strain method two types of cut pieces are cut out from a structure, the elastic strain or residual stress is measured for each cut piece, and the measured elastic strain or residual stress of the cut piece is measured.
  • the measured value is applied to the inverse analysis processing based on the finite element method.
  • a user inputs, as an analysis range, a range in which the inherent strain is assumed to be generated with respect to the analysis apparatus that executes the reverse analysis process.
  • the analyzer approximates the inherent strain distribution by the least square method using the distribution function defined in the analysis range, determines the inherent strain distribution in the analysis range, and calculates the residual stress of the structure from the obtained inherent strain distribution. calculate.
  • the estimation accuracy of residual stress is greatly affected by the set analysis range. Therefore, it is important to set the analysis range appropriately.
  • the user has set the analysis range by trial and error based on experience, and an appropriate analysis range is not always set.
  • the present invention has been made in view of the above-described circumstances, and a main object thereof is to provide a residual stress estimation method and a residual stress estimation apparatus capable of solving the above-described problems.
  • a method for estimating residual stress analyzes a strain generated in the structure without using a measurement value of the structure, and displays an analysis result.
  • the position and size of the analysis range are acquired as the condition relating to the analysis range, and in the step of estimating the inherent strain distribution, the acquired position and size are acquired.
  • the distribution of the inherent strain in the analysis range specified by the height may be estimated.
  • an elastic strain or a residual stress measured at a measurement point within the analysis range specified by the acquired position and size is acquired as the measurement value. You may do it.
  • the step of obtaining the condition relating to the analysis range as the condition relating to the analysis range, obtaining information defining a plurality of divided regions dividing the analysis range, and estimating the inherent strain distribution Then, a distribution function that is a set of a plurality of piecewise functions defined for each of the plurality of divided regions defined by the acquired information is approximated to the inherent strain distribution of the analysis range based on the measurement values.
  • the parameters of the distribution function may be determined.
  • the parameter of the distribution function may be determined so that each piecewise function is continuous at the boundary of each divided region.
  • the parameter of the distribution function may be determined based on spline interpolation so that the gradient of each piecewise function is continuous at the boundary of each divided region. Good.
  • an elastic-plastic analysis by a finite element method may be performed on a three-dimensional model simulating the structure.
  • the stress generated by the processing of the structure may be analyzed based on a Hertz contact theory.
  • the residual stress estimation apparatus includes an analysis unit that analyzes strain generated in the structure without using a measurement value of the structure, and a display unit that displays an analysis result by the analysis unit.
  • An input unit configured to receive an input of a condition related to an analysis range for estimating residual stress and a measurement value related to the residual stress of the structure, which is set based on the analysis result, and the structure in the analysis range.
  • Estimating means for estimating the distribution of the inherent strain in the analysis range using the measurement value based on the condition relating to the analysis range accepted by the input unit so as to approximate the inherent strain, and the estimation means
  • a display unit for displaying an estimation result of residual stress based on the distribution of the inherent strain.
  • FIG. 5A It is a block diagram which shows the structure of one Embodiment of the residual stress estimation apparatus which concerns on this invention. It is a side view which shows the structure of a crankshaft. It is an enlarged side view for demonstrating the plastic working with respect to a crankshaft. It is a flowchart which shows the procedure of one Embodiment of the residual stress estimation method which concerns on this invention. It is a perspective view which shows an analysis model. It is a figure which shows the analysis result of the distribution condition of the distortion in the analysis model shown to FIG. 5A. It is a figure for demonstrating the determination of the position and magnitude
  • FIG. 6 is a graph showing estimation results of residual stress in the fillet circumferential direction in Test 1.
  • FIG. 6 is a graph showing an estimation result of residual stress in a pin circumferential direction in Test 1.
  • 4 is a graph showing an estimation result of residual stress in a fillet radial direction in Test 1.
  • FIG. It is a figure which shows the measurement point in a proposal method.
  • FIG. 10 is a diagram showing measurement points in Comparative Method 3.
  • FIG. 6 is a graph showing estimation results of residual stress in the fillet circumferential direction in Test 2.
  • FIG. 6 is a graph showing estimation results of residual stress in a pin circumferential direction in Test 2.
  • 6 is a graph showing estimation results of residual stress in the fillet radial direction in Test 2.
  • the residual stress estimation apparatus uses the inherent strain method for the analysis range set by the user based on the analytical solution obtained by analyzing the strain generated in the structure without using the measurement value of the structure. Based on the above, the residual stress of the structure is estimated.
  • the residual stress estimation device 1 is realized by a computer 10. As shown in FIG. 1, the computer 10 includes a main body 11, an input unit 12, and a display unit 13.
  • the main body 11 includes a CPU 111, ROM 112, RAM 113, hard disk 115, reading device 114, input / output interface 116, and image output interface 117.
  • the CPU 111, ROM 112, RAM 113, hard disk 115, reading device 114, input / output interface 116, The image output interface 117 is connected by a bus.
  • the CPU 111 can execute a computer program loaded in the RAM 113. Then, when the CPU 111 executes a residual stress estimation program 110 that is a computer program for residual stress estimation, the computer 10 functions as the residual stress estimation device 1.
  • the residual stress estimation program 110 is an inverse analysis processing program based on the finite element method, and enables estimation of the distribution state of the inherent strain in the structure.
  • the ROM 112 is configured by a mask ROM, PROM, EPROM, EEPROM, or the like, and stores a computer program executed by the CPU 111, data used for the same, and the like.
  • the RAM 113 is configured by SRAM, DRAM or the like.
  • the RAM 113 is used for reading the residual stress estimation program 110 recorded on the hard disk 115. Further, when the CPU 111 executes a computer program, it is used as a work area for the CPU 111.
  • the hard disk 115 is installed with various computer programs to be executed by the CPU 111 such as an operating system and application programs, and data used for executing the computer programs.
  • a residual stress estimation program 110 is also installed in the hard disk 115.
  • the hard disk 115 is installed with an operating system such as Windows (registered trademark) manufactured and sold by US Microsoft. In the following description, it is assumed that the residual stress estimation program 110 according to the present embodiment operates on the operating system.
  • Windows registered trademark
  • the reading device 114 is configured by a flexible disk drive, a CD-ROM drive, a DVD-ROM drive, or the like, and can read a computer program or data recorded on the portable recording medium 120.
  • the portable recording medium 120 stores a residual stress estimation program 110 for causing the computer to function as a residual stress estimation device.
  • the computer 10 reads out the residual stress estimation program 110 from the portable recording medium 120 and stores the residual stress estimation program 110.
  • the stress estimation program 110 can be installed on the hard disk 115.
  • the input / output interface 116 is, for example, a serial interface such as USB, IEEE1394, or RS-232C, a parallel interface such as SCSI, IDE, or IEEE1284, an analog interface including a D / A converter, an A / D converter, and the like. It is configured.
  • An input unit 12 including a keyboard and a mouse is connected to the input / output interface 116, and the user can input data to the computer 10 by using the input unit 12.
  • the image output interface 117 is connected to the display unit 13 constituted by an LCD or a CRT, and outputs a video signal corresponding to the image data given from the CPU 111 to the display unit 13.
  • the display unit 13 displays an image (screen) according to the input video signal.
  • the residual stress can be obtained as follows.
  • N measured residual stresses are represented as ⁇ m .
  • N calculated residual stresses obtained from the inherent strain are represented by ⁇ c
  • a residual R with respect to the measured residual stress is defined by the following equation.
  • M is a function of coordinates, and may be nonlinear with respect to the coordinates.
  • the residual stress estimation device 1 executes a residual stress estimation process as described below to estimate the residual stress of the structure.
  • crankshaft 200 is configured by connecting a journal shaft 201 and a pin shaft 203 by a crank arm 202.
  • a large stress is likely to be generated at the time of use at the connection point between the journal shaft 201 and the crank arm 202 and at the connection point between the pin shaft 203 and the crank arm 202. If tensile residual stress is generated inside these connection portions, it may cause damage such as fatigue cracks.
  • plastic processing such as roll processing or shot peening is applied to the above-mentioned connection locations, and compressive residual stress is introduced.
  • FIG. 3 is a view for explaining plastic working on the crankshaft.
  • FIG. 3 shows the case of roll processing.
  • the journal shaft 201 is rotated in a state where the roll 300 is pressed against the connection portion between the journal shaft 201 (or the pin shaft 203) and the crank arm 202.
  • a fillet 204 is formed at the connection location, and compressive residual stress is applied so as to be distributed in the circumferential direction of the journal shaft 201.
  • FIG. 4 is a flowchart showing the procedure of the residual stress estimation method according to the present embodiment.
  • the CPU 111 executes a theoretical analysis process of the structure (step S1).
  • the theoretical analysis process is a process for analyzing the strain in the structure without using the measurement value of the structure. More specifically, elasto-plastic analysis by the finite element method is used.
  • the CPU 111 performs a machining simulation on the three-dimensional model of the structure under the same machining conditions as the actual one, and analyzes the strain distribution state in the structure.
  • FIG. 5A is a perspective view showing an analysis model.
  • the analysis model was a model with a circumferential direction of 30 °, and the circumferentially symmetric condition was applied to the circumferential end face.
  • FIG. 5B is a diagram illustrating an analysis result of a strain distribution state in the analysis model illustrated in FIG. 5A.
  • FIG. 5B shows the analysis result of the strain in the evaluation cross section, with the central plane in the circumferential direction (cross section at 15 °) of the analysis model as the evaluation cross section.
  • the CPU 111 displays the analysis result of the theoretical analysis process on the display unit 13 (step S2).
  • the CPU 111 displays a screen on which the user can understand the strain distribution state in the three-dimensional model on the display unit 13. For example, there is a graphic display in which the strain distribution in the cross section of the three-dimensional model is color-coded according to the strain intensity level.
  • step S2 it is preferable that the strain is displayed as a contour line for each intensity level. Thereby, it becomes easy for the user to determine a divided region of the analysis range described later.
  • the user refers to the analysis result screen of the theoretical analysis process, and measures the conditions related to the analysis range that is the range for estimating the residual stress, that is, the position and size of the analysis range, each divided region of the analysis range, and the measurement of the residual stress.
  • a point is determined (step S3).
  • the strain cannot be estimated accurately, but the strain generation region can be estimated almost accurately. For this reason, the user can confirm the strain distribution state on the analysis result screen of the theoretical analysis process, and determine the position and size of the analysis range suitable for the estimation of the residual stress.
  • the determination of the position and size of the analysis range will be described in detail with reference to FIG.
  • the intensity level of the strain obtained by the theoretical analysis process is indicated by gray shades.
  • the user can easily obtain an appropriate analysis range by determining the position and size of the analysis range so as to surround the region where the distortion occurs.
  • the inherent strain distribution is estimated using a distribution function.
  • a series expansion formula has been used for the distribution function over the entire analysis range. That is, one distribution function is defined for one analysis range. Therefore, the conventional distribution function cannot cope with the bias in the distribution of the inherent strain within the analysis range, and the actual inherent strain distribution may not be accurately reproduced. Therefore, the residual stress estimation apparatus 1 divides the analysis range into a plurality of divided regions, and defines the distribution function as a set of piecewise functions defined in the divided regions. If a small divided area is set in a portion where the change in intrinsic strain is steep, and a large divided area is set in a portion where the change in intrinsic strain is gentle, the distribution function can be accurately matched to the distribution shape of the inherent strain in each divided area. Is possible. Therefore, the user can confirm the strain distribution state on the analysis result screen of the theoretical analysis process, and can appropriately determine each divided region in the analysis range.
  • the strain obtained by the theoretical analysis process is displayed in contour lines for each intensity level.
  • the change of the strain is steep in the portion where the interval between the contour lines is narrow, and the change of the strain is gentle in the portion where the interval between the contour lines is wide.
  • the user can easily and appropriately divide the region according to the contour line interval so that the divided region becomes smaller in the portion where the contour line interval is narrow and the divided region becomes larger in the portion where the contour line interval is wide. A divided region can be obtained.
  • the user determines the same number of measurement points for each divided region. As a result, it is possible to cope with a steep change in intrinsic strain in a small divided region, and to deal with a gradual change in intrinsic strain in a large divided region.
  • the residual stress of the structure is estimated based on the measured residual stress (or elastic strain) of the cut piece. Therefore, the location of the measurement point greatly affects the estimation accuracy of the residual stress of the structure. Residual stress can be estimated with high accuracy by using a site with a high intrinsic strain value, a site where the distribution of the intrinsic strain changes sharply, and the like as measurement points. For this reason, the user can confirm the distribution state of the inherent strain on the analysis result screen of the theoretical analysis process, and determine a site suitable for measuring the residual stress (or elastic strain) of the cut piece as a measurement point.
  • the part where the value of the intrinsic strain is high and the part where the distribution of the intrinsic strain abruptly changes are also suitable parts for estimating the residual stress. That is, the analysis range suitable for estimating the residual stress includes a portion suitable for measuring the residual stress (or elastic strain) of the cut piece. Therefore, the user determines a measurement point within the analysis range.
  • the user cuts the structure, collects a cut piece from the site determined as the measurement point, and measures the residual stress from the cut piece (step S4).
  • a structure is thinly cut in one direction to obtain a cut piece (T piece), and thinly cut in a direction orthogonal to the one direction to obtain a cut piece (L piece).
  • the residual stress is a value obtained by multiplying the elastic strain by the Young's modulus, and measuring the elastic strain is equivalent to measuring the residual stress. Therefore, either elastic strain or residual stress may be measured from the cut piece. In the present embodiment, a case where residual stress is measured will be described.
  • the T piece is obtained by cutting in the radial direction. If the inherent strain is uniformly distributed in the circumferential direction, the inherent strain does not change no matter which part of the circumferential direction the T piece is obtained. Therefore, only one T piece may be collected. Thereby, since the number of sampling of T piece can be decreased, the work burden of cutting process and residual stress measurement of a cut piece can be reduced.
  • each drawing is a cross-sectional view when the journal shaft is cut in the length direction of the rotation shaft.
  • the C piece 500 is obtained by cutting the structure in the normal direction of the curved surface of the fillet, that is, in the radial direction of the arcuate fillet in the cross section.
  • the cut surface 501 of the C piece 500 extends conically around the rotation center axis of the journal axis.
  • Such C pieces are collected by changing the center angle of the fillet (for example, every 10 ° from 20 ° to 110 °).
  • the user directly measures the residual stress by X-rays or the like on the cut piece collected as described above.
  • the user attaches a strain gauge to the cut piece, further cuts it into a plurality of small pieces, and measures the release strain (elastic strain) of each small piece.
  • the release strain elastic strain
  • a plurality of different components are measured.
  • the user inputs the determined position and size of the analysis range to the residual stress estimation apparatus 1.
  • the CPU 111 of the residual stress estimation device 1 accepts the position and size of the analysis range input from the input unit 12 (step S5).
  • the user inputs a division pattern (position information to be divided) of the analysis range to the residual stress estimation apparatus 1.
  • the CPU 111 of the residual stress estimation apparatus 1 receives the analysis region division pattern input from the input unit 12 (step S6).
  • the CPU 111 of the residual stress estimation device 1 receives the measurement value input from the input unit 12 (step S7).
  • the CPU 111 determines a distribution function (step S8).
  • the distribution function is defined as a set of a plurality of piecewise functions defined for each divided region of the analysis range. An arbitrary multi-order polynomial can be selected for each piecewise function. However, in order to obtain an estimation result that correctly reflects the distribution state of the inherent strain, it is preferable to share the order of each piecewise function. As a result, it is possible to cope with a gradual change in intrinsic strain in a large divided area while dealing with a sharp change in intrinsic strain in a small divided area. Also, as will be described later, when performing spline interpolation, the order of each piecewise function is made common.
  • the distribution function as described above may be automatically selected by the CPU 111 or specified by the user using the input unit 12. Further, a distribution function may be set in advance in the residual stress estimation apparatus 1.
  • step S9 the CPU 111 optimizes the parameters of the distribution function.
  • step S9 the process of step S9 will be specifically described.
  • the CPU 111 first determines H in Expression (9).
  • the procedure is as follows.
  • (B) Solve Equation (4) to find u.
  • (C) ⁇ is obtained by equation (3).
  • (D) ⁇ is obtained from equation (1).
  • (E) N values corresponding to the residual stress measurement points are extracted from the components of ⁇ , and set as the first column of H.
  • the second column of H is similarly obtained by the procedures (b) to (f).
  • the CPU 111 determines a so that R in Expression (7) is minimized. Thereby, the parameters of the distribution function are optimized.
  • the CPU 111 preferably determines the parameters of the distribution function so that the gradient of each piecewise function is continuous by spline interpolation. Thereby, the inherent strain can be smoothly continued at the boundary between the divided regions, and an estimated value of the inherent strain that does not impair the physical property can be obtained.
  • the CPU 111 calculates an estimated value of residual stress (step S10).
  • step S10 the CPU 111 obtains an intrinsic strain at an arbitrary point according to the equation (8). Further, the CPU 111 solves the equation (4) to obtain u, applies the obtained u to the equation (3) to obtain ⁇ , and applies the obtained ⁇ to the equation (1) to obtain ⁇ .
  • the CPU 111 displays the obtained residual stress estimated value on the display unit 13 (step S11).
  • step S11 the CPU 111 ends the process.
  • the residual stress estimation device analyzes the stress generated by the processing of the structure based on the Hertz contact theory in the theoretical analysis process (step S1).
  • Hertzian contact theory is used to analyze stress in point contact or line contact by two elastic bodies.
  • Hertz contact theory is applied to the crankshaft roll processing.
  • Roll processing is a kind of plastic processing. Although the stress when plastic deformation occurs cannot be calculated by Hertzian contact theory, it is possible to estimate the region where plastic deformation, that is, plastic strain occurs.
  • FIG. 11 is a diagram showing a stress distribution assumed when the cylinder and the flat plate shown in FIG. 10 are in contact with each other.
  • E 1 and E 2 are longitudinal elastic modulus
  • ⁇ 1 and ⁇ 2 are Poisson's ratio
  • P is concentrated load
  • q linear load per unit length
  • p pressure on the contact surface
  • p 0 is contact surface.
  • maximum pressure, r 0 occurring in the center radius of the cylinder, is 2b is a width of the contact surface rectangle.
  • p, p 0 and b are obtained from the equations (15) to (17), respectively.
  • equation (19) is obtained from equations (10), (12), (13), and (18), and the depth z from the surface in equation (19) is the hardening depth, that is, plastic strain ( (Inherent strain) occurs.
  • the analysis result obtained by the theoretical analysis process using the Hertz contact theory as described above is displayed on the display unit 13 in step S2.
  • the strain may be displayed as a contour line for each intensity level.
  • the user can confirm the analysis result of the theoretical analysis process, and the position and size of the analysis range, which is a range for estimating the residual stress, regardless of experience, the analysis range. It is possible to appropriately determine the measurement points of each of the divided regions and the residual stress (or elastic strain) of the cut piece.
  • the user determines the position and size of the analysis range, each divided region of the analysis range, and the measurement point of the residual stress of the cut piece.
  • the position and size of the analysis range, each divided region of the analysis range, and the measurement value of the residual stress at the measurement point are input to the residual stress estimation device.
  • the present invention is not limited to this.
  • the user may determine at least one of the position and size of the analysis range, each divided region of the analysis range, and the measurement point of the residual stress of the cut piece. Good.
  • the residual stress estimation device When the user determines the position and size of the analysis range, the residual stress estimation device accepts input of the position and size of the analysis range, and estimates the residual stress based on the inherent strain in this analysis range.
  • the residual stress estimation device accepts an input of a divided pattern of the analysis range, and calculates a distribution function that is a set of piecewise functions defined for each divided region. Used to estimate residual stress based on intrinsic strain.
  • the residual stress estimation device accepts the input of the residual stress measurement value at the determined measurement point, approximates the inherent strain based on the input measurement value, Estimate the residual stress of the structure.
  • Embodiments 1 and 2 described above the configuration in which spline interpolation is applied in determining the parameters of the distribution function has been described.
  • the present invention is not limited to this. It is good also as a structure which determines the parameter of each piecewise function, without using spline interpolation.
  • Lagrange interpolation may be applied in parameter determination for each piecewise function. Thereby, each piecewise function can be made continuous at the boundary of the divided regions. It is also possible to define one multi-order polynomial or trigonometric analysis function in the entire analysis region, and apply Lagrange interpolation to optimize the parameters of this distribution function. Even in the case of using Lagrangian interpolation, if the number of measurement points in each divided region is the same, it is possible to cope with a bias in the distribution of the inherent strain.
  • the user inputs the conditions related to the analysis range (the position and size of the analysis range, the divided area of the analysis range, and the measurement points of the residual stress of the cut piece) to the residual stress estimation device.
  • the structure to perform was described, it is not limited to this.
  • the residual stress estimation device may be configured to automatically set conditions relating to the analysis range based on the analysis result of the theoretical analysis process.
  • the residual stress is measured from the cut piece of the structure, and the distribution is performed so that the difference between the measured residual stress and the residual stress calculated by the distribution function is minimized.
  • the configuration for optimizing the function parameters has been described, the present invention is not limited to this.
  • the determination of the elastic strain measurement point is the same as the determination of the residual stress measurement point in the first and second embodiments.
  • evaluation test The inventor conducted a performance evaluation test of the residual stress estimation method described in the above embodiment.
  • the residual stress estimation method using the analysis range set based on the analysis result by the theoretical analysis process using the result of FEM (finite element method) analysis with known correct value of the residual stress Numerical experiment by "Proposed method"), and the correct value was compared with the numerical experiment result.
  • the residual stress in the pin shaft of the crankshaft was estimated using the analysis model shown in FIG. 5A.
  • the central plane in the circumferential direction (cross section at 15 °) of the analysis model was used as the evaluation cross section, and the result in the evaluation cross section was used as the correct value.
  • FIG. 12A to 12C are graphs showing the results of Test 1.
  • FIG. 12A shows the estimation result of the residual stress in the fillet circumferential direction
  • FIG. 12B shows the estimation result of the residual stress in the pin circumferential direction
  • FIG. 12C shows the estimation result of the residual stress in the fillet radial direction.
  • the vertical axis represents the magnitude of the residual stress
  • the horizontal axis represents the depth from the surface.
  • the gray solid line indicates the correct answer value
  • the black broken line indicates the numerical experiment result by the comparison method 1
  • the gray broken line indicates the numerical experiment result by the comparison method 2
  • the black solid line by the proposed method Numerical results are shown.
  • the proposed method has obtained a result very close to the correct answer value.
  • the estimation accuracy of the residual stress is lower than that of the proposed method.
  • the estimation accuracy of the residual stress could be improved by setting the position and size of the analysis range using the analysis result of the theoretical analysis process.
  • Test 2 In the proposed method, measurement points were set within the strain generation region indicated in the analysis results by theoretical analysis processing. Residual stress was also estimated when there were more measurement points than the proposed method (hereinafter referred to as “Comparative method 3”), and compared with the results of the proposed method.
  • FIG. 13A is a diagram illustrating measurement points in the proposed method
  • FIG. 13B is a diagram illustrating measurement points in the comparison method 3. In the figure, the measurement points are indicated by black square marks.
  • FIG. 14A to 14C are graphs showing the results of Test 2.
  • FIG. 14A shows the estimation result of the residual stress in the fillet circumferential direction
  • FIG. 14B shows the estimation result of the residual stress in the pin circumferential direction
  • FIG. 14C shows the estimation result of the residual stress in the fillet radial direction.
  • the vertical axis represents the magnitude of the residual stress
  • the horizontal axis represents the depth from the surface.
  • the gray solid line indicates the correct answer value
  • the broken line indicates the numerical experiment result by the comparison method
  • the black solid line indicates the numerical experiment result by the proposed method.
  • the residual stress estimation method and residual stress estimation device of the present invention are useful as a residual stress estimation method and residual stress estimation device for estimating the residual stress of a structure based on the inherent strain method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 ユーザの経験に左右されることなく、適切な解析範囲を設定することが可能な残留応力推定方法及び残留応力推定装置を提供する。 残留応力推定装置は、構造物の計測値を用いることなく、前記構造物に生じるひずみを解析した解析結果を表示する。ユーザは、解析結果に基づいて解析範囲の位置及び大きさを決定し、決定した解析範囲の位置及び大きさと、構造物の計測点における切断片の残留応力の計測値とを残留応力推定装置に入力する。残留応力推定装置は、入力された切断片の残留応力の計測値から得られる固有ひずみ分布を近似するよう、解析範囲における固有ひずみの分布を推定し、固有ひずみに基づいて、構造物の残留応力を推定する。

Description

残留応力推定方法及び残留応力推定装置
 本発明は、固有ひずみ法に基づき構造物の残留応力を推定するための残留応力推定方法及び残留応力推定装置に関する。
 構造物に生じた残留応力は、疲労き裂などの損傷の原因となることがあり、構造物における残留応力の分布を正確に把握することが重要である。構造物の残留応力を推定する方法として、固有ひずみ法を用いたものが知られている(例えば、特許文献1及び2参照)。
 従来の固有ひずみ法に基づく残留応力の推定方法では、構造物から2種類の切断片を切り出し、各切断片について弾性ひずみ又は残留応力を計測し、計測された切断片の弾性ひずみ又は残留応力の計測値を有限要素法に基づく逆解析処理に適用する。逆解析処理を実行する解析装置に対し、固有ひずみが発生していると想定される範囲を解析範囲としてユーザが入力する。解析装置は、固有ひずみ分布を解析範囲で定義された分布関数を用いて最小二乗法で近似し、解析範囲における固有ひずみの分布を決定し、得られた固有ひずみ分布から構造物の残留応力を計算する。
日本国特開2005-181172号公報 日本国特開2003-121273号公報
 残留応力の推定精度は、設定される解析範囲に大きな影響を受ける。したがって、解析範囲を適切に設定することが重要である。しかしながら、従来、ユーザが経験に基づいて試行錯誤的に解析範囲を設定しており、必ずしも適切な解析範囲が設定されるとは限らない。
 本発明は上述した事情に鑑みてなされたものであり、その主たる目的は、上記課題を解決することができる残留応力推定方法及び残留応力推定装置を提供することにある。
 上述した課題を解決するために、本発明の一の態様の残留応力推定方法は、構造物の計測値を用いることなく、前記構造物に生じるひずみを解析し、解析結果を表示するステップと、前記解析結果に基づいて設定された、残留応力を推定するための解析範囲に関する条件を取得するステップと、前記構造物の残留応力に関する計測値を取得するステップと、前記解析範囲における前記構造物の固有ひずみを近似するよう、取得された前記解析範囲に関する条件に基づいて、前記計測値を用いて前記解析範囲における固有ひずみの分布を推定するステップと、を有する。
 この態様において、前記解析範囲に関する条件を取得するステップでは、前記解析範囲に関する条件として、解析範囲の位置及び大きさを取得し、前記固有ひずみの分布を推定するステップでは、取得された位置及び大きさによって特定される前記解析範囲における固有ひずみの分布を推定するようにしてもよい。
 また、上記態様において、前記計測値を取得するステップでは、取得された位置及び大きさによって特定される前記解析範囲内の計測点において計測された弾性ひずみ又は残留応力を、前記計測値として取得するようにしてもよい。
 また、上記態様において、前記解析範囲に関する条件を取得するステップでは、前記解析範囲に関する条件として、解析範囲を分割する複数の分割領域を規定する情報を取得し、前記固有ひずみの分布を推定するステップでは、取得された情報によって規定される前記複数の分割領域のそれぞれについて定義された複数の区分的関数の集合である分布関数を、前記計測値に基づく前記解析範囲の固有ひずみ分布に近似させるよう、前記分布関数のパラメータを決定するようにしてもよい。
 また、上記態様において、前記固有ひずみの分布を推定するステップでは、各分割領域の境界で各区分的関数が連続するよう、前記分布関数のパラメータを決定するようにしてもよい。
 また、上記態様において、前記固有ひずみの分布を推定するステップでは、各分割領域の境界で各区分的関数の勾配が連続するよう、スプライン補間に基づき前記分布関数のパラメータを決定するようにしてもよい。
 また、上記態様において、前記解析結果を表示するステップでは、前記構造物を模擬した3次元モデルに対して有限要素法による弾塑性解析を行うようにしてもよい。
 また、上記態様において、前記解析結果を表示するステップでは、前記構造物の加工によって生じる応力を、ヘルツ接触理論に基づいて解析するようにしてもよい。
 また、本発明の一の態様の残留応力推定装置は、構造物の計測値を用いることなく、前記構造物に生じるひずみを解析する解析手段と、前記解析手段による解析結果を表示する表示部と、前記解析結果に基づいて設定された、残留応力を推定するための解析範囲に関する条件と、前記構造物の残留応力に関する計測値との入力を受け付ける入力部と、前記解析範囲における前記構造物の固有ひずみを近似するよう、前記入力部により受け付けられた前記解析範囲に関する条件に基づいて、前記計測値を用いて前記解析範囲における固有ひずみの分布を推定する推定手段と、前記推定手段によって推定された前記固有ひずみの分布に基づく残留応力の推定結果を表示する表示部と、を備える。
 本発明によれば、ユーザの経験に左右されることなく、適切な解析範囲を設定することが可能となる。
本発明に係る残留応力推定装置の一実施の形態の構成を示すブロック図である。 クランク軸の構成を示す側面図である。 クランク軸に対する塑性加工を説明するための拡大側面図である。 本発明に係る残留応力推定方法の一実施の形態の手順を示すフローチャートである。 解析モデルを示す斜視図である。 図5Aに示した解析モデルにおけるひずみの分布状況の解析結果を示す図である。 解析範囲の位置及び大きさの決定を説明するための図である。 解析範囲における分割領域の決定を説明するための図である。 構造物から採取される切断片の一例を説明するための斜視図である。 C片の採取を説明するためのジャーナル軸の断面図である。 ヘルツ接触理論を説明するための接触問題の一例を示す図である。 図10に示す円柱と平板とが接触した場合に想定される応力分布を示す図である。 試験1におけるフィレット周方向の残留応力の推定結果を示すグラフである。 試験1におけるピン周方向の残留応力の推定結果を示すグラフである。 試験1におけるフィレット半径方向の残留応力の推定結果を示すグラフである。 提案法における計測点を示す図である。 比較法3における計測点を示す図である。 試験2におけるフィレット周方向の残留応力の推定結果を示すグラフである。 試験2におけるピン周方向の残留応力の推定結果を示すグラフである。 試験2におけるフィレット半径方向の残留応力の推定結果を示すグラフである。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
(実施の形態1)
 本実施の形態に係る残留応力推定装置は、構造物の計測値を用いることなく、構造物に生じるひずみを解析して得られた解析解に基づいてユーザが設定した解析範囲について、固有ひずみ法に基づき構造物の残留応力を推定するものである。
[残留応力推定装置の構成]
 残留応力推定装置1は、コンピュータ10によって実現される。図1に示すように、コンピュータ10は、本体11と、入力部12と、表示部13とを備えている。本体11は、CPU111、ROM112、RAM113、ハードディスク115、読出装置114、入出力インタフェース116、及び画像出力インタフェース117を備えており、CPU111、ROM112、RAM113、ハードディスク115、読出装置114、入出力インタフェース116、及び画像出力インタフェース117は、バスによって接続されている。
 CPU111は、RAM113にロードされたコンピュータプログラムを実行することが可能である。そして、残留応力推定用のコンピュータプログラムである残留応力推定プログラム110を当該CPU111が実行することにより、コンピュータ10が残留応力推定装置1として機能する。残留応力推定プログラム110は、有限要素法に基づく逆解析処理プログラムであり、構造物における固有ひずみの分布状況の推定を可能とする。
 ROM112は、マスクROM、PROM、EPROM、又はEEPROM等によって構成されており、CPU111に実行されるコンピュータプログラム及びこれに用いるデータ等が記録されている。
 RAM113は、SRAMまたはDRAM等によって構成されている。RAM113は、ハードディスク115に記録されている残留応力推定プログラム110の読み出しに用いられる。また、CPU111がコンピュータプログラムを実行するときに、CPU111の作業領域として利用される。
 ハードディスク115には、オペレーティングシステム及びアプリケーションプログラム等、CPU111に実行させるための種々のコンピュータプログラム及び当該コンピュータプログラムの実行に用いられるデータがインストールされている。残留応力推定プログラム110も、このハードディスク115にインストールされている。
 ハードディスク115には、例えば米マイクロソフト社が製造販売するWindows(登録商標)等のオペレーティングシステムがインストールされている。以下の説明においては、本実施の形態に係る残留応力推定プログラム110は当該オペレーティングシステム上で動作するものとしている。
 読出装置114は、フレキシブルディスクドライブ、CD-ROMドライブ、またはDVD-ROMドライブ等によって構成されており、可搬型記録媒体120に記録されたコンピュータプログラムまたはデータを読み出すことができる。可搬型記録媒体120には、コンピュータを残留応力推定装置として機能させるための残留応力推定プログラム110が格納されており、コンピュータ10が当該可搬型記録媒体120から残留応力推定プログラム110を読み出し、当該残留応力推定プログラム110をハードディスク115にインストールすることが可能である。
 入出力インタフェース116は、例えばUSB,IEEE1394,又はRS-232C等のシリアルインタフェース、SCSI,IDE,又は IEEE1284等のパラレルインタフェース、及びD/A変換器、A/D変換器等からなるアナログインタフェース等から構成されている。入出力インタフェース116には、キーボード及びマウスからなる入力部12が接続されており、ユーザが当該入力部12を使用することにより、コンピュータ10にデータを入力することが可能である。
 画像出力インタフェース117は、LCDまたはCRT等で構成された表示部13に接続されており、CPU111から与えられた画像データに応じた映像信号を表示部13に出力するようになっている。表示部13は、入力された映像信号にしたがって、画像(画面)を表示する。
[固有ひずみ法に基づく残留応力推定の原理]
(1)固有ひずみを用いた残留応力の算出
 固有ひずみをεとすると、残留応力σは次式で表される。
 σ=D(ε-ε) …(1)
 但し、Dは弾性係数マトリックスであり、εは次式の関係を満たす全ひずみである。
Figure JPOXMLDOC01-appb-M000001
 さて、固有ひずみが判っている場合、残留応力は次のように求められる。
 式(2)及び(3)より、次式が与えられる。
Figure JPOXMLDOC01-appb-M000002
 式(4)を解いてuを求めると、式(3)及び(1)から残留応力が得られる。
(2)計測残留応力を用いた固有ひずみの算出
 N個の計測残留応力をσと表す。これに対応して、固有ひずみから求めたN個の計算残留応力をσ とし、計測残留応力との残差Rを次式で定義する。
Figure JPOXMLDOC01-appb-M000003
 また、任意点の固有ひずみをM個の分布関数パラメータaによって、次の線形関数で表す。
Figure JPOXMLDOC01-appb-M000004
 ここで、Mは座標の関数であり、座標に関して非線形であってもよい。
 式(8)によって固有ひずみが決まれば、計測残留応力は上記(1)の方法で求まり、その結果次のような線形の関係式が得られる。
Figure JPOXMLDOC01-appb-M000005
 さて、式(7)に式(9)を代入し、Rが最小になるようにaを決定すると、計測残留応力と、計測点における計算残留応力の誤差が最小になるような固有ひずみ分布が決定される。
[残留応力推定装置の動作]
 以下、本実施の形態に係る残留応力推定装置1の動作について説明する。
 残留応力推定装置1は、以下に説明するような残留応力推定処理を実行して、構造物の残留応力を推定する。
 ここでは、構造物の一例として、クランク軸について説明する。クランク軸200は、図2に示すように、ジャーナル軸201と、ピン軸203とがクランクアーム202によって接続されて構成される。ジャーナル軸201とクランクアーム202の接続箇所、及びピン軸203とクランクアーム202の接続箇所は、使用時に大きな応力が発生しやすい。これらの接続箇所の内部に引張残留応力が生じていると、疲労き裂等の損傷の原因となり得る。疲労寿命を向上させるために、ロール加工又はショットピーニングなどの塑性加工が上記の接続箇所に施され、圧縮残留応力が導入される。
 図3は、クランク軸に対する塑性加工を説明するための図である。図3では、ロール加工の場合を示している。ロール加工では、ジャーナル軸201(又はピン軸203)と、クランクアーム202との接続箇所に、ロール300が押しつけられた状態で、ジャーナル軸201が回転される。これにより、接続箇所には、フィレット204が形成され、ジャーナル軸201の周方向に分布するように圧縮残留応力が付与される。
 上記のように塑性加工が施された構造物について、残留応力推定装置1を用いて残留応力を推定する。図4は、本実施の形態に係る残留応力推定方法の手順を示すフローチャートである。
 まず、CPU111は、構造物の理論解析処理を実行する(ステップS1)。
 理論解析処理は、構造物の計測値を用いることなく、構造物におけるひずみを解析する処理である。さらに具体的には、有限要素法による弾塑性解析を利用する。理論解析処理において、CPU111は、実際と同一の加工条件で、構造物の3次元モデルに対して加工シミュレーションを行い、構造物におけるひずみの分布状況を解析する。
 3次元モデル(解析モデル)の一例を説明する。実機のロール加工条件を模擬し、フィレットとの接触を考慮しながらロールを回転させた場合のクランク軸のフィレット部分における残留応力を解析した。図5Aは、解析モデルを示す斜視図である。軸対称形状であることを考慮し、解析モデルは周方向30°のモデルとし、周方向端面に、周方向対称条件を適用した。図5Bは、図5Aに示した解析モデルにおけるひずみの分布状況の解析結果を示す図である。図5Bでは、解析モデルの周方向中央面(15°の位置の断面)を評価断面とし、この評価断面内のひずみの解析結果を示している。
 次にCPU111は、理論解析処理の解析結果を表示部13に表示させる(ステップS2)。ステップS2の処理では、CPU111は、3次元モデル内におけるひずみの分布状況をユーザが理解できる画面を表示部13に表示させる。例えば、3次元モデルの断面におけるひずみの分布状況を、ひずみの強度レベルに応じて色分けしたグラフィック表示などである。
 ステップS2においては、ひずみを強度レベル毎に等高線表示することが好ましい。これにより、後述する解析範囲の分割領域をユーザが決定しやすくなる。
 ユーザは、理論解析処理の解析結果画面を参照して、残留応力を推定する範囲である解析範囲に関する条件、即ち、解析範囲の位置及び大きさ、解析範囲の各分割領域、並びに残留応力の計測点を決定する(ステップS3)。
 理論解析処理では、ひずみを正確に推定することはできないが、ひずみの発生領域は概ね正確に推定することが可能である。このため、ユーザは、理論解析処理の解析結果画面によって、ひずみの分布状況を確認し、残留応力の推定に適した解析範囲の位置及び大きさを決定することができる。
 解析範囲の位置及び大きさの決定について、図6を用いて詳細に説明する。図6では、理論解析処理によって得られたひずみの強度レベルを、灰色の濃淡によって示している。ユーザは、ひずみが発生している領域を囲むように解析範囲の位置及び大きさ決定することで、容易に適切な解析範囲を得ることができる。
 後述するように、固有ひずみの分布は、分布関数を用いて推定される。従来、分布関数には解析範囲全体で級数展開した式が用いられていた。つまり、1つの解析範囲に対して1つの分布関数が定義されていた。したがって、従来の分布関数は、解析範囲内における固有ひずみの分布の偏りに対応することができず、実際の固有ひずみの分布を精度よく再現できない場合があった。そこで残留応力推定装置1は、解析範囲を複数の分割領域に分割し、分布関数を分割領域で定義された区分的関数の集合として定義する。固有ひずみの変化が急峻な部分では小さな分割領域を設定し、固有ひずみの変化がなだらかな部分では大きな分割領域を設定すれば、各分割領域において固有ひずみの分布形状に分布関数を精度よく合わせることが可能となる。したがって、ユーザは、理論解析処理の解析結果画面によって、ひずみの分布状況を確認し、解析範囲における各分割領域を適切に決定することができる。
 解析範囲における分割領域について、図7を用いて詳細に説明する。図7では、理論解析処理によって得られたひずみを強度レベル毎に等高線表示している。等高線の間隔が狭い部分では、ひずみの変化が急峻であり、等高線の間隔が広い部分では、ひずみの変化がなだらかである。ユーザは、等高線の間隔が狭い部分では分割領域が小さくなるように、等高線の間隔が広い部分では分割領域が大きくなるように、等高線の間隔に応じて領域を分割することで、容易に適切な分割領域を得ることができる。
 ここで、各分割領域について、ユーザが同数の計測点を決定することが好ましい。これにより、小さい分割領域においては固有ひずみの急峻な変化に対応させることができ、大きい分割領域においては固有ひずみの緩やかな変化に対応させることができる。
 構造物の残留応力は、計測した切断片の残留応力(又は弾性ひずみ)に基づいて推定される。したがって、計測点をどこにするかは、構造物の残留応力の推定精度に大きな影響を及ぼす。固有ひずみの値が高い部位、固有ひずみの分布が急峻に変化する部位などを計測点にすれば、精度よく残留応力を推定することができる。このため、ユーザは、理論解析処理の解析結果画面によって、固有ひずみの分布状況を確認し、切断片の残留応力(又は弾性ひずみ)の計測に適した部位を計測点として決定することができる。
 固有ひずみの値が高い部位、固有ひずみの分布が急峻に変化する部位などは、残留応力の推定に適した部位でもある。つまり、残留応力の推定に適した解析範囲は、切断片の残留応力(又は弾性ひずみ)の計測に適した部位を含んでいる。したがって、ユーザは、解析範囲内において計測点を決定する。
 ユーザは、構造物を切断加工して、計測点として決定した部位から切断片を採取し、切断片から残留応力を計測する(ステップS4)。一般的には、構造物を一方向に薄く切断して切断片(T片)を採取し、前記一方向に直交する方向に薄く切断して切断片(L片)を採取する。
 ここで、残留応力は弾性ひずみにヤング率を乗じて得られる値であり、弾性ひずみを計測することと、残留応力を計測することは等価である。したがって、切断片からは弾性ひずみ及び残留応力の何れを計測してもよい。本実施の形態では、残留応力を計測する場合について述べる。
 図8に示すように、周方向に一様に圧縮残留応力が付与されたジャーナル軸又はピン軸のような軸対称の構造物の場合、T片は半径方向に切断することによって得られる。固有ひずみが周方向に一様に分布していれば、周方向のどの部分においてT片を得たとしても、固有ひずみは変わらない。したがって、T片を1つだけ採取してもよい。これにより、T片の採取数を少なくすることができるので、切断加工及び切断片の残留応力計測の作業負担を軽減することができる。
 一方、軸長方向については、固有ひずみの分布は複雑である。したがって、軸長方向の複数箇所においてL片を採取する必要がある。
 なお、クランク軸のフィレット部のように曲面を持つ場合には、L片ではなく、曲面の法線方向に切断した円錐形状の切断片(以下、「C片」という)を採取してもよい。また、L片及びC片を採取せず、T片のみを採取してもよい。図9において、各図はジャーナル軸を回転軸軸長方向に切断したときの断面図である。C片500は、フィレットの曲面の法線方向、即ち、断面において円弧状のフィレットの半径方向に構造物を切断することによって得られる。ジャーナル軸は軸対称形状であるため、C片500の切断面501は、ジャーナル軸の回転中心軸回りに円錐状に延びる。かかるC片は、フィレットの中心角を変えて数点(例えば、20°から110°まで10°毎)採取される。
 また、一方向に長い棒状の構造物に対して、長手方向に一様に圧縮残留応力が付与された場合、長手方向の1箇所で、T片を1つだけ採取することができる。
 ユーザは、上記のようにして採取された切断片に対して、X線などにより残留応力を直接計測する。弾性ひずみを計測する場合、ユーザは、切断片にひずみゲージを貼り付け、さらに複数の小片に切断し、各小片の解放ひずみ(弾性ひずみ)を計測する。残留応力又は解放ひずみ(弾性ひずみ)の計測においては、互いに異なる複数の成分を計測する。
 再び図4を参照する。ユーザは、決定された解析範囲の位置及び大きさを、残留応力推定装置1に入力する。残留応力推定装置1のCPU111は、入力部12から入力された解析範囲の位置及び大きさを受け付ける(ステップS5)。
 次に、ユーザは、解析範囲の分割パターン(分割する位置情報)を、残留応力推定装置1に入力する。残留応力推定装置1のCPU111は、入力部12から入力された解析領域の分割パターンを受け付ける(ステップS6)。
 次に、ユーザは、残留応力の計測値を、残留応力推定装置1に入力する。残留応力推定装置1のCPU111は、入力部12から入力された計測値を受け付ける(ステップS7)。
 次にCPU111は、分布関数を決定する(ステップS8)。分布関数は、解析範囲の各分割領域について定義された複数の区分的関数の集合として定義される。各区分的関数には、任意の多次多項式を選択可能とすることができる。但し、固有ひずみの分布状況を正しく反映した推定結果を得るためには、各区分的関数の次数を共通させることが好ましい。これにより、小さい分割領域では、急峻な固有ひずみの変化に対応しつつ、大きい分割領域では、緩やかな固有ひずみの変化に対応することができる。また、後述するように、スプライン補間を行う場合にも、各区分的関数の次数を共通させる。
 上記のような分布関数は、CPU111が自動的に選択してもよいし、ユーザが入力部12を用いて指定してもよい。また、残留応力推定装置1において予め分布関数が設定されていてもよい。
 次にCPU111は、分布関数のパラメータを最適化する(ステップS9)。以下、ステップS9の処理について具体的に説明する。
 CPU111は、まず式(9)のHを決定する。その手順は次の通りである。
(a)a=[1,0,0,…,0]として、ε=Maを求める。
(b)式(4)を解き、uを求める。
(c)式(3)によりεを求める。
(d)式(1)によりσを求める。
(e)σの成分の中から、残留応力測定点に対応するN個の値を抽出し、これをHの第1列とする。
(f)a=[0,1,0,…,0]として、Hの第2列も同様に(b)~(f)の手順で求める。
 次にCPU111は、式(7)のRが最小になるように、aを決定する。これにより、分布関数のパラメータが最適化される。
 上記のステップS9の処理において、CPU111は、スプライン補間により各区分的関数の勾配が連続するよう、分布関数のパラメータを決定することが好ましい。これにより、分割領域の境界において固有ひずみを滑らかに連続させることができ、物理性が損なわれていない固有ひずみの推定値を得ることができる。
 さらにCPU111は、残留応力の推定値を算出する(ステップS10)。
 ステップS10の処理では、まずCPU111が、式(8)によって、任意点の固有ひずみを求める。さらにCPU111が、式(4)を解いてuを求め、得られたuを式(3)に適用してεを求め、得られたεを式(1)に適用してσを求める。
 次にCPU111は、得られた残留応力の推定値を表示部13に表示させる(ステップS11)。
 ステップS11の後、CPU111は処理を終了する。
(実施の形態2)
 本実施の形態に係る残留応力推定装置は、理論解析処理(ステップS1)において、構造物の加工によって生じる応力を、ヘルツ接触理論に基づいて解析する。
 本実施の形態に係る残留応力推定装置のその他の構成については、実施の形態1に係る残留応力推定装置1の構成と同様であるので、その説明を省略する。
 本実施の形態に係る残留応力推定装置における理論解析処理について説明する。ヘルツ接触理論は、2つの弾性体による点接触又は線接触における応力の解析に用いられる。ここでは、ヘルツ接触理論をクランク軸のロール加工に適用した場合について説明する。
 ロール加工は塑性加工の一種である。塑性変形が生じた場合の応力をヘルツ接触理論で計算することはできないが、塑性変形、即ち塑性ひずみが生じる領域を推定することは可能である。
 図10のような円柱と平板との接触問題を考える。図11は、図10に示す円柱と平板とが接触した場合に想定される応力分布を示す図である。
 接触直下(x=0)の深さ方向の各応力成分の分布は図11の斜線部分のようになり、それぞれ式(10)~(14)で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、E,Eは縦弾性係数、ν,νはポアソン比、Pは集中荷重、qは単位長さあたりの線荷重、pは接触面上の圧力、pは接触面中心に生じる最大圧力、rは円柱の半径、2bは接触面長方形の幅である。また、p,p,bはそれぞれ式(15)~(17)から求められる。
 ここで、トレスカの降伏条件である最大剪断応力説によれば、材料の単軸引張りの降伏応力をσとし、材料に作用している剪断応力τが式(18)になったときに降伏が始まる(塑性変形が生じる)。
Figure JPOXMLDOC01-appb-M000007
 したがって、平板については、式(10)、(12)、(13)及び(18)から式(19)が求まり、式(19)における表面からの深さzが硬化深さ、即ち塑性ひずみ(固有ひずみ)が生じる領域となる。
Figure JPOXMLDOC01-appb-M000008
 上記のようなヘルツ接触理論を用いた理論解析処理によって得られた解析結果が、ステップS2において表示部13に表示される。このとき、ひずみを強度レベル毎に等高線表示してもよい。
 以上のように構成することにより、ユーザは、理論解析処理の解析結果を確認することで、経験に左右されることなく、残留応力を推定する範囲である解析範囲の位置及び大きさ、解析範囲の各分割領域、並びに切断片の残留応力(又は弾性ひずみ)の計測点を適切に決定することができる。
(その他の実施の形態)
 上記の実施の形態1及び2においては、理論解析処理の解析結果に基づいて、ユーザが解析範囲の位置及び大きさ、解析範囲の各分割領域、並びに切断片の残留応力の計測点を決定し、解析範囲の位置及び大きさ、解析範囲の各分割領域、並びに計測点における残留応力の計測値のそれぞれを、残留応力推定装置に入力する構成について述べたが、これに限定されるものではない。理論解析処理の解析結果に基づいて、ユーザが、解析範囲の位置及び大きさ、解析範囲の各分割領域、並びに切断片の残留応力の計測点のうちの少なくとも1つを決定するようにしてもよい。ユーザが解析範囲の位置及び大きさを決定する場合には、残留応力推定装置が、解析範囲の位置及び大きさの入力を受け付け、この解析範囲において固有ひずみに基づき残留応力を推定する。ユーザが解析範囲の各分割領域を決定する場合には、残留応力推定装置が、解析範囲の分割パターンの入力を受け付け、各分割領域に対して定義された区分的関数の集合である分布関数を用いて、固有ひずみに基づき残留応力を推定する。ユーザが残留応力の計測点を決定する場合には、残留応力推定装置が、決定された計測点における残留応力の計測値の入力を受け付け、入力された計測値に基づいて固有ひずみを近似し、構造物の残留応力を推定する。
 また、上記の実施の形態1及び2においては、分布関数のパラメータ決定においてスプライン補間を適用する構成について述べたが、これに限定されるものではない。スプライン補間を用いることなく、各区分的関数のパラメータを決定する構成としてもよい。この場合、各区分的関数のパラメータ決定において、ラグランジェ補間を適用してもよい。これにより、分割領域の境界において、各区分的関数を連続させることができる。また、解析領域の全体で1つの多次多項式又は三角級数の分析関数を定義し、この分布関数のパラメータ最適化に、ラグランジェ補間を適用することもできる。ラグランジェ補間を利用する場合も、各分割領域における計測点を同数とすれば、固有ひずみの分布の偏りに対応することができる。
 また、上記の実施の形態1及び2においては、解析範囲に関する条件(解析範囲の位置及び大きさ、解析範囲の分割領域、切断片の残留応力の計測点)をユーザが残留応力推定装置に入力する構成について述べたが、これに限定されるものではない。残留応力推定装置が、理論解析処理の解析結果に基づいて、解析範囲に関する条件を自動設定する構成とすることも可能である。
 また、上記の実施の形態1及び2においては、構造物の切断片から残留応力を計測し、計測された残留応力と、分布関数によって計算される残留応力との差が最小となるよう、分布関数のパラメータを最適化する構成について述べたが、これに限定されるものではない。構造物の切断片から解放ひずみ(弾力ひずみ)を計測し、計測された解放ひずみと、分布関数によって計算される弾性ひずみとの差が最小となるよう、分布関数のパラメータを最適化する構成としてもよい。また、この場合、弾性ひずみの計測点の決定については、実施の形態1及び2における残留応力の計測点の決定と同様である。
(評価試験)
 本発明者は、上記の実施の形態において説明した残留応力推定方法の性能評価試験を行った。本評価試験では、残留応力の正解値が既知のFEM(有限要素法)解析の結果を利用して、理論解析処理による解析結果に基づいて設定された解析範囲を用いた残留応力推定方法(以下、「提案法」という。)による数値実験を行い、正解値と数値実験結果との比較を行った。
 本評価試験では、図5Aに示す解析モデルにより、クランク軸のピン軸における残留応力を推定した。解析モデルの周方向中央面(15°の位置の断面)を評価断面とし、評価断面内の結果を正解値として用いた。
 数値実験においては、実際に計測する場合と同一条件(位置、成分)による固有ひずみ値を用いることを考え、ロール加工のシミュレーションを行った後に、FEM解析においてT片とC片とを採取してひずみ解放解析を行い、実測に相当する残留応力を得た。
(1)試験1
 提案法では、図6に示す理論解析処理による解析結果が得られている場合(フィレット角=40°)に、解析結果に示されるひずみの発生領域を取り囲むように解析範囲の位置及び大きさを設定した(図6に示す解析範囲)。提案法よりも大きい解析範囲を設定した場合(以下、「比較法1」という)及び提案法よりも小さい解析範囲を設定した場合(以下、「比較法2」という)のそれぞれについても残留応力を推定し、提案法の結果と比較した。下表に、提案法、比較法1及び比較法2における解析範囲の設定条件を示す。
Figure JPOXMLDOC01-appb-T000009
 図12A~図12Cは、試験1の結果を示すグラフである。図12Aは、フィレット周方向の残留応力の推定結果を示し、図12Bは、ピン周方向の残留応力の推定結果を示し、図12Cは、フィレット半径方向の残留応力の推定結果を示す。図12A~図12Cにおいて、縦軸は残留応力の大きさを示し、横軸は表面からの深さを示している。また、各グラフ中の灰色の実線は正解値を示し、黒色の破線は比較法1による数値実験結果を示し、灰色の破線は比較法2による数値実験結果を示し、黒色の実線は提案法による数値実験結果を示している。
 提案法は、正解値に非常に近い結果を得ている。これに対して比較法1及び比較法2では、残留応力の推定精度が提案法よりも低い。このように、理論解析処理の解析結果を利用して解析範囲の位置及び大きさを設定することで、残留応力の推定精度を向上させることができた。
(2)試験2
 提案法では、理論解析処理による解析結果に示されるひずみ発生領域内で計測点を設定した。提案法よりも計測点が多い場合(以下、「比較法3」という)についても残留応力を推定し、提案法の結果と比較した。図13Aは、提案法における計測点を示す図であり、図13Bは、比較法3における計測点を示す図である。図において、計測点を黒い四角の印で示す。
 図14A~図14Cは、試験2の結果を示すグラフである。図14Aは、フィレット周方向の残留応力の推定結果を示し、図14Bは、ピン周方向の残留応力の推定結果を示し、図14Cは、フィレット半径方向の残留応力の推定結果を示す。図14A~図14Cにおいて、縦軸は残留応力の大きさを示し、横軸は表面からの深さを示している。また、各グラフ中の灰色の実線は正解値を示し、破線は比較法による数値実験結果を示し、黒色の実線は提案法による数値実験結果を示している。
 提案法及び比較法3の両方において、正解値に非常に近い結果を得ている。固有ひずみの計測には、切断片を採取する必要がある。このため、計測点が多くなるほど、推定精度には有効であるが、作業コストが膨大となる。提案法では、計測点の数を低減しつつ、比較法3と同等の推定精度を確保していることが分かる。
 本発明の残留応力推定方法及び残留応力推定装置は、固有ひずみ法に基づき構造物の残留応力を推定するための残留応力推定方法及び残留応力推定装置として有用である。
 本出願は、2015年3月5日出願の日本国特許出願(特願2015-043083)に基づくものであり、その内容はここに参照として取り込まれる。
 1 残留応力推定装置
 10 コンピュータ
 12 入力部
 13 表示部
 110 残留応力推定プログラム
 111 CPU
 115 ハードディスク
 116 入出力インタフェース
 117 画像出力インタフェース
 200 クランク軸(構造物)

Claims (9)

  1.  構造物の計測値を用いることなく、前記構造物に生じるひずみを解析し、解析結果を表示するステップと、
     前記解析結果に基づいて設定された、残留応力を推定するための解析範囲に関する条件を取得するステップと、
     前記構造物の残留応力に関する計測値を取得するステップと、
     前記解析範囲における前記構造物の固有ひずみを近似するよう、取得された前記解析範囲に関する条件に基づいて、前記計測値を用いて前記解析範囲における固有ひずみの分布を推定するステップと、
     を有する、
     固有ひずみに基づく残留応力推定方法。
  2.  前記解析範囲に関する条件を取得するステップでは、前記解析範囲に関する条件として、解析範囲の位置及び大きさを取得し、
     前記固有ひずみの分布を推定するステップでは、取得された位置及び大きさによって特定される前記解析範囲における固有ひずみの分布を推定する、
     請求項1に記載の残留応力推定方法。
  3.  前記計測値を取得するステップでは、取得された位置及び大きさによって特定される前記解析範囲内の計測点において計測された弾性ひずみ又は残留応力を、前記計測値として取得する、
     請求項2に記載の残留応力推定方法。
  4.  前記解析範囲に関する条件を取得するステップでは、前記解析範囲に関する条件として、解析範囲を分割する複数の分割領域を規定する情報を取得し、
     前記固有ひずみの分布を推定するステップでは、取得された情報によって規定される前記複数の分割領域のそれぞれについて定義された複数の区分的関数の集合である分布関数を、前記計測値に基づく前記解析範囲の固有ひずみ分布に近似させるよう、前記分布関数のパラメータを決定する、
     請求項1に記載の残留応力推定方法。
  5.  前記固有ひずみの分布を推定するステップでは、各分割領域の境界で各区分的関数が連続するよう、前記分布関数のパラメータを決定する、
     請求項4に記載の残留応力推定方法。
  6.  前記固有ひずみの分布を推定するステップでは、各分割領域の境界で各区分的関数の勾配が連続するよう、スプライン補間に基づき前記分布関数のパラメータを決定する、
     請求項4に記載の残留応力推定方法。
  7.  前記解析結果を表示するステップでは、前記構造物を模擬した3次元モデルに対して有限要素法による弾塑性解析を行う、
     請求項1~6の何れかに記載の残留応力推定方法。
  8.  前記解析結果を表示するステップでは、前記構造物の加工によって生じる応力を、ヘルツ接触理論に基づいて解析する、
     請求項1~6の何れかに記載の残留応力推定方法。
  9.  構造物の計測値を用いることなく、前記構造物に生じるひずみを解析する解析手段と、
     前記解析手段による解析結果を表示する表示部と、
     前記解析結果に基づいて設定された、残留応力を推定するための解析範囲に関する条件と、前記構造物の残留応力に関する計測値との入力を受け付ける入力部と、
     前記解析範囲における前記構造物の固有ひずみを近似するよう、前記入力部により受け付けられた前記解析範囲に関する条件に基づいて、前記計測値を用いて前記解析範囲における固有ひずみの分布を推定する推定手段と、
     前記推定手段によって推定された前記固有ひずみの分布に基づく残留応力の推定結果を表示する表示部と、
     を備える、
     残留応力推定装置。
PCT/JP2016/055065 2015-03-05 2016-02-22 残留応力推定方法及び残留応力推定装置 WO2016140093A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680013826.9A CN107407605A (zh) 2015-03-05 2016-02-22 残余应力推定方法及残余应力推定装置
ES16758787T ES2774503T3 (es) 2015-03-05 2016-02-22 Método de estimación de tensión residual y dispositivo de estimación de tensión residual
KR1020177024629A KR101949070B1 (ko) 2015-03-05 2016-02-22 잔류 응력 추정 방법 및 잔류 응력 추정 장치
US15/554,025 US10156506B2 (en) 2015-03-05 2016-02-22 Residual stress estimation method and residual stress estimation device
EP16758787.2A EP3267167B1 (en) 2015-03-05 2016-02-22 Residual stress estimation method and residual stress estimation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-043083 2015-03-05
JP2015043083A JP6345618B2 (ja) 2015-03-05 2015-03-05 残留応力推定方法及び残留応力推定装置

Publications (1)

Publication Number Publication Date
WO2016140093A1 true WO2016140093A1 (ja) 2016-09-09

Family

ID=56846709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055065 WO2016140093A1 (ja) 2015-03-05 2016-02-22 残留応力推定方法及び残留応力推定装置

Country Status (7)

Country Link
US (1) US10156506B2 (ja)
EP (1) EP3267167B1 (ja)
JP (1) JP6345618B2 (ja)
KR (1) KR101949070B1 (ja)
CN (1) CN107407605A (ja)
ES (1) ES2774503T3 (ja)
WO (1) WO2016140093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208061A1 (ja) * 2018-04-25 2019-10-31 株式会社神戸製鋼所 残留応力算出方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066929B1 (en) * 2017-04-25 2018-09-04 The Boeing Company Method for measuring residual strain for cured composite part
US10900768B2 (en) * 2017-11-29 2021-01-26 Hill Engineering, Llc Systems and methods for analysis of material properties of components and structures using machining processes to enable stress relief in the material under test
US11609169B2 (en) 2017-11-29 2023-03-21 Hill Engineering, Llc Analysis of material properties of internal surfaces using machining processes to enable stress relief in the material under test
CN108844824B (zh) * 2018-06-27 2020-09-08 西南交通大学 一种基于圆锥形压头的已知材料残余应力测定方法
CN110489914B (zh) * 2019-08-27 2023-01-17 中国航空工业集团公司沈阳飞机设计研究所 一种基于应力损伤等效的耐久性计算方法
CN110532708B (zh) * 2019-09-02 2023-01-06 哈尔滨工业大学(深圳) 一种残余应力预测方法、装置、服务器及存储介质
TWI788873B (zh) * 2021-06-08 2023-01-01 逢甲大學 多層薄膜界面應力與殘留應力之量測方法及裝置
CN114486032B (zh) * 2021-12-31 2023-07-28 中国航空制造技术研究院 一种转角激光冲击强化残余应力分析方法
CN114878046B (zh) * 2022-04-22 2023-11-24 北京工业大学 一种测量厚板焊接件内部残余应力的方法
CN114858324B (zh) * 2022-07-07 2022-09-30 浙江大学杭州国际科创中心 一种碳化硅晶体的残余应力检测方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470756B1 (en) * 2001-02-23 2002-10-29 The Regents Of The University Of California System and method for measuring residual stress
JP2003121273A (ja) * 2001-10-19 2003-04-23 Hitachi Ltd 残留応力予測方法及び装置
JP2005181172A (ja) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd 残留応力測定方法及び装置
JP2009059255A (ja) * 2007-08-31 2009-03-19 Phifit Kk 塑性加工シミュレータ及び記録媒体
US20090287458A1 (en) * 2008-05-14 2009-11-19 Tahany Ibrahim El-Wardany Broach tool design methodology and systems
JP2014063262A (ja) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd 応力分布推定方法、これを用いる解析方法及び解析システム
JP2015018500A (ja) * 2013-07-12 2015-01-29 株式会社東芝 解析装置、解析方法、および解析プログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223661A (ja) * 1992-02-17 1993-08-31 Babcock Hitachi Kk 残留応力の測定方法
CN1112575C (zh) * 1999-02-09 2003-06-25 中国科学院金属研究所 一种剩余残余应力的测定方法
US7027048B2 (en) * 2002-05-31 2006-04-11 Ugs Corp. Computerized deformation analyzer
ITMI20022109A1 (it) * 2002-10-04 2004-04-05 Advanced Technologies S R L Metodo per l'individuazione e la gestione di errori e
GB2433779B (en) * 2004-10-26 2010-01-06 Pamela Saha Polariscope toy and ornament with accompanying photoelastic and/or photoplastic devices
DE102005042820A1 (de) * 2005-09-09 2007-03-22 Mtu Aero Engines Gmbh Verfahren zur Bestimmung der Dehnungsverteilung an Bauteilen
JP2007298343A (ja) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology 溶接変形および残留応力の評価方法
JP2008058179A (ja) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology 残留応力の評価方法
JP2011159213A (ja) * 2010-02-03 2011-08-18 Hitachi Ltd 溶接変形解析方法
JP5649536B2 (ja) * 2011-08-09 2015-01-07 株式会社東芝 解析装置、評価装置、解析方法および評価方法
CN103017944B (zh) * 2012-12-13 2014-12-03 江苏新扬子造船有限公司 焊缝纵向力的测量方法
JP6163643B2 (ja) * 2013-04-30 2017-07-19 学校法人 工学院大学 残留応力推定方法、ひずみ推定方法、残留応力推定システム、ひずみ推定システムおよびプログラム
JP5955301B2 (ja) * 2013-11-14 2016-07-20 株式会社神戸製鋼所 残留応力算出方法
JP2015222207A (ja) * 2014-05-23 2015-12-10 株式会社日立製作所 構造物の評価方法及び評価装置
CN104239696B (zh) * 2014-08-29 2017-02-08 广州中国科学院工业技术研究院 一种约束状态下构件焊接变形的预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470756B1 (en) * 2001-02-23 2002-10-29 The Regents Of The University Of California System and method for measuring residual stress
JP2003121273A (ja) * 2001-10-19 2003-04-23 Hitachi Ltd 残留応力予測方法及び装置
JP2005181172A (ja) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd 残留応力測定方法及び装置
JP2009059255A (ja) * 2007-08-31 2009-03-19 Phifit Kk 塑性加工シミュレータ及び記録媒体
US20090287458A1 (en) * 2008-05-14 2009-11-19 Tahany Ibrahim El-Wardany Broach tool design methodology and systems
JP2014063262A (ja) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd 応力分布推定方法、これを用いる解析方法及び解析システム
JP2015018500A (ja) * 2013-07-12 2015-01-29 株式会社東芝 解析装置、解析方法、および解析プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208061A1 (ja) * 2018-04-25 2019-10-31 株式会社神戸製鋼所 残留応力算出方法

Also Published As

Publication number Publication date
EP3267167B1 (en) 2020-02-19
US10156506B2 (en) 2018-12-18
EP3267167A4 (en) 2018-10-31
EP3267167A1 (en) 2018-01-10
JP2016161524A (ja) 2016-09-05
KR101949070B1 (ko) 2019-06-03
KR20170109666A (ko) 2017-09-29
JP6345618B2 (ja) 2018-06-20
CN107407605A (zh) 2017-11-28
ES2774503T3 (es) 2020-07-21
US20180067024A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6345618B2 (ja) 残留応力推定方法及び残留応力推定装置
JP6345617B2 (ja) 残留応力推定方法及び残留応力推定装置
JP6516323B2 (ja) 残留応力推定方法及び残留応力推定装置
EP2904368B1 (en) Turbine blade fatigue life analysis using non-contact measurement and dynamical response reconstruction techniques
Cornwell et al. Application of the strain energy damage detection method to plate-like structures
WO2016002880A1 (ja) 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体
JPH10267800A (ja) ホイールのドラム耐久評価方法
Kumar et al. Crack detection near the ends of a beam using wavelet transform and high resolution beam deflection measurement
US20020111749A1 (en) Methods and systems for evaluating defects in metals
JP4533621B2 (ja) 残留応力測定方法及び装置
JP6464815B2 (ja) 歪み測定方法及び装置、並びにプログラム及び記録媒体
EP4073486B1 (de) Verfahren und vorrichtung zum bestimmen von aufwerte-faktoren für dehnungsmessungen an maschinenelementen
JP6650328B2 (ja) 残留応力推定方法及び残留応力推定装置
JP6501049B1 (ja) 評価方法及び評価装置、並びに記録媒体
WO2020017042A1 (ja) 評価方法及び評価装置、並びに記録媒体
JP2020128915A (ja) 残留応力推定装置、残留応力推定方法、プログラムおよび品質管理方法
JP2007304739A (ja) 応力集中解析システム
JP4103618B2 (ja) データ処理装置、データ処理方法およびその方法を実現するためのプログラム
JP2021006790A (ja) 座屈応力度の推定装置、座屈応力度の推定方法、及び座屈応力度の推定プログラム
JP2006170919A (ja) 地震応答解析装置、地震応答解析方法及び地震応答解析プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554025

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177024629

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016758787

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE