WO2016140074A1 - Iii族窒化物半導体結晶基板の製造方法 - Google Patents

Iii族窒化物半導体結晶基板の製造方法 Download PDF

Info

Publication number
WO2016140074A1
WO2016140074A1 PCT/JP2016/054743 JP2016054743W WO2016140074A1 WO 2016140074 A1 WO2016140074 A1 WO 2016140074A1 JP 2016054743 W JP2016054743 W JP 2016054743W WO 2016140074 A1 WO2016140074 A1 WO 2016140074A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crystal substrate
substrate
iii nitride
group iii
Prior art date
Application number
PCT/JP2016/054743
Other languages
English (en)
French (fr)
Inventor
森 勇介
吉村 政志
完 今出
柴田 真佐知
丈洋 吉田
Original Assignee
国立大学法人大阪大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 住友化学株式会社 filed Critical 国立大学法人大阪大学
Priority to US15/555,004 priority Critical patent/US10309036B2/en
Priority to CN201680013458.8A priority patent/CN107407008B/zh
Publication of WO2016140074A1 publication Critical patent/WO2016140074A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy

Definitions

  • the present invention relates to a method for producing a group III nitride semiconductor crystal substrate.
  • Group III nitride semiconductor crystals typified by GaN have been widely applied to optical devices such as light emitting diodes and lasers, or high frequency devices such as diodes and transistors, and are expected to be expanded to power devices in the future.
  • a thick GaN crystal is further grown on a GaN base substrate produced by a liquid phase growth method such as a Na flux method by a hydride vapor phase epitaxy (HVPE) method.
  • a method has been proposed (see, for example, Patent Documents 1 and 2).
  • This method has the feature that there are few occurrences of crystal defects and there is little variation in the crystal orientation distribution due to crystal warpage, but the liquid phase growth method with a slow crystal growth rate, and defects are easy to enter but the crystal growth rate is low. Combining with the fast HVPE method compensates for the disadvantages of both, and specific methods are disclosed in Patent Documents 1-2.
  • a seed crystal-forming substrate in which a plurality of III-V compound seed crystals are formed on a substrate A seed crystal forming substrate providing step for providing a so-called point seed substrate, a contacting step for bringing the surfaces of the plurality of group III-V compound seed crystals into contact with a metal melt, and a group III element and a group V element
  • a method for producing a group III-V compound crystal, in which a plurality of group III-V compound crystals grown from a plurality of group III-V compound seed crystals are combined by growing a compound crystal the method comprising: Group V compound seed crystals A method for producing a group III-V compound crystal, which is a group III-V compound
  • a group III nitride (eg, GaN) crystal is grown thickly by a HVPE method on a group III nitride (eg, GaN) seed crystal substrate grown by a liquid phase growth method such as a Na flux method
  • a group III nitride (eg, GaN) seed crystal substrate grown by a liquid phase growth method such as a Na flux method
  • dislocations were newly generated in the grown crystal.
  • the substrate may be greatly warped with the growth surface being a concave surface, and if severe, cracks may be generated in the crystal.
  • An object of the present invention is to grow a group III nitride (eg, GaN) crystal thickly on a group III nitride seed crystal substrate grown by a liquid phase growth method such as a Na flux method by a vapor phase growth method such as an HVPE method.
  • the present invention also provides a method for manufacturing a group III nitride semiconductor crystal substrate capable of suppressing the occurrence of new dislocations in the grown crystal and the occurrence of warpage of the substrate and cracks in the crystal. .
  • the main surface of the seed crystal substrate is a + c plane
  • the seed crystal substrate has an oxygen atom concentration of 1 ⁇ 10 17 cm ⁇ 3 in the vicinity of the main surface over the entire in-plane region.
  • the group III nitride single crystal grown on the seed crystal substrate by a vapor deposition method has an oxygen atom concentration in the crystal of 1 ⁇ 10 17 cm ⁇ 3 or less.
  • a method for producing a group III nitride semiconductor crystal substrate is
  • the crystal region of at least the main surface of the seed crystal substrate is composed of a crystal region grown in a state in which a flat growth interface shape in a two-dimensional growth mode is maintained during crystal growth.
  • the seed crystal substrate is made of a crystal grown by gradually shifting the uneven growth interface shape of the three-dimensional growth mode to the flat growth interface shape of the two-dimensional growth mode during the crystal growth. [1] Or the manufacturing method of the group III nitride semiconductor crystal substrate as described in [2].
  • the diameter of the seed crystal substrate is 50 mm or more, and the c-plane has a concave warp with a radius of curvature of 5 m or more toward the main surface inside the crystal.
  • a method for producing a group III nitride semiconductor crystal substrate is 50 mm or more, and the c-plane has a concave warp with a radius of curvature of 5 m or more toward the main surface inside the crystal.
  • the vapor phase growth method is an HVPE method, and the group III nitride single crystal is homoepitaxially grown on the seed crystal substrate to be thicker than the seed crystal substrate by the HVPE method.
  • the manufacturing method of the group III nitride semiconductor crystal substrate as described in any one of.
  • the seed crystal substrate is manufactured using a seed crystal formation substrate (point seed substrate) in which a plurality of group III nitride seed crystals are formed on the substrate as a starting substrate.
  • At least one group III nitride single crystal free-standing substrate is produced from the group III nitride single crystal grown by the vapor phase growth method, according to any one of [1] to [12] A method for producing a Group III nitride semiconductor crystal substrate.
  • the inventors of the present invention have used a group III nitride (for example, GaN, hereinafter described as “GaN” as an example) substrate prepared by a liquid phase growth method such as a Na flux method on a substrate by vapor phase growth method such as HVPE method.
  • GaN group III nitride
  • a liquid phase growth method such as a Na flux method
  • HVPE method vapor phase growth method
  • mismatching may occur and that this is caused by a difference in the amount of impurity elements, particularly oxygen, depending on the growth mode when growing a GaN crystal by the liquid phase growth method.
  • the Na flux method is a crystal growth method capable of growing a GaN crystal having a relatively high purity, but oxygen is exceptionally easily taken into the GaN crystal.
  • the amount of oxygen incorporated into the GaN crystal depends on the atmosphere in the crystal growth furnace, the purity of the member, and the crystal growth conditions, but when it is large, oxygen in the order of 19 cm ⁇ 3 may be incorporated into the GaN crystal. .
  • the growth interface When the oxygen is easily taken into the GaN crystal in the growth by the Na flux method, when the crystal growth interface is not flat, that is, in the c-axis direction, the growth interface has a non-c surface. Oxygen is likely to be taken into the GaN crystal grown in a state where the sapphire appears. It has been found that the crystal grown on the non-c-plane has actually incorporated oxygen at 100 times higher concentration than the crystal grown on the c-plane.
  • An advantage of growing a GaN crystal by the Na flux method is that it is easy to grow a GaN crystal having a low dislocation density. Accordingly, a low-dislocation substrate is also required for the base substrate used for the growth by the Na flux method. However, since such a substrate is generally difficult to obtain, the ELO (Epitaxial Lateral Overgrowth) method or the above-mentioned Patent Document 3 A base substrate with a limited nucleation region, such as the method described in Non-Patent Documents 1 and 2 (so-called point seed method) is used.
  • GaN crystal nuclei When a GaN crystal is grown on a base substrate in which a nucleation region is limited, GaN crystal nuclei are first generated on each nucleation region, and then each crystal nucleus grows to form a plurality of islands. . This state is called a three-dimensional island growth mode. Thereafter, when GaN islands grow further, adjacent islands are combined to form a continuous GaN film. At this time, depending on the crystal growth conditions, the growth interface may continue to grow in the three-dimensional growth mode in which the non-c plane appears while maintaining the irregular shape of the island, and the growth interface gradually flattens. , There may be a transition to a two-dimensional growth mode in which growth proceeds on the c-plane.
  • dislocations inherited from the base substrate and dislocations generated at the interface between the base substrate and the initial growth nucleus are often used as seed substrates for the flux method. It is known that in the process of propagation in the crystal with grown-in, the traveling direction is bent and it is difficult to reach the upper surface, and this effect grows a GaN crystal with a very low dislocation density. It is because it can be made. Therefore, the three-dimensional growth mode is intentionally made appear at the initial stage of crystal growth.
  • GaN grown in the three-dimensional growth mode tends to have a high oxygen concentration in the crystal as described above.
  • the region has not been grown sufficiently thick, so that the crystal region grown in the two-dimensional growth mode is removed by the subsequent polishing process. In many cases, a crystal region grown in the dimension growth mode appears on the substrate surface.
  • examples of growing GaN crystals on a GaN substrate produced by a flux method have been reported so far, but many are thin film growths by MOCVD.
  • the growing crystal is a thin film of up to several tens of ⁇ m
  • the grown crystal lattice grows while being distorted by elastic deformation, and therefore, inconveniences such as occurrence of dislocations, warpage, and cracks often do not appear.
  • a thick film exceeding several hundred ⁇ m is grown for the purpose of obtaining a GaN substrate, the strain cannot be accumulated in the crystal, and the above-described problem occurs.
  • the present invention has been devised based on the above findings.
  • a group III nitride (eg, GaN) crystal is grown on a group III nitride seed crystal substrate grown by a liquid phase growth method such as a Na flux method by a vapor phase growth method such as an HVPE method.
  • a liquid phase growth method such as a Na flux method
  • a vapor phase growth method such as an HVPE method.
  • FIG. 1A is a cross-sectional view schematically showing a process of manufacturing a seed crystal substrate by growing a GaN single crystal by the Na flux method according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the embodiment of the present invention.
  • FIG. 1C is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the embodiment of the present invention.
  • FIG. 1D is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the embodiment of the present invention.
  • FIG. 1E is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the embodiment of the present invention.
  • FIG. 1A is a cross-sectional view schematically showing a process of manufacturing a seed crystal substrate by growing a GaN single crystal by the Na flux method according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing another step of manufacturing the
  • FIG. 1F is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the embodiment of the present invention.
  • FIG. 1G is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the embodiment of the present invention.
  • FIG. 2A is a cross-sectional view schematically showing a high oxygen concentration region distribution in an as-grown GaN crystal grown by the Na flux method according to an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view schematically showing an example of a high oxygen concentration region distribution in a GaN crystal substrate grown by the Na flux method according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing another example of the high oxygen concentration region distribution in the GaN crystal substrate grown by the Na flux method according to the embodiment of the present invention.
  • FIG. 4A shows a process of obtaining a plurality of GaN substrates from a grown crystal by homoepitaxially growing a thick GaN single crystal by a HVPE method on a seed crystal substrate grown by a Na flux method according to an embodiment of the present invention. It is sectional drawing which shows this typically.
  • FIG. 4B is a cross-sectional view schematically showing another process for obtaining a plurality of GaN substrates from a grown crystal according to an embodiment of the present invention.
  • FIG. 4A shows a process of obtaining a plurality of GaN substrates from a grown crystal by homoepitaxially growing a thick GaN single crystal by a HVPE method on a seed crystal substrate grown by a Na flux method according to an embodiment of the present invention. It is sectional drawing which shows this typically.
  • FIG. 4C is a cross-sectional view schematically showing another process for obtaining a plurality of GaN substrates from a grown crystal according to an embodiment of the present invention.
  • FIG. 5 is an explanatory view schematically showing a Na flux method crystal growth apparatus used in the manufacturing method according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing an HVPE crystal growth apparatus used in the manufacturing method according to the embodiment of the present invention.
  • FIG. 7A is an overview photograph showing a GaN crystal grown with a growth interface as a flat c-plane according to one embodiment of the present invention.
  • FIG. 7B is a photomicrograph showing the surface of a grown GaN crystal according to one embodiment of the present invention.
  • FIG. 8A is an overview photograph showing a GaN crystal in which a growth interface is grown on an uneven surface according to a conventional example.
  • FIG. 8B is a photomicrograph showing the surface of a grown GaN crystal according to a conventional example.
  • FIG. 9A is a cross-sectional view schematically showing a process of manufacturing a seed crystal substrate by growing a GaN single crystal by a Na flux method according to the prior art.
  • FIG. 9B is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the conventional technique.
  • FIG. 9C is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the conventional technique.
  • FIG. 9D is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the conventional technique.
  • FIG. 9A is a cross-sectional view schematically showing a process of manufacturing a seed crystal substrate by growing a GaN single crystal by a Na flux method according to the prior art.
  • FIG. 9E is a cross-sectional view schematically showing another step of manufacturing the seed crystal substrate according to the conventional technique.
  • FIG. 10A is a cross-sectional view schematically showing an example of a high oxygen concentration region distribution in an as-grown GaN crystal grown by the Na flux method according to the prior art.
  • FIG. 10B is a cross-sectional view schematically showing another example of the high oxygen concentration region distribution in the as-grown GaN crystal grown by the Na flux method according to the prior art.
  • FIG. 10C is a cross-sectional view schematically showing a high oxygen concentration region distribution in a GaN crystal substrate grown by the Na flux method according to the prior art.
  • FIG. 11 is a cross-sectional view schematically showing a defect occurrence state when a thick GaN crystal is homoepitaxially grown by HVPE on a GaN crystal substrate grown by Na flux method according to the prior art.
  • a method for manufacturing a group III nitride semiconductor crystal substrate according to an embodiment of the present invention uses a group III nitride single crystal grown by a liquid phase growth method as a seed crystal substrate, and vapor phase growth method on the main surface thereof.
  • the main surface of the seed crystal substrate is a + c plane, and the seed crystal substrate has its main surface extending over the entire surface.
  • the oxygen atom concentration in the crystal in the vicinity of the surface is 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the oxygen atom concentration of 1 ⁇ 10 17 cm ⁇ 3 or less is a concentration at which the influence of lattice distortion due to oxygen atoms can be ignored when GaN is grown thick (eg, 500 ⁇ m or more).
  • the “main surface” means the widest surface among the surfaces existing in the crystal, and the “main surface” of the seed crystal substrate is a surface on which normal crystal growth is to be performed.
  • the “c plane” is a ⁇ 0001 ⁇ plane in a hexagonal crystal structure (wurtzite crystal structure) and is a plane orthogonal to the c axis.
  • Such a plane is a polar plane, and in the group III nitride semiconductor crystal, the “+ c plane” is a group III metal plane (gallium plane in the case of gallium nitride).
  • “over the entire surface” means arbitrary plural places on the substrate surface, for example, the center of the substrate surface and 2 to 3 points on the concentric circles 5 to 10 mm away from the center and 15 Oxygen atoms at 2 to 3 points on a concentric circle separated by 20 mm (specifically, for example, as in the examples described later, the center of the substrate surface and a total of 5 points, 10 mm and 20 mm apart from the left and right) By measuring the concentration, it can be considered that the measurement is “over the entire surface”.
  • “near the main surface” means a region within a range of 20 ⁇ m in the depth direction from the main surface.
  • the oxygen atom concentration in the crystal is also desirably 1 ⁇ 10 17 cm ⁇ 3 or less. If the oxygen concentration in the GaN crystal is 1 ⁇ 10 17 cm ⁇ 3 or less, the lattice distortion on the seed substrate side can be negligibly small, but it is meaningless if the oxygen concentration on the growth crystal side is high. Although it is possible to cancel the distortion by combining the concentrations of both, it is desirable that both of them are 1 ⁇ 10 17 cm ⁇ 3 or less in order to control with high accuracy.
  • the crystal region of the main surface of the GaN seed crystal substrate grown by a liquid phase growth method such as the flux method (hereinafter, the flux method will be described as an example) is flatly grown in a two-dimensional growth mode during the crystal growth. It is desirable that the crystal region is grown while maintaining the interface shape.
  • the GaN seed crystal substrate grown by the flux method is a crystal grown by gradually shifting the uneven growth interface shape of the three-dimensional growth mode to the flat growth interface shape of the two-dimensional growth mode during the crystal growth. It is desirable to consist of. It is effective for reducing the oxygen concentration taken into the GaN crystal that the crystal region of the main surface is composed of the crystal region grown in a state where the flat interface shape of the two-dimensional growth mode is maintained. .
  • the seed crystal substrate may be mirror-polished at least on the main surface.
  • the mirror polishing process be applied flatly. In this case, it is important that there is no residual processing strain on the polished surface.
  • the average dislocation density on the surface of the GaN seed crystal substrate grown by the flux method is preferably 1 ⁇ 10 7 cm ⁇ 2 or less. Furthermore, it is desirable that the GaN seed crystal substrate has no polarity inversion region at least on the main surface. As described above, the present invention is a method suitable for the production of a low-defect GaN crystal. In order to exhibit the effect, the dislocation density in the crystal grown by a vapor phase growth method such as the HVPE method is 1 ⁇ 10. desirably is 7 cm -2 or less, it is desirable for the average dislocation density on the surface of the seed crystal substrate grown by the flux method is also 1 ⁇ 10 7 cm -2 or less.
  • the “average dislocation density” refers to any number of locations on the substrate surface, for example, the center of the substrate surface and 2 to 3 points and 15 to 15 on concentric circles 5 to 10 mm away from the center. Dislocations measured at two to three points on concentric circles 20 mm apart (specifically, for example, the center of the substrate surface and the points 10 mm and 20 mm apart from the left and right of the substrate surface). Mean average density.
  • the polarity inversion region refers to a region in which a minute region of the N polarity surface with the polarity reversed appears on a part of the Ga polarity surface of the main surface.
  • the polarity inversion region can be detected by the CBED method (convergent electron diffraction method), but in order to more easily detect the presence or absence, etching is performed in, for example, molten alkali using the difference in etching rate from the normal region. Can be easily detected.
  • the c-plane of the seed crystal substrate does not have a warp inside the crystal. It is desirable to have a concave-type warp, and the diameter of the seed crystal substrate is 50 mm or more, and the c-plane has a radius of curvature of 5 m or more toward the main surface inside the crystal. It is desirable to have a warp of If the c-plane of the seed crystal substrate has a convex warpage toward the main surface inside the crystal, tensile strain is generated in the GaN crystal growing on it, and strain is released when a thick crystal is grown. On the contrary, there is a risk that a concave warp will occur and cracks will occur. This tendency becomes more prominent as the diameter of the grown crystal increases. When the diameter of the seed crystal substrate is 50 mm or more, the probability of occurrence of cracks increases unless the curvature radius of the c-plane is 5 m or more.
  • the liquid phase growth method is a flux method.
  • a GaN crystal can be preferably grown by a so-called Na flux method using metallic sodium (Na) as a base material for the melt.
  • the vapor phase growth method is an HVPE method, and it is desirable to homoepitaxially grow a GaN single crystal thicker than the seed crystal substrate by the HVPE method.
  • An object of the present invention is to use a GaN crystal region grown by vapor phase growth as a high-quality GaN substrate. Therefore, the effect is efficiently exhibited by growing a GaN crystal thickly by vapor phase growth. The Therefore, it is desirable to grow it at least thicker than the seed crystal substrate, specifically, it is desirable to grow it to a thickness of 500 ⁇ m or more.
  • the seed crystal substrate is formed as described in Patent Document 3 and Non-Patent Documents 1 and 2, in which a plurality of group III nitride seed crystals are formed on the substrate.
  • a substrate (so-called point seed substrate) may be manufactured as a starting substrate. By using the point seed substrate as a starting substrate, a low dislocation density GaN crystal substrate can be grown with good reproducibility.
  • At least one GaN single crystal free-standing substrate can be manufactured from the GaN single crystal layer grown by the vapor phase growth method.
  • a method of removing the seed crystal substrate by grinding or polishing is employed.
  • the cut out substrate is a substrate suitable for GaN device fabrication by polishing the front and back surfaces.
  • FIG. 9A to 9E are cross-sectional views schematically showing a process of manufacturing a seed crystal substrate by growing a GaN single crystal by the Na flux method according to the prior art.
  • a seed crystal substrate for the flux method a substrate 10 in which a GaN crystal (point seed) 2 having a plurality of c-planes (Ga planes) as a surface is disposed on a base substrate 1 in advance is used (FIG. 9A).
  • the seed crystal substrate for flux method 10 is brought into contact with an alkali metal melt containing Ga serving as a flux in an atmosphere containing nitrogen, and Ga element and nitrogen are reacted in the alkali metal melt to form a GaN crystal.
  • the GaN crystal 3 is grown on the point seed 2 (FIG. 9B).
  • the GaN crystal 3 grown on the point seed 2 is an independent hexagonal pyramid island-like crystal at first. However, as the growth proceeds, the island-like crystal enlarges, and adjacent crystals associate to form a continuous film. It becomes the GaN single crystal 13 (FIG. 9C). Even after adjacent GaN crystals meet to form a continuous film-like GaN single crystal 13, crystal growth usually proceeds in a form in which island-like crystal irregularities are left on the surface (crystal growth interface). The thickness of the film-like GaN single crystal 13 increases.
  • the crystal growth rate of the flux method is very slow at about 10 ⁇ m / h, the growth is usually stopped when the crystal has grown to a thickness (about 300 to 400 ⁇ m) at which the grown crystal exhibits sufficient strength as a free-standing substrate. I will take out. For this reason, sufficient time has not been taken to continue the crystal growth in the state of exhibiting the c-plane, and a crystal grown at the uneven crystal growth interface as shown in FIG. 8A has been obtained.
  • the GaN single crystal 13 that has finished the growth and is taken out from the flux spontaneously (naturally) peels from the base substrate 1 to become a GaN single crystal free-standing substrate 13 (FIG. 9D).
  • a GaN free-standing single crystal substrate 14 for epitaxial growth can be obtained (FIG. 9E).
  • oxygen is incorporated as an impurity in the GaN crystal grown by the flux method, and the amount of incorporation varies greatly depending on the plane orientation of the crystal growth interface. That is, when the crystal is grown on the c-plane (Ga plane), the concentration is about 17th power cm ⁇ 3 , but when grown on the non-c-plane, it jumps to the 19th power cm ⁇ 3 level. For this reason, in a crystal grown at an uneven growth interface, the region corresponding to the growth history of the uneven surface has a higher oxygen concentration than the region corresponding to the growth history of the crystal grown on the c-plane. .
  • FIGS. 10A to 11 schematically show this state.
  • FIG. 10A is a cross-sectional view schematically showing an example of a high oxygen concentration region distribution in an as-grown GaN crystal grown by the Na flux method according to the prior art
  • FIG. 10B shows a Na flux method according to the prior art
  • FIG. 10C is a cross-sectional view schematically showing another example of the high oxygen concentration region distribution in the grown as-grown GaN crystal
  • FIG. 10C shows the high oxygen concentration region in the GaN crystal substrate grown by the Na flux method according to the prior art. It is sectional drawing which shows distribution typically.
  • the region corresponding to the concave growth history becomes the high oxygen concentration region 16 and grows on the c-plane.
  • the low oxygen concentration region 15 is mixed.
  • the ratio of the high oxygen concentration region 16 to the low oxygen concentration region 15 changes depending on the degree of unevenness at the crystal growth interface, and a crystal composed mostly of the high oxygen concentration region 16 may be formed.
  • FIG. As shown in FIG.
  • the low oxygen concentration region 15 exists uniformly only in the vicinity of the surface of the crystal, and the high oxygen concentration region 16 may be buried in a wide range inside the crystal.
  • a GaN single crystal substrate having a clean appearance can be obtained, but the inside is schematically shown in FIG. 10C.
  • the high oxygen concentration region 16 in the crystal can be detected by irradiating the crystal with ultraviolet rays and observing the light emission state.
  • the region with a low oxygen concentration shines brightly by the emission of luminescence light, but the region with a high oxygen concentration emits light weakly, so that it can be clearly distinguished as a region having a contrast such as a dark shadow.
  • SIMS analysis of the location targeted by the above observation may be performed.
  • FIG. 11 is a cross-sectional view schematically showing a defect occurrence state when a thick GaN crystal is homoepitaxially grown by HVPE on a GaN crystal substrate grown by Na flux method according to the prior art.
  • the lattice of the GaN crystal containing oxygen is slightly elongated, the lattice of the crystal grown on it is also distorted into an elongated shape, and crystal growth begins. However, as the crystal becomes thicker, it returns to the original lattice constant of the GaN crystal. Since the stress to be generated is generated, the entire crystal is warped on the concave surface in the growth direction, and when the crystal cannot withstand elastic deformation, dislocations or cracks are generated in the crystal. In crystals in which dislocations are observed due to lattice mismatch, the surface morphology is often rough, and even when evaluated by X-ray diffraction, results showing high crystallinity cannot be obtained.
  • FIG. 1A to 1G are cross-sectional views schematically showing a process of manufacturing a seed crystal substrate by growing a GaN single crystal by the Na flux method according to an embodiment of the present invention.
  • the substrate up to which the point seed crystal 2 is arranged on the base substrate 1 is used as the seed crystal substrate 10 and the GaN crystal is grown by the flux method (FIGS. 1A and 1B), it is the same as the prior art.
  • the crystal growth conditions of the flux method are controlled to accelerate the lateral growth rate of the crystal 3 to make the solid-liquid interface an early flat c-plane (FIG. 1C, 1D GaN single crystal 3A ⁇
  • the GaN single crystal 3B) differs from the prior art in that the crystal grows thick while maintaining its flat interface shape (FIG.
  • FIG. 2A is a cross-sectional view schematically showing a high oxygen concentration region distribution in an as-grown GaN crystal grown by the Na flux method according to an embodiment of the present invention
  • FIG. 2B is an embodiment of the present invention.
  • It is sectional drawing which shows typically an example of the high oxygen concentration area
  • a high oxygen concentration region 6 exists in the vicinity of the back surface of the crystal, but the solid-liquid interface is flattened at an early stage.
  • the high oxygen concentration region 6 remains only on the back side of the substrate, and the low oxygen concentration region 5 spreads uniformly after the middle of the crystal growth.
  • a uniform GaN single crystal substrate 4 with a low oxygen concentration from which all the high oxygen concentration regions 6 have been removed as shown in FIG. 2B can be obtained.
  • FIG. 3 is a cross-sectional view schematically showing another example of the high oxygen concentration region distribution in the GaN crystal substrate grown by the Na flux method according to the embodiment of the present invention. Even if the removal amount on the back side of the substrate is insufficient as shown in FIG. 3 and the high oxygen concentration region 6 remains in part, the low oxygen concentration region 5 having a sufficient thickness is uniformly spread on the front surface side. If so, there is no problem.
  • GaN single crystal substrate 4 thus obtained, even if the GaN crystal is thickly homoepitaxially grown by the HVPE method, distortion and dislocation associated with lattice mismatch do not occur, and a high quality GaN crystal. It becomes possible to grow.
  • FIGS. 4A to 4C are diagrams showing a method for obtaining a plurality of GaN substrates from a grown crystal by homoepitaxially growing a thick GaN crystal by an HVPE method on a seed crystal substrate grown by an Na flux method according to an embodiment of the present invention. It is sectional drawing which shows a process typically (FIG. 4A is the same as FIG. 1G). On the obtained GaN seed crystal substrate (FIG. 4A), a GaN single crystal 7 is grown thick by HVPE (FIG. 4B), and a plurality of GaN substrates 8 are cut out from the HVPE grown crystal 7 (FIG. 4C).
  • existing slicing techniques such as an inner peripheral slicer, an outer peripheral slicer, a wire saw, and an electric discharge machine can be applied as they are.
  • group III nitride crystals such as AlN, AlGaN, InGaN, AlInGaN, and stacked structure crystals thereof.
  • the technique for producing a GaN c-plane (Ga-plane) crystal substrate has been described as an example.
  • the present invention is effective even when an off-angle is added to the growth orientation.
  • the present invention is effectively applied when there is a difference in the concentration of impurities taken in between the main growth surface and the other uneven surface. Can do.
  • a group III nitride for example, GaN
  • a liquid phase growth method such as a Na flux method
  • a vapor phase growth method such as an HVPE method.
  • a method for producing a group III nitride semiconductor crystal substrate capable of suppressing the occurrence of new dislocations in the grown crystal and the occurrence of warpage of the substrate and cracks in the crystal even when the crystal is grown thick. can be provided.
  • the embodiment of the present invention it is possible to efficiently manufacture a high-quality GaN substrate having a low dislocation density and a small variation in crystal orientation within the substrate plane, using equipment equivalent to the conventional technology. it can.
  • residual strain in a crystal grown by a vapor phase growth method such as the HVPE method is reduced, even in the production of a large-diameter GaN single crystal substrate, which has conventionally been problematic in terms of cracking during crystal processing, These problems are solved, and the substrate can be manufactured with a high yield.
  • FIG. 5 is an explanatory view schematically showing a Na flux method crystal growth apparatus used in the manufacturing method according to the embodiment of the present invention.
  • this Na flux method crystal growth apparatus 100 includes a growth furnace 110 made of stainless steel and a source gas tank 120, and the growth furnace 110 and the source gas tank 120 are connected by a pipe 130.
  • a pressure adjuster 140 and a flow rate adjuster 150 are attached between the growth furnace 110 and the raw material gas tank 120.
  • the growth furnace 110 is provided with a heater 111 and a thermocouple 112 for heating, and can withstand an atmospheric pressure of 50 atm (50 ⁇ 1.013 ⁇ 10 5 Pa).
  • a crucible fixing base 113 is provided in the growth furnace 110.
  • a crucible 114 made of aluminum oxide (Al 2 O 3 ) is fixed in the crucible fixing base 113, and the melt 115 and the seed crystal substrate 10 for the flux method are placed in the crucible 114.
  • nitrogen gas as a raw material gas or a mixed gas of ammonia gas (NH 3 gas) and nitrogen gas is supplied from the raw material gas tank 120 through the pipe 130 in the direction of the arrow (atmosphere gas supply direction) in the figure.
  • Reaction (crystal growth).
  • the source gas (atmosphere gas) is sent into the growth furnace 110 after impurities are removed by a gas purification unit (not shown).
  • the pressure of the source gas is adjusted by the pressure regulator 140 and the flow rate regulator 150.
  • FIG. 6 is a cross-sectional view schematically showing an HVPE crystal growth apparatus used in the manufacturing method according to the embodiment of the present invention.
  • This HVPE crystal growth apparatus (HVPE furnace) 200 is a heater composed of two zones: a raw material heating heater 201 heated to about 800 ° C. and a crystal growth region heating heater 202 heated to about 1000 ° C.
  • a quartz reaction tube 203 is inserted. On the upstream side of the quartz reaction tube 203, a pipe for introducing a source gas is provided. Ammonia gas, which is a group V raw material, is introduced into the furnace through the ammonia gas introduction pipe 207.
  • the metal gallium 206 which is a group III material, is housed in a quartz boat and placed in a region heated by the gallium material heating heater 201. At the time of crystal growth, hydrochloric acid gas is allowed to flow inside the boat through a hydrochloric acid gas introduction pipe 208 for producing gallium chloride made of quartz. Then, the metal gallium 206 and hydrochloric acid gas react to generate gallium chloride gas, which reaches the surface of the seed crystal substrate 4 through the pipe. Gallium chloride reacts with ammonia on the heated substrate surface to grow a III-V nitride semiconductor crystal. It is also possible to flow a doping gas into the furnace through a doping gas introduction pipe 209.
  • the seed crystal substrate 4 as a base for crystal growth is fixed to a substrate folder 204 supported by a rotating shaft 205, and is rotated during growth.
  • the gas introduced into the reaction tube is guided to a detoxification facility by a downstream exhaust pipe 210, subjected to a detoxification process, and then discharged to the atmosphere.
  • Example 2 In this example, as described below, first, a GaN crystal was manufactured by a liquid phase growth method (Na flux method), and further a GaN crystal was manufactured by a vapor phase growth method (HVPE method).
  • a liquid phase growth method Na flux method
  • HVPE method vapor phase growth method
  • a substrate was prepared in which a GaN seed crystal layer was laminated on a sapphire substrate having a diameter of 65 mm by MOCVD (vapor phase epitaxy).
  • MOCVD vapor phase epitaxy
  • the thickness of the sapphire substrate was 1 mm
  • the thickness of the GaN seed crystal layer was 5 ⁇ m.
  • the upper part of the GaN seed crystal layer and the sapphire substrate was removed by etching. In this way, a GaN seed crystal substrate in which seed crystals were arranged on a plurality of convex portions of the substrate was produced.
  • the shape of the convex portion was a circular dot having a diameter of 0.25 mm, and the arrangement pattern was a repetition of a pattern in which the convex portion was arranged on each vertex of a regular triangle having a side of 0.55 mm.
  • the crucible 114 was put in the stainless steel container 113, and the stainless steel container 113 was put in the electric furnace (heat resistant pressure resistant container) 110.
  • Nitrogen gas is introduced from the raw material gas tank 120 into the stainless steel container 113 and at the same time heated by a heater (not shown) in the electric furnace (heat-resistant pressure-resistant container) 110 at a high temperature of 870 degrees and 40 atm (about 4.0 MPa).
  • Crystal growth was carried out under high pressure conditions for 72 hours to produce the desired GaN crystal.
  • nitrogen is efficiently supplied to the recesses between the point seeds by immersing the seed crystal in a solution having a high degree of supersaturation and stirring the crystal growth condition.
  • the conditions were
  • FIG. 7A to 7B show photographs of the surface of the GaN crystal layer manufactured by the above-described liquid phase growth method.
  • FIG. 7A is an overview photograph showing a GaN crystal grown with a growth interface as a flat c-plane according to one embodiment of the present invention
  • FIG. 7B is a micrograph showing the surface of the GaN crystal (in FIG. 7A). (Enlarged photo of the part enclosed by a square). As shown, a GaN crystal having a flat and uniform surface throughout the crystal was obtained. The upper part of the GaN crystal and the sapphire substrate were further removed by grinding and polishing, leaving only the c-plane growth portion, and a mirror-surface GaN crystal substrate having a diameter of 60 mm and a thickness of 1.0 mm was obtained.
  • the oxygen concentration was measured by SIMS analysis for a total of five points, the center of the GaN substrate surface thus obtained and the points 10 mm and 20 mm away from the left and right, 4 ⁇ 10 16 to 8 ⁇ 10 16 cm ⁇ 3. It was confirmed that it was in the range of 1 and was distributed at a very low concentration and uniformly. Further, when the dislocation density at the same point was measured by the cathodoluminescence dark point measurement, all of them were within the range of 1 ⁇ 10 6 to 9 ⁇ 10 6 cm ⁇ 2 , and were uniformly distributed at a low density.
  • This GaN substrate was used as a substrate for GaN crystal production by the following vapor phase growth method.
  • a GaN crystal was produced by the vapor phase growth method on the GaN crystal substrate produced by the liquid phase growth method.
  • a GaN thick film crystal was grown using the HVPE growth apparatus shown in FIG.
  • the gas flow rate conditions during HVPE growth were as carrier gas: hydrogen: 920 sccm, nitrogen: 8200 sccm, gallium chloride: 180 sccm, ammonia: 600 sccm.
  • the growth pressure was 100 kPa
  • the substrate temperature during growth was 1060 ° C.
  • the growth time was 15 hours. During the growth, the substrate was rotated at 5 rpm.
  • an undoped GaN crystal having a thickness of about 4.6 mm was homoepitaxially grown on the seed crystal substrate.
  • the seed crystal had no polarity inversion region.
  • the following processing was performed on the crystals obtained above. First, a region outside the diameter ⁇ 52 mm of the crystal was slowly ground and removed with a grinding wheel using a grinding machine, and then sliced with a wire saw, and a 635 ⁇ m thick GaN free-standing substrate was newly grown from the newly grown crystal region. I got a copy. Further, the sliced substrate is chamfered to form a diameter of ⁇ 50.8 mm, the orientation flat and the index flat are processed, and then the front and back surfaces are mirror-polished to obtain a GaN free-standing substrate 5 having a thickness of 400 to 450 ⁇ m. I got a sheet.
  • the warpage (BOW) of the substrate was all controlled within 10 ⁇ m.
  • one of the obtained substrates was used to count the dislocation density using the cathodoluminescence method in the same manner as described above, a value of 5.8 ⁇ 10 5 to 9.6 ⁇ 10 5 cm ⁇ 2 was obtained at five points in the plane. was gotten.
  • the variation in the inclination of the c-axis on the substrate surface was measured by the X-ray diffraction method, all the substrates were within ⁇ 0.05 ° in the plane.
  • the crucible 114 was put in the stainless steel container 113, and the stainless steel container 113 was put in the electric furnace (heat resistant pressure resistant container) 110.
  • Nitrogen gas is introduced into the stainless steel container 113 from the raw material gas tank 120 and simultaneously heated by a heater (not shown) in the electric furnace (heat resistant pressure resistant container) 110 at a high temperature of 870 degrees and 34 atm (about 3.4 MPa).
  • Crystal growth was carried out under high pressure conditions for 96 hours to produce the desired GaN crystal.
  • no measures are taken to make the crystal growth interface a flat c-plane.
  • FIGS. 8A to 8B show photographs of the surface of the GaN crystal layer manufactured by the liquid phase growth method according to the prior art thus obtained.
  • FIG. 8A is an overview photograph showing a GaN crystal in which a growth interface is grown on an uneven surface according to a conventional example
  • FIG. 8B is a micrograph showing the surface of the GaN crystal (enclosed by a square in FIG. 8A). (Enlarged photo of the part). As shown in the figure, a rough morphological GaN crystal having an uneven surface was obtained. The upper part of the GaN crystal and the sapphire substrate were further removed by grinding and polishing to obtain a mirror GaN crystal substrate having a diameter of 60 mm and a thickness of 1.0 mm.
  • This GaN substrate was used as a substrate for GaN crystal production by the following vapor phase growth method.
  • a GaN crystal was produced by the vapor phase growth method on the GaN crystal substrate produced by the liquid phase growth method.
  • a GaN crystal was homoepitaxially grown under the same conditions as in the examples.
  • an undoped GaN crystal having a thickness of about 4.7 mm was grown on the seed crystal, but a fine concavo-convex morphology was seen on the surface, and it was not a mirror surface.
  • the region outside the diameter ⁇ 52 mm of the crystal was slowly ground and removed with a grinding wheel using a grinding machine, and then sliced with a wire saw. A crack occurred at the end and the crystal was broken into two, and the work could not be continued further.
  • the present invention can be applied to a group III nitride semiconductor crystal substrate used for manufacturing a group III nitride semiconductor crystal applied to optical devices such as light emitting diodes and lasers, high frequency devices such as diodes and transistors, and the like.
  • Seed base substrate for flux method 2 Nucleation site for flux method (point seed) 3 Island-like GaN crystals 3A to C, 13 GaN crystal 4 grown by the flux method 4, 14 GaN seed crystal substrate 5 grown by the flux method 5, 15 Low oxygen concentration region 6, 16 High oxygen concentration region 7, 17 HVPE method GaN crystal grown by 8 GaN substrate grown by HVPE method 10 Seed crystal substrate for flux method 100 Flux method crystal growth apparatus 110 Growth furnace 111 Heater 112 Thermocouple 113 Crucible fixing base 114 Crucible 115 Melt liquid 120 Raw material gas tank 130 Tube 140 Pressure regulator 150 Flow regulator 200 HVPE crystal growth apparatus (HVPE furnace) 201 Heater for raw material heating 202 Heater for crystal growth region 203 Reaction tube 204 Substrate folder 205 Rotating shaft 206 Metal gallium 207 Ammonia gas introduction pipe 208 Hydrochloric acid gas introduction pipe 209 for gallium chloride production Doping gas introduction pipe 210 Exhaust pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

液相成長法で成長させたIII族窒化物単結晶を種結晶基板として、その主面上に気相成長法でIII族窒化物単結晶をホモエピタキシャル成長させるIII族窒化物半導体結晶基板の製造方法において、前記種結晶基板の主面が+C面であり、前記種結晶基板は、面内全域に亘って、その主面近傍における結晶中の酸素原子濃度が1×1017cm-3以下である、III族窒化物半導体結晶基板の製造方法が提供される。

Description

III族窒化物半導体結晶基板の製造方法
本発明は、III族窒化物半導体結晶基板の製造方法に関する。
GaNに代表されるIII族窒化物半導体結晶は、発光ダイオードやレーザーなどの光デバイス、或いは、ダイオードやトランジスタなどの高周波デバイスに広く応用されており、今後パワーデバイスへの展開も期待されている。
これらのデバイスの多くは、GaN基板上に有機金属気相成長(MOVPE)法等を用いてエピタキシャル成長を行うことにより得られるため、GaN基板の特性がデバイス特性にまで多大な影響を及ぼすことになる。このため、これまで良質なGaN基板を得るための検討が盛んに行われてきた。
良質なGaN基板を製造する手法の一つとして、Naフラックス法等の液相成長法で作製したGaNの下地基板上に、更にハイドライド気相成長(HVPE)法で厚膜のGaN結晶を成長させる方法が提案されている(例えば、特許文献1~2参照)。
この方法は、結晶欠陥の発生が少なく、結晶の反りに起因する結晶方位分布のばらつきが少ないという特長を有する反面、結晶成長速度の遅い液相成長法と、欠陥は入りやすいが結晶成長速度の速いHVPE法とを組み合わせることで、両者の欠点を補うものであり、特許文献1~2等に具体的な手法が開示されている。
また、大サイズで、かつ欠陥が少なく高品質なIII-V族化合物結晶を効率良く製造可能とする方法として、基板上に複数のIII-V族化合物種結晶が形成された種結晶形成基板(いわゆる、ポイントシード基板)を提供する種結晶形成基板提供工程と、前記複数のIII-V族化合物種結晶の表面を金属融液に接触させる接触工程と、III族元素とV族元素とを前記金属融液中で反応させることによって、前記III-V族化合物種結晶を核としてIII-V族化合物結晶を生成させ成長させる結晶成長工程とを含み、前記結晶成長工程において、前記III-V族化合物結晶の成長により、前記複数のIII-V族化合物種結晶から成長した複数の前記III-V族化合物結晶を結合させる、III-V族化合物結晶の製造方法であって、前記複数のIII-V族化合物種結晶が、前記基板上に形成されたIII-V族化合物層の一部を物理的な加工により除去して形成されたIII-V族化合物種結晶である、III-V族化合物結晶の製造方法が提案されている(特許文献3参照)。これと同様の関連技術が非特許文献1~2にも開示されている。
特許第4622447号公報 特許第4613933号公報 特開2014-055091号公報
M.Imanishi et al., "Coalescence growth of GaN crystals on point seed crystals using the Na flux method", Physica status solidi (c), Volume 10, Issue 3, March 2013, pages 400-404 Mamoru Imade et al., "Growth of bulk GaN crystals by the Na-flux point seed technique", Jpn. J. Appl. Phys. 53, 2014, 05FA06
従来技術では、Naフラックス法等の液相成長法で成長したIII族窒化物(例えば、GaN)種結晶基板上に、HVPE法でIII族窒化物(例えば、GaN)結晶を厚く成長させると、成長した結晶中に新たに転位が発生してしまうことがあった。また、III族窒化物(例えば、GaN)結晶を厚く成長させることで、基板が成長面を凹面側にして大きく反ったり、ひどい場合は結晶中にクラックが発生することもあった。
これらの現象は、結晶の成長ロット毎に発生の頻度や程度がばらついており、また、基板の面内で部分的に発生することもあり、結晶の製造歩留りを大きく下げる要因になっていたが、これまでその発生メカニズムが解明されておらず、従って対策も確立されていなかった。
本発明の目的は、Naフラックス法などの液相成長法で成長したIII族窒化物種結晶基板上に、HVPE法などの気相成長法でIII族窒化物(例えば、GaN)結晶を厚く成長させた場合においても、成長した結晶中に新たに転位が発生することや、基板の反りや結晶中のクラックが発生することを抑制できるIII族窒化物半導体結晶基板の製造方法を提供することにある。
本発明の一態様に従い、下記[1]~[14]に記載のIII族窒化物半導体結晶基板の製造方法が提供される。
[1]液相成長法で成長させたIII族窒化物単結晶を種結晶基板として、その主面上に気相成長法でIII族窒化物単結晶をホモエピタキシャル成長させるIII族窒化物半導体結晶基板の製造方法において、前記種結晶基板の主面が+c面であり、前記種結晶基板は、面内全域に亘って、その主面近傍における結晶中の酸素原子濃度が1×1017cm-3以下である、III族窒化物半導体結晶基板の製造方法。
[2]前記種結晶基板上に気相成長法で成長される前記III族窒化物単結晶は、結晶中の酸素原子濃度が1×1017cm-3以下である、[1]に記載のIII族窒化物半導体結晶基板の製造方法。
[3]前記種結晶基板の少なくとも主面の結晶領域は、その結晶成長時に2次元成長モードの平坦な成長界面形状を保った状態で成長された結晶領域により構成されている、[1]又は[2]に記載のIII族窒化物半導体結晶基板の製造方法。
[4]前記種結晶基板は、その結晶成長時に3次元成長モードの凹凸な成長界面形状を徐々に2次元成長モードの平坦な成長界面形状に移行させて成長された結晶からなる、[1]又は[2]に記載のIII族窒化物半導体結晶基板の製造方法。
[5]前記種結晶基板は、少なくとも主面に鏡面研磨加工が施されている、[1]~[4]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[6]前記種結晶基板の表面における平均転位密度が、1×10cm-2以下である、[1]~[5]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[7]前記種結晶基板のc面は、結晶内部で主面に向かって凹面型の反りを有している、[1]~[6]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[8]前記種結晶基板の直径が50mm以上であり、かつそのc面が、結晶内部で主面に向かって曲率半径5m以上の凹面型の反りを有している、[7]に記載のIII族窒化物半導体結晶基板の製造方法。
[9]前記液相成長法が、フラックス法である、[1]~[8]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[10]前記気相成長法がHVPE法であり、HVPE法により前記種結晶基板上に前記種結晶基板の厚さよりも厚く前記III族窒化物単結晶をホモエピタキシャル成長させる、[1]~[9]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[11]前記種結晶基板は、基板上に複数のIII族窒化物種結晶が形成された種結晶形成基板(ポイントシード基板)を出発基板として作製されている、[1]~[10]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[12]前記種結晶基板は、少なくとも主面には極性反転領域が存在していない、[1]~[11]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[13]前記気相成長法で成長したIII族窒化物単結晶から、少なくとも1枚以上のIII族窒化物単結晶自立基板を作製する、[1]~[12]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
[14]前記III族窒化物が、GaNを含む、[1]~[13]のいずれか1つに記載のIII族窒化物半導体結晶基板の製造方法。
本発明者らは、Naフラックス法などの液相成長法で作製したIII族窒化物(例えば、GaN、以下「GaN」を例に説明する)基板上にHVPE法などの気相成長法でGaN結晶を厚膜エピタキシャル成長させた際に、転位欠陥や反りの発生するメカニズムを鋭意調査研究した結果、液相成長法で成長したGaN結晶と気相成長法で成長したGaN結晶の間で微妙な格子不整合を生じる場合があること、それが、液相成長法でGaN結晶を成長させる際の成長モードに依存した不純物元素、とりわけ酸素の取り込み量の差に起因していることを突き止めた。
Naフラックス法は、比較的高純度なGaN結晶を成長することのできる結晶成長法であるが、例外的に酸素はGaN結晶中に取り込まれやすい。GaN結晶への酸素の取り込み量は、結晶成長炉内の雰囲気や部材の純度及び結晶成長条件に依存するが、多い時は19乗cm-3台の酸素がGaN結晶中に取り込まれることがある。
酸素がGaN結晶中に多量に取り込まれると、GaN結晶の格子はc軸と垂直な方向に伸ばされ、その上にHVPE法で成長されるGaN結晶との格子不整は0.01%以上になる。この格子不整がHVPE法で成長したGaN結晶中に歪を発生させ、転位を生じたり、基板を成長方向に向かって凹面に反らせ、甚だしい場合はクラックを生じさせる原因になっていたことが判明した。
Naフラックス法による成長においてどのような時にGaN結晶中に酸素が取り込まれやすいかというと、結晶成長界面が平坦になっていない時、即ちc軸方向の成長であれば、成長界面に非c面が出現した状態で成長されたGaN結晶には酸素が取り込まれやすい。非c面で成長した結晶は、c面で成長した結晶に比べて、実に100倍も高濃度の酸素が取り込まれていることが判明した。
Naフラックス法でGaN結晶を成長させるメリットは、転位密度の低いGaN結晶を成長させやすいことにある。従って、Naフラックス法による成長に供する下地基板にも低転位基板が求められるが、そのような基板は一般には入手が困難なため、通常はELO(Epitaxial Lateral Overgrowth)法や前述の特許文献3や非特許文献1~2に記載された方法(いわゆる、ポイントシード法)などの、核発生領域を限定した下地基板が用いられる。
核発生領域を限定した下地基板上にGaN結晶を成長させる場合、始めに各核発生領域上にGaNの結晶核が発生し、次いでそれぞれの結晶核が大きく成長して複数のアイランドが形成される。この状態を3次元島状成長モードと呼ぶ。その後、更にGaNのアイランドが大きく成長すると、隣接するアイランド同士が結合してGaNの連続膜となる。この時、結晶成長条件によっては、成長界面はアイランドの凹凸形状を保ったまま、非c面が出現した状態の3次元成長モードで成長を継続する場合もあり、また成長界面が徐々に平坦化し、c面で成長が進行する2次元成長モードへと移行する場合もある。
フラックス法の種結晶基板に、核発生領域を限定した下地基板がよく用いられるのは、3次元成長モードでは、下地基板から引き継がれた転位や下地基板と初期成長核の界面で発生した転位が、結晶中をgrown-inで伝播する過程で、その進行方向を曲げられて、上面へ到達しにくくなることが知られているからであり、この効果により非常に転位密度の低いGaN結晶を成長させることができるからである。従って、結晶成長の初期には、故意に3次元成長モードが出現するようにしているのである。
ところが、3次元成長モードで成長したGaNには、上述のように結晶中の酸素濃度が高くなる傾向がある。しかし、従来は、その結晶中の酸素が次にHVPE法で成長するGaN結晶にどのような影響を及ぼしているか判っていなかったため、結晶中の酸素の分布形態に着目した結晶成長の制御が行われていなかった。即ち、フラックス法で作製したGaN基板には、3次元成長モードのまま成長された結晶や、部分的に2次元成長モードに移行した界面で成長された結晶や、2次元成長モードで成長された結晶が混在している状況であった。また、2次元成長モードで成長された結晶であっても、その領域が十分に厚く成長されていなかったため、その後の研磨加工で2次元成長モードで成長された結晶領域が除去されてしまい、3次元成長モードで成長された結晶領域が基板表面に現れている場合も多々あった。
尚、フラックス法で作製されたGaN基板上にGaN結晶を成長させた例は、これまでも報告されていたが、多くはMOCVD法による薄膜成長である。成長する結晶が数十μmまでの薄膜の場合、成長結晶の格子が弾性変形で歪んだまま成長するため、転位の発生や反り、クラックの発生といった不具合が出現しない場合が多い。しかし、GaN基板の取得を目的として、数百μmを超える厚膜を成長すると、結晶内で歪みを蓄積しきれなくなって、上記の不具合が発生する。
しかし、数百μmを超える厚膜結晶であっても、結晶欠陥を多数含む場合、即ち高密度の転位や欠陥集中領域を伴う結晶を成長させる場合は、それらの欠陥が歪みの開放端となるため、上記の不具合は発生しない。従って、上記の現象は高品質なGaNの厚膜結晶が成長できるようになって初めて判明した知見なのである。
本発明は、上記の知見に基づいて考案されたものである。
本発明の一実施形態によれば、Naフラックス法などの液相成長法で成長したIII族窒化物種結晶基板上に、HVPE法などの気相成長法でIII族窒化物(例えば、GaN)結晶を厚く成長させた場合においても、成長した結晶中に新たに転位が発生することや、基板の反りや結晶中のクラックが発生することを抑制できるIII族窒化物半導体結晶基板の製造方法を提供することができる。
図1Aは、本発明の実施の形態に係る、Naフラックス法でGaN単結晶を結晶成長させて種結晶基板を製造する工程を模式的に示す断面図である。 図1Bは、本発明の実施の形態に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図1Cは、本発明の実施の形態に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図1Dは、本発明の実施の形態に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図1Eは、本発明の実施の形態に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図1Fは、本発明の実施の形態に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図1Gは、本発明の実施の形態に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図2Aは、本発明の実施の形態に係る、Naフラックス法で成長させたアズグロウンGaN結晶中の高酸素濃度領域分布を模式的に示す断面図である。 図2Bは、本発明の実施の形態に係る、Naフラックス法で成長させたGaN結晶基板中の高酸素濃度領域分布の一例を模式的に示す断面図である。 図3は、本発明の実施の形態に係る、Naフラックス法で成長させたGaN結晶基板中の高酸素濃度領域分布の他の例を模式的に示す断面図である。 図4Aは、本発明の実施の形態に係る、Naフラックス法で成長させた種結晶基板上にHVPE法で厚膜のGaN単結晶をホモエピタキシャル成長させ、成長結晶からGaN基板を複数枚取得する工程を模式的に示す断面図である。 図4Bは、本発明の実施の形態に係る、成長結晶からGaN基板を複数枚取得する他の工程を模式的に示す断面図である。 図4Cは、本発明の実施の形態に係る、成長結晶からGaN基板を複数枚取得する他の工程を模式的に示す断面図である。 図5は、本発明の実施の形態に係る製造方法に用いるNaフラックス法結晶成長装置を模式的に示す説明図である。 図6は、本発明の実施の形態に係る製造方法に用いるHVPE法結晶成長装置を模式的に示す断面図である。 図7Aは、本発明の1実施例に係る、成長界面を平坦なc面として成長させたGaN結晶を示す概観写真である。 図7Bは、本発明の1実施例に係る、成長させたGaN結晶の表面を示す顕微鏡写真である。 図8Aは、従来例に係る、成長界面を凹凸のある面で成長させたGaN結晶を示す概観写真である。 図8Bは、従来例に係る、成長させたGaN結晶の表面を示す顕微鏡写真である。 図9Aは、従来技術に係る、Naフラックス法でGaN単結晶を結晶成長させて種結晶基板を製造する工程を模式的に示す断面図である。 図9Bは、従来技術に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図9Cは、従来技術に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図9Dは、従来技術に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図9Eは、従来技術に係る、種結晶基板を製造する他の工程を模式的に示す断面図である。 図10Aは、従来技術に係る、Naフラックス法で成長させたアズグロウンGaN結晶中の高酸素濃度領域分布の一例を模式的に示す断面図である。 図10Bは、従来技術に係るNaフラックス法で成長させたアズグロウンGaN結晶中の高酸素濃度領域分布の他の例を模式的に示す断面図である。 図10Cは、従来技術に係るNaフラックス法で成長したGaN結晶基板中の高酸素濃度領域分布を模式的に示す断面図である。 図11は、従来技術に係る、Naフラックス法で成長させたGaN結晶基板上にHVPE法で厚膜のGaN結晶をホモエピタキシャル成長させたときの欠陥発生状況を模式的に示す断面図である。
本発明の実施の形態に係るIII族窒化物半導体結晶基板の製造方法は、液相成長法で成長させたIII族窒化物単結晶を種結晶基板として、その主面上に気相成長法でIII族窒化物単結晶をホモエピタキシャル成長させるIII族窒化物半導体結晶基板の製造方法において、前記種結晶基板の主面が+c面であり、前記種結晶基板は、面内全域に亘って、その主面近傍における結晶中の酸素原子濃度が1×1017cm-3以下であることを特徴とする。1×1017cm-3以下という酸素原子濃度は、GaNを厚く(例えば、500μm以上)成長させたときに酸素原子による格子歪みの影響が無視できるようになる濃度である。
なお、本実施の形態において、「主面」とは、結晶に存在する表面のうち最も広い面を意味し、種結晶基板の「主面」は通常結晶成長が行われるべき面となる。また、本実施の形態において、「c面」とは、六方晶構造(ウルツ鉱型結晶構造)における{0001}面であり、c軸に直交する面である。かかる面は極性面であり、III族窒化物半導体結晶では「+c面」はIII族金属面(窒化ガリウムの場合はガリウム面)である。また、本実施の形態において、「面内全域に亘って」とは、基板表面の任意の複数箇所、例えば、基板表面の中心及びそこから5~10mm離れた同心円上の2~3点及び15~20mm離れた同心円上の2~3点(具体的には、例えば、後述する実施例のように、基板表面の中心及びそこから左右に10mm及び20mm離れた点の計5点)について酸素原子濃度を測定することで「面内全域に亘って」の測定であるとみなすことができる。更に、本実施の形態において、「主面近傍」とは、主面から深さ方向に20μmの範囲内の領域を意味する。
また、本発明の実施の形態においては、前記種結晶基板の主面近傍における結晶中の酸素原子濃度とともに、前記種結晶基板上に気相成長法で成長される前記III族窒化物単結晶の結晶中の酸素原子濃度も1×1017cm-3以下であることが望ましい。GaN結晶中の酸素濃度が1×1017cm-3以下であれば、種基板側の格子歪みは無視できる程度に小さくできるが、成長結晶側の酸素濃度が高ければ意味が無い。両者の濃度を合わせれば歪みを相殺することは可能であるが、精度良く制御するためには両者が共に1×1017cm-3以下であることが望ましい。
また、フラックス法などの液相成長法(以下、フラックス法を例に説明する)で成長した前記GaN種結晶基板の少なくとも主面の結晶領域は、その結晶成長時に2次元成長モードの平坦な成長界面形状を保った状態で成長された結晶領域により構成されていることが望ましい。更には、フラックス法で成長した前記GaN種結晶基板は、その結晶成長時に3次元成長モードの凹凸な成長界面形状を徐々に2次元成長モードの平坦な成長界面形状に移行させて成長された結晶からなることが望ましい。主面の結晶領域が、2次元成長モードの平坦な界面形状を保った状態で成長された結晶領域により構成されていることは、GaN結晶中に取り込まれる酸素濃度を低減するのに有効である。GaN結晶中の酸素濃度を低減する他の方法として、フラックス法の炉内に混入する酸素や水分を極めて低濃度に管理することが考えられるが、原料の純度や炉への出し入れのプロセスを考えると、あまり現実的ではない。結晶成長の初期に3次元成長を行うのは、前述の通り転位欠陥の低減効果が期待できるからである。
前記種結晶基板は、少なくとも主面に鏡面研磨加工が施されていても良い。特にフラックス法で成長させたアズグロウンのGaN結晶の表面モフォロジに段差や湾曲などが現れている場合は、平坦に鏡面研磨加工が施されていることが望ましい。この場合、研磨表面には残留加工歪が無いようにすることが重要である。
また、フラックス法で成長させた前記GaN種結晶基板の表面における平均転位密度は、1×10cm-2以下であることが望ましい。更に、前記GaN種結晶基板は、少なくとも主面には極性反転領域が存在していないことが望ましい。本発明は、前述の通り低欠陥なGaN結晶の製造に好適な方法であり、その効果を発現させるためには、HVPE法などの気相成長法で成長する結晶中の転位密度は1×10cm-2以下であることが望ましく、そのためにはフラックス法で成長した種結晶基板の表面における平均転位密度も1×10cm-2以下であることが望ましい。なお、本発明の実施の形態において、「平均転位密度」とは、基板表面の任意の複数箇所、例えば、基板表面の中心及びそこから5~10mm離れた同心円上の2~3点及び15~20mm離れた同心円上の2~3点(具体的には、例えば、後述する実施例のように、基板表面の中心及びそこから左右に10mm及び20mm離れた点の計5点)について測定した転位密度の平均を意味する。極性反転領域とは、主面のGa極性面の一部に極性の反転したN極性面の微小領域が現れたものを言う。種結晶に極性反転領域が存在すると、その上にエピタキシャル成長を行ったときに、極性反転領域上にピットなどのモフォロジ異常が出現するといった不具合が生じる。極性反転領域は、CBED法(収束電子回折法)で検出が可能であるが、より簡便に有無を検出するには、正常な領域とのエッチングレート差を利用して、例えば溶融アルカリ中でエッチングを施すことにより、容易に検出することができる。
また、本発明の実施の形態においては、前記種結晶基板のc面が結晶内部で反りを有していないことが望ましいが、もし有している場合にあっては、結晶内部で主面に向かって凹面型の反りを有していることが望ましく、更には、前記種結晶基板の直径が50mm以上であり、かつそのc面が結晶内部で主面に向かって曲率半径5m以上の凹面型の反りを有していることが望ましい。種結晶基板のc面が結晶内部で主面に向かって凸面型の反りを有していると、その上に成長するGaN結晶に引張り歪みを生じ、厚膜の結晶を成長させると歪みを開放しようとして逆に凹面型の反りを生じてクラックに至るリスクが高まる。この傾向は成長結晶の直径が大きくなるほど顕著であり、前記種結晶基板の直径が50mm以上の場合は、c面の反りは曲率半径が5m以上でないとクラックの発生確率が高まる。
また、本発明の実施の形態においては、前記液相成長法がフラックス法であることが望ましい。金属ナトリウム(Na)を融液の基材として使用するいわゆるNaフラックス法により好適にGaN結晶を成長させることができる。
また、本発明の実施の形態においては、前記気相成長法がHVPE法であり、HVPE法により前記種結晶基板の厚さよりも厚くGaN単結晶をホモエピタキシャル成長させることが望ましい。本発明の目的は、気相成長で成長したGaN結晶領域を高品質なGaN基板として利用することにあり、従って気相成長でGaN結晶を厚膜成長させることでその効果が効率的に発揮される。従って、少なくとも種結晶基板より厚く成長させることが望ましく、具体的には500μm以上の厚さに成長させることが望ましい。
また、本発明の実施の形態において、前記種結晶基板は、前述の特許文献3や非特許文献1~2に記載された、基板上に複数のIII族窒化物種結晶が形成された種結晶形成基板(いわゆる、ポイントシード基板)を出発基板として作製してもよい。ポイントシード基板を出発基板とすることで、低転位密度のGaN結晶基板を再現良く成長させることができる。
本発明の実施の形態にかかるGaN単結晶基板の製造方法では、前記気相成長法で成長したGaN単結晶層から、少なくとも1枚以上のGaN単結晶自立基板を作製することができる。気相成長法で成長したGaN単結晶層から、GaN単結晶の自立基板を作製するに当たっては、作製する基板が1枚だけの場合は、種結晶基板を研削や研磨などで除去する手法を採ることもできるが、複数枚の基板を取得する場合は、ワイヤーソーやワイヤー放電加工機などで基板を切り出す手法を採用することが望ましい。切り出した基板は、表裏面に研磨加工を施すことで、GaNデバイス作製用に好適な基板となる。
本発明の実施の形態との比較のため、以下に従来技術の実施の形態を説明する。
図9A~9Eは、従来技術に係る、Naフラックス法でGaN単結晶を結晶成長させて種結晶基板を製造する工程を模式的に示す断面図である。
ここでは、フラックス法用の種結晶基板として、予め複数のc面(Ga面)を表面とするGaN結晶(ポイントシード)2が下地基板1上に配置された基板10を用いる(図9A)。このフラックス法用種結晶基板10を、窒素を含む雰囲気下で、フラックスとなるGaを含有するアルカリ金属融液に接触させ、Ga元素と窒素とをアルカリ金属融液中で反応させてGaN結晶を生成させ、ポイントシード2上にGaN結晶3を成長させる(図9B)。ポイントシード2上に成長するGaN結晶3は、はじめ独立した六角錐形の島状結晶であるが、成長が進行するにつれて島状結晶が肥大化し、隣接する結晶どうしが会合して連続膜状のGaN単結晶13となる(図9C)。隣接するGaN結晶どうしが会合して連続膜状のGaN単結晶13となった後も、通常は表面(結晶成長界面)に島状結晶の凹凸を残した形態のまま結晶成長が進行し、連続膜状のGaN単結晶13の厚みが増していく。フラックス法の結晶成長速度は10μm/h程度と非常に遅いため、通常は成長結晶が自立基板として十分な強度を発現する厚さ(300~400μm程度)まで結晶が成長した段階で成長をやめて結晶を取り出してしまう。このため、c面を呈した状態でさらに結晶成長を持続させるに十分な時間が取られておらず、図8Aに示したような凹凸のある結晶成長界面で成長した結晶が得られていた。成長を終了し、フラックスから取り出されたGaN単結晶13は、下地基板1から自発的に(自然に)剥離してGaNの単結晶自立基板13となる(図9D)。これの外径を整え、表裏面に研磨加工を施すことで、エピタキシャル成長用のGaN自立単結晶基板14が得られる(図9E)。
前述した通り、フラックス法で成長したGaN結晶中には、不純物として酸素が取り込まれるが、その取り込み量は、結晶の成長界面の面方位によって大きく変わる。即ち、c面(Ga面)で結晶を成長させた時は、17乗cm-3台の濃度であるが、非c面で成長させると、19乗cm-3台まで跳ね上がる。このため、凹凸のある成長界面で成長させた結晶は、その凹凸面の成長履歴に該当する領域がc面で成長させた結晶の成長履歴に該当する領域に比べて高酸素濃度となってしまう。この様子を模式的に示したのが図10A~11である。
図10Aは、従来技術に係る、Naフラックス法で成長させたアズグロウンGaN結晶中の高酸素濃度領域分布の一例を模式的に示す断面図であり、図10Bは、従来技術に係るNaフラックス法で成長させたアズグロウンGaN結晶中の高酸素濃度領域分布の他の例を模式的に示す断面図であり、図10Cは、従来技術に係るNaフラックス法で成長したGaN結晶基板中の高酸素濃度領域分布を模式的に示す断面図である。
島状結晶3が会合した領域が凹面部として成長界面に残った形態のまま結晶が成長されているため、凹面の成長履歴に該当する領域が高酸素濃度領域16となって、c面で成長した低酸素濃度領域15と混在している。結晶成長界面の凹凸の度合いによって、この高酸素濃度領域16と低酸素濃度領域15の比率は変化し、ほとんどが高酸素濃度領域16からなる結晶ができてしまうこともある。また、最終的な結晶成長界面が平坦なc面形状を呈していたとしても、そこに至る過程で凹凸のある成長界面での成長が長時間続いていたような場合は、図10Bに模式的に示すように、低酸素濃度領域15が均一に存在しているのは、結晶の表面近傍のみであり、結晶の内部には高酸素濃度領域16が広範囲に埋まっている場合がある。図10Aや図10Bのような結晶の表裏面を除去し、研磨加工を施してGaN単結晶基板を作成すると、外観はきれいなGaN単結晶基板が得られるものの、その内部に図10Cに模式的に示すような高酸素濃度領域16を含み、従って結晶の格子定数のばらつきが大きい基板ができてしまうのである。結晶中の高酸素濃度領域16は、結晶に紫外線を照射してその発光状態を観察することで検知が可能である。即ち、酸素濃度の低い領域はルミネッセンス光の発光で明るく光るが、酸素濃度の高い領域は発光が弱いため、暗い影のようなコントラストのついた領域として明確に区別できる。具体的な酸素濃度がどの程度かを調べるには、上記観察で狙いをつけた場所のSIMS分析を行えばよい。
このような高酸素濃度領域16を含むGaN基板を種結晶として、その上にHVPE法でGaNの厚膜17をホモエピタキシャル成長させると、HVPE成長結晶中の酸素濃度は通常17乗cm-3台程度であるため、種結晶の高酸素濃度領域16とは格子定数が合わず、結晶の格子に歪が発生する。そのイメージを模式的に図11に示す。図11は、従来技術に係る、Naフラックス法で成長させたGaN結晶基板上にHVPE法で厚膜のGaN結晶をホモエピタキシャル成長させたときの欠陥発生状況を模式的に示す断面図である。酸素の入ったGaN結晶の格子はわずかに伸びているため、その上に成長する結晶の格子も伸びた形に歪んで結晶成長が始まるが、結晶が厚くなるに従ってGaN結晶本来の格子定数に戻ろうとする応力が発生するため、結晶全体としては成長方向に向かって凹面に反りを生じ、結晶が弾性変形に耐えられないと、結晶中に転位が発生したりクラックが発生してしまう。格子不整合で転位の発生が見られる結晶では、表面モフォロジも荒れている場合が多く、X線回折による評価でも高い結晶性を示す結果は得られない。苦労してフラックス法とHVPE法を組み合わせて結晶成長を行っても、従来はたまたまc面成長領域が広かったところで部分的に結晶性の良い結晶が得られる程度で、基板全面に渡って高品位な結晶を得ることは至難の技であった。
次に、本発明の実施の形態を説明する。
図1A~1Gは、本発明の実施の形態に係る、Naフラックス法でGaN単結晶を結晶成長させて種結晶基板を製造する工程を模式的に示す断面図である。
ポイントシード結晶2が下地基板1上に配置された基板を種結晶基板10として、フラックス法でGaN結晶を成長させるところ(図1A、1B)までは従来技術と同じであるが、本発明の実施の形態においては、フラックス法の結晶成長条件を制御して、結晶3の横方向の成長速度を促進させて固液界面を早期に平坦なc面とし(図1C、1DのGaN単結晶3A→GaN単結晶3B)、その平坦な界面形状を保ったまま、結晶を厚く成長させる(図1E)点が従来技術とは異なる。結晶の横方向の成長速度を促進させて固液界面を平坦なc面とするためには、具体的には結晶成長中の結合界面の凹部への窒素供給を促進する、或いはポイントシードのピッチを短くするなどの条件調整を行えば良い。本技術においては、この後の基板表面の研磨加工工程を考慮して、結晶表面を研磨で一部除去しても尚十分なc面成長領域が残るように、平坦な界面形状を保ったまま、結晶を厚く成長させることが肝要である。成長を終了してフラックスから取り出されたGaN単結晶3Cは、従来技術同様に、下地基板1から自発的に(自然に)剥離してGaNの単結晶自立基板3Cとなり(図1F)、これの外径を整え、表裏面に研磨加工を施せば、エピタキシャル成長用のGaN自立単結晶基板4が得られる(図1G)。
図2Aは、本発明の実施の形態に係る、Naフラックス法で成長させたアズグロウンGaN結晶中の高酸素濃度領域分布を模式的に示す断面図であり、図2Bは、本発明の実施の形態に係る、Naフラックス法で成長させたGaN結晶基板中の高酸素濃度領域分布の一例を模式的に示す断面図である。
本結晶においても、成長の初期は3次元島状成長モードで結晶成長が進行するため、結晶の裏面近傍には高酸素濃度領域6が存在しているが、早期に固液界面を平坦化させたことで、高酸素濃度領域6は基板の裏面側だけにとどまり、結晶成長の中盤以降は、低酸素濃度領域5が均一に広がっている。この結晶の表裏面に研磨加工を施すことで、図2Bのように高酸素濃度領域6が総て除去された酸素濃度が低位で均一なGaN単結晶基板4を得ることができる。
また、図3は、本発明の実施の形態に係る、Naフラックス法で成長させたGaN結晶基板中の高酸素濃度領域分布の他の例を模式的に示す断面図である。仮に、図3のように基板裏面側の除去量が不足して、一部に高酸素濃度領域6が残ったとしても、表面側に十分な厚さの低酸素濃度領域5が均一に広がっていれば、問題は無い。
このようにして得られたGaN単結晶基板4上であれば、HVPE法でGaN結晶を厚くホモエピタキシャル成長させても、格子の不整合に伴う歪みや転位の発生が起こらず、品質の良いGaN結晶を成長させることが可能になる。
図4A~4Cは、本発明の実施の形態に係る、Naフラックス法で成長させた種結晶基板上にHVPE法で厚膜のGaN結晶をホモエピタキシャル成長させ、成長結晶からGaN基板を複数枚取得する工程を模式的に示す断面図である(図4Aは図1Gと同じ)。
得られた上記GaN種結晶基板(図4A)上に、HVPE法でGaN単結晶7を厚く成長させ(図4B)、更にHVPE成長結晶7から複数のGaN基板8を切り出す(図4C)。結晶をスライスする手段には、内周刃スライサー、外周刃スライサー、ワイヤーソー、放電加工機などの既存スライス技術がそのまま適用できる。
(本発明の他の実施形態)
上記本発明の実施の形態においては、III族窒化物(InxAlyGazN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1))としてGaNを例に説明したが、GaN以外のIII族窒化物結晶、例えばAlN、AlGaN、InGaN、AlInGaN、これらの積層構造結晶などにも適用が可能である。
また、上記本発明の実施の形態において
は、GaNのc面(Ga面)結晶基板の作製技術を例に説明したが、成長方位にオフ角が付けられている場合でも本発明は有効である。
また、c面以外の成長方位を採る場合でも、成長の主面とそれ以外の凹凸面とで、取り込まれる不純物の濃度差が生じているような場合には、本発明を有効に適用することができる。
(実施の形態の効果)
上記本発明の実施の形態によれば、Naフラックス法などの液相成長法で成長したIII族窒化物種結晶基板上に、HVPE法などの気相成長法でIII族窒化物(例えば、GaN)結晶を厚く成長させた場合においても、成長した結晶中に新たに転位が発生することや、基板の反りや結晶中のクラックが発生することを抑制できるIII族窒化物半導体結晶基板の製造方法を提供できる。
また、上記本発明の実施の形態によれば、従来技術と同等の設備を用いて、転位密度が低く、基板面内で結晶方位のばらつきが少ない高品質なGaN基板を効率よく製造することができる。特に、HVPE法などの気相成長法で成長した結晶中の残留歪が低減されるため、従来は結晶加工時のクラック発生などが問題になっていた大口径GaN単結晶基板の作製においても、これらの問題が解決され、歩留り良く基板の製造が可能となる。
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
はじめに、液相成長(Naフラックス法)でGaN結晶を成長する装置について述べる。
図5は、本発明の実施の形態に係る製造方法に用いるNaフラックス法結晶成長装置を模式的に示す説明図である。
図示の通り、このNaフラックス法結晶成長装置100は、ステンレス製の育成炉110と原料ガスタンク120とを備え、育成炉110と原料ガスタンク120とは管130で連結されている。管130において、育成炉110と原料ガスタンク120との間には、圧力調整(調節)器140および流量調整(調節)器150が取り付けられている。育成炉110は、加熱用のヒータ111および熱電対112が配置され、50atm(50×1.013×10Pa)の気圧に耐えられるようになっている。さらに育成炉110内には、坩堝固定台113がある。坩堝固定台113内に酸化アルミニウム(Al)からなる坩堝114を固定し、坩堝114内に融液115およびフラックス法用種結晶基板10を配置する。この状態で、原料ガスタンク120から、管130を通じて、原料ガスである窒素ガス、またはアンモニアガス(NHガス)と窒素ガスとの混合ガスを、図中の矢印方向(雰囲気ガス供給方向)に供給して反応(結晶成長)を行う。前記原料ガス(雰囲気ガス)は、ガス精製部(図示せず)によって不純物が除去されたのちに、育成炉110内に送られる。また、前記原料ガスの圧力(雰囲気圧力)は、圧力調整器140および流量調整器150によって調整される。
次に、気相成長(HVPE法)でGaN結晶を成長する装置について述べる。
図6は、本発明の実施の形態に係る製造方法に用いるHVPE法結晶成長装置を模式的に示す断面図である。
このHVPE法結晶成長装置(HVPE炉)200は、800℃程度に加熱された原料加熱用ヒータ201、及び、1000℃程度に加熱された結晶成長領域加熱用ヒータ202の2ゾーンからなるヒータの中に、石英製の反応管203を挿入した構成となっている。石英反応管203の上流側には、原料ガスの導入用配管が設けられている。V族原料であるアンモニアガスは、アンモニアガス導入配管207を通じて炉内に導入される。III族原料である金属ガリウム206は、石英製のボートに収容されて、ガリウム原料加熱用ヒータ201で加熱された領域に載置されている。結晶成長時には、このボート内部に、石英製の塩化ガリウム生成用塩酸ガス導入配管208を通じて塩酸ガスを流す。すると、金属ガリウム206と塩酸ガスが反応して塩化ガリウムガスが発生し、これが配管を通じて種結晶基板4の表面に到達する。塩化ガリウムと、アンモニアが加熱された基板表面で反応し、III-V族窒化物系半導体結晶が成長される。炉内には、ドーピングガス導入配管209を通じて、ドーピングガスを流すことも可能である。結晶成長の下地とする種結晶基板4は、回転軸205によって支持された基板フォルダ204に固定されており、成長中は回転されている。反応管内に導入されたガスは、下流の排気管210によって除害設備に導かれ、無害化処理を施された後、大気に排出される。
(実施例)
本実施例では、以下のとおり、まず、液相成長法(Naフラックス法)によりGaN結晶を製造し、さらにその上に、気相成長法(HVPE法)によりGaN結晶を製造した。
<液相成長法によるGaN結晶の製造>
まず、直径65mmのサファイア基板上に、MOCVD法(気相成長法)によりGaN種結晶層が積層された基板を準備した。サファイア基板の厚みは1mm、GaN種結晶層の厚みは5μmであった。次に、GaN種結晶層およびサファイア基板の上部の一部をエッチングにより除去した。こうして、基板の複数の凸部上に種結晶が配置されたGaN種結晶基板を作製した。凸部の形状は、直径は0.25mmの円形のドット状とし、また、その配置パターンは、一辺が0.55mmの正三角形の各頂点上に凸部が配置されたパターンの繰り返しとした。
次に、前記GaN種結晶基板を用いて、図5に示す装置で、窒素ガス雰囲気下、下記の条件で結晶成長を行い、GaN結晶を製造した。
温度[℃]    870
圧力[MPa]  4.0
時間[h]    72
GaNa     27:73
C[mol%]  0.5
坩堝       Al
なお、上記の「C[mol%]0.5」とは、炭素粉末を、ガリウム(Ga)、ナトリウム(Na)および前記炭素粉末の物質量の合計に対し、0.5mol%添加したことを示す。
操作としては、まず、坩堝114をステンレス容器113の中に入れ、ステンレス容器113を、電気炉(耐熱耐圧容器)110の中に入れた。原料ガスタンク120から、窒素ガスをステンレス容器113内に導入すると同時に、ヒータ(図示せず)により加熱して電気炉(耐熱耐圧容器)110内を、870度、40atm(約4.0MPa)の高温高圧条件下とし、72時間反応させて結晶成長を行い、目的とするGaN結晶を製造した。ここで、結晶成長界面を平坦なc面とするために、結晶成長条件を過飽和度の高い溶液に種結晶を浸漬する、かつ攪拌等により、ポイントシード間の凹部に窒素が効率的に供給される条件にした。
図7A~7Bに、上述の液相成長法により製造したGaN結晶層表面の写真を示す。
図7Aは、本発明の1実施例に係る、成長界面を平坦なc面として成長させたGaN結晶を示す概観写真であり、図7Bは、GaN結晶の表面を示す顕微鏡写真(図7A中の四角で囲った部分の拡大写真)である。
図示の通り、結晶全体にわたって平坦で均質な表面を有するGaN結晶が得られた。このGaN結晶の上部および前記サファイア基板を、更に研削および研磨により除去して、c面成長部だけを残し、直径60mm、厚み1.0mmの鏡面GaN結晶基板とした。こうして得られたGaN基板表面の中心及びそこから左右に10mm及び20mm離れた点の計5点について、SIMS分析で酸素濃度を測定したところ、いずれも4×1016~8×1016cm-3の範囲内に入っており、非常に低濃度でかつ均一に分布していることが確認された。また、同点における転位密度を、カソードルミネッセンスの暗点測定により行ったところ、いずれも1×10~9×10cm-2の範囲内に入っており、低密度でかつ均一に分布していることが確認された。更に、この基板のc面の曲率をX線回折測定から見積もったところ、その曲率半径は基板の表面に対して凹面型に5.2mであり、反りも小さいことが確認された。このGaN基板を、次の気相成長法によるGaN結晶製造用基板として供した。
<気相成長法によるGaN結晶の製造>
液相成長法により製造した上記GaN結晶基板上に、気相成長法によりGaN結晶を製造した。
直径60mmのGaN基板を種結晶として、図6に示したHVPE成長装置を用いてGaNの厚膜結晶を成長した。HVPE成長時のガス流量条件は、キャリアガスとして水素:920sccm、窒素:8200sccm、塩化ガリウム:180sccm、アンモニア:600sccmとした。成長圧力は100kPa、成長時の基板温度は1060℃とし、成長時間は15時間とした。成長中は、基板を5rpmで回転させた。この結果、約4.6mmの厚さのアンドープGaN結晶が、種結晶基板上にホモエピタキシャル成長した。得られた結晶の表面には、ピットなどの目立ったモフォロジの異常は無く、種結晶に極性反転領域が無かったことが確認できた。
上記で得られた結晶に、以下の加工を施した。
はじめに、研削機を用いて結晶の直径φ52mmよりも外側の領域を研削砥石でゆっくり研削除去した後、ワイヤーソーを用いてスライスし、新たに成長した結晶領域から厚さ635μmのGaN自立基板を5枚取得した。更に、スライスした基板に外形面取り加工を施して直径をφ50.8mmに成型し、オリエンテーションフラット、インデックスフラットを加工した後、表裏面に鏡面研磨加工を施し、厚さ400~450μmのGaN自立基板5枚を得た。
以上の加工を施す間、GaN結晶にクラックやチッピング等の不良が発生することはなかった。また、基板の反り(BOW)はいずれも10μm以内に抑えられていた。得られた基板の1枚を用いて前記と同様に転位密度をカソードルミネッセンス法を用いて計数したところ、面内5点で5.8×10~9.6×10cm-2という値が得られた。基板表面におけるc軸の傾きばらつきをX線回折法で測定したところ、いずれの基板も面内で±0.05°以内に収まっていた。得られたGaN基板表面の中心及びそこから左右に10mm及び20mm離れた点の計5点について、SIMS分析で酸素濃度を測定したところ、いずれも3×1016~5×1016cm-3の範囲内に入っていることが確認された。
(比較例)
<液相成長法によるGaN結晶の製造>
実施例と同様の種結晶基板を用意し、実施例と同じ成長装置で、従来技術で良く用いられている窒素ガス雰囲気下、下記の条件で結晶成長を行い、GaN結晶を製造した。
温度[℃]    870
圧力[MPa]  3.4
時間[h]    96
GaNa     27:73
C[mol%]  0.5
坩堝       Al
操作としては、まず、坩堝114をステンレス容器113の中に入れ、ステンレス容器113を、電気炉(耐熱耐圧容器)110の中に入れた。原料ガスタンク120から、窒素ガスをステンレス容器113内に導入すると同時に、ヒータ(図示せず)により加熱して電気炉(耐熱耐圧容器)110内を、870度、34atm(約3.4MPa)の高温高圧条件下とし、96時間反応させて結晶成長を行い、目的とするGaN結晶を製造した。ここでは、実施例とは異なり、特に結晶成長界面を平坦なc面とするための方策は採っていない。
図8A~8Bに、こうして得られた従来技術に係る液相成長法により製造したGaN結晶層表面の写真を示す。
図8Aは、従来例に係る、成長界面を凹凸のある面で成長させたGaN結晶を示す概観写真であり、図8Bは、GaN結晶の表面を示す顕微鏡写真(図8A中の四角で囲った部分の拡大写真)である。
図示の通り、結晶表面は全面が凹凸を有する荒れたモフォロジのGaN結晶が得られた。このGaN結晶の上部および前記サファイア基板を、更に研削および研磨により除去して、直径60mm、厚み1.0mmの鏡面GaN結晶基板とした。こうして得られたGaN基板表面の中心及びそこから左右に10mm及び20mm離れた点の計5点について、SIMS分析で酸素濃度を測定したところ、測定点によって値がばらついており、それぞれ1×1018~1×1020cm-3であった。また、同点における転位密度を、カソードルミネッセンスの暗点測定により行ったところ、こちらはいずれも1×10~5×10cm-2の範囲内に入っており、低密度でかつ均一に分布していることが確認された。更に、この基板のc面の曲率をX線回折測定から見積もったところ、その曲率半径は基板の表面に対して凹面型に10m以上であり、これもほぼ平坦に近いことが確認された。このGaN基板を、次の気相成長法によるGaN結晶製造用基板として供した。
<気相成長法によるGaN結晶の製造>
液相成長法により製造した上記GaN結晶基板上に、気相成長法によりGaN結晶を製造した。
上記のGaN基板を種結晶として、実施例と同条件でGaNの結晶をホモエピタキシャル成長した。この結果、約4.7mmの厚さのアンドープGaN結晶が種結晶上に成長したが、その表面には細かい凹凸状のモフォロジが見られ、鏡面にはなっていなかった。また、結晶の内部には細かい無数のクラックが発生している領域があった。
上記で得られた結晶に、研削機を用いて結晶の直径φ52mmよりも外側の領域を研削砥石でゆっくり研削除去した後、ワイヤーソーを用いてスライスしようとしたところ、ワイヤーで切り込みをいれた途端にクラックが発生して結晶が2つに割れてしまい、それ以上作業を続行することができなかった。
以上、本発明の実施の形態及び実施例を説明したが、本発明は、上記実施の形態及び実施例に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
また、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
本発明は、発光ダイオードやレーザーなどの光デバイス、ダイオードやトランジスタなどの高周波デバイス等に応用されるIII族窒化物半導体結晶を製造するために用いられるIII族窒化物半導体結晶基板に適用できる。
1     フラックス法用種結晶下地基板
2     フラックス法用核発生サイト(ポイントシード)
3     島状GaN結晶
3A~C,13       フラックス法で成長させたGaN結晶
4,14      フラックス法で成長させたGaN種結晶基板
5,15      低酸素濃度領域
6,16      高酸素濃度領域
7,17      HVPE法で成長させたGaN結晶
8     HVPE法で成長させたGaN基板
10   フラックス法用種結晶基板
100 フラックス法結晶成長装置
110 育成炉
111 ヒータ
112 熱電対
113 坩堝固定台
114 坩堝
115 融液
120 原料ガスタンク
130 管
140 圧力調整器
150 流量調整器
200 HVPE法結晶成長装置(HVPE炉)
201 原料加熱用ヒータ
202 結晶成長領域加熱用ヒータ
203 反応管
204 基板フォルダ
205 回転軸
206 金属ガリウム
207 アンモニアガス導入配管
208 塩化ガリウム生成用塩酸ガス導入配管
209 ドーピングガス導入配管
210 排気管

Claims (14)

  1.  液相成長法で成長させたIII族窒化物単結晶を種結晶基板として、その主面上に気相成長法でIII族窒化物単結晶をホモエピタキシャル成長させるIII族窒化物半導体結晶基板の製造方法において、
     前記種結晶基板の主面が+c面であり、
     前記種結晶基板は、面内全域に亘って、その主面近傍における結晶中の酸素原子濃度が1×1017cm-3以下である、III族窒化物半導体結晶基板の製造方法。
  2.  前記種結晶基板上に気相成長法で成長される前記III族窒化物単結晶は、結晶中の酸素原子濃度が1×1017cm-3以下である、請求項1に記載のIII族窒化物半導体結晶基板の製造方法。
  3.  前記種結晶基板の少なくとも主面の結晶領域は、その結晶成長時に2次元成長モードの平坦な成長界面形状を保った状態で成長された結晶領域により構成されている、請求項1又は2に記載のIII族窒化物半導体結晶基板の製造方法。
  4.  前記種結晶基板は、その結晶成長時に3次元成長モードの凹凸な成長界面形状を徐々に2次元成長モードの平坦な成長界面形状に移行させて成長された結晶からなる、請求項1又は2に記載のIII族窒化物半導体結晶基板の製造方法。
  5.  前記種結晶基板は、少なくとも主面に鏡面研磨加工が施されている、請求項1~4のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  6.  前記種結晶基板の表面における平均転位密度が、1×10cm-2以下である、請求項1~5のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  7.  前記種結晶基板のc面は、結晶内部で主面に向かって凹面型の反りを有している、請求項1~6のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  8.  前記種結晶基板の直径が50mm以上であり、かつそのc面が、結晶内部で主面に向かって曲率半径5m以上の凹面型の反りを有している、請求項7に記載のIII族窒化物半導体結晶基板の製造方法。
  9.  前記液相成長法が、フラックス法である、請求項1~8のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  10.  前記気相成長法がHVPE法であり、HVPE法により前記種結晶基板上に前記種結晶基板の厚さよりも厚く前記III族窒化物単結晶をホモエピタキシャル成長させる、請求項1~9のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  11.  前記種結晶基板は、基板上に複数のIII族窒化物種結晶が形成された種結晶形成基板(ポイントシード基板)を出発基板として作製されている、請求項1~10のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  12.  前記種結晶基板は、少なくとも主面には極性反転領域が存在していない、請求項1~11のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  13.  前記気相成長法で成長したIII族窒化物単結晶から、少なくとも1枚以上のIII族窒化物単結晶自立基板を作製する、請求項1~12のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
  14.  前記III族窒化物が、GaNを含む、請求項1~13のいずれか1項に記載のIII族窒化物半導体結晶基板の製造方法。
     
PCT/JP2016/054743 2015-03-03 2016-02-18 Iii族窒化物半導体結晶基板の製造方法 WO2016140074A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/555,004 US10309036B2 (en) 2015-03-03 2016-02-18 Method for manufacturing group-III nitride semiconductor crystal substrate
CN201680013458.8A CN107407008B (zh) 2015-03-03 2016-02-18 第iii族氮化物半导体晶体衬底的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041830A JP6578570B2 (ja) 2015-03-03 2015-03-03 Iii族窒化物半導体結晶基板の製造方法
JP2015-041830 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140074A1 true WO2016140074A1 (ja) 2016-09-09

Family

ID=56846335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054743 WO2016140074A1 (ja) 2015-03-03 2016-02-18 Iii族窒化物半導体結晶基板の製造方法

Country Status (5)

Country Link
US (1) US10309036B2 (ja)
JP (1) JP6578570B2 (ja)
CN (1) CN107407008B (ja)
TW (1) TW201704567A (ja)
WO (1) WO2016140074A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167294A (ja) * 2019-07-04 2019-10-03 株式会社サイオクス 結晶基板の製造方法および結晶基板
CN111434809A (zh) * 2019-01-14 2020-07-21 中国科学院苏州纳米技术与纳米仿生研究所 非极性/半极性氮化镓单晶及其助熔剂法生长方法
US11220759B2 (en) 2019-02-18 2022-01-11 Osaka University Method of manufacturing a group III-nitride crystal comprising a nucleation step, a pyramid growth step, a lateral growth step, and a flat thick film growth step

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824829B2 (ja) * 2017-06-15 2021-02-03 株式会社サイオクス 窒化物半導体積層物の製造方法、窒化物半導体自立基板の製造方法および半導体装置の製造方法
JP6901995B2 (ja) * 2017-06-27 2021-07-14 株式会社サイオクス 膜厚測定方法、窒化物半導体積層物の製造方法および窒化物半導体積層物
JP6352502B1 (ja) * 2017-06-27 2018-07-04 株式会社サイオクス 膜厚測定方法、窒化物半導体積層物の製造方法および窒化物半導体積層物
JP6983570B2 (ja) * 2017-08-01 2021-12-17 株式会社サイオクス 半導体積層物の製造方法、窒化物半導体自立基板の製造方法、半導体積層物および半導体装置
US11309455B2 (en) 2017-08-24 2022-04-19 Ngk Insulators, Ltd. Group 13 element nitride layer, free-standing substrate and functional element
WO2019039246A1 (ja) * 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
DE112017007796B4 (de) 2017-08-24 2023-09-14 Ngk Insulators, Ltd. Schichten eines Kristalls aus einem Nitrid eines Elements der Gruppe 13, selbsttragende Substrate, funktionelle Vorrichtungen und Verbundsubstrate
JP6764035B2 (ja) * 2017-08-24 2020-09-30 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
WO2019039190A1 (ja) * 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
CN111052414B (zh) 2017-08-24 2023-07-21 日本碍子株式会社 13族元素氮化物层、自立基板以及功能元件
WO2019039208A1 (ja) * 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
WO2019039249A1 (ja) * 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
EP3757259A4 (en) * 2018-02-23 2021-09-15 Sumitomo Electric Industries, Ltd. GALLIUM NITRIDE CRYSTAL SUBSTRATE
JP7072769B2 (ja) * 2018-03-02 2022-05-23 国立大学法人大阪大学 Iii族窒化物結晶の製造方法
JP6553765B1 (ja) 2018-03-20 2019-07-31 株式会社サイオクス 結晶基板の製造方法および結晶基板
CN112219287A (zh) * 2018-03-30 2021-01-12 加利福尼亚大学董事会 使用外延横向过生长制造非极性和半极性器件的方法
US11280024B2 (en) 2019-03-18 2022-03-22 Toyoda Gosei Co., Ltd. Method for producing a group III nitride semiconductor by controlling the oxygen concentration of the furnace internal atmosphere
EP3978656A4 (en) * 2019-05-30 2022-08-10 Mitsubishi Chemical Corporation GAN SUBSTRATE WAFER AND PROCESS FOR ITS MANUFACTURE
JP7467182B2 (ja) * 2020-03-18 2024-04-15 住友化学株式会社 窒化物結晶基板の製造方法、窒化物結晶基板および積層構造体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298269A (ja) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Iii族窒化物結晶基板およびその製造方法ならびにiii族窒化物半導体デバイス
JP2009029639A (ja) * 2007-06-25 2009-02-12 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス
JP2009519198A (ja) * 2005-12-15 2009-05-14 リュミログ 低転位密度GaNの成長のためのプロセス
JP2011246304A (ja) * 2010-05-26 2011-12-08 Furukawa Co Ltd Iii族窒化物半導体の種結晶の製造方法、iii族窒化物半導体単結晶の製造方法、基板の製造方法、種結晶
JP2012006794A (ja) * 2010-06-25 2012-01-12 Sumitomo Electric Ind Ltd GaN結晶の成長方法
JP2012066983A (ja) * 2010-09-27 2012-04-05 Sumitomo Electric Ind Ltd GaN結晶の成長方法およびGaN結晶基板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560296B2 (en) 2000-07-07 2009-07-14 Lumilog Process for producing an epitalixal layer of galium nitride
EP0911697A3 (en) 1997-10-22 1999-09-15 Interuniversitair Microelektronica Centrum Vzw A fluorinated hard mask for micropatterning of polymers
US6844267B1 (en) 1997-10-22 2005-01-18 Interuniversitair Micro-Elektronica Centrum Anisotropic etching of organic-containing insulating layers
TW428331B (en) * 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
TW417315B (en) * 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
JP3748011B2 (ja) * 1999-06-11 2006-02-22 東芝セラミックス株式会社 GaN半導体結晶成長用Siウエーハ、それを用いたGaN発光素子用ウエーハ及びそれらの製造方法
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
JP4232605B2 (ja) * 2003-10-30 2009-03-04 住友電気工業株式会社 窒化物半導体基板の製造方法と窒化物半導体基板
JP4431973B2 (ja) * 2003-12-10 2010-03-17 ソニー株式会社 動画像処理装置および方法
JP4622447B2 (ja) 2004-01-23 2011-02-02 住友電気工業株式会社 Iii族窒化物結晶基板の製造方法
CN101124353B (zh) * 2004-09-27 2011-12-14 盖利姆企业私人有限公司 生长第(ⅲ)族金属氮化物薄膜的方法和装置、以及第(ⅲ)族金属氮化物薄膜
US9790616B2 (en) * 2006-04-07 2017-10-17 Sixpoint Materials, Inc. Method of fabricating bulk group III nitride crystals in supercritical ammonia
US9834863B2 (en) * 2006-04-07 2017-12-05 Sixpoint Materials, Inc. Group III nitride bulk crystals and fabrication method
KR101018709B1 (ko) * 2007-07-20 2011-03-04 주식회사 하이닉스반도체 반도체 소자의 핀 저항 조절용 다이오드
JP2009126723A (ja) * 2007-11-20 2009-06-11 Sumitomo Electric Ind Ltd Iii族窒化物半導体結晶の成長方法、iii族窒化物半導体結晶基板の製造方法およびiii族窒化物半導体結晶基板
JP2011256082A (ja) * 2010-06-10 2011-12-22 Sumitomo Electric Ind Ltd GaN結晶自立基板およびその製造方法
JP5754191B2 (ja) * 2011-03-18 2015-07-29 株式会社リコー 13族窒化物結晶の製造方法および13族窒化物結晶基板の製造方法
JP2014055091A (ja) 2012-09-13 2014-03-27 Osaka Univ Iii−v族化合物結晶製造方法、種結晶形成基板製造方法、iii−v族化合物結晶、半導体装置、iii−v族化合物結晶製造装置、種結晶形成基板製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298269A (ja) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Iii族窒化物結晶基板およびその製造方法ならびにiii族窒化物半導体デバイス
JP2009519198A (ja) * 2005-12-15 2009-05-14 リュミログ 低転位密度GaNの成長のためのプロセス
JP2009029639A (ja) * 2007-06-25 2009-02-12 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス
JP2011246304A (ja) * 2010-05-26 2011-12-08 Furukawa Co Ltd Iii族窒化物半導体の種結晶の製造方法、iii族窒化物半導体単結晶の製造方法、基板の製造方法、種結晶
JP2012006794A (ja) * 2010-06-25 2012-01-12 Sumitomo Electric Ind Ltd GaN結晶の成長方法
JP2012066983A (ja) * 2010-09-27 2012-04-05 Sumitomo Electric Ind Ltd GaN結晶の成長方法およびGaN結晶基板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434809A (zh) * 2019-01-14 2020-07-21 中国科学院苏州纳米技术与纳米仿生研究所 非极性/半极性氮化镓单晶及其助熔剂法生长方法
CN111434809B (zh) * 2019-01-14 2022-04-19 中国科学院苏州纳米技术与纳米仿生研究所 非极性/半极性氮化镓单晶及其助熔剂法生长方法
US11220759B2 (en) 2019-02-18 2022-01-11 Osaka University Method of manufacturing a group III-nitride crystal comprising a nucleation step, a pyramid growth step, a lateral growth step, and a flat thick film growth step
JP2019167294A (ja) * 2019-07-04 2019-10-03 株式会社サイオクス 結晶基板の製造方法および結晶基板
JP7141984B2 (ja) 2019-07-04 2022-09-26 株式会社サイオクス 結晶基板

Also Published As

Publication number Publication date
US20180038010A1 (en) 2018-02-08
JP2016160151A (ja) 2016-09-05
CN107407008A (zh) 2017-11-28
CN107407008B (zh) 2020-09-11
TW201704567A (zh) 2017-02-01
JP6578570B2 (ja) 2019-09-25
US10309036B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP6578570B2 (ja) Iii族窒化物半導体結晶基板の製造方法
JP5885650B2 (ja) 最初のiii族−窒化物種晶からの熱アンモニア成長による改善された結晶性のiii族−窒化物結晶を生成するための方法
US8202793B2 (en) Inclusion-free uniform semi-insulating group III nitride substrates and methods for making same
US11574809B2 (en) Nitride semiconductor template and nitride semiconductor device
KR101749781B1 (ko) 단결정 기판, 이를 이용하여 얻어지는 ⅲ족 질화물 결정 및 ⅲ족 질화물 결정의 제조방법
WO2009090904A1 (ja) Iii族窒化物結晶の成長方法
JP4797793B2 (ja) 窒化物半導体結晶の製造方法
WO2006013957A1 (ja) Ga含有窒化物半導体単結晶、その製造方法、並びに該結晶を用いた基板およびデバイス
WO2016136548A1 (ja) 窒化物半導体テンプレート及びその製造方法、並びにエピタキシャルウエハ
JP2006290677A (ja) 窒化物系化合物半導体結晶の製造方法及び窒化物系化合物半導体基板の製造方法
JP6526811B2 (ja) Iii族窒化物結晶を加工する方法
JP4340866B2 (ja) 窒化物半導体基板及びその製造方法
JP2005200250A (ja) 窒化物半導体結晶の製造方法及び窒化物半導体基板の製造方法
US20230399770A1 (en) Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal
JP4888377B2 (ja) 窒化物半導体自立基板
JP4665837B2 (ja) 窒化物半導体基板の製造方法
JP2006232571A (ja) 窒化ガリウム単結晶基板の製造方法
JP2024122611A (ja) 窒化ガリウム基板
JP5182396B2 (ja) 窒化物半導体自立基板及び発光装置
JP2013199412A (ja) Iii族窒化物半導体結晶の製造方法
JP2012121771A (ja) 窒化ガリウム基板
WO2011111647A1 (ja) 窒化物系化合物半導体基板の製造方法、窒化物系化合物半導体基板及び窒化物系化合物半導体自立基板
JP2011187592A (ja) Ngo基板、窒化物系化合物半導体基板の製造方法、窒化物系化合物半導体基板及び窒化物系化合物半導体自立基板
JP2012136418A (ja) Iii族窒化物半導体基板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15555004

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758768

Country of ref document: EP

Kind code of ref document: A1