WO2016139992A1 - ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ - Google Patents

ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ Download PDF

Info

Publication number
WO2016139992A1
WO2016139992A1 PCT/JP2016/052522 JP2016052522W WO2016139992A1 WO 2016139992 A1 WO2016139992 A1 WO 2016139992A1 JP 2016052522 W JP2016052522 W JP 2016052522W WO 2016139992 A1 WO2016139992 A1 WO 2016139992A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polyester film
aspect ratio
layer
polyester
Prior art date
Application number
PCT/JP2016/052522
Other languages
English (en)
French (fr)
Inventor
昌平 吉田
莉沙 ▲浜▼▲崎▼
青山 滋
坂本 純
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680006648.7A priority Critical patent/CN107207755B/zh
Priority to US15/554,775 priority patent/US20180044507A1/en
Priority to EP16758688.2A priority patent/EP3266813B1/en
Priority to JP2016507924A priority patent/JP6686877B2/ja
Publication of WO2016139992A1 publication Critical patent/WO2016139992A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to a polyester film.
  • the present invention also relates to an electrical insulating sheet, a wind power generator, and an adhesive tape using the film.
  • Polyester especially polyethylene terephthalate, polyethylene-2,6-naphthalenedicarboxylate, etc.
  • the polyester film made from the polyester, especially the biaxially oriented polyester film is a copper-clad laminate, solar cell backsheet, adhesive tape, flexible printed circuit board, membrane switch, planar, due to its mechanical and electrical properties.
  • an industrial material such as heating elements, flat cables, electrical insulation materials such as motor insulation materials, magnetic recording materials, capacitor materials, packaging materials, automotive materials, building materials, photographic applications, graphic applications, thermal transfer applications, etc. in use.
  • electrical insulation materials used in motors and the like are used for power generation and use due to the miniaturization and high density of motors.
  • electrical insulation materials used in motors and the like for example, insulation sheets for wind power generation, hybrid motor sheets, and air conditioner motor sheets
  • the solar cell backsheet material also has a problem that the power generation efficiency is lowered due to a temperature increase due to heat accumulation during power generation. Therefore, a heat countermeasure that conducts and dissipates the heat generated inside is important.
  • Patent Document 1 a composite film (Patent Document 1) in which a protective layer of a PET film is laminated on one side or both surface layers of a graphite sheet having high thermal conductivity, a film containing a fibrous carbon material in biaxially stretched PET (patent) Document 2 and Patent Document 3) have been proposed.
  • Patent Document 1 there is a problem that the graphite sheet is brittle and has poor mechanical properties, and the thermal conductivity of the PET film serving as the protective layer is low, so that the high thermal conductivity of the graphite film cannot be exhibited sufficiently. In addition, there is a problem that the thickness is increased. In addition, since the technologies of Patent Document 2 and Patent Document 3 have conductivity, they cannot be used for motor insulating materials, solar battery back sheets, electronic components, and the like that are required for insulation.
  • an object of the present invention is to provide a polyester film that is excellent in electrical insulation, thermal conductivity, and mechanical properties.
  • the present invention has the following configuration. That is, (1) A layer (P layer) containing at least one of crystalline polyester (A), plate-like particles (b1) having an aspect ratio of 2 or more, and acicular particles (b2) having an aspect ratio of 2 or more. Content of plate-like particles (b1) having an aspect ratio of 2 or more and acicular particles (b2) having an aspect ratio of 2 or more, the Young's modulus being 2 GPa or more, and the P layer containing the polyester film Is a polyester film in which Wb is 10 or more and V / Wb is 1 or less, where Wb (mass%) is the sum of V and the porosity in the P layer is V (volume%).
  • the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more have a substituent having reactivity with the crystalline polyester (A) on the surface (hereinafter referred to as a reactive substituent).
  • A)) and the amount of the reactive substituent (a) per unit surface area of the particles (B) is 0.2 ⁇ 10 ⁇ 6 mol / m 2 or more and 1.4 ⁇ 10 ⁇ 4 mol / m
  • the polyester film as described in (1) which is 2 or less.
  • the P layer contains both plate-like particles (b1) having an aspect ratio of 2 or more and needle-like particles (b2) having an aspect ratio of 2 or more, and the plate layer having an aspect ratio of 2 or more contained in the P layer.
  • Wb1 weight percentage
  • Wb2 mass percentage
  • the amount of the reactive substituent (a) per unit surface area of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more is 0.2 ⁇ 10 ⁇ 6 mol. / M 2 or more and 1.4 ⁇ 10 ⁇ 4 mol / m 2 or less.
  • the plate-like particles (b1) having an aspect ratio of 2 or more and the needle-like particles (b2) having an aspect ratio of 2 or more are treated with a surface treatment agent having a reactive substituent (a).
  • a surface treatment agent having a reactive substituent (a) When the mass of (B) is 100 parts by mass, the method for producing a polyester film according to (11) or (12), wherein the mass ratio of the surface treatment agent is from 0.1 parts by mass to 5 parts by mass.
  • the chip-shaped composition is obtained in the melt-kneading step, and then the obtained chip is subjected to solid-phase polymerization and then melt-formed into a film in the melt-extrusion step (11) to (13) A method for producing a polyester film.
  • polyester film that is superior in electrical insulation, thermal conductivity, and mechanical properties as compared with conventional polyester films.
  • polyester films include copper-clad laminates, solar cell back sheets, adhesive tapes, flexible printed boards, membrane switches, planar heating elements, flat cables, and other electrically insulating materials, capacitor materials, automotive materials, and building materials. It can be suitably used for applications where electrical insulation and thermal conductivity are important.
  • a polyester film it is possible to provide a wind power generator with high power generation efficiency, a solar battery, and an electronic device with low power consumption.
  • the polyester film of the present invention comprises a layer containing at least one of crystalline polyester (A), plate-like particles (b1) having an aspect ratio of 2 or more, and acicular particles (b2) having an aspect ratio of 2 or more ( P layer) (hereinafter, the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more may be referred to as particles (B)).
  • the crystalline polyester (A) is a polyester having a main component having a dicarboxylic acid component and a diol component, and is increased according to JIS K-7122 (1987). Heat the resin from 25 ° C. to 300 ° C. at a temperature increase rate of 20 ° C./min at a temperature rate of 20 ° C./min (1stRUN), hold in that state for 5 minutes, then rapidly cool to 25 ° C. or less, and again from room temperature Resin having a 2ndRUN differential scanning calorimetry chart obtained by heating to 300 ° C.
  • a resin having a heat of crystal fusion ⁇ Hm of 20 J / g or more, more preferably 25 J / g or more, and particularly preferably 30 J / g or more is used.
  • dicarboxylic acid component constituting the polyester examples include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalon.
  • Aliphatic dicarboxylic acids such as acid, ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, alicyclic dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4- Naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 4,4′-diphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sodium sulfo I Phthalic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) aromatic dicarboxylic acids such as
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of oxyacids, etc., to the carboxyl group terminal of the carboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of oxyacids, etc.
  • these may be used independently or may be used in multiple types as needed.
  • diol component constituting the polyester examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Aliphatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, and the like, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9′-bis (4 Examples include, but are not limited to, diols such as -hydroxyphenyl) fluorene and aromatic diols, and a combination of a plurality of the above-mentioned diols. Moreover, these may be used independently or may be used in multiple types as needed.
  • the proportion of the aromatic dicarboxylic acid constituent component in the total dicarboxylic acid constituent component in the crystalline polyester (A) in the P layer is preferably 90 mol% or more and 100 mol% or less. More preferably, it is 95 mol% or more and 100 mol% or less. More preferably, it is 98 mol% or more and 100 mol% or less, particularly preferably 99 mol% or more and 100 mol% or less, and most preferably 100 mol%, that is, all of the dicarboxylic acid components should be aromatic carboxylic acid components. If it is less than 90 mol%, the heat resistance may decrease.
  • the proportion of the aromatic dicarboxylic acid component in the total dicarboxylic acid component in the crystalline polyester (A) in the P layer is 90 mol% or more and 100 mol% or less, which will be described later. In the production method, orientation and crystallization are facilitated, and a highly heat-resistant film can be obtained.
  • the repeating unit of the crystalline polyester (A) of the P layer that is, the main repeating unit composed of a dicarboxylic acid component and a diol component is ethylene terephthalate, ethylene-2,6-naphthalenedicarboxylate.
  • Propylene terephthalate, butylene terephthalate, 1,4-cyclohexylenedimethylene terephthalate, and ethylene-2,6-naphthalenedicarboxylate are preferably used, and these are preferably the main repeating units.
  • the main repeating unit referred to here is such that the total of the above repeating units is 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more of all repeating units.
  • ethylene terephthalate and ethylene-2,6-naphthalenedicarboxylate are preferably the main repeating units from the viewpoint of low cost, easy polymerization and excellent heat resistance.
  • ethylene terephthalate is used as the main repeating unit, a cheap and versatile heat-resistant film can be obtained, and ethylene-2,6-naphthalenedicarboxylate is used as the main repeating unit. In this case, the film can be made more excellent in heat resistance.
  • a polyester can be obtained by appropriately combining the above-described constituent components (dicarboxylic acid and diol) and polycondensing them.
  • the crystalline polyester (A) of the P layer contains a carboxyl group and / or Alternatively, it is also preferable that a component having three or more hydroxyl groups is copolymerized. In that case, the copolymerization rate of the component having three or more carboxyl groups and / or hydroxyl groups is 0.005 mol% or more and 2.5 mol% or less with respect to all the components of the crystalline polyester (A). It is preferable.
  • the intrinsic viscosity (hereinafter referred to as IV) of the crystalline polyester (A) constituting the P layer is preferably 0.6 or more. More preferably, it is 0.65 or more, More preferably, it is 0.68 or more, Most preferably, it is 0.7 or more. If the IV is small, when particles (B) described later are contained, the entanglement between the molecules becomes too small, the mechanical properties cannot be obtained, and the deterioration of the mechanical properties with time tends to proceed, and the brittleness is weak. It may become easy to become.
  • high mechanical properties can be obtained by setting the IV of the crystalline polyester constituting the P layer to 0.6 or more.
  • the upper limit of IV is not particularly determined, but the polymerization time may be long, which may be disadvantageous in terms of cost or may make melt extrusion difficult. Therefore, it is preferably 1.0 or less, more preferably 0.9 or less.
  • the polyester of the above IV when a predetermined melt viscosity is obtained by melt polymerization, a method of obtaining chips by performing discharge, stranding, cutting and chipping, and a chip having an intrinsic viscosity lower than the target once. There is a method obtained by performing solid-state polymerization thereafter. Among these, particularly when IV is 0.65 or more, thermal degradation can be suppressed and the number of carboxyl group terminal groups can be reduced. It is preferable to use the method obtained by performing. More preferably, the solid phase polymerization is performed after the particles (B) are contained in the crystalline polyester (A) by the method described later, whereby the IV of the film can be further increased. As a result, when the crystalline polyester (A) contains the particles (B) to form a film by the production method described later, the extensibility is improved and obtained by suppressing excessive crystallization. The mechanical properties of the film are improved.
  • the melting point Tm of the crystalline polyester (A) constituting the P layer is preferably 240 ° C. or higher and 290 ° C. or lower.
  • the melting point Tm here is the melting point Tm in the temperature rising process (temperature rising rate: 20 ° C./min) obtained by DSC.
  • the melting point of the polyester is increased from 25 ° C. by a method based on JIS K-7121 (1987).
  • the melting point Tm of the crystalline polyester (A) is defined as the peak top temperature of the 2ndRun crystal melting peak obtained by raising the temperature. More preferably, the melting point Tm is 245 ° C. or higher and 275 ° C. or lower, more preferably 250 ° C. or higher and 265 ° C. or lower. If the melting point Tm is less than 240 ° C, the heat resistance of the film may be inferior, and it is not preferable.
  • the melting point Tm exceeds 290 ° C, extrusion may be difficult.
  • the polyester film of the present invention by setting the melting point Tm of the crystalline polyester (A) constituting the P layer to 245 ° C. or more and 290 ° C. or less, a heat resistant polyester film can be obtained.
  • the number of carboxyl group terminal groups of the crystalline polyester (A) constituting the P layer is preferably 40 equivalent / t or less. More preferably, it is 30 equivalent / t or less, More preferably, it is 20 equivalent / t or less. If the number of carboxyl group end groups is high, even if the structure is controlled, the catalytic action by protons derived from the carboxyl group end groups is strong, hydrolysis and thermal decomposition are promoted, and deterioration of the normal polyester film may be more likely to proceed. is there. By setting the number of carboxyl group terminal groups within the above range, a polyester film in which deterioration such as hydrolysis or thermal decomposition is suppressed can be obtained.
  • the end-capping agent is a compound that reacts with and binds to a carboxyl group end group or a hydroxyl end group of a polyester to eliminate the catalytic activity of protons derived from the end group, and specifically includes an oxazoline group, an epoxy group. , A compound having a substituent such as a carbodiimide group or an isocyanate group.
  • a hydrolysis-resistant agent it is preferable to contain 0.01 mass% or more with respect to P layer. More preferably, it is 0.1 mass% or more.
  • the upper limit of the content of the hydrolysis-resistant agent is preferably 2% by mass or less, more preferably 1% by mass or less with respect to the P layer, from the viewpoint that an excessive hydrolysis-resistant agent may reduce flame retardancy. More preferably, it is 0.8% by mass or less.
  • the polyester film of the present invention needs to contain at least one of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more in the P layer (hereinafter referred to as “the P film”).
  • the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more may be collectively referred to as particles (B)).
  • the plate-like particle (b1) having an aspect ratio of 2 or more here refers to a primary particle surrounded by a circumscribed cuboid as shown in FIG. 1, the longest side of the circumscribed cuboid is length (l), and the shortest side is thick.
  • the ratio 1 / t of the length (l) and the thickness (t) is 2 or more, and at the same time, the length (l) and the width Particles having a ratio l / b of (b) of 1 or more and 2 or less.
  • the needle-like particles (b2) having an aspect ratio of 2 or more referred to here enclose primary particles with a circumscribed cuboid as shown in FIG. 1, the longest side of the circumscribed cuboid is length (l), and the shortest one side.
  • the ratio l / t of length (l) to thickness (t) is 2 or more, and at the same time, length (l) And a ratio l / b of the width (b) is larger than 2.
  • the aspect ratio here is a ratio 1 / t of the length (l) and the thickness (t) of the plate-like particles or needle-like particles.
  • a polyester film containing plate-like particles or needle-like particles having an aspect ratio of 2 or more has a higher contact probability between the particles than spherical particles, and the contact probability becomes higher as the aspect ratio is higher.
  • the sum (Wb) of the content of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more is 10% by mass in the P layer.
  • the aspect ratio is more preferably 3 or more, and still more preferably 5 or more.
  • the upper limit of the aspect ratio is not particularly determined, but is preferably 40 or less, more preferably 30 from the viewpoint of preventing the particles from being broken or cracked when the particles (B) are kneaded into the resin. It is as follows.
  • the sum Wb (mass%) of the content of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more contained in the P layer may be 10 mass% or more. It is necessary, more preferably 12% by mass to 50% by mass, further preferably 15% by mass to 40% by mass, and particularly preferably 18% by mass to 35% by mass. If the content is less than 10% by mass, the probability of contact between particles decreases, and as a result, the thermal conductivity decreases. If the content exceeds 50% by mass, the film formability of the film and the mechanical properties after stretching are lowered.
  • the length (l) of the plate-like particles (b1) and the needle-like particles (b2) is preferably 1 ⁇ m to 80 ⁇ m, more preferably 2 ⁇ m to 40 ⁇ m, and further preferably 3 ⁇ m to 20 ⁇ m. is there. If the length (l) is less than 1 ⁇ m, the interfacial area may become too large and the thermal conductivity may decrease. If the length (l) exceeds 80 ⁇ m, the film-forming property of the film decreases, and in particular, stretching in the stretching step described later. The productivity may deteriorate and productivity may deteriorate. In the polyester film of the present invention, it is preferable that the plate-like particles (b1) and the needle-like particles (b2) have a length of 1 ⁇ m or more and 80 ⁇ m or less because both thermal conductivity and film forming properties can be achieved.
  • the plate-like particles (b1) and needle-like particles (b2) that can be used are, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, Zinc, ruthenium, praseodymium, chromium, nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum and other metals, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium Metal oxides such as tin oxide, yttrium oxide, lanthanum oxide, zirconium oxide, aluminum oxide, magnesium oxide, and silicon oxide, metal fluorides such as lithium fluoride, magnesium fluoride, aluminum fluoride, cryolite, calcium phosphate Any metal phosphate, carbonates such as calcium carbonate, sulfates such as barium sulfate, magnesium sulfate,
  • the plate-like particles (b1) and the needle-like particles (b2) are made of a conductive material.
  • Including titanates such as potassium titanate are preferable. In these cases, the effect of the present invention that the effect of the present invention that the present invention that the effect of the present invention that the present invention that
  • the polyester film of the present invention contains at least one of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more in the crystalline polyester (A).
  • the layer contained in the P layer so that the sum Wb of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more is 10% by mass or more. It is a film having (P layer).
  • the P layer may contain at least one of plate-like particles (b1) having an aspect ratio of 2 or more and needle-like particles (b2) having an aspect ratio of 2 or more, more preferably plate-like particles (b1). And needle-like particles (b2) are preferably contained.
  • Wb2 / Wb1 is preferably 0.7 or more and 9 or less in order to increase thermal conductivity. More preferably, it is 1-8, More preferably, it is 2-7. If Wb2 / Wb1 is too small or too large, the contact probability between the plate-like particles and the needle-like particles is lowered, and the degree of improvement in the thermal conductivity in the thickness direction of the film may be reduced.
  • the polyester film of the present invention needs to have a Young's modulus of 2 GPa or more.
  • the Young's modulus is measured by changing the direction of the Young's modulus of the film every 10 ° in the plane of the film, and the Young's modulus Ea and the direction in which the Young's modulus is maximized are in-plane. It is an average value of Young's modulus Eb in the orthogonal direction. More preferably, the Young's modulus is 2 GPa or more, and further preferably 3 GPa or more.
  • the Young's modulus has a correlation with the orientation / crystalline state of the crystalline polyester (A), and the polyester film having a Young's modulus of less than 2 GPa has a reduced orientation / crystallinity of the crystalline polyester (A). Represents a decrease in heat resistance and dimensional stability.
  • the polyester film of the present invention preferably has a dynamic storage elastic modulus E ′ at 100 ° C. of 5 ⁇ 10 7 Pa or more obtained by dynamic viscoelasticity measurement (hereinafter referred to as DMA) at a frequency of 1 Hz. More preferably, it is 1 ⁇ 10 8 Pa or more, and further preferably 5 ⁇ 10 8 Pa or more.
  • a polyester film having a small E ′ represents that the orientation / crystallinity of the crystalline polyester (A) is lowered, and heat resistance and dimensional stability may be lowered.
  • V / Wb is 1 or less. It is necessary.
  • the porosity here refers to the ratio of the area of the void in the cross-sectional area of the film in the cross-sectional SEM image of the P layer, and the void ratio V (volume%) is also based on this ratio. More preferably, it is 0.8 or less, More preferably, it is 0.6 or less, Most preferably, it is 0.5 or less.
  • V / Wb exceeds 1, as a result of occupying a large amount of air having low thermal conductivity in the film, the thermal conductivity of the film decreases.
  • the lower limit of V / Wb is zero. In the polyester film of the present invention, by setting V / Wb to 1 or less, high thermal conductivity can be obtained.
  • the surface of the particle (B) has a substituent having reactivity with the crystalline polyester (A) (hereinafter referred to as “substituent”). Those having a reactive substituent (a)) are preferably used.
  • the reactive substituent (a) refers to a substituent that can be bonded by reacting with a carboxyl end group or a hydroxyl end group of the polyester, and specifically includes an oxazoline group, an epoxy group, a carbodiimide group. , Substituents such as isocyanate groups and acid anhydride groups.
  • an epoxy group is particularly preferable because of its high reactivity with polyester and high heat resistance of the formed bond.
  • a reactive substituent (a) on the surface of the particle (B) a bond is formed when the crystalline polyester (A) and the particle (B) are kneaded, thereby forming a strong interface. Therefore, interfacial peeling can be suppressed at the interface between the crystalline polyester (A) and the particles (B) in the stretching step described later.
  • the amount of the reactive substituent (a) per unit surface area of the particles (B) is 0.2 ⁇ 10 ⁇ 6 mol / m 2 or more and 1.4 ⁇ 10 ⁇ 4 mol / m 2 or less. Is preferred. More preferably, it is 1 ⁇ 10 ⁇ 5 mol / m 2 or more and 1 ⁇ 10 ⁇ 4 mol / m 2 or less, and further preferably 1.3 ⁇ 10 ⁇ 5 mol / m 2 or more and 5 ⁇ 10 ⁇ 5 mol / m 2 or less. is there.
  • the amount of the reactive substituent (a) per unit surface area of the particles (B) is 0.2 ⁇ 10 ⁇ 6 mol / m 2 or more and 1.4 ⁇ 10 ⁇ 4 mol / m 2 or less. By doing so, it becomes possible to achieve both thermal conductivity and stretchability.
  • the amount of the reactive substituent (a) in the particles (B) can be determined by a known titration method. For example, taking the case of an epoxy group as an example, it was determined by the following method in the present invention. Disperse particles (B) in water to make a preparation solution, add HCl-CaCl 2 reagent, react at a constant temperature for a certain time, stop the reaction by adding an excessive amount of KOH, and use it as an indicator. Back titration was performed with aqueous HCl using phenolphthalein.
  • the particles (B) are preferably treated with a surface treatment agent having a reactive substituent (a).
  • a surface treatment agent having a reactive substituent (a).
  • the surface treatment agent include oxazoline groups, epoxy groups, carbodiimide groups, acid anhydride groups, silane coupling agents having an isocyanate group, titanium coupling agents, and aluminate coupling agents.
  • Coupling agent such as 3-trimethoxysilylpropyl silane coupling agent having an acid anhydride group such as succinic anhydride is preferably used.
  • the alkoxy oligomer etc. which have a reactive substituent (a) are used suitably.
  • monomers having an epoxy group such as glycidyl methacrylate, resins obtained by copolymerization of a monomer having an isocyanate group such as 2-isocyanatoethyl methacrylate and styrene, ethylene, propylene, acrylic, etc., polycarbodiimide, oxazoline group-containing resins, etc. Used for.
  • Silane coupling agent Alkoxy oligomer having a reactive substituent group (a) is particularly preferred.
  • mixing of the surface treatment agents having the above-mentioned reactive substituent (a), and mixing of the surface treatment agent having the reactive substituent (a) and the surface treatment agent having no reactive substituent are also preferably used. It is done.
  • the P layer contains at least one of the crystalline polyester (A), plate-like particles (b1) having an aspect ratio of 2 or more, and acicular particles (b2) having an aspect ratio of 2 or more.
  • the resin composition containing the resin composition is obtained by the production method described later, the difference ⁇ Tcg between the glass transition temperature Tg of the P layer and the cold crystallization peak top temperature Tcc is preferably 44 ° C. or higher.
  • the glass transition temperature Tg and the cold crystallization peak top temperature Tcc here are the glass transition temperature Tg and the cold crystallization peak top temperature Tcc in the temperature raising process (temperature rising rate: 20 ° C./min), and are JIS K- 7121 (1987), the glass transition temperature Tg and the cold crystallization peak top temperature Tcc in the differential scanning calorimetry chart of 2ndRUN obtained by the method described later, and the difference between the obtained Tg value and Tcc value. Accordingly, ⁇ Tcg is set. More preferably, ⁇ Tcg is 45 ° C. or more and 50 ° C. or less. When ⁇ Tcg is low, stretching becomes difficult and film forming properties may be deteriorated.
  • a good film forming property can be obtained when ⁇ Tcg is 44 ° C. or higher.
  • a preferable method is to increase the IV of the crystalline polyester (A) in the P layer.
  • the polyester film of the present invention may be a single-layer film composed only of the P layer, or a laminated film having a laminated structure with other layers (hereinafter, other layers may be abbreviated as P2 layers), Are also preferably used.
  • P2 layers other layers
  • the proportion of the P layer is preferably 40% by volume or more of the entire polyester film. More preferably, it is 50 volume% or more, More preferably, it is 70 volume% or more, Most preferably, it is 80 volume% or more. If the ratio of the P layer is less than 40% by volume, the effect of improving the heat resistance by the P layer may not be exhibited.
  • the heat resistance higher than that of the conventional polyester film can be obtained by setting the ratio of the P layer to 40% by volume or more.
  • the thickness of the P layer is preferably 5 ⁇ m or more and 500 ⁇ m or less, and more preferably 10 ⁇ m or more and 400 ⁇ m or less. More preferably, they are 20 micrometers or more and 300 micrometers or less.
  • the thickness is less than 5 ⁇ m, the film formability of the film is lowered, and film formation may be difficult.
  • it is thicker than 500 ⁇ m for example, when an electrical insulating sheet using the film is processed, cutting or bending may be difficult.
  • the thickness of the P layer is 5 ⁇ m or more and 500 ⁇ m or less, both film formability and workability can be achieved.
  • the thickness of the entire polyester film of the present invention is preferably 5 ⁇ m or more and 500 ⁇ m or less, and more preferably 10 ⁇ m or more and 400 ⁇ m or less. More preferably, they are 20 micrometers or more and 300 micrometers or less. When the thickness is less than 5 ⁇ m, the film formability of the film is lowered, and film formation may be difficult. On the other hand, when it is thicker than 500 ⁇ m, for example, when an electrical insulating sheet using the film is processed, cutting or bending may be difficult. In the polyester film of the present invention, when the thickness of the entire film is 5 ⁇ m or more and 500 ⁇ m or less, both film formability and workability can be achieved.
  • the polyester film of the present invention preferably has a breaking elongation of 10% or more. More preferably, it is 20% or more, and further preferably 30% or more. In the polyester film of the present invention, if the elongation at break is less than 10%, the film is liable to be broken at the time of film formation or during processing such as conveyance or cutting in continuous processing. In the polyester film of the present invention, when the elongation at break is 10% or more, both film formability and workability can be achieved.
  • the treatment amount of the surface treatment agent is set to a more preferable range, particularly after the crystalline polyester (A) and the particles (B) are mixed to obtain a chip-like composition And a process of producing a film after solid-phase polymerization of the obtained chip.
  • the polyester film of the present invention preferably has a thermal conductivity in the film thickness direction of 0.15 W / mK or more. More preferably, it is 0.20 W / mK or more, More preferably, it is 0.25 W / mK or more.
  • motor insulating materials for example, wind power generation insulating sheets, hybrid motor sheets, air conditioner motor sheets, solar battery back sheets, and electrical insulating materials used for electronic components (for example, adhesives for electronic components) Tape, flexible printed circuit board, membrane switch, etc.
  • a preferred method is to produce a film after solid-phase polymerization of the obtained chip.
  • the polyester film of the present invention preferably has a surface specific resistance of 10 13 ⁇ / ⁇ or more.
  • motor insulating materials for example, wind power generation insulating sheets, hybrid motor sheets, air conditioner motor sheets), solar battery back sheets, and electrical insulating materials used for electronic components (for example, adhesives for electronic components) Tape, flexible printed circuit board, membrane switch, etc.).
  • examples of the P2 layer laminated on the polyester layer (P layer) include a polyester layer for imparting a function, an antistatic layer, an adhesion layer with other materials, and an ultraviolet resistance for imparting ultraviolet resistance. Any layer such as a layer, a flame retardant layer for imparting flame retardancy, or a hard coat layer for enhancing impact resistance and scratch resistance can be formed.
  • the polyester film of the present invention preferably has a combustion distance of 125 mm or less when evaluated based on the UL94-VTM test method. More preferably, it is 115 mm or less, More preferably, it is 105 mm or less, Furthermore, it is 100 mm or less, Most preferably, it is 95 mm or less.
  • a combustion distance of 125 mm or less when evaluated based on the UL94-VTM test method for example, when used as a back sheet for a solar cell, the safety can be increased. It becomes possible.
  • the method for producing a polyester film of the present invention includes the following steps 1 to 3 in that order.
  • Step 1 A step of melt-kneading the crystalline polyester (A), at least one of the plate-like particles (b1) having an aspect ratio of 2 or more and the acicular particles (b2) having an aspect ratio of 2 or more.
  • plate-like particles (b1) having a crystalline polyester (A) and a substituent having reactivity with the crystalline polyester (A) hereinafter referred to as reactive substituent (a)
  • a step of melting and kneading at least one of the needle-like particles (b2) having a reactive substituent (a) on the surface and having an aspect ratio of 2 or more (hereinafter, melt-kneading step), (Step 2)
  • the resin composition containing at least one of the crystalline polyester (A), the plate-like particles (b1) having an aspect ratio of 2 or more, and the acicular particles (b2) having an aspect ratio of 2 or more is melted to form a die.
  • Step 3 A process of obtaining a film by discharging from (hereinafter referred to as a melt extrusion process), (Step 3) Step of biaxially stretching the film (hereinafter referred to as stretching step) Details of Step 1 to Step 3 will be described below.
  • the crystalline polyester (A) as a raw material is inherently obtained by performing a polycondensation reaction from the above-described dicarboxylic acid component and diol component through an esterification reaction or a transesterification reaction. It is obtained by setting the viscosity to 0.4 or more.
  • a known transesterification reaction catalyst such as magnesium acetate, calcium acetate, manganese acetate, cobalt acetate, calcium acetate can be used, and antimony trioxide as a polymerization catalyst is added. May be.
  • an alkali metal such as potassium hydroxide
  • an ethylene glycol solution of germanium dioxide, antimony trioxide, titanium alkoxide, titanium chelate compound, or the like can be used.
  • additives include, for example, magnesium acetate for the purpose of imparting electrostatic application characteristics, and calcium acetate as a co-catalyst, and can be added within a range that does not hinder the effects of the present invention. Further, various particles may be added to add film slipperiness, or internal precipitation particles using a catalyst may be included.
  • the particle (B) when the particle (B) has a reactive substituent (a), the particle (B) is obtained by dispersing the particle in i) a solvent and then stirring the dispersion.
  • a method of adding a surface treatment agent or a solution / dispersion in which the surface treatment agent is dissolved / dispersed, and ii) adding a solution / dispersion in which the surface treatment agent is dissolved / dispersed while stirring the powder of the particles The method of doing is mentioned.
  • the surface treatment agent is a resin-based one
  • iii) a method of melt-kneading the particles and the surface treatment agent is also preferably used.
  • the addition amount of the surface treatment agent is preferably such that the mass ratio of the surface treatment agent is 0.1 parts by mass or more and 5 parts by mass or less when the content Wb of the particles (B) is 100 parts by mass. More preferably, they are 0.2 mass part or more and 3 mass parts or less, More preferably, they are 0.5 mass part or more and 1.5 mass parts or less.
  • the amount is less than 0.1 part by mass, the bonding between the crystalline polyester (A) and the particles (B) is insufficient, and the interfacial peeling occurs remarkably during stretching, resulting in a decrease in thermal conductivity.
  • the amount exceeds 5 parts by mass the amount of bonding becomes excessive and the stretchability is lowered.
  • the method for adding the plate-like particles (b1) or the needle-like particles (b2) to the crystalline polyester (A) obtained as described above is that the crystalline polyester (A) and the plate-like particles (b1), or A method in which the crystalline polyester (A) and the acicular particles (b2) are melt-kneaded using a vent type biaxial kneading extruder or a tandem type extruder is preferred.
  • the plate-like particles (b1) or the needle-like particles (b2) are melted in the crystalline polyester (A). It is preferable to supply the particles (b2), and it is preferable to supply to the extruder by side feed.
  • the crystalline polyester (A) deteriorates not a little because it receives a thermal history during melt kneading in which the crystalline polyester (A) contains plate-like particles (b1) and needle-like particles (b2). Therefore, a high-concentration master pellet having a larger amount of addition than the content of the plate-like particles (b1) or needle-like particles (b2) in the P layer is prepared and mixed with the crystalline polyester (A) for dilution.
  • the amount of the plate-like particles (b1) or needle-like particles (b2) in the P layer is set to a predetermined content, deterioration of the crystalline polyester (A) can be suppressed, and stretchability, mechanical properties, heat resistance, etc. From the viewpoint of
  • the concentration of particles in the high-concentration master pellet is preferably 20% by mass or more and 80% by mass or less, more preferably 25% by mass or more and 70% by mass or less, still more preferably 30% by mass or more and 60% by mass or less. Preferably they are 40 mass% or more and 60 mass% or less.
  • the amount is less than 20% by mass, the amount of the master pellet added to the P layer is increased, and as a result, the amount of the crystalline polyester (A) deteriorated in the P layer is increased, and stretchability, mechanical properties, heat resistance, etc. May decrease. If it exceeds 80% by mass, it may be difficult to form a master pellet, or it may be difficult to uniformly mix the master pellet with the crystalline polyester (A).
  • a master pellet of the crystalline polyester (A) containing the plate-like particles (b1) was prepared individually and then mixed with the crystalline polyester (A) for dilution to obtain P-layer plate-like particles.
  • Step 2 is performed using the composition obtained in the above step 1, but compared with the content of the plate-like particles (b1) or needle-like particles (b2) contained in the P layer, It is particularly preferable to prepare a high-concentration master pellet having a large content and use the obtained master pellet obtained by solid-phase polymerization in that the molecular weight can be increased and the number of carboxyl group terminal groups can be further reduced.
  • the solid phase polymerization it is preferable to carry out the solid phase polymerization reaction at a solid phase polymerization temperature of a polyester having a melting point Tm-30 ° C. or lower, a melting point Tm-60 ° C. or higher, and a vacuum of 0.3 Torr or lower.
  • the polyester film of the present invention has a single film structure consisting of only a P layer
  • a method of melting the P layer raw material in an extruder and extruding it onto a cast drum cooled from the die (melt casting method) can be used.
  • the raw material for the P layer is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless belt to form a film, and then the solvent is dried and removed from the film layer.
  • a method of processing into a shape (solution casting method) or the like can also be used. Among these, it is preferable to form into a sheet by a melt casting method in terms of high productivity (hereinafter, a process of forming into a sheet by a melt casting method is referred to as a melt extrusion process).
  • a composition containing at least one of dried crystalline polyester (A), plate-like particles (b1) and needle-like particles (b2) when produced in the melt extrusion step Is melt-extruded from the die into a sheet using an extruder, and is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 ° C. or more and 60 ° C. or less to produce an unstretched sheet.
  • This unstretched sheet can be obtained by biaxial stretching.
  • melt-extruding with an extruder When melt-extruding with an extruder, it is melted in a nitrogen atmosphere, and the time to be extruded from the tip supply to the extruder to the die is better, as a guideline, 30 minutes or less, more preferably 15 minutes or less, More preferably, it is preferably 5 minutes or less from the viewpoint of suppressing deterioration due to molecular weight reduction and suppressing increase in the number of carboxyl group end groups.
  • the sheet-like composition obtained in step 2 is biaxially stretched at a temperature equal to or higher than the glass transition temperature Tg.
  • the biaxial stretching method may be either a sequential biaxial stretching method in which stretching in the longitudinal direction and the width direction is separated or a simultaneous biaxial stretching method in which stretching in the longitudinal direction and the width direction is performed simultaneously. Absent. Examples of stretching conditions are: 1) In the case of simultaneous biaxial stretching, the stretching temperature should be a temperature in the range of the glass transition temperature Tg of the polyester to Tg + 15 ° C. 2) In the case of sequential biaxial stretching, the first axis The stretching temperature of the polyester is a glass transition temperature of Tg to Tg + 15 ° C. (more preferably Tg to Tg + 10 ° C.), and the stretching temperature of the second axis is Tg + 5 ° C. to Tg + 25 ° C. It is done.
  • the stretching ratio is 1.5 times or more and 4 times or less in both the longitudinal direction and the width direction in both simultaneous biaxial stretching and sequential biaxial stretching. More preferably, they are 2.0 times or more and 3.5 times or less, More preferably, they are 2.0 times or more and 3.0 times or less.
  • the area stretch ratio combining the vertical stretch ratio and the horizontal stretch ratio is 2 to 16 times, more preferably 4 to 13 times, and still more preferably 4 to 9 times.
  • the area magnification is less than 2 times, the orientation of the crystalline polyester (A) of the obtained film is low, and the mechanical strength and heat resistance of the obtained film may be lowered.
  • the area stretch ratio exceeds 14 times, the film tends to be broken at the time of stretching, or the porosity V of the obtained film tends to increase and the thermal conductivity tends to decrease.
  • the crystalline polyester (A) has a glass transition temperature Tg to a temperature Th less than the melting point Tm for 1 second or more 30
  • the following heat treatment is performed for 2 seconds, and after cooling gradually, cool to room temperature.
  • the heat treatment temperature Th is such that the difference Tm-Th from the melting point Tm of the polyester is 20 ° C. or more and 90 ° C. or less, more preferably 25 ° C. or more and 70 ° C. or less, and further preferably 30 ° C. or more and 60 ° C. It is below °C.
  • a relaxation treatment of 3 to 12% may be performed in the width direction or the longitudinal direction as necessary.
  • a P layer can be obtained by performing corona discharge treatment or the like in order to further improve the adhesion to other materials and winding up.
  • the manufacturing method in the case where the polyester film of the present invention has a laminated structure including a P layer and another layer (P2 layer) is as follows.
  • the material of each layer to be laminated is made of thermoplastic resin as the main constituent material
  • two different materials are put into two extruders, respectively, melted and co-extruded on a cast drum cooled from the die, into a sheet form
  • Method of processing co-extrusion method
  • melt lamination method melt lamination method
  • lamination method lamination with P layer
  • Each P2 layer is prepared separately, and is thermocompression-bonded by a heated group of rolls (thermal laminating method), a method of bonding via an adhesive (adhesion method), and other materials for the P2 layer as a solvent
  • thermal laminating method thermocompression-bonded by a heated group of
  • the P2 layer is mainly composed of a material that is not a thermoplastic resin
  • the P2 layer and the P2 layer to be laminated are separately prepared and bonded together with an adhesive or the like (adhesion method) or curing.
  • an adhesive or the like adhesive or the like
  • a dry method such as a vapor deposition method and a sputtering method
  • a wet method such as a plating method
  • Examples of the method for forming the layer P2 made of different materials by the coating method include an in-line coating method applied during the formation of the polyester film of the present invention and an offline coating method applied to the polyester film after the film formation. Either of these methods can be used, but an in-line coating method is preferably used because it is efficient because it can be applied simultaneously with the formation of a polyester film and has high adhesion to the polyester film. Moreover, when coating, the corona treatment etc. to the polyester film surface are also preferably performed.
  • the polyester film of the present invention can be formed by the above-described steps, and the obtained film has high thermal conductivity and mechanical properties.
  • the polyester film of the present invention takes advantage of its features, such as a copper-clad laminate, a solar cell backsheet, an adhesive tape, a flexible printed circuit board, a membrane switch, a planar heating element, or a flat cable, an electrically insulating material, a capacitor material. It can be suitably used for applications in which electrical insulation and thermal conductivity are important, including automobile materials and building materials.
  • electrical insulation materials used for motors and the like for example, wind power generation insulation sheets, hybrid motor sheets, air conditioner motor sheets), solar battery back sheet materials, and electrical insulation materials used for electronic components (for example, It is suitably used for adhesive tapes for electronic parts, flexible printed circuit boards, membrane switches, and the like.
  • an electrical insulating sheet such as an insulating sheet for wind power generation
  • the polyester film of the present invention When used as a battery back sheet, it is possible to increase the power generation efficiency compared to conventional wind power generators and solar cells. Further, when used for a hybrid motor seat and an air conditioner motor seat, power consumption can be reduced. Further, when the polyester film of the present invention is used for an adhesive tape for electronic parts, a flexible printed circuit board, a membrane switch, etc., it can contribute not only to reduction of power consumption but also to speeding up of operation and improvement of reliability.
  • Polyester composition analysis Polyester was hydrolyzed with alkali, each component was analyzed by gas chromatography or high performance liquid chromatography, and the composition ratio was determined from the peak area of each component. An example is shown below. Dicarboxylic acid constituents and other constituents were measured by high performance liquid chromatography. The measurement conditions can be analyzed by a known method, and an example of the measurement conditions is shown below.
  • the glass transition temperature is a stepwise change portion of the glass transition, and is determined according to JIS K-7121 (1987) "9.3 Determination of glass transition temperature (1) Intermediate glass.
  • the glass transition temperature Tg of the crystalline polyester (A) was determined by the method described in “Transition temperature Tmg” (a straight line equidistant from the straight line extended from each baseline in the vertical axis direction and a step-like change portion of the glass transition) From the point of crossing with).
  • Tcc cold crystallization peak temperature Tcc of crystalline polyester (A) of P layer with the temperature of the peak top in a cold crystallization peak.
  • Tg and Tm the difference between the glass transition temperature Tg of the P layer and the cold crystallization peak top temperature Tcc was determined by the following formula (2).
  • ⁇ Tcg Tcc ⁇ Tg (2) Further, the thermal characteristics (melting point Tm, crystal melting heat ⁇ Hm) of the crystalline polyester (A) as a raw material were measured by the same method as described above using the crystalline polyester (A), and the obtained 2ndRUN was obtained. In the differential scanning calorimetry chart, the melting point Tm is determined by the temperature at the peak top of the crystal melting peak. The crystal melting heat quantity ⁇ Hm was determined based on “9. How to obtain transition heat” of JIS K-7122 (1987).
  • the Young's modulus Eb in the direction (direction b) orthogonal to the direction a in the same plane was determined.
  • the average value of the obtained Ea and Eb was used as Young's modulus.
  • the breaking elongation was defined as the breaking elongation based on the average value of the breaking elongations in the direction a and the direction b.
  • the porosity was determined by the following procedures (A1) to (A5). In addition, the measurement was carried out 10 times in total by changing the film cutting location randomly, and the porosity V (volume%) in the layer P was determined by the arithmetic average value.
  • A1 Using a microtome, the film is cut perpendicularly to the film surface direction without crushing the film cross section in the thickness direction.
  • A2) Next, the cut section is observed using a scanning electron microscope, and an image magnified 3000 times is obtained. The observation location is determined randomly within the P layer, but the vertical direction of the image is parallel to the film thickness direction and the horizontal direction of the image is parallel to the film surface direction.
  • (A3) The area of the P layer in the image obtained in (A2) is measured, and this is A.
  • (A4) The area of all the voids existing in the P layer in the image is measured, and the total area is B.
  • the measurement target is not limited to the case where the entire gap is contained in the image, but also includes bubbles in which only a part appears in the image.
  • (A5) By dividing B by A (B / A) and multiplying it by 100, the area ratio of voids in the P layer was determined, and this value was used as the void ratio V (volume%).
  • Content Wb1 of plate-like particles (b1) and content Wb2 of needle-like particles (b2) in the P layer are the following (B1) to (B13) for the polyester film (the P layer shaved in the case of a laminated film): The procedure was determined. (B1) The mass w1 of the polyester film (the P layer that was shaved in the case of a laminated film) was measured.
  • (B2) The polyester film (the P layer shaved out in the case of a laminated film) was dissolved in hexafluoro-2-isopropanol, and particles were separated as an insoluble component by centrifugation.
  • (B3) The obtained particles were washed with hexafluoro-2-isopropanol and centrifuged. The washing operation was repeated until no white turbidity occurred even when ethanol was added to the washing solution after centrifugation.
  • the cleaning solution of (B3) was heated and distilled off, and then naturally dried for 24 hours, and then vacuum-dried at 60 ° C. for 5 hours to obtain particles.
  • the mass w2 of the obtained particles was determined, and the total particle content Wb (% by mass) was obtained from the following formula (3).
  • Wb (w2 / w1) ⁇ 100 (3)
  • the particles obtained in (B4) were fixed on an observation pedestal with a 3D gauge for measuring the size of an observation object, and an image magnified 3000 times using a scanning electron microscope was obtained.
  • B6 Next, a circumscribed cuboid was drawn by image analysis using 3D measurement software for one randomly selected primary particle in the image.
  • the longest side of the circumscribed cuboid was defined as the particle length (l), the shortest side was defined as the particle thickness (t), and the other side was defined as the particle width (b), and the particle size was measured. .
  • the shape of the particle is uniquely defined by the combination of these three values (l, t, b).
  • the selected primary particles were randomly changed 500 times in total, and the measured three values of length (l), thickness (t), and width (b)
  • a distribution curve was drawn with the horizontal axis representing the value ( ⁇ m) and the vertical axis representing the number of existence (pieces).
  • the values of the peak positions of the three distribution curves drawn were extracted, and the average length (lp), average thickness (tp), and average width (bp) of the particles were determined based on the extracted values.
  • peaks are seen in the distribution curve, it means that a plurality of particles having different shapes are mixed.
  • the mass Wv1 of the particle-like particles was determined.
  • (B12) In the same manner as (B11), among the 500 particles whose size was measured in (B8), the apparent mass Wv2 (g) of the particles defined as acicular particles in (B10) Asked.
  • (B13) From the following formulas (4) and (5), the content Wb1 (% by mass) of the plate-like particles (b1) in the P layer and the content Wb2 (% by mass) of the acicular particles (b2) in the P layer ) Respectively.
  • Wb1 Wb ⁇ (Wv1 / (Wv1 + Wv2))
  • Wb2 Wb ⁇ (Wv2 / (Wv2 + Wv1)) (5).
  • Thermal conductivity (W / mK) ⁇ (m 2 / s) ⁇ specific heat (J / kg ⁇ K) ⁇ density (kg / m 3 ) (6)
  • specific heat a polyester film was used and the value obtained based on JIS K-7123 (1987) was used.
  • the density was measured using a sample obtained by cutting the film to a size of 30 mm ⁇ 40 mm and using an electronic hydrometer (SD-120L manufactured by Mirage Trading Co., Ltd.) in an atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%. The density was measured three times, and the average value obtained was used.
  • Elongation retention ratio (%) breaking elongation before heat treatment / breaking elongation after heat treatment ⁇ 100 (7) Using the obtained elongation retention rate, the determination was made as follows. A is a practical range.
  • A The elongation retention is 50% or more.
  • D The elongation retention is less than 50%.
  • the surface specific resistance of the film was measured with a digital ultrahigh resistance microammeter R8340 (manufactured by Advantest). The measurement was carried out at 10 arbitrary positions within the surface of each side of the film, and the average value was obtained. The surface resistivity was determined by the lower average value obtained. Further, the measurement was performed using a measurement sample that was left overnight in a room at 23 ° C. and 65% Rh. Using the obtained value, determination was made as follows. A is a practical range.
  • A The surface specific resistance is 10 13 ⁇ / ⁇ or more.
  • D The surface specific resistance is less than 10 13 ⁇ / ⁇ .
  • the dynamic storage elastic modulus E ′ was determined using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Seiko Instruments Inc.) according to JIS-K7244 (1999). The temperature dependence of the viscoelastic properties of each film was measured under the measurement conditions of a tensile mode, a drive frequency of 1 Hz, a distance between chucks of 20 mm, and a heating rate of 2 ° C./min. From this measurement result, the dynamic storage elastic modulus E ′ at 100 ° C. was determined.
  • PET-1 Using dimethyl terephthalate as the acid component and ethylene glycol as the diol component, added to the polyester pellets from which germanium oxide (polymerization catalyst) can be obtained so as to be 300 ppm in terms of germanium atoms, and performing a polycondensation reaction. And polyethylene terephthalate pellets having an intrinsic viscosity of 0.64 were obtained.
  • the resin had a glass transition temperature Tg of 83 ° C., a melting point Tm of 255 ° C., and a crystal melting heat of 37 J / g.
  • PET-2 Using dimethyl terephthalate as the acid component and ethylene glycol as the diol component, added to the polyester pellet from which germanium oxide (polymerization catalyst) can be obtained so that the concentration is 300 ppm in terms of germanium atoms. And an intrinsic viscosity of 0.54 polyethylene terephthalate pellets was obtained.
  • the obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 5 hours to obtain polyethylene terephthalate having an intrinsic viscosity of 0.70.
  • the resin had a glass transition temperature Tg of 83 ° C., a melting point Tm of 255 ° C., and a heat of crystal melting of 35 J / g.
  • PET-3 Polyethylene terephthalate having an intrinsic viscosity of 0.80 was obtained in the same manner as PET-2 except that the solid-phase polymerization time was 8 hours.
  • the resin had a glass transition temperature Tg of 83 ° C., a melting point Tm of 255 ° C., and a heat of crystal melting of 36 J / g.
  • -Particles Wollastonite-1 FPW # 400 (manufactured by Kinsei Matex Co., Ltd.) was used. These are acicular particles having a length of 8.0 ⁇ m and an aspect ratio of 4.
  • Wollastonite-2 NYAD M1250 (manufactured by Sakai Kogyo Co., Ltd.) was used. It is a needle-like particle having a length of 12 ⁇ m and an aspect ratio of 3.
  • Boron nitride: SP3-7 (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used. It is a plate-like particle having a length of 2.0 ⁇ m and an aspect ratio of 19.
  • GH-7 manufactured by Hayashi Kasei Co., Ltd.
  • GH-7 manufactured by Hayashi Kasei Co., Ltd.
  • It is a plate-like particle having a length of 5.8 ⁇ m and an aspect ratio of 10.
  • Alumina: A4-42-2 manufactured by Showa Denko KK was used.
  • the length is 5 ⁇ m, the shape is irregular, and the aspect ratio is 1.
  • the value of the length (aspect ratio) of the particles contained in the polyester film was determined by performing the following treatments (C1) to (C3), ) To (C8).
  • the value of the length (aspect ratio) of the particles before being added to the resin was obtained by the procedures (C4) to (C8).
  • (C1) The polyester film (the P layer shaved out in the case of a laminated film) was dissolved in hexafluoro-2-isopropanol, and the particles were separated as an insoluble component by centrifugation.
  • (C2) The obtained particles were washed with hexafluoro-2-isopropanol and centrifuged. The washing operation was repeated until no white turbidity occurred even when ethanol was added to the washing solution after centrifugation.
  • (C3) The cleaning solution of (C2) was heated and distilled, and then naturally dried for 24 hours, and then vacuum-dried at a temperature of 60 ° C. for 5 hours to obtain particles to be observed.
  • (C4) Particles were fixed on an observation pedestal with a 3D gauge for measuring the size of an observation object, and an image magnified 3000 times using a scanning electron microscope was obtained.
  • C5 Next, a circumscribed cuboid was drawn by image analysis using 3D measurement software for one randomly selected primary particle in the image.
  • the longest side of the circumscribed cuboid was defined as the particle length (l), the shortest side was defined as the particle thickness (t), and the remaining side was defined as the particle width (b), and the particle size was measured. .
  • the shape of the particle is uniquely defined by the combination of these three values (l, t, b).
  • SC-1 Epoxy group-containing silane coupling agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd. Compound name: 3-glycidoxypropyltrimethoxysilane, molecular weight 236.3)
  • SC-2 Epoxy group-containing silane coupling agent KBM-4803 (manufactured by Shin-Etsu Chemical Co., Ltd., compound name: glycidoxyoctyltrimethoxysilane, molecular weight 306.4).
  • Reference Example 1-5 A master pellet (MB-1-5) containing 30% by weight of acicular particles (B2) was prepared in the same manner as in Reference Example 1-1 except that the particles were not surface-treated. Table 1 shows the physical properties of the obtained master pellets.
  • Reference Example 3-5 A master pellet (MB-3-5) containing 30% by weight of particles was prepared in the same manner as in Reference Example 1-1 except that alumina was used as the particles and the treatment amount was changed as shown in Table 1. Table 1 shows the physical properties of the obtained master pellets.
  • Reference Example 4-1 The master pellet (MB-1-3) obtained in Reference Example 1-3 was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 6 hours. A master pellet (MB-4-1) was produced. Table 1 shows the physical properties of the obtained master pellets.
  • Reference Example 4-2 The master pellet (MB-1-3) obtained in Reference Example 1-3 was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 12 hours. A master pellet (MB-4-2) was produced. Table 1 shows the physical properties of the obtained master pellets.
  • Example 1 A mixture of 66.7 parts by mass of master pellet MB-1-1 obtained in Reference Example 1-1 and 33.3 parts by mass of PET-1 was vacuum dried at a temperature of 180 ° C. for 3 hours. It was supplied to an extruder, melted at a temperature of 280 ° C. in a nitrogen atmosphere, and introduced into a T die die. At this time, an 80 ⁇ m sintered filter was used as the filter of the extruder. Next, the molten single layer sheet is extruded from the inside of the T die die into a molten single layer sheet, and the molten single layer sheet is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. A layer film was obtained.
  • the unstretched single layer film was preheated with a roll group heated to a temperature of 85 ° C., and then stretched 2.5 times in the longitudinal direction (longitudinal direction) using a heating roll having a temperature of 90 ° C.
  • a uniaxially stretched film was obtained by cooling with a roll group at a temperature of ° C. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 80 ° C. in the tenter, and continuously in a heating zone at a temperature of 90 ° C. in a direction perpendicular to the longitudinal direction (width direction). Stretched 2.5 times.
  • a heat treatment was performed at a temperature of 220 ° C. for 20 seconds in the heat treatment zone 1 in the tenter, a heat treatment of 150 ° C. was further performed in the heat treatment zone 2, and a heat treatment was performed at a temperature of 100 ° C. in the heat treatment zone 3.
  • a relaxation treatment of 4% was performed between heat treatment zone 1 and heat treatment zone 2. Then, after gradually cooling uniformly, it was wound up to obtain a biaxially stretched film having a thickness of 50 ⁇ m.
  • Table 2 shows the results of evaluating the properties of the obtained film.
  • the film was found to be excellent in thermal conductivity, mechanical properties, and heat resistance.
  • Example 2 A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the type and amount of the master pellet used, the type and amount of the crystalline polyester (A) were as shown in Table 2. The results of evaluating the properties of the obtained film are shown in Table 2. The film was found to be excellent in thermal conductivity, mechanical properties, and heat resistance. In particular, in Examples 4 to 7, 9 to 11, and 16 to 18, it was found that the thermal conductivity was superior to that of Example 1, and in particular, the thermal conductivity of Examples 11 and 16 was particularly excellent.
  • Example 21 51.7 parts by mass of master pellet MB-1-2 obtained in Reference Example 1-2, 15.0 parts by mass of master pellet MB-3-4 obtained in Reference Example 3-4, and PET-1 A mixture of 33.3 parts by mass was vacuum-dried at a temperature of 180 ° C. for 3 hours, then supplied to an extruder, melted at a temperature of 280 ° C. in a nitrogen atmosphere, and introduced into a T die die. Other than that was carried out similarly to Example 1, and obtained the 50-micrometer-thick polyester film. The results of evaluating the properties of the obtained film are shown in Table 2. The film was found to be excellent in thermal conductivity, mechanical properties, and heat resistance. The film obtained in Example 21 was found to be a film excellent in thermal conductivity as compared with Example 19 and Example 20.
  • Example 22 to 28 A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 21 except that the amount of the master pellet used was as shown in Table 2. The results of evaluating the properties of the obtained film are shown in Table 2. The film was found to be excellent in thermal conductivity, mechanical properties, and heat resistance. In particular, in Examples 22 to 27, it was found that the thermal conductivity was excellent compared to Example 28, and in particular, the thermal conductivity of Examples 22 to 25 was particularly excellent.
  • Comparative Examples 1 to 8 A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the type and amount of the master pellet used, the type and amount of the crystalline polyester (A), and the stretching conditions were as shown in Table 2. The results of evaluating the properties of the obtained film are shown in Table 2. It was found that Comparative Examples 1 to 3, 5 to 8 were inferior in thermal conductivity as compared to Example 1, and Comparative Example 4 was inferior in heat resistance.
  • the index is omitted.
  • the description 1.0E + 05 represents 1.0 ⁇ 10 ⁇ 5 .
  • the polyester film of the present invention can provide a polyester film that is superior in electrical insulation, thermal conductivity, and mechanical properties as compared with conventional polyester films.
  • polyester films include copper-clad laminates, solar cell back sheets, adhesive tapes, flexible printed boards, membrane switches, planar heating elements, flat cables, and other electrically insulating materials, capacitor materials, automotive materials, and building materials. It can be suitably used for applications where electrical insulation and thermal conductivity are important.
  • by using such a polyester film it is possible to provide a wind power generator with high power generation efficiency, a solar battery, and an electronic device with low power consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 結晶性ポリエステル(A)と、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含有する層(P層)を含むポリエステルフィルムであって、ヤング率が2GPa以上であり、かつ、前記P層中に含有するアスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の含有量の和をWb(質量%)、P層中の空隙率をV(体積%)とした場合に、Wbが10以上であり、V/Wbが1以下であるポリエステルフィルム。 電気絶縁性および熱伝導性、機械特性に優れるポリエステルフィルムを提供する。さらには、かかるポリエステルフィルムを用いることで、高い熱伝導性にすぐれた電気絶縁シート、粘着テープ、およびそれを用いた風力発電機、電子機器などを提供する。

Description

ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ
 本発明は、ポリエステルフィルムに関する。また、該フィルムを用いた電気絶縁シート、風力発電機や、粘着テープに関する。
 ポリエステル(特にポリエチレンテレフタレートや、ポリエチレン-2、6-ナフタレンジカルボキシレートなど)樹脂は機械特性、熱特性、耐薬品性、電気特性、成形性に優れ、様々な用途に用いられている。そのポリエステルをフィルム化したポリエステルフィルム、中でも二軸配向ポリエステルフィルムは、その機械特性、電気的特性などから、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブル、モーター絶縁材料などの電気絶縁材料、磁気記録材料や、コンデンサ用材料、包装材料、自動車用材料、建築材料、写真用途、グラフィック用途、感熱転写用途などの各種工業材料として使用されている。
 これらの用途のうち、モーター等に用いられる電気絶縁材料(例えば風力発電用絶縁シート、ハイブリッドモーター用シート、エアコンモーター用シート)などでは、モーターの小型化、高密度化などから、発電や使用時に発熱がおこり、その熱が蓄積されると温度上昇により発電効率が低下したり、消費電力が高くなったりといった課題がある。同様に太陽電池バックシート材料などにおいても、発電時の熱の蓄積による温度上昇により発電効率が低下するといった課題がある。そのために、内部に発生した熱を外部に伝導・放散させる熱対策が重要となっている。また、電子部品用に用いられる電気絶縁材料(例えば、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)においては、近年の電子部品の高性能化、小型化、高集積化により、各種電子部品の発熱が大きくなり、処理速度が低下したり、消費電力が増大したりするなどの問題があった。そのために、筐体を通じて内部で発生した熱を外部に外に逃がすことが重要となっている。
 そのため、熱伝導性の高いフィルムが求められており、種々の材料が提案されている。例えば、熱伝導性の高いグラファイトシートの片側もしくは両表層にPETフィルムの保護層を積層させた複合フィルム(特許文献1)、二軸延伸PET中に、繊維状炭素材料を含有させたフィルム(特許文献2、特許文献3)などが提案されている。
特開2008-80672号公報 特開2013-28753号公報 特開2013-38179号公報
 しかしながら、特許文献1の技術においてはグラファイトシートが脆く、機械特性に乏しいことと、保護層となるPETフィルムの熱伝導率が低く、グラファイトフィルムの高い熱伝導率を十分に発揮できないといった問題があり、また厚みが厚くなるといった課題がある。また、特許文献2および特許文献3の技術では、導電性を有するため、絶縁性が求められる用途であるモーター絶縁材料や、太陽電池バックシート、電子部品などに用いることはできなかった。
 そこで、本発明の課題は電気絶縁性、熱伝導性および機械特性に優れるポリエステルフィルムを提供することである。
 上記課題を解決するために本発明は以下の構成をとる。すなわち、
 (1)結晶性ポリエステル(A)と、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含有する層(P層)を含むポリエステルフィルムであって、ヤング率が2GPa以上であり、かつ、前記P層中に含有するアスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の含有量の和をWb(質量%)、P層中の空隙率をV(体積%)とした場合に、Wbが10以上であり、V/Wbが1以下であるポリエステルフィルム。
 (2)前記アスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)が、表面に結晶性ポリエステル(A)と反応性を有する置換基(以下反応性置換基(a))を有し、前記粒子(B)の単位表面積あたりの反応性置換基(a)の量が0.2×10-6mol/m以上1.4×10-4mol/m以下である(1)に記載のポリエステルフィルム。
 (3)前記P層が、アスペクト比2以上の板状粒子(b1)とアスペクト比2以上の針状粒子(b2)のいずれも含有し、かつP層に含有するアスペクト比2以上の板状粒子(b1)の含有量をWb1(質量%)、アスペクト比2以上の針状粒子(b2)の含有量をWb2(質量%)とした場合に、Wb2/Wb1が0.7以上9以下である(1)または(2)に記載のポリエステルフィルム。
 (4)破断伸度が10%以上である(1)~(3)のいずれかに記載のポリエステルフィルム。
 (5)P層のガラス転移温度TgとP層の冷結晶化ピークトップ温度Tccの差ΔTcgが44℃以上である(1)~(4)のいずれかに記載のポリエステルフィルム。
 (6)周波数1Hzでの動的粘弾性測定(以下、DMA)により得られる100℃の動的貯蔵弾性率E’が5×10Pa以上である(1)~(5)記載のポリエステルフィルム。
 (7)フィルム厚み方向の熱伝導率が0.15W/mK以上であり、かつ表面比抵抗が1013Ω/□以上である(1)~(6)のいずれかに記載のポリエステルフィルム。
 (8)(1)~(7)のいずれかに記載のポリエステルフィルムを用いてなる電気絶縁シート。
 (9)(8)記載の電気絶縁シートを用いてなる風力発電機。
 (10)(1)~(7)のいずれかに記載のポリエステルフィルムを用いてなる粘着テープ。
 (11)結晶性ポリエステル(A)と、結晶性ポリエステル(A)と反応性を有する置換基(以下反応性置換基(a))を表面に有しかつアスペクト比2以上の板状粒子(b1)、反応性置換基(a)を表面に有しかつアスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を溶融混練する工程(以下、溶融混練工程)、結晶性ポリエステル(A)と前記粒子を含む樹脂組成物を溶融させ口金から吐出させてフィルムを得る工程(以下、溶融押出工程)、フィルムを二軸延伸する工程(以下、延伸工程)をその順に含むことを特徴とする(1)~(7)のいずれかに記載のポリエステルフィルムの製造方法。
 (12)前記アスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の単位表面積あたりの反応性置換基(a)の量が0.2×10-6mol/m以上1.4×10-4mol/m以下である(11)記載のポリエステルフィルムの製造方法。
 (13)前記前記アスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)が反応性置換基(a)を有する表面処理剤で処理されたものであり、粒子(B)の質量を100質量部とした際に、表面処理剤の質量割合が0.1質量部以上5質量部以下である(11)または(12)に記載のポリエステルフィルムの製造方法。
 (14)溶融混練工程にてチップ状の組成物を得た後、得られたチップを固相重合した後に溶融押出工程にて溶融製膜する(11)~(13)のいずれかに記載のポリエステルフィルムの製造方法。
 本発明によれば、従来のポリエステルフィルムと比べて電気絶縁性、熱伝導性および機械特性に優れるポリエステルフィルムを提供することができる。かかるポリエステルフィルムは、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブルなどの電気絶縁材料、コンデンサ用材料、自動車用材料、建築材料をはじめとした電気絶縁性と熱伝導性が重視されるような用途に好適に使用することができる。特には、かかるポリエステルフィルムを用いることで、発電効率の高い風力発電機、太陽電池、消費電力の小さな電子機器を提供することができる。
粒子を外接直方体で囲んだ一例を模式的に示す図である。
 本発明のポリエステルフィルムは、結晶性ポリエステル(A)と、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含有する層(P層)を有することが必要である(以降、アスペクト比2以上の板状粒子(b1)とアスペクト比2以上の針状粒子(b2)をあわせて粒子(B)と呼ぶ場合がある)。
 本発明のポリエステルフィルムにおいて、結晶性ポリエステル(A)は、主たる構成成分が、ジカルボン酸構成成分とジオール構成成分を有してなるポリエステルであり、かつJIS K-7122(1987)に準じて、昇温速度20℃/minで樹脂を25℃から300℃まで20℃/分の昇温速度で加熱(1stRUN)、その状態で5分間保持後、次いで25℃以下となるよう急冷し、再度室温から20℃/minの昇温速度で300℃まで昇温を行って得られた2ndRUNの示差走査熱量測定チャートにおいて、融解ピークのピーク面積から求められる結晶融解熱量ΔHmが、15J/g以上である樹脂である。より好ましくは結晶融解熱量ΔHmが20J/g以上、さらに好ましくは25J/g以上、特に好ましくは30J/g以上の樹脂を用いるのがよい。P層を構成するポリエステルとして、結晶性ポリエステル(A)とすることで、後述する製造方法において、配向・結晶化が容易となり、高耐熱のフィルムとすることができる。なお、本明細書において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。
 かかるポリエステルを構成するジカルボン酸構成成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸などの脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸などの芳香族ジカルボン酸、もしくはそのエステル誘導体が挙げられるがこれらに限定されない。また、上述のカルボン酸構成成分のカルボキシル基末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体や、オキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
 また、かかるポリエステルを構成するジオール構成成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオールなどの脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3-ベンゼンジメタノール、1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、芳香族ジオール類などのジオール、上述のジオールが複数個連なったものなどが例としてあげられるがこれらに限定されない。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
 また、本発明のポリエステルフィルムにおいて、P層中の結晶性ポリエステル(A)中の全ジカルボン酸構成成分中の芳香族ジカルボン酸構成成分の割合は、90モル%以上100モル%以下が好ましい。より好ましくは95モル%以上100モル%以下が好ましい。更に好ましくは98モル%以上100モル%以下、特に好ましくは99モル%以上100モル%以下、最も好ましくは100モル%、すなわちジカルボン酸構成成分全てが芳香族カルボン酸構成成分であるのがよい。90モル%に満たないと、耐熱性が低下したりする場合がある。本発明のポリエステルフィルムにおいて、P層中の結晶性ポリエステル(A)中の全ジカルボン酸構成成分中の芳香族ジカルボン酸構成成分の割合を90モル%以上100モル%以下とすることで、後述する製造方法において、配向・結晶化が容易となり、高耐熱のフィルムとすることができる。
 本発明のポリエステルフィルムにおいて、P層の結晶性ポリエステル(A)の繰り返し単位、すなわち、ジカルボン酸構成成分とジオール構成成分からなる主たる繰り返し単位は、エチレンテレフタレート、エチレン-2,6-ナフタレンジカルボキシレート、プロピレンテレフタレート、ブチレンテレフタレート、1,4-シクロヘキシレンジメチレンテレフタレート、エチレン-2,6-ナフタレンジカルボキシレートからなるものが好適に用いられ、これらが主たる繰り返し単位となることが好ましい。なお、ここでいう主たる繰り返し単位とは、上記繰り返し単位の合計が、全繰り返し単位の80モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上である。
 さらには低コストで、より容易に重合が可能で、かつ耐熱性に優れるという点で、エチレンテレフタレート、エチレン-2,6-ナフタレンジカルボキシレートが主たる繰り返し単位であることが好ましい。この場合、エチレンテレフタレートを主たる繰り返し単位として用いた場合はより安価で汎用性のある耐熱性を有するフィルムを得ることができ、またエチレン-2,6-ナフタレンジカルボキシレートを主たる繰り返し単位として用いた場合はより耐熱性に優れるフィルムとすることができる。
 上述の構成成分(ジカルボン酸とジオール)を適宜組み合わせて、重縮合させることでポリエステルを得ることができるが、本発明のポリエステルフィルムにおいて、P層の結晶性ポリエステル(A)は、カルボキシル基および/または水酸基を3つ以上有する構成成分などが共重合されていることも好ましい。その場合は、カルボキシル基および/または水酸基を3つ以上有する構成成分の共重合率が、結晶性ポリエステル(A)の全構成成分に対して0.005モル%以上2.5モル%以下であることが好ましい。
 本発明のポリエステルフィルムにおいて、P層を構成する結晶性ポリエステル(A)の固有粘度(以下、IV)は0.6以上であることが好ましい。より好ましくは0.65以上、更に好ましくは0.68以上、特に好ましくは0.7以上である。IVが小さいと、後述の粒子(B)を含有させた場合に、分子間の絡み合いが少なくなりすぎて、機械物性が得られなかったり、経時での機械特性の劣化が進行しやすくなり、脆化しやすくなったりする場合がある。本発明のポリエステルフィルムにおいて、P層を構成する結晶性ポリエステルのIVを0.6以上とすることによって、高い機械特性を得ることができる。なお、IVの上限は特に決められるものではないが、重合時間が長くなるためコスト的に不利であったり、溶融押出が困難となる場合がある。そのため、好ましくは1.0以下、更に好ましくは0.9以下である。
 なお、上記IVのポリエステルを得るには、溶融重合によって所定の溶融粘度になった時点で吐出、ストランド化、カッティングを行い、チップ化することにより得る方法と、目標より低めの固有粘度で一旦チップ化し、その後固相重合を行うことにより得る法がある。これらのうち、特にIVを0.65以上とする場合には、熱劣化を抑えられ、かつカルボキシル基末端基数を低減できるという点で、目標より低めの固有粘度で一旦チップ化し、その後固相重合を行うことにより得られる方法を用いるのが好ましい。より好ましくは後述する方法にて、粒子(B)を結晶性ポリエステル(A)に含有させた上で、固相重合を行うのが、フィルムのIVをより高める事が可能となる。その結果、結晶性ポリエステル(A)に粒子(B)を含有させて後述する製造方法にて製膜をおこなう際に、過度な結晶化が抑制されることで延伸性が向上され、得られたフィルムの機械特性が向上する。
 本発明のポリエステルフィルムにおいて、P層を構成する結晶性ポリエステル(A)の融点Tmは240℃以上290℃以下であることが好ましい。ここでいう融点TmとはDSCにより得られる、昇温過程(昇温速度:20℃/min)における融点Tmであり、JIS K-7121(1987)に基づいた方法により、25℃からポリエステルの融点+50℃まで20℃/分の昇温速度で加熱(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷し、再度室温から20℃/分の昇温速度で300℃まで昇温を行って得られた2ndRunの結晶融解ピークにおけるピークトップの温度でもって結晶性ポリエステル(A)の融点Tmとする。より好ましくは融点Tmが245℃以上275℃以下、更に好ましくは250℃以上265℃以下である。融点Tmが240℃に満たないと、フィルムの耐熱性に劣ったりすることがあり好ましくなく、また、融点Tmが290℃を越えると、押出加工が困難となる場合があるため好ましくない。本発明のポリエステルフィルムにおいて、P層を構成する結晶性ポリエステル(A)の融点Tmを245℃以上290℃以下とすることにより、耐熱性を有するポリエステルフィルムとすることができる。
 本発明のポリエステルフィルムにおいて、P層を構成する結晶性ポリエステル(A)のカルボキシル基末端基数は40当量/t以下であることが好ましい。より好ましくは30当量/t以下、さらに好ましくは20当量/t以下である。カルボキシル基末端基数が高いと、構造制御したとしても、カルボキシル基末端基由来のプロトンによる触媒作用が強く、加水分解や熱分解が促進され、通常のポリエステルフィルムの劣化がより進行しやすくなる場合がある。カルボキシル基末端基数を上記の範囲とすることにより、加水分解や熱分解といった劣化を抑制したポリエステルフィルムとすることができる。なお、カルボキシル基末端基数を40当量/t以下とするには、1)ジカルボン酸構成成分とジオール構成成分とのエステル化反応をさせ、溶融重合によって所定の溶融粘度になった時点で吐出、ストランド化、カッティングを行い、チップ化したのち、固相重合する方法、2)緩衝剤をエステル交換反応またはエステル化反応終了後から重縮合反応初期(固有粘度が0.3未満)までの間に添加する方法、等の組み合わせ等により得られたポリエステルを用いることにより得ることができる。また、緩衝剤や末端封止剤を成形時に添加することによっても得ることができる。末端封止剤とはポリエステルのカルボキシル基末端基または水酸基末端基と反応して結合し、末端基由来のプロトンの触媒活性を消失させる化合物のことであり、具体的には、オキサゾリン基、エポキシ基、カルボジイミド基、イソシアネート基等の置換基を有する化合物等が挙げられる。耐加水分解剤を用いる場合は、P層に対して0.01質量%以上含有させることが好ましい。より好ましくは0.1質量%以上である。上記ポリエステルと組み合わせて耐加水分解剤を添加することによって、粒子添加によるポリエステルの劣化を抑制することができ、機械特性、耐熱性をより高めることが可能となる。なお、耐加水分解剤の含有量の上限は過剰な耐加水分解剤が難燃性を低下させる場合があるという点からP層に対して2質量%以下が好ましく、より好ましくは1質量%以下、さらに好ましくは0.8%質量%以下である。
 本発明のポリエステルフィルムは、P層にアスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含有させることが必要である(以降、アスペクト比2以上の板状粒子(b1)とアスペクト比2以上の針状粒子(b2)をあわせて粒子(B)と呼ぶ場合がある)。ここでいうアスペクト比2以上の板状粒子(b1)とは、一次粒子を図1に示すような外接直方体で囲み、その外接直方体の最も長い一辺を長さ(l)、最も短い一辺を厚さ(t)、残りの一辺を幅(b)と定義した場合に、長さ(l)と厚さ(t)の比l/tが2以上であり、同時に、長さ(l)と幅(b)の比l/bが1以上2以下の粒子である。また、ここでいうアスペクト比2以上の針状粒子(b2)とは、一次粒子を図1に示すような外接直方体で囲み、その外接直方体の最も長い一辺を長さ(l)、最も短い一辺を厚さ(t)、残りの一辺を幅(b)と定義した場合に、長さ(l)と厚さ(t)の比l/tが2以上であり、同時に、長さ(l)と幅(b)の比l/bが2よりも大きい粒子である。また、ここでいうアスペクト比とは、板状粒子あるいは針状粒子の長さ(l)と厚さ(t)の比l/tである。アスペクト比2以上の板状粒子あるいは針状粒子を含有するポリエステルフィルムは球状粒子に比べて粒子間の接触確率が高く、また接触確率はアスペクト比が高いほど高くなる。そのため、本発明のポリエステルフィルムにおいて、P層中に、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)の含有量の和(Wb)が10質量%以上となるように粒子を含有させることにより、ポリエステルフィルムへの熱伝導性付与が可能となる。アスペクト比は、より好ましくは3以上、更に好ましくは5以上である。なお、アスペクト比の上限は特に決められるものではないが、粒子(B)を樹脂中へ混練する際に、粒子が折れたり割れたりするのを防ぐという点から好ましくは40以下、更に好ましくは30以下である。
 P層中に含有する、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)の含有量の和Wb(質量%)は10質量%以上であることが必要であり、より好ましくは12質量%以上50質量%以下、更に好ましくは15質量%以上40質量%以下、特に好ましくは18質量%以上35質量%以下である。含有量が10質量%に満たないと、粒子間の接触確率が低くなる結果、熱伝導率が低下する。含有量が50質量%を超えると、フィルムの製膜性や延伸後の機械特性が低下する。
 本発明のポリエステルフィルムにおいて、板状粒子(b1)および針状粒子(b2)の長さ(l)は好ましくは1μm以上80μm以下、より好ましくは2μm以上40μm以下、更に好ましくは3μm以上20μm以下である。長さ(l)が1μmに満たないと、界面積が大きくなりすぎて熱伝導性が低下する場合があり、80μmを超えるとフィルムの製膜性が低下し、特に後述する延伸工程での延伸性が低下し生産性が悪くなる場合がある。本発明のポリエステルフィルムにおいて板状粒子(b1)および針状粒子(b2)の長さを1μm以上80μm以下とすることによって、熱伝導性と製膜性を両立することができ好ましい。
 本発明のポリエステルフィルムにおいて、用いることができる板状粒子(b1)および針状粒子(b2)の材質は、例えば、金、銀、銅、白金、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウムなどの金属、酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ、インジウム・スズ酸化物、酸化イットリウム、酸化ランタニウム、酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化ケイ素などの金属酸化物、フッ化リチウム、フッ化マグネシウム、フッ化アルミニウム、氷晶石などの金属フッ化物、リン酸カルシウムなどの金属リン酸塩、炭酸カルシウムなどの炭酸塩、硫酸バリウム、硫酸マグネシウムなどの硫酸塩、窒化ケイ素、窒化ホウ素、窒化炭素などの窒化物、ワラストナイト、セピオライト、ゾノトライトなどのケイ酸塩、チタン酸カリウム、チタン酸ストロンチウムなどのチタン酸塩、その他カーボン、フラーレン、カーボンファイバー、カーボンナノチューブ、炭化ケイ素などの炭素系化合物等が挙げられる。またこれらの粒子は2種類以上用いてもよい。
 本発明のポリエステルフィルムにおいては、電気絶縁性が必要とされる用途で使用されることが多いことに鑑みれば、板状粒子(b1)および針状粒子(b2)の材質としては、導電性を有さない酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ、インジウム・スズ酸化物、酸化イットリウム、酸化ランタニウム、酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物、フッ化リチウム、フッ化マグネシウム、フッ化アルミニウム、氷晶石等の金属フッ化物、リン酸カルシウム等の金属リン酸塩、炭酸カルシウム等の炭酸塩、硫酸バリウム、硫酸マグネシウム等の硫酸塩、窒化ケイ素、窒化ホウ素、窒化炭素などの窒化物、ワラストナイト、セピオライト、ゾノトライト、などのケイ酸塩、チタン酸カリウムなどのチタン酸塩などが好ましい。これら場合に、粒子による絶縁性が活かされ、長期に渡って電気絶縁性を維持するという、本発明の効果が顕著に発揮される。
 本発明のポリエステルフィルムは、上記結晶性ポリエステル(A)にアスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含有しており、前記P層中に含有するアスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の含有量の和Wbが10質量%以上となるように含有させた層(P層)を有するフィルムである。
 P層にはアスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の少なくともいずれか一方が含有されていれば良いが、より好ましくは板状粒子(b1)および針状粒子(b2)の両方が含有されていることが好ましい。その場合、アスペクト比2以上の板状粒子(b1)の含有量をWb1(質量%)、アスペクト比2以上の針状粒子(b2)の含有量をWb2(質量%)とした場合に、Wb2/Wb1が0.7以上9以下であることが熱伝導性を高めるために好ましい。より好ましくは1以上8以下、更に好ましくは2以上7以下である。Wb2/Wb1が小さすぎたり、大きすぎたりすると、板状粒子と針状粒子の間での接触確率が低下し、フィルムの厚み方向の熱伝導率の向上の度合いが小さくなる場合がある。
 本発明のポリエステルフィルムはヤング率が2GPa以上であることが必要である。なお、ここでいうヤング率とは、フィルムのヤング率をフィルム面内に10°毎に方向を変えて測定し、そのヤング率が最大になる方向のヤング率Eaとその方向とは面内で直交方向のヤング率Ebの平均値である。より好ましくはヤング率が2GPa以上、更に好ましくは3GPa以上である。ヤング率は結晶性ポリエステル(A)の配向・結晶状態と相関を有するものであり、ヤング率が2GPa未満のポリエステルフィルムは、結晶性ポリエステル(A)の配向性・結晶性が低下していることを表し、耐熱性や寸法安定性が低下する。本発明のポリエステルフィルムにおいてヤング率を2GPa以上とすることによって、良好な耐熱性、寸法安定性を得ることが可能となる。
 本発明のポリエステルフィルムは、周波数1Hzでの動的粘弾性測定(以下、DMA)により得られる100℃の動的貯蔵弾性率E’が5×10Pa以上であることが好ましい。より好ましくは1×10Pa以上、更に好ましくは5×10Pa以上である。E’が小さいポリエステルフィルムは、結晶性ポリエステル(A)の配向性・結晶性が低下していることを表し、耐熱性や寸法安定性が低下する場合がある。本発明のポリエステルフィルムにおいてE’を5×10Pa以上とすることによって、良好な耐熱性、寸法安定性を得ることが可能となる。
 本発明のポリエステルフィルムにおいて、P層中の粒子(B)の含有量をWb(質量%)、P層中の空隙率をV(体積%)とした場合に、V/Wbが1以下であることが必要である。ここでいう空隙率とは、P層の断面SEM画像内において、フィルムの断面積の中に占める空隙の面積の割合であり、その割合でもって空隙率V(体積%)とした。より好ましくは0.8以下、更に好ましくは0.6以下、特に好ましくは0.5以下である。V/Wbが1を超えると、フィルム中に熱伝導率が低い空気が多く占めることとなる結果、フィルムの熱伝導性が低下する。V/Wbの下限は0である。本発明のポリエステルフィルムにおいて、V/Wbを1以下とすることで、高い熱伝導性を得ることができる。
 ヤング率を2GPa以上のポリエステルフィルムを得るためには、P層を含むポリエステル組成物を、後述する方法にて少なくとも一軸方向に延伸する必要があるが、通常であれば延伸工程において結晶ポリエステル(A)と粒子(B)の界面で界面剥離が起こり、ボイドが形成され、V/Wbが1を超えてしまう。本発明のポリエスエルフィルムにおいて、ヤング率を2GPa以上でかつV/Wbを1以下とするためには、前記粒子(B)の表面に結晶性ポリエステル(A)と反応性を有する置換基(以下反応性置換基(a))を有するものを用いるのが好ましい。ここでいう、反応性置換基(a)とは、ポリエステルのカルボキシル基末端基または水酸基末端基と反応して結合できる置換基のことであり、具体的には、オキサゾリン基、エポキシ基、カルボジイミド基、イソシアネート基、酸無水物基等の置換基が挙げられる。特にポリエステルとの反応性が高く、かつ形成した結合の耐熱性が高いという点からエポキシ基が特に好ましい。特に、粒子(B)の表面に反応性置換基(a)を有することで、結晶性ポリエステル(A)と粒子(B)との混練時に結合が形成され、それにより強固な界面が形成されるため、後述する延伸工程において結晶ポリエステル(A)と粒子(B)の界面で界面剥離を抑制することが可能となる。
 本発明のポリエステルフィルムにおいて、粒子(B)の単位表面積あたりの反応性置換基(a)の量は0.2×10-6mol/m以上1.4×10-4mol/m以下であるのが好ましい。より好ましくは1×10-5mol/m以上1×10-4mol/m以下、更に好ましくは1.3×10-5mol/m以上5×10-5mol/m以下である。0.2×10-6を下回ると、結晶性ポリエステル(A)と粒子(B)の間の結合が不十分となり延伸時に界面剥離が顕著に起こる結果、熱伝導性が低下する。また1.4×10-4mol/mを超えると結合量が多くなりすぎて延伸性が低下する。本発明のポリエステルフィルムにおいて、粒子(B)の単位表面積あたりの反応性置換基(a)の量が0.2×10-6mol/m以上1.4×10-4mol/m以下とすることで、熱伝導性と延伸性を両立することが可能となる。
 粒子(B)の反応性置換基(a)の量は既知の滴定法により求めることができる。例えば、エポキシ基の場合を例にとると、本発明では、以下の方法により求めた。粒子(B)を水中に分散させて調製液とした後、HCl‐CaCl試薬を加え、一定温度、一定時間反応させた後、既知量のKOHを過剰に加えて反応を停止させ、指示薬としてフェノールフタレインを用いてHCl水溶液で逆滴定を行った。滴定は表面処理をした粒子(B)、表面処理をしていない粒子(B)でそれぞれ行い、後者の滴定結果をブランクとして消費HClを求め試料液中のエポキシ基量(mol)を算出した。また、粒子(B)の表面積(m)をJIS Z 8830(2013)に記載のBET法にて求め、前述の方法で求めたエポキシ基量(mol)を、BET法にて求めた表面積(m)で割り、反応性置換基(a)の量(mol/m)を求めた。
 本発明のポリエステルフィルムにおいて、粒子(B)は反応性置換基(a)を有する表面処理剤で処理されていることが好ましい。表面処理剤の具体例としては、オキサゾリン基、エポキシ基、カルボジイミド基、酸無水物基、イソシアネート基を有するシランカップリング剤、チタンカップリング剤、アルミネート系カップリング剤が挙げられ、その中でも、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシオクチルトリメトキシシランなどのエポキシ基を有するシランカップリング剤、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシランなどのイソシアネート基を有するシランカップリング剤、3-トリメトキシシリルプロピルコハク酸無水物などの酸無水物基を有するシランカップリング剤などが好適に用いられる。また、反応性置換基(a)を有するアルコキシオリゴマーなども好適に用いられる。また、グリシジルメタクリレートなどのエポキシ基を有するモノマーや、2-イソシアネートエチルメタクリレートなどのイソシアネート基を有するモノマーとスチレンやエチレン、プロピレン、アクリルなどを共重合した樹脂、ポリカルボジイミド、オキサゾリン基含有樹脂なども好適に用いられる。これらの中でも、結晶性ポリエステル(A)と粒子(B)の両方に結合形成が可能で強固な界面が形成される点で、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシオクチルトリメトキシシランなどのエポキシ基を有するシランカップリング剤、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシランなどのイソシアネート基を有するシランカップリング剤、3-トリメトキシシリルプロピルコハク酸無水物などの酸無水物基を有するシランカップリング剤、反応性置換基(a)を有するアルコキシオリゴマーが特に好ましい。また、上記の反応性置換基(a)を有する表面処理剤同士の混合、反応性置換基(a)を有する表面処理剤と反応性置換基を有さない表面処理剤との混合も好ましく用いられる。
 本発明のポリエステルフィルムにおいて、P層は上記結晶性ポリエスエル(A)と、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含む樹脂組成物を後述の製造方法によって得られるものであるが、P層のガラス転移温度Tgと冷結晶化ピークトップ温度Tccの差ΔTcgが44℃以上であるのが好ましい。ここでいうガラス転移温度Tgおよび冷結晶化ピークトップ温度Tccとは、昇温過程(昇温速度:20℃/min)におけるガラス転移温度Tgおよび冷結晶化ピークトップ温度Tccであり、JIS K-7121(1987)に基づいた方法により、後述する方法で得られた2ndRUNの示差走査熱量測定チャートにおけるガラス転移温度Tgおよび冷結晶化ピークトップ温度Tccであり、得られたTg値とTcc値の差でもってΔTcgとする。より好ましくはΔTcgが45℃以上50℃以下である。ΔTcgが低いと延伸が困難となり、製膜性が低下する場合がある。本発明の本発明のポリエステルフィルムにおいて、ΔTcgが44℃以上とすることで良好な製膜性を得ることができる。ΔTcgを44℃以上とするためには、P層中の結晶性ポリエステル(A)のIVを高くすることが好ましい方法として挙げられる。結晶性ポリエステル(A)のIVを高くする手段としては、後述する製造方法において、特に結晶性ポリエステル(A)と粒子(B)を混合してチップ状の組成物を得た後、得られたチップを固相重合した後にフィルムを作製することが好ましい。
 本発明のポリエステルフィルムは、上記P層のみからなる単層フィルムであってもよく、他の層との積層構成とする積層フィルム(以下、その他の層をP2層と略すことがある)、何れも好ましく用いられる。積層構成とする場合には、上記P層の高い耐熱性の効果を発揮するためには、P層の割合がポリエステルフィルム全体の40体積%以上とすることが好ましい。より好ましくは50体積%以上、更に好ましくは70体積%以上、特に好ましくは80体積%以上である。P層の割合が40体積%に満たないと、P層による耐熱性向上効果が発現されないことがある。本発明のポリエステルフィルムにおいて、積層構成とした場合、P層の割合を40体積%以上とすることによって、従来のポリエステルフィルムと比べて高い耐熱性を得ることができる。
 本発明のポリエステルフィルムにおいて、P層の厚みは5μm以上500μm以下が好ましく、10μm以上400μm以下がより好ましい。更に好ましくは、20μm以上300μm以下である。厚みが5μm未満の場合、フィルムの製膜性が低くなり、製膜が困難となる場合がある。一方、500μmより厚い場合、例えば該フィルムを用いた電気絶縁シートを加工する際に断裁や折り曲げ等が困難となったりすることがある。本発明のポリエステルフィルムにおいてP層の厚みを5μm以上500μm以下とすることによって、製膜性と加工性を両立することができる。
 また、本発明のポリエステルフィルム全体の厚みは5μm以上500μm以下が好ましく、10μm以上400μm以下がより好ましい。更に好ましくは、20μm以上300μm以下である。厚みが5μm未満の場合、フィルムの製膜性が低くなり、製膜が困難となる場合がある。一方、500μmより厚い場合、例えば該フィルムを用いた電気絶縁シートを加工する際に断裁や折り曲げ等が困難となったりすることがある。本発明のポリエステルフィルムにおいて、フィルム全体の厚みを5μm以上500μm以下とすることによって、製膜性と加工性を両立することができる。
 本発明のポリエステルフィルムは、破断伸度が10%以上であるのが好ましい。より好ましくは20%以上、更に好ましくは30%以上である。本発明のポリエステルフィルムにおいて、破断伸度が10%に満たないと製膜時や連続加工での搬送や断裁などの加工時にフィルムが破断しやすくなる。本発明のポリエステルフィルムにおいて、破断伸度を10%以上とすることによって、製膜性と加工性を両立することができる。これを達成する手段として、後述する製造方法において、表面処理剤の処理量をより好ましい範囲とし、特に結晶性ポリエステル(A)と粒子(B)を混合してチップ状の組成物を得た後、得られたチップを固相重合した後にフィルムを作製するプロセスを含むことが挙げられる。
 本発明のポリエステルフィルムは、フィルム厚み方向の熱伝導率が0.15W/mK以上であるのが好ましい。より好ましくは0.20W/mK以上、さらに好ましくは0.25W/mK以上である。本値を満たすことによって、モーター絶縁材料(例えば風力発電用絶縁シート、ハイブリッドモーター用シート、エアコンモーター用シート)、太陽電池バックシート、電子部品用に用いられる電気絶縁材料(例えば、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)等に好適に用いることができる。フィルム厚み方向の熱伝導率を高くする手段としては、上述のより好ましい原料処方とする他に、特に結晶性ポリエステル(A)と粒子(B)を混合してチップ状の組成物を得た後、得られたチップを固相重合した後にフィルムを作製することが好ましい方法として挙げられる。
 本発明のポリエステルフィルムは表面比抵抗が1013Ω/□以上であるのが好ましい。本値を満たすことによって、モーター絶縁材料(例えば風力発電用絶縁シート、ハイブリッドモーター用シート、エアコンモーター用シート)、太陽電池バックシート、電子部品用に用いられる電気絶縁材料(例えば、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)等に好適に用いることができる。
 本発明のポリエステルフィルムにおいて、ポリエステル層(P層)に積層するP2層の例として、機能付与するためのポリエステル層、帯電防止層、他素材との密着層、耐紫外線性付与のための耐紫外線層、難燃性付与のための難燃層、耐衝撃性や耐擦過性を高めるためのハードコート層など、用いる用途に応じて任意の層を形成することができる。
 本発明のポリエステルフィルムは、UL94-VTM試験法に基づき評価した際の燃焼距離が125mm以下となるのが好ましい。より好ましくは115mm以下、さらに好ましくは105mm以下、さらには100mm以下、特に好ましくは95mm以下である。本発明のポリエステルフィルムにおいて、UL94-VTM試験法に基づき評価した際の燃焼距離を125mm以下とすることによって、例えば太陽電池用バックシート用として用いる場合に、より安全性の高いものとする事が可能となる。
 次に、本発明のポリエステルフィルムの製造方法について、その一例を説明するが、本発明は、かかる例のみに限定されるものではない。
 本発明のポリエステルフィルムの製造方法は、下記工程1~3をその順に含むものである。
 (工程1)結晶性ポリエステル(A)と、アスペクト比2以上の板状粒子(b1)とアスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子とを溶融混練する工程。特に、結晶性ポリエステル(A)と、結晶性ポリエステル(A)と反応性を有する置換基(以下反応性置換基(a))を表面に有しかつアスペクト比2以上の板状粒子(b1)、反応性置換基(a)を表面に有しかつアスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子とを溶融混練する工程(以下、溶融混練工程)、
 (工程2)結晶性ポリエステル(A)と、アスペクト比2以上の板状粒子(b1)とアスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含む樹脂組成物を溶融させ口金から吐出させてフィルムを得る工程(以下、溶融押出工程)、
 (工程3)フィルムを二軸延伸する工程(以下、延伸工程)
 以下、工程1~工程3などについて、詳細を説明する。
 (工程1)
 本発明のポリエステルフィルムの製造方法において、その原料となる結晶性ポリエステル(A)は、上述のジカルボン酸構成成分、ジオール構成成分からエステル化反応またはエステル交換反応を経て重縮合反応を行うことによって固有粘度を0.4以上とすることによって得られる。
 また、エステル交換反応を行う際には、酢酸マグネシウム、酢酸カルシウム、酢酸マンガン、酢酸コバルト、酢酸カルシウムなど公知のエステル交換反応触媒を用いることができるほか、重合触媒である三酸化アンチモンなどを添加してもよい。エステル化反応時には水酸化カリウムなどのアルカリ金属を数ppm添加しておくとジエチレングリコールの副生が抑制され、耐熱性や耐加水分解性も改善される。
 また重縮合反応触媒としては、二酸化ゲルマニウムのエチレングリコール溶液、三酸化アンチモン、チタンアルコキシド、チタンキレート化合物などを用いることができる。
 その他の添加物としては、例えば、静電印加特性を付与する目的で酢酸マグネシウム、助触媒として酢酸カルシウムなどを挙げることができ、本発明の効果を妨げない範囲で添加することができる。また、フィルムの滑り性を付与するために各種粒子を添加、あるいは触媒を利用した内部析出粒子を含有させてもよい。
 本発明のポリエステルフィルムの製造方法において、粒子(B)が反応性置換基(a)を有する場合、粒子(B)は、i)溶媒中に粒子を分散させた後、その分散液を攪拌させながら表面処理剤、または表面処理剤を溶解/分散させた溶液/分散液を添加する方法、ii)粒子の粉体を攪拌しながら、表面処理剤を溶解/分散させた溶液/分散液を添加する方法などが挙げられる。また表面処理剤が樹脂系のものである場合は、iii)粒子と、表面処理剤を溶融混練する方法も好ましく用いられる。表面処理材剤の添加量は、粒子(B)の含有量Wbを100質量部とした際に、表面処理剤の質量割合が0.1質量部以上5質量部以下である事が好ましい。より好ましくは0.2質量部以上3質量部以下、更に好ましくは0.5質量部以上1.5質量部以下である。0.1質量部を下回ると、結晶性ポリエステル(A)と粒子(B)の間の結合が不十分となり延伸時に界面剥離が顕著に起こる結果、熱伝導性が低下する。また5質量部を超えると結合量が多くなりすぎて延伸性が低下する。
 次いで、上記により得られた結晶性ポリエステル(A)に、板状粒子(b1)あるいは針状粒子(b2)を添加する方法は、予め結晶性ポリエステル(A)と板状粒子(b1)、あるいは結晶性ポリエステル(A)と針状粒子(b2)をベント式二軸混練押出機やタンデム型押出機を用いて溶融混練する方法が好ましい。このとき、溶融混練中に板状粒子(b1)あるいは針状粒子(b2)の形状が壊れないようにするため、結晶性ポリエステル(A)が溶融した状態で板状粒子(b1)あるいは針状粒子(b2)を供給することが好ましく、サイドフィードにより押出機に供給することが好ましい。
 ここで、結晶性ポリエステル(A)に板状粒子(b1)や針状粒子(b2)を含有させる溶融混練の際には熱履歴を受けるため、少なからず結晶性ポリエステル(A)が劣化する。そのため、P層中の板状粒子(b1)あるいは針状粒子(b2)の含有量に比べて添加量の多い高濃度マスターペレットを作製し、それを結晶性ポリエステル(A)と混合して希釈し、P層中の板状粒子(b1)あるいは針状粒子(b2)の量を所定の含有量とすると、結晶性ポリエステル(A)の劣化を抑制でき、延伸性、機械特性、耐熱性などの観点から好ましい。
 このとき、高濃度マスターペレット中の粒子の濃度は20質量%以上80質量%以下が好ましく、更に好ましくは25質量%以上70質量%以下、更により好ましくは30質量%以上60質量%以下、特に好ましくは40質量%以上60質量%以下である。20質量%に満たない場合、P層へ添加するマスターペレットの量が多くなり、その結果P層に劣化した結晶性ポリエステル(A)の量が多くなって延伸性、機械特性、耐熱性などが低下する場合がある。また80質量%を越える場合は、マスターペレット化が困難となったり、マスターペレットを結晶性ポリエステル(A)に混合した場合に均一に混合するのが難しくなったりする場合がある。
 また、板状粒子(b1)と針状粒子(b2)の両方を結晶性ポリエステル(A)に含有させる方法としては、板状粒子(b1)を含有した結晶性ポリエステル(A)のマスターペレットと、針状粒子(b2)を含有した結晶性ポリエステル(A)のマスターペレットとを、それぞれ個別に作製した後、それらを結晶性ポリエステル(A)と混合して希釈し、P層の板状粒子(b1)および針状粒子(b2)の量が所定の比率で含有されるように調整する方法や、マスターペレットを作製する際に板状粒子(b1)と針状粒子(b2)の比率が所定の比率となるように調整してマスターペレットを作製した後、それを結晶性ポリエステル(A)と混合して希釈して用いる方法などがあり、いずれの方法を用いても良い。
 上記工程1により得られた組成物を用いて、次に説明する(工程2)を行うが、P層に含有させる板状粒子(b1)あるいは針状粒子(b2)の含有量に比べて、含有量の多い高濃度マスターペレットを作製し、得られたマスターペレットを固相重合したものを用いることが、分子量を高めて、カルボキシル基末端基数をより低減できるという点で特に好ましい。固相重合においては、固相重合温度をポリエステルの融点Tm-30℃以下、融点Tm-60℃以上、真空度0.3Torr以下で固相重合反応を行うことが好ましい。
 (工程2)
 次に、上記工程1で得られた、結晶性ポリエステル(A)と、板状粒子(b1)と針状粒子(b2)からなる粒子(B)とを含む組成物をシート状に成形する工程を説明する。
 本発明のポリエステルフィルムがP層のみからなる単膜構成の場合、P層用原料を押出機内で加熱溶融し、口金から冷却したキャストドラム上に押し出してシート状に加工する方法(溶融キャスト法)を使用することができる。その他の方法として、P層用の原料を溶媒に溶解させ、その溶液を口金からキャストドラム、エンドレスベルト等の支持体上に押し出して膜状とし、次いでかかる膜層から溶媒を乾燥除去させてシート状に加工する方法(溶液キャスト法)等も使用することができる。この中でも、生産性が高いという点で溶融キャスト法により、シート状に成形するのが好ましい(以下、溶融キャスト法により、シート状に成形する工程を溶融押出工程と称す)。
 本発明のポリエステルフィルムの製造方法において、溶融押出工程において製造する場合、乾燥した結晶性ポリエステル(A)、板状粒子(b1)と針状粒子(b2)のうち少なくとも一方の粒子を含む組成物を、押出機を用いて口金からシート状に溶融押出し、表面温度10℃以上60℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。この未延伸シートを二軸延伸する事により得ることができる。
 押出機で溶融押出する際は、窒素雰囲気下で溶融させ、押出機へのチップ供給から、口金までに押出される時間は短い程良く、目安としては30分以下、より好ましくは15分以下、更に好ましくは5分以下とすることが、分子量低下による劣化の抑制、およびカルボキシル基末端基数増加抑制の点で好ましい。
 (工程3)
 工程2で得られたシート状の組成物をガラス転移温度Tg以上の温度にて二軸延伸する。二軸延伸する方法としては、長手方向と幅方向の延伸とを分離して行う逐次二軸延伸方法や、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法のどちらであっても構わない。延伸条件の一例は、1)同時二軸延伸の場合は延伸温度をポリエステルのガラス転移温度Tg以上Tg+15℃以下の範囲の温度とすること、2)逐次二軸延伸の場合は、第一軸目の延伸温度をポリエステルのガラス転移温度Tg以上Tg+15℃以下(より好ましくはTg以上Tg+10℃以下)の温度とし、第二軸目の延伸温度をTg+5℃以上Tg+25℃以下の温度とすることなどが挙げられる。
 延伸倍率は、同時二軸延伸、逐次二軸延伸共に、長手方向と幅方向それぞれ1.5倍以上4倍以下とする。より好ましくは2.0倍以上、3.5倍以下、更に好ましくは2.0倍以上3.0倍以下である。また縦の延伸倍率と横の延伸倍率を合わせた面積延伸倍率は2倍以上16倍以下、より好ましくは4倍以上13倍以下、更に好ましくは4倍以上9倍以下である。面積倍率が2倍倍未満であると、得られるフィルムの結晶性ポリエステル(A)の配向性が低く、得られるフィルムの機械強度や耐熱性が低下することがある。また面積延伸倍率が14倍を越えると延伸時に破れを生じ易くなったり、得られたフィルムの空隙率Vが大きくなり、熱伝導性が低下したりする傾向がある。
 得られた二軸延伸フィルムの結晶配向を十分に行い、平面性と寸法安定性を付与するために、結晶性ポリエステル(A)のガラス転移温度Tg以上融点Tm未満の温度Thで1秒間以上30秒間以下の熱処理を行ない、均一に徐冷後、室温まで冷却する。本発明のポリエステルフィルムの製造方法において熱処理温度Thは、ポリエステルの融点Tmとの差Tm-Thが、20℃以上90℃以下、より好ましくは25℃以上70℃以下、更に好ましくは30℃以上60℃以下である。また、上記熱処理工程中では、必要に応じて幅方向あるいは長手方向に3~12%の弛緩処理を施してもよい。続いて必要に応じて、他素材との密着性をさらに高めるためにコロナ放電処理などを行い、巻き取ることにより、P層を得ることができる。
 また、本発明のポリエステルフィルムがP層と他の層(P2層)を含む積層構造の場合の製造方法は以下の通りである。積層する各層の材料が熱可塑性樹脂を主たる構成材料とする場合は、二つの異なる材料をそれぞれ二台の押出機に投入し、溶融して口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)、単層で作製したシートの少なくとも片面に、被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、P層と積層するP2層をそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、P2層用の材料を溶媒に溶解させ、その溶液をあらかじめ作製していたP層上に塗布する方法(コーティング法)、およびこれらを組み合わせた方法等が使用することができる。
 また、P2層が、熱可塑性樹脂でない材料を主たる構成成分とする場合は、P層と積層するP2層をそれぞれ別々に作製し、接着剤などを介して貼り合わせる方法(接着法)や、硬化性材料の場合はP層上に塗布した後に電磁波照射、加熱処理などで硬化させる方法等を使用することができる。その他、上述の共押出法、溶融ラミネート法、溶液ラミネート法、熱ラミネート法などの方法の他に、蒸着法、スパッタ法などの乾式法、めっき法などの湿式法なども好適に用いることができる。
 コーティング法により異素材からなる層P2層を形成する方法としては、本発明のポリエステルフィルムの製膜中に塗設するインラインコーティング法、製膜後のポリエステルフィルムに塗設するオフラインコーティング法があげられ、どちらでも用いることができるが、より好ましくはポリエステルフィルムの製膜と同時に塗設できて効率的であり、かつポリエステルフィルムへの接着性が高いという理由からインラインコーティング法が好ましく用いられる。また、塗設する際には、ポリエステルフィルム表面へのコロナ処理なども好ましく行われる。
 本発明のポリエステルフィルムは、上述の工程により形成することができ、得られたフィルムは、高い熱伝導性、機械特性を有するものである。本発明のポリエステルフィルムはその特長を生かして、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブルなどの電気絶縁材料、コンデンサ用材料、自動車用材料、建築材料をはじめとした電気絶縁性と熱伝導性が重視されるような用途に好適に使用することができる。これらの中で、モーター等に用いられる電気絶縁材料(例えば風力発電用絶縁シート、ハイブリッドモーター用シート、エアコンモーター用シート)、太陽電池バックシート材料、電子部品用に用いられる電気絶縁材料(例えば、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)に好適に用いられる。本発明のポリエステルフィルムは従来のポリエステルフィルムに比べて熱伝導性、機械特性に優れるものであるため、例えば、本発明のポリエステルフィルムを用いてなる電気絶縁シート(風力発電用絶縁シートなど)や太陽電池バックシートとして用いた場合は従来の風力発電機、太陽電池とくらべて発電効率を高めることが可能となる。また、ハイブリッドモーター用シート、エアコンモーター用シートに用いた場合は消費電力を低減させることができる。また、本発明のポリエステルフィルムを電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなどに用いた場合は消費電力の低減だけでなく、動作の高速化や信頼性向上に寄与することができる。
 [特性の評価方法]
 A.ポリエステルの組成分析
 ポリエステルをアルカリにより加水分解し、各成分をガスクロマトグラフィーあるいは高速液体クロマトグラフィーにより分析し、各成分のピーク面積より組成比を求めた。以下に一例を示す。ジカルボン酸構成成分や、その他構成成分は高速液体クロマトグラフィーにて測定を行った。測定条件は既知の方法で分析することができ、以下に測定条件の一例を示す。
装置:島津LC-10A
カラム:YMC-Pack ODS-A 150×4.6mm S-5μm 120A
カラム温度:40℃
流量:1.2ml/min
検出器:UV 240nm
 ジオール構成成分や、その他構成成分の定量はガスクロマトグラフィーを用いて既知の方法で分析することができる。以下に測定条件の一例を示す。
装置 :島津9A((株)島津製作所製)
カラム:SUPELCOWAX-10 キャピラリーカラム30m
カラム温度:140℃~250℃(昇温速度5℃/min)
流量 :窒素 25ml/min
検出器:FID。
 B.固有粘度IV
 オルトクロロフェノール100mlにポリエステルフィルム(積層フィルムの場合はP層)を溶解させ(溶液中のポリエステル濃度C=1.2g/ml)、その溶液の25℃での粘度をオストワルド粘度計を用いて測定した。また、同様に溶媒の粘度を測定した。得られた溶液粘度、溶媒粘度を用いて、下記式(1)により、[η]を算出し、得られた値でもって固有粘度(IV)とした。
ηsp/C=[η]+K[η]・C (1)
(ここで、ηsp=(溶液粘度/溶媒粘度)-1、Kはハギンス定数(0.343とする)である)。なお、測定にあたっては粒子(B)を分離の上実施した。
 C.P層のガラス転移温度Tg、冷結晶化温度Tcc、結晶性ポリエステル(A)の融点Tm、結晶融解熱量ΔHm
 ポリエステルフィルム(積層フィルムの場合は削りだしたP層)を、JIS K-7121(1987)およびJIS K-7122(1987)に準じて、測定装置にはセイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC-RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて測定した。
 (1)1stRUN測定
 サンプルパンにポリエステルフィルム(積層フィルムの場合は削りだしたP層)のサンプルを5mgずつ秤量し、昇温速度は20℃/minで樹脂を25℃から300℃まで20℃/分の昇温速度で加熱し、その状態で5分間保持し、次いで25℃以下となるよう急冷した。
 (2)2ndRUN
 1stRUN測定が完了した後、直ちに引き続いて、再度室温から20℃/分の昇温速度で300℃まで昇温を行って測定を行った。
得られた2ndRUNの示差走査熱量測定チャートにおいて、ガラス転移温度はガラス転移の階段状の変化部分において、JIS K-7121(1987)の「9.3ガラス転移温度の求め方(1)中間点ガラス転移温度Tmg」記載の方法で結晶ポリエステル(A)のガラス転移温度Tgを求めた(各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求めた)。また、冷結晶化ピークおけるピークトップの温度でもって、P層の結晶性ポリエステル(A)の冷結晶化ピーク温度Tccとした。得られたTg、Tmの値を用いて、下記式(2)により、P層のガラス転移温度Tgと冷結晶化ピークトップ温度Tccの差ΔTcgを求めた。
 ΔTcg=Tcc-Tg (2)
 また、原料となる結晶性ポリエステル(A)の熱特性(融点Tm、結晶融解熱量ΔHm)は、結晶性ポリエステル(A)を用いて、上記の方法と同様の方法で測定し、得られた2ndRUNの示差走査熱量測定チャートにおいて、結晶融解ピークのピークトップの温度でもって融点Tmとした。また、結晶融解熱量ΔHmは、結晶融解ピークの熱量をJIS K-7122(1987)の「9.転移熱の求め方」に基づいて求めた。
 D.ヤング率、破断伸度
 ポリエステルフィルムの破断伸度はASTM-D882(1997)に基づいて、サンプルを1cm×20cmの大きさに切り出し、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度を測定した。また、得られた荷重-歪曲線からヤング率を求めた。なお、測定は各サンプルについて5回ずつ行い、それらの平均値を用いた。 
ヤング率が最大となる方向(方向a)を決定する際には、いずれかの方向を0°とし、フィルム面内に-90°から90°まで10°毎に方向を変えて同様に測定することで、ヤング率が最大となる方向(方向a)を決定し、ヤング率Eaを求めた。そして続いて、方向aと同一の面内で直交する方向(方向b)のヤング率Ebを求めた。得られたEaおよびEbの平均値でもってヤング率とした。また破断伸度は方向aと方向bの破断伸度の平均値でもって破断伸度とした。
 E.空隙率V
 空隙率は以下の(A1)~(A5)の手順で求めた。なお、測定はフィルム切断箇所を無作為に変更して計10回行い、その相加平均値でもって当該ポP層における空隙率V(体積%)とした。
(A1)ミクロトームを用いて、フィルム断面を厚み方向に潰すことなく、フィルム面方向に対して垂直に切断する。
(A2)次いで切断した断面を、走査型電子顕微鏡を用いて観察し、3000倍に拡大観察した画像を得る。なお、観察場所はP層内において無作為に定めるものとするが、画像の上下方向がフィルムの厚み方向と、画像の左右方向がフィルム面方向と、それぞれ平行になるようにするものとする。
(A3)前記(A2)で得られる画像中におけるP層の面積を計測し、これをAとする。
(A4)画像中のP層内に存在する全ての空隙の面積を計測し、総面積をBとする。ここで、計測対象とするのは、空隙の全体が画像内に収まっているものに限られず、画像内に一部のみが現われている気泡も含むものとする。
(A5)BをAで除し(B/A)、それに100を乗じることにより、P層内における空隙の面積割合を求め、この値でもって空隙率V(体積%)とした。
 F.P層中の板状粒子(b1)の含有量Wb1および針状粒子(b2)の含有量Wb2
 P層中の板状粒子(b1)の含有量Wb1および針状粒子(b2)の含有量Wb2はポリエステルフィルム(積層フィルムの場合は削りだしたP層)について、以下(B1)~(B13)の手順で求めた。
(B1)ポリエステルフィルム(積層フィルムの場合は削りだしたP層)の質量w1を測定した。
(B2)ポリエステルフィルム(積層フィルムの場合は削りだしたP層)をヘキサフルオロ-2-イソプロパノール中に溶解させ、遠心分離により不溶成分として粒子を分取した。
(B3)得られた粒子をヘキサフルオロ-2-イソプロパノールにて洗浄、遠心分離した。なお、洗浄作業は、遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。
(B4)(B3)の洗浄液を加熱留去後、24時間自然乾燥させた後、60℃の温度で5時間真空乾燥し、粒子を得た。得られた粒子の質量w2を求め、下記式(3)から粒子の全含有量Wb(質量%)を得た。
Wb=(w2/w1)×100 (3)
(B5)観察物の寸法測定用の3Dゲージがついた観察台座の上に(B4)で得た粒子を固定し、走査型電子顕微鏡を用いて3000倍に拡大した画像を得た。
(B6)次いで、画像中の無作為に選出した1つの一次粒子について、3D計測ソフトを用いた画像解析によって外接直方体を描いた。
(B7)外接直方体の最も長い一辺を粒子の長さ(l)、最も短い一辺を粒子の厚さ(t)、残りの一辺を粒子の幅(b)と定義し、粒子のサイズを計測した。粒子の形状は、これら3つの値(l、t、b)の組み合わせによって一義的に定義される。
(B8)(B6)~(B7)について、選出する一次粒子を無作為に変更して計500回行い、計測した長さ(l)、厚さ(t)、幅(b)の3つの値について、それぞれ横軸を値(μm)、縦軸を存在個数(個)とした分布曲線を描いた。
(B9)描いた3つの分布曲線のピーク位置の値を抽出し、その値でもって該粒子の平均長さ(lp)、平均厚さ(tp)、平均幅(bp)とした。なお、分布曲線に2つ以上のピークがみられる場合には、形状の異なる複数の粒子が混在していることを意味する。その場合には、得られたピーク値から考えられる全ての粒子形状(lp、tp、bpの組み合わせ)を列挙し、サイズを計測した500個の一次粒子のそれぞれが、いずれの粒子形状に最も近似しているかを個別に判定し、形状別の存在個数を調査した。調査の結果、存在個数が5個以上みられた形状は、その形状の粒子が含有されているとみなした。
(B10)(B9)で形状別に存在個数を調査した粒子に関し、長さ(l)と幅(b)の比l/bが1以上2以下の粒子を板状粒子、l/bが2よりも大きい粒子を針状粒子と定義した。
(B11)(B8)でサイズを計測した500個の粒子のうち、(B10)で板状粒子と定義された粒子について、個々の仮想体積(μm)を式l×t×bで算出して、その総和Vv1(μm)を求めた。またSEM/EDX(走査型電子顕微鏡/エネルギー分散型X線分光法)を用いて粒子の組成分析を行い、板状粒子の化学組成を判別した。化学組成をもとに、既知の文献(例えば、フィラーハンドブック(日本ゴム協会編,1987年)など)から粒子の一般的な密度D1(g/μm)を引用し、式D1×Vv1により板状粒子の質量Wv1を求めた。
(B12)(B11)と同様にして、(B8)でサイズを計測した500個の粒子のうち、(B10)で針状粒子と定義された粒子について、針状粒子のみかけ質量Wv2(g)を求めた。
(B13)下記式(4)および(5)から、P層中の板状粒子(b1)の含有量Wb1(質量%)およびP層中の針状粒子(b2)の含有量Wb2(質量%)をそれぞれ算出した。
 Wb1= Wb×(Wv1/(Wv1+Wv2))(4)
 Wb2= Wb×(Wv2/(Wv2+Wv1))(5)。
 G.フィルム厚み方向の熱伝導率
 ポリエステルフィルムにレーザー光吸収用スプレー(ファインケミカルジャパン(株)製ブラックガードスプレーFC-153)を塗布し乾燥させた後、10mm角の正方形サンプルを切り出し、XeフラッシュアナライザーであるNETZSCH製LFA447Nanoflashを用い、測定温度25℃でフィルム厚み方向の熱拡散率α(m/s)を測定した。なお、測定は4回実施し、その平均値で以て熱拡散率とし、下記式(6)にて熱伝導率を求めた。
 熱伝導率(W/mK)=α(m/s)×比熱(J/kg・K)×密度(kg/m) (6)
 なお、比熱はポリエステルフィルムを用いて、JIS K-7123(1987)に基づいて求められた値を用いた。また、密度はフィルムを30mm×40mmの大きさに切り取った試料を用いて、電子比重計(ミラージュ貿易(株)製SD-120L)を用いて、室温23℃、相対湿度65%の雰囲気にて密度の測定を3回行い、得られた平均値を用いた。
 H.耐熱性
 方向aと平行方向にサンプルを1cm×20cmの大きさに切り出し、その短冊状サンプルを150℃の熱風オーブン中にて30分間熱処理し、冷却後、上記D項の手順に従って、破断伸度を求めた。得られた破断伸度の値とD項で得られた方向aの破断伸度(熱処理前の破断伸度)を用いて以下の式(7)により伸度保持率を計算した。
 伸度保持率(%)=熱処理前の破断伸度/熱処理後の破断伸度×100   (7)
 得られた伸度保持率を用いて以下の通り判定した。Aが実用範囲である。
 A:伸度保持率が50%以上
 D:伸度保持率が50%未満。
 I.表面比抵抗
 フィルムの表面比抵抗はデジタル超高抵抗微小電流計R8340((株)アドバンテスト製)で測定を実施した。測定はフィルムの両面各面において、面内において任意の10カ所で測定を実施し、その平均値をそれぞれ求めた。得られた平均値が低い方の値でもって表面比抵抗とした。また、測定試料は23℃、65%Rhの室内で一晩放置したものを用いて測定を実施した。得られた値を用いて以下の通り判定した。Aが実用範囲である。
 A:表面比抵抗が1013Ω/□以上
 D:表面比抵抗が1013Ω/□未満。
 J.動的貯蔵弾性率
 動的貯蔵弾性率E’は、JIS-K7244(1999)に従って、動的粘弾性測定装置DMS6100(セイコーインスツル(株)製)を用いて求めた。引張モード、駆動周波数は1Hz、チャック間距離は20mm、昇温速度は2℃/minの測定条件にて、各フィルムの粘弾性特性の温度依存性を測定した。この測定結果から100℃での動的貯蔵弾性率E’を求めた。
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。
(原料)
 ・結晶性ポリエステル(A):
 PET-1:酸成分としてテレフタル酸ジメチルを、ジオール成分としてエチレングリコールを用い、酸化ゲルマニウム(重合触媒)を得られるポリエステルペレットに対してゲルマニウム原子換算で300ppmとなるように添加し、重縮合反応を行い、固有粘度0.64のポリエチレンテレフタレートペレットを得た。なおこの樹脂のガラス転移温度Tgは83℃、融点Tm255℃、結晶融解熱量は37J/gであった。
 PET-2:酸成分としてテレフタル酸ジメチルを、ジオール成分としてエチレングリコールを用い、酸化ゲルマニウム(重合触媒)を得られるポリエステルペレットに対してゲルマニウム原子換算で300ppmとなるように添加し、重縮合反応を行い、固有粘度0.54ポリエチレンテレフタレートペレットを得た。得られたポリエチレンテレフタレートを160℃で6時間乾燥、結晶化させたのち、220℃、真空度0.3Torr、5時間の固相重合を行い、固有粘度0.70のポリエチレンテレフタレートを得た。なおこの樹脂のガラス転移温度Tgは83℃、融点Tm255℃、結晶融解熱量は35J/gであった。
 PET-3:固相重合時間を8時間とした以外はPET-2と同様の方法で、固有粘度0.80のポリエチレンテレフタレートを得た。なおこの樹脂のガラス転移温度Tgは83℃、融点Tm255℃、結晶融解熱量は36J/gであった。
 ・粒子
 ワラストナイト-1:FPW#400(キンセイマテックス(株)製)を使用した。長さ8.0μm、アスペクト比4の針状粒子である。
 ワラストナイト-2:NYAD M1250(巴工業(株)製)を使用した。長さ12μm、アスペクト比3の針状粒子である。
 針状酸化チタン:FTL-100(石原産業(株)製)を使用した。長さ1.7μm、アスペクト比13の針状粒子である。
 窒化ホウ素:SP3-7(電気化学工業(株)製)を使用した。長さ2.0μm、アスペクト比19の板状粒子である。
 タルク:GH-7(林化成(株)製)を使用した。長さ5.8μm、アスペクト比10の板状粒子である。
 アルミナ:A4-42-2(昭和電工(株)製)を使用した。長さ5μm、不定形でありアスペクト比は1である。
 なお、ポリエステルフィルム(積層フィルムの場合は削りだしたP層)中に含有する粒子の長さ(アスペクト比)の値は、以下の(C1)~(C3)の処理を行った後、(C4)~(C8)の手順で求めた。また、樹脂に添加する前の粒子の長さ(アスペクト比)の値は、(C4)~(C8)の手順で求めた。
 (C1)ポリエステルフィルム(積層フィルムの場合は削りだしたP層)をヘキサフルオロ-2-イソプロパノール中に溶解させ、遠心分離により不溶成分として粒子を分取した。
(C2)得られた粒子をヘキサフルオロ-2-イソプロパノールにて洗浄、遠心分離した。なお、洗浄作業は、遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。
(C3)(C2)の洗浄液を加熱留去後、24時間自然乾燥させた後、60℃の温度で5時間真空乾燥し、観察物となる粒子を得た。
(C4)観察物の寸法測定用の3Dゲージがついた観察台座の上に粒子を固定し、走査型電子顕微鏡を用いて3000倍に拡大した画像を得た。
(C5)次いで、画像中の無作為に選出した1つの一次粒子について、3D計測ソフトを用いた画像解析によって外接直方体を描いた。
(C6)外接直方体の最も長い一辺を粒子の長さ(l)、最も短い一辺を粒子の厚さ(t)、残りの一辺を粒子の幅(b)と定義し、粒子のサイズを計測した。粒子の形状は、これら3つの値(l、t、b)の組み合わせによって一義的に定義される。
(C7)(C5)~(C6)について、選出する一次粒子を無作為に変更して計500回行い、計測した長さ(l)、厚さ(t)、幅(b)の3つの値について、それぞれ横軸を値(μm)、縦軸を存在個数(個)とした分布曲線を描いた。
(C8)描いた3つの分布曲線のピーク位置の値を抽出し、その値でもって該粒子の平均長さ(lp)、平均厚さ(tp)、平均幅(bp)とし、平均長さと平均厚さの比lp/tpを粒子のアスペクト比とした。なお、分布曲線に2つ以上のピークがみられる場合には、形状の異なる複数の粒子が混在していることを意味する。その場合には、得られたピーク値から考えられる全ての粒子形状(lp、tp、bpの組み合わせ)を列挙し、サイズを計測した500個の一次粒子のそれぞれが、いずれの粒子形状に最も近似しているかを個別に判定し、形状別の存在個数を調査した。調査の結果、存在個数が5個以上みられた形状は、その形状の粒子が含有されているとみなし、該粒子のアスペクト比(lp/tp)を算出した。
 ・表面処理剤
 SC-1:エポキシ基含有シランカップリング剤KBM-403(信越化学(株)製。化合物名:3-グリシドキシプロピルトリメトキシシラン、分子量236.3)
 SC-2:エポキシ基含有シランカップリング剤KBM-4803(信越化学(株)製。化合物名:グリシドキシオクチルトリメトキシシラン、分子量306.4)。
 (参考例1-1)
 ワラストナイト-1をヘンシェルミキサーに入れ攪拌し、その状態で針状粒子(B2)とシランカップリング剤の100重量%に対してシランカップリング剤が0.1質量%(エポキシ基量は2.8×10-6mol/m)となるようにスプレー噴霧して添加し、70℃で2時間加熱攪拌後、取り出すことで、針状粒子(B2)の表面にエポキシ基を有する針状粒子(B2)を得た。
 サイドフィード口 を1箇所以上有し、ニーディングパドル混練部を1箇所設けた同方向回転タイプのベント式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)を265℃に加熱し、メインフィード口から結晶性ポリエステル(A)としてPET-1を70質量部、サイドフィード口から針状粒子(B1)30質量部を供給し、溶融混練後、ストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングして針状粒子(B2)を30重量%含有するマスターペレット(MB-1-1)を作製した。得られたマスターペレットの物性を表1に示す。
 (参考例1-2~1-4、2-1~2-4、3-1~3-4)
 粒子種類、および表面処理剤の種類、処理量を表1の通りに変更した以外は、参考例1-1と同様に板状粒子(B1)あるいは針状粒子(B2)を30重量%含有するマスターペレット(MB-1-2~1-4、2-1~2-4、3-1~3-4)を作製した。得られたマスターペレットの物性を表1に示す。
 (参考例1-5)
 粒子に表面処理をしない以外は参考例1-1と同様に針状粒子(B2)を30重量%含有するマスターペレット(MB-1-5)を作製した。得られたマスターペレットの物性を表1に示す。
 (参考例3-5)
 粒子としてアルミナを用い、処理量を表1の通りに変更した以外は、参考例1-1と同様に粒子を30重量%含有するマスターペレット(MB-3-5)を作製した。得られたマスターペレットの物性を表1に示す。
 (参考例4-1)
 参考例1-3で得られたマスターペレット(MB-1-3)を160℃で6時間乾燥、結晶化させたのち、220℃、真空度0.3Torr、6時間の固相重合を行い、マスターペレット(MB-4-1)を作製した。得られたマスターペレットの物性を表1に示す。
 (参考例4-2)
 参考例1-3で得られたマスターペレット(MB-1-3)を160℃で6時間乾燥、結晶化させたのち、220℃、真空度0.3Torr、12時間の固相重合を行い、マスターペレット(MB-4-2)を作製した。得られたマスターペレットの物性を表1に示す。
 (実施例1)
 参考例1-1で得られたマスターペレットMB-1-1を66.7質量部と、PET-1を33.3質量部とを混合したものを180℃の温度で3時間真空乾燥した後に押出機に供給し、窒素雰囲気下、280℃の温度で溶融させ、Tダイ口金に導入した。このときの押出機のフィルターは80μm焼結フィルターを使用した。次いで、Tダイ口金内より、シート状に押出して溶融単層シートとし、該溶融単層シートを、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸単層フィルムを得た。
 続いて、該未延伸単層フィルムを85℃の温度に加熱したロール群で予熱した後、90℃の温度の加熱ロールを用いて長手方向(縦方向)に2.5倍延伸を行い、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の80℃の温度の予熱ゾーンに導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な方向(幅方向)に2.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーン1で220℃の温度で20秒間の熱処理を施し、さらに熱処理ゾーン2で150℃の熱処理を行い、熱処理ゾーン3で100℃の温度で熱処理を行った。なお、熱処理に際し、熱処理ゾーン1-熱処理ゾーン2間で4%の弛緩処理を行った。次いで、均一に徐冷後、巻き取って、厚さ50μmの二軸延伸フィルムを得た。
 得られたフィルムの特性を評価した結果を表2に示す。熱伝導性、機械特性、耐熱性に優れたフィルムであることが分かった。
 (実施例2~20)
 用いるマスターペレットの種類、量、結晶性ポリエステル(A)の種類、量を表2の通りとした以外は実施例1と同様に厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表2に示す。熱伝導性、機械特性、耐熱性に優れたフィルムであることが分かった。特に、実施例4~7、9~11、16~18では、実施例1と比べて熱伝導性がより優れ、中でも実施例11、16の熱伝導性が特に優れることが分かった。
 (実施例21)
 参考例1-2で得られたマスターペレットMB-1-2を51.7質量部、参考例3-4で得られたマスターペレットMB-3-4を15.0質量部、PET-1を33.3質量部を混合したものを180℃の温度で3時間真空乾燥した後に押出機に供給し、窒素雰囲気下、280℃の温度で溶融させ、Tダイ口金に導入した。それ以外は実施例1と同様にして厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表2に示す。熱伝導性、機械特性、耐熱性に優れたフィルムであることが分かった。実施例21で得られたフィルムは実施例19や実施例20と比べて熱伝導性に優れたフィルムであることが分かった。
 (実施例22~28)
 用いるマスターペレットの量を表2の通りとした以外は実施例21と同様に厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表2に示す。熱伝導性、機械特性、耐熱性に優れたフィルムであることが分かった。特に、実施例22~27では、実施例28と比べて熱伝導性が優れ、中でも実施例22~25の熱伝導率が特に優れることが分かった。
 (比較例1~8)
 用いるマスターペレットの種類、量、結晶性ポリエステル(A)の種類、量、延伸条件を表2の通りとした以外は実施例1と同様に厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表2に示す。比較例1~3、5~8では実施例1と比べて熱伝導性が劣り、比較例4では耐熱性が劣ることがわかった。
 なお、表中、指数を省略して表現しており、例えば、1.0E+05という記載は、1.0×10-5を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明のポリエステルフィルムは、従来のポリエステルフィルムと比べて電気絶縁性および熱伝導性、機械特性に優れるポリエステルフィルムを提供することができる。かかるポリエステルフィルムは、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブルなどの電気絶縁材料、コンデンサ用材料、自動車用材料、建築材料をはじめとした電気絶縁性と熱伝導性が重視されるような用途に好適に使用することができる。特には、かかるポリエステルフィルムを用いることで、発電効率の高い風力発電機、太陽電池、消費電力の小さな電子機器を提供することができる。
1:長さ(l)
2:幅(b)
3:厚さ(t)
 

Claims (14)

  1. 結晶性ポリエステル(A)と、アスペクト比2以上の板状粒子(b1)と、アスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を含有する層(P層)を含むポリエステルフィルムであって、ヤング率が2GPa以上であり、かつ、前記P層中に含有するアスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の含有量の和をWb(質量%)、P層中の空隙率をV(体積%)とした場合に、Wbが10以上であり、V/Wbが1以下であるポリエステルフィルム。
  2. 前記アスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)が、表面に結晶性ポリエステル(A)と反応性を有する置換基(以下反応性置換基(a))を有し、前記粒子(B)の単位表面積あたりの反応性置換基(a)の量が0.2×10-6mol/m以上1.4×10-4mol/m以下である請求項1記載のポリエステルフィルム。
  3. 前記P層が、アスペクト比2以上の板状粒子(b1)とアスペクト比2以上の針状粒子(b2)の両方含有し、かつP層に含有するアスペクト比2以上の板状粒子(b1)の含有量をWb1(質量%)、アスペクト比2以上の針状粒子(b2)の含有量をWb2(質量%)とした場合に、Wb2/Wb1が0.7以上9以下である請求項1または請求項2に記載のポリエステルフィルム。
  4. 破断伸度が10%以上である請求項1~3のいずれかに記載のポリエステルフィルム。
  5. P層のガラス転移温度TgとP層の冷結晶化ピークトップ温度Tccの差ΔTcgが44℃以上である請求項1~4のいずれかに記載のポリエステルフィルム。
  6. 周波数1Hzでの動的粘弾性測定(以下、DMA)により得られる100℃の動的貯蔵弾性率E’が5×10Pa以上である請求項1~5記載のポリエステルフィルム。
  7. フィルム厚み方向の熱伝導率が0.15W/mK以上であり、かつ表面比抵抗が1013Ω/□以上である請求項1~6のいずれかに記載のポリエステルフィルム。
  8. 請求項1~7のいずれかに記載のポリエステルフィルムを用いてなる電気絶縁シート。
  9. 請求項8記載の電気絶縁シートを用いてなる風力発電機。
  10. 請求項1~7のいずれかに記載のポリエステルフィルムを用いてなる粘着テープ。
  11. 結晶性ポリエステル(A)と、結晶性ポリエステル(A)と反応性を有する置換基(以下反応性置換基(a))を表面に有しかつアスペクト比2以上の板状粒子(b1)、反応性置換基(a)を表面に有しかつアスペクト比2以上の針状粒子(b2)のうち少なくとも一方の粒子を溶融混練する工程(以下、溶融混練工程)、結晶性ポリエステル(A)と前記粒子を含む樹脂組成物を溶融させ口金から吐出させてフィルムを得る工程(以下、溶融押出工程)、フィルムを二軸延伸する工程(以下、延伸工程)をその順に含むことを特徴とする請求項1~7のいずれかに記載のポリエステルフィルムの製造方法。
  12. 前記アスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)の単位表面積あたりの反応性置換基(a)の量が0.2×10-6mol/m以上1.4×10-4mol/m以下である請求項11記載のポリエステルフィルムの製造方法。
  13. 前記前記アスペクト比2以上の板状粒子(b1)、アスペクト比2以上の針状粒子(b2)が反応性置換基(a)を有する表面処理剤で処理されたものであり、粒子(B)の質量を100質量部とした際に、表面処理剤の質量割合が0.1質量部以上5質量部以下である請求項11または請求項12に記載のポリエステルフィルムの製造方法。
  14. 溶融混練工程にてチップ状の組成物を得た後、得られたチップを固相重合した後に溶融押出工程にて溶融製膜する請求項11~13のいずれかに記載のポリエステルフィルムの製造方法。
     
PCT/JP2016/052522 2015-03-05 2016-01-28 ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ WO2016139992A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680006648.7A CN107207755B (zh) 2015-03-05 2016-01-28 聚酯膜及使用了该聚酯膜的电绝缘片、风力发电机、胶粘带
US15/554,775 US20180044507A1 (en) 2015-03-05 2016-01-28 Polyester film and electrical insulation sheet manufactured using same, wind power generator, and adhesive tape
EP16758688.2A EP3266813B1 (en) 2015-03-05 2016-01-28 Polyester film and electrical insulation sheet manufactured using same, wind power generator, and adhesive tape
JP2016507924A JP6686877B2 (ja) 2015-03-05 2016-01-28 ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-043274 2015-03-05
JP2015043274 2015-03-05
JP2015-150354 2015-07-30
JP2015150354 2015-07-30
JP2015172504 2015-09-02
JP2015-172504 2015-09-02

Publications (1)

Publication Number Publication Date
WO2016139992A1 true WO2016139992A1 (ja) 2016-09-09

Family

ID=56848821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052522 WO2016139992A1 (ja) 2015-03-05 2016-01-28 ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ

Country Status (6)

Country Link
US (1) US20180044507A1 (ja)
EP (1) EP3266813B1 (ja)
JP (1) JP6686877B2 (ja)
CN (1) CN107207755B (ja)
TW (1) TWI685520B (ja)
WO (1) WO2016139992A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308957A1 (de) 2016-10-17 2018-04-18 Mitsubishi Polyester Film GmbH Orientierte polyesterfolien mit erhöhter wärmeleitfähigkeit
JP2018517807A (ja) * 2015-05-07 2018-07-05 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ 電気絶縁性と熱伝導性を有するポリエステルフィルム
WO2021029278A1 (ja) * 2019-08-09 2021-02-18 花王株式会社 毛髪保持具、その製造方法及びそれを用いた毛髪処理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815347B2 (en) * 2016-08-11 2020-10-27 Toray Plastics (America), Inc. Blush-resistant film including pigments
KR20200027368A (ko) * 2018-09-04 2020-03-12 에스케이씨 주식회사 절연부를 포함하는 케이블 및 케이블 절연부의 제조방법
TWI762915B (zh) * 2020-04-28 2022-05-01 南亞塑膠工業股份有限公司 具有疊層結構的聚酯膜及其製造方法
US20220347990A1 (en) * 2021-04-29 2022-11-03 GM Global Technology Operations LLC Flexible sheet of polyethylene terephthalate and heat-activated adhesive, and thermal cooling structure using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128466A (ja) * 1992-10-19 1994-05-10 Toray Ind Inc ポリエステル樹脂組成物
JPH08504469A (ja) * 1992-12-09 1996-05-14 ヘキスト・アクチェンゲゼルシャフト 二軸配向penbbフィルムからの電気絶縁材
JP2003041019A (ja) * 2001-07-26 2003-02-13 Toray Ind Inc 熱可塑性樹脂フィルム
JP2006001992A (ja) * 2004-06-16 2006-01-05 Teijin Ltd ポリエチレンテレフタレート樹脂組成物および二軸配向ポリエチレンテレフタレートフィルム
JP2011026500A (ja) * 2009-07-28 2011-02-10 Fujifilm Corp 空洞含有樹脂成形体
JP2013038179A (ja) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd 高熱伝導性二軸延伸ポリエステルフィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360407B2 (ja) * 1994-04-11 2002-12-24 東レ株式会社 ポリエステル組成物からなるフィルム
EP1199333B1 (en) * 1999-05-10 2004-07-14 Teijin Limited Resin composition containing crystalline polyimide
JP2002121393A (ja) * 2000-10-12 2002-04-23 Sekisui Chem Co Ltd 熱伝導性樹脂組成物及び熱伝導性シート
US7781063B2 (en) * 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
WO2011030745A1 (ja) * 2009-09-11 2011-03-17 東レ株式会社 ポリエステルフィルムおよびそれを用いた太陽電池バックシート、太陽電池
JP5507960B2 (ja) * 2009-10-28 2014-05-28 帝人デュポンフィルム株式会社 電気絶縁用二軸配向フィルム
JP2011162706A (ja) * 2010-02-12 2011-08-25 Nitto Denko Corp 熱伝導性粘着シートの製造方法
PL2585517T3 (pl) * 2010-06-28 2015-06-30 Dsm Ip Assets Bv Kompozycja polimerowa przewodząca ciepło
JP5788731B2 (ja) * 2011-07-29 2015-10-07 帝人デュポンフィルム株式会社 高熱伝導性粘着テープ基材用二軸延伸熱可塑性樹脂フィルムおよびそれからなる高熱伝導性粘着テープ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128466A (ja) * 1992-10-19 1994-05-10 Toray Ind Inc ポリエステル樹脂組成物
JPH08504469A (ja) * 1992-12-09 1996-05-14 ヘキスト・アクチェンゲゼルシャフト 二軸配向penbbフィルムからの電気絶縁材
JP2003041019A (ja) * 2001-07-26 2003-02-13 Toray Ind Inc 熱可塑性樹脂フィルム
JP2006001992A (ja) * 2004-06-16 2006-01-05 Teijin Ltd ポリエチレンテレフタレート樹脂組成物および二軸配向ポリエチレンテレフタレートフィルム
JP2011026500A (ja) * 2009-07-28 2011-02-10 Fujifilm Corp 空洞含有樹脂成形体
JP2013038179A (ja) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd 高熱伝導性二軸延伸ポリエステルフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3266813A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517807A (ja) * 2015-05-07 2018-07-05 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ 電気絶縁性と熱伝導性を有するポリエステルフィルム
EP3308957A1 (de) 2016-10-17 2018-04-18 Mitsubishi Polyester Film GmbH Orientierte polyesterfolien mit erhöhter wärmeleitfähigkeit
WO2021029278A1 (ja) * 2019-08-09 2021-02-18 花王株式会社 毛髪保持具、その製造方法及びそれを用いた毛髪処理方法
JPWO2021029278A1 (ja) * 2019-08-09 2021-09-13 花王株式会社 毛髪保持具、その製造方法及びそれを用いた毛髪処理方法

Also Published As

Publication number Publication date
JP6686877B2 (ja) 2020-04-22
EP3266813A1 (en) 2018-01-10
EP3266813A4 (en) 2018-09-26
TW201643210A (zh) 2016-12-16
TWI685520B (zh) 2020-02-21
CN107207755B (zh) 2020-11-27
EP3266813B1 (en) 2019-09-18
JPWO2016139992A1 (ja) 2017-12-14
CN107207755A (zh) 2017-09-26
US20180044507A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6686877B2 (ja) ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ
JP5565020B2 (ja) ポリエステルフィルム、およびそれを用いた太陽電池
US8981212B2 (en) Polyester film, laminated film, solar battery backsheet and solar battery
KR101164393B1 (ko) 폴리에스테르 필름 및 그것을 이용한 태양 전지 백 시트, 태양 전지
JP5648629B2 (ja) ポリエチレンテレフタレート組成物、その製造方法およびポリエチレンテレフタレートフィルム
JP5565036B2 (ja) ポリエステルフィルムおよびそれを用いた太陽電池用バックシート、太陽電池
JP6699659B2 (ja) フィルムおよびそれを用いた電気絶縁シート、粘着テープ、回転機
JP2010003900A (ja) 太陽電池裏面保護膜用ポリエステルフィルム
WO2015019885A1 (ja) 積層ポリエステルフィルム
JP4881464B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルム
JP2012057021A (ja) ポリエステルフィルムおよびそれを用いた太陽電池用バックシート、太陽電池
JP2017066391A (ja) ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ
JP2020050870A (ja) フィルムおよびそれを用いてなる回路、ケーブル、電気絶縁シート、回転機
JP6185326B2 (ja) ポリエステルフィルム、それからなる太陽電池部材および太陽電池裏面保護フィルム
JP2015216213A (ja) 太陽電池裏面保護膜用ポリエステルフィルムおよびそれからなる太陽電池裏面保護膜
WO2018142662A1 (ja) 配向ポリエステルフィルム
JP2017043768A (ja) ポリエステルフィルムおよびそれを用いてなる積層シート
JP2019163450A (ja) フィルム
JP2016145267A (ja) 二軸配向ポリエステルフィルム
JP2011222580A (ja) 太陽電池用積層フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507924

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758688

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016758688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15554775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE