WO2016136546A1 - 電源制御用半導体装置 - Google Patents

電源制御用半導体装置 Download PDF

Info

Publication number
WO2016136546A1
WO2016136546A1 PCT/JP2016/054530 JP2016054530W WO2016136546A1 WO 2016136546 A1 WO2016136546 A1 WO 2016136546A1 JP 2016054530 W JP2016054530 W JP 2016054530W WO 2016136546 A1 WO2016136546 A1 WO 2016136546A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
terminal
voltage input
power supply
Prior art date
Application number
PCT/JP2016/054530
Other languages
English (en)
French (fr)
Inventor
裕樹 松田
幸雄 村田
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Priority to KR1020177022378A priority Critical patent/KR20170119683A/ko
Priority to US15/552,653 priority patent/US10284071B2/en
Priority to EP16755293.4A priority patent/EP3264579A4/en
Priority to CN201680011675.3A priority patent/CN107251397B/zh
Publication of WO2016136546A1 publication Critical patent/WO2016136546A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • the present invention relates to a power supply control semiconductor device, and more particularly to a technique that is effective when used in a control semiconductor device that constitutes an insulated DC power supply device including a voltage conversion transformer.
  • the DC power supply device includes an insulated AC circuit composed of a diode bridge circuit that rectifies an AC power supply, and a DC-DC converter that steps down the DC voltage rectified by the circuit and converts it into a DC voltage having a desired potential.
  • a DC converter In an isolated AC-DC converter, in general, an X capacitor is connected between AC terminals to attenuate normal mode noise, and the charge remaining in the X capacitor is quickly removed when the plug is pulled out from the outlet. In order to discharge, a discharging resistor is connected in parallel with the X capacitor.
  • Patent Document 1 In order to reduce power consumption during standby, an invention has been proposed in which the residual charge of the X capacitor can be quickly discharged when the plug is pulled out (see, for example, Patent Document 1).
  • the invention described in Patent Document 1 is provided with a circuit (filter) for detecting the pulling out of the plug, using a thyristor as a discharging means (switch), and using each discrete electronic component to form a discharging circuit. is doing. Therefore, there is a problem that the number of components constituting the discharge circuit increases.
  • the present invention has been made paying attention to the above-described problems.
  • the object of the present invention is to provide a plug without increasing the number of external elements and components in a control semiconductor device constituting an insulated DC power supply device.
  • An object of the present invention is to provide a technique capable of quickly discharging the residual charge of the X capacitor at the time of drawing.
  • Another object of the present invention is to provide a power supply control semiconductor device having a built-in discharge circuit that quickly discharges residual charges of an X capacitor when a plug is pulled out without increasing the number of external terminals.
  • the present invention A switching element for passing a current intermittently through the primary winding of the transformer for voltage conversion, a voltage proportional to the current flowing through the primary winding of the transformer, and an output voltage detection from the secondary side of the transformer
  • a power supply control semiconductor device that generates and outputs a drive pulse for on / off control when a signal is input,
  • An on / off control signal generating circuit for generating a control signal for controlling on / off of the switching element;
  • a high voltage input monitoring circuit connected to the high voltage input starting terminal and monitoring the voltage of the high voltage input starting terminal; Discharging means connected between the high-voltage input starting terminal and a ground point;
  • the high voltage input monitoring circuit is configured to turn on the discharging means when detecting that the time during which the voltage at the high voltage input starting terminal does not fall below a predetermined voltage value continues for a predetermined time.
  • the residual charge of the X capacitor can be discharged quickly when the plug is pulled out without increasing the number of external elements and components. Further, since the discharge means and a circuit for generating a signal for operating the discharge means are formed on the chip of the semiconductor device for switching control and connected to the high voltage terminal, the external discharge switch is turned on, There is no need for a new external terminal to output a control signal to turn off, and the residual charge of the X capacitor is quickly discharged when the plug is pulled out without increasing the number of external terminals and thus without significantly increasing the chip size. can do.
  • a power supply terminal to which a voltage induced in the auxiliary winding of the transformer is input, Switch means provided between the high-voltage input starting terminal and the power supply terminal;
  • the discharge means is connected in series with the switch means between the high-voltage input starting terminal and a ground point, and the high-voltage input monitoring circuit has a voltage of the high-voltage input starting terminal not lower than a predetermined voltage value.
  • the switch means and the discharge means are configured to be turned on when it is detected that the time has continued for a predetermined time.
  • the discharge means since the voltage via the switch means is applied to the discharge means, it is possible to configure the discharge means with an element having a lower withstand voltage compared to the case where no switch means is provided, thereby greatly increasing the chip size. Increase can be suppressed.
  • the switch means comprises a start circuit that monitors the voltage of the high-voltage input start terminal and controls the switch means,
  • the switch means is configured to be on / off controlled in accordance with a logical sum of an output of the high-voltage input monitoring circuit and an output of the activation circuit.
  • a mechanism for turning on / off the switch means (power supply switch) provided between the high-voltage and low-voltage power terminals, the power is supplied by the control signal for turning on / off the discharge switch.
  • the supply switch can be turned on and off, and it is possible to avoid a significant increase in the circuit scale and thus the chip size.
  • the high-voltage input monitoring circuit is preferably A voltage dividing circuit connected to the high voltage input starting terminal and dividing the voltage of the high voltage input starting terminal; A peak hold circuit for holding a peak voltage of the voltage divided by the voltage dividing circuit; A voltage comparison circuit that compares a voltage divided by the voltage dividing circuit with a voltage obtained by proportionally reducing the voltage held in the peak hold circuit; A timer circuit that counts the time during which the voltage divided by the voltage dividing circuit does not fall below the proportionally reduced voltage based on the output of the voltage comparison circuit; The discharging means or the switch means and the discharging means are turned on when the timer circuit measures a predetermined time. This makes it possible to configure a circuit that easily generates a signal for operating the discharge means by combining known circuit technologies, and designs a circuit that can respond to a specification change in a short time when the power supply specification changes. It becomes possible to do.
  • an external element or component is provided in a control semiconductor device that constitutes an isolated DC power supply device that includes a voltage conversion transformer and controls the output by turning on and off the current flowing in the primary winding. Without increasing, the residual charge of the X capacitor can be quickly discharged when the plug is pulled out.
  • a power supply control semiconductor device having a built-in discharge circuit that quickly discharges the residual charge of the X capacitor when the plug is pulled out without increasing the number of external terminals.
  • FIG. 1 is a circuit configuration diagram showing an embodiment of an AC-DC converter as an insulated DC power supply device according to the present invention.
  • FIG. FIG. 2 is a block diagram illustrating a configuration example of a primary switching power supply control circuit (power supply control IC) of a transformer in the AC-DC converter of FIG. 1. It is a wave form diagram which shows the mode of the change of the voltage of each part in IC for power supply control of an Example. It is a characteristic view which shows the relationship between the switching frequency and feedback voltage VFB in IC for power supply control of an Example. It is a circuit block diagram which shows the structural example of the discharge circuit in IC for power supply control of an Example. 6 is a timing chart showing operation timings during discharging by the discharging circuit of FIG. 5. FIG. 6 is a circuit configuration diagram showing a more specific circuit configuration example of the discharge circuit of FIG. 5.
  • FIG. 1 is a circuit configuration diagram showing an embodiment of an AC-DC converter as an insulated DC power supply device to which the present invention is applied.
  • the AC-DC converter of this embodiment includes an X capacitor Cx connected between AC input terminals to attenuate normal mode noise, a noise blocking line filter 11 including a common mode coil, and an AC voltage (AC ), A smoothing capacitor C1 for smoothing the rectified voltage, a voltage conversion transformer T1 having a primary winding Np, a secondary winding Ns, and an auxiliary winding Nb. And a switching transistor SW composed of an N-channel MOSFET connected in series with the primary side winding Np of the transformer T1, and a power supply control circuit 13 for driving the switching transistor SW.
  • the power supply control circuit 13 is formed as a semiconductor integrated circuit (hereinafter referred to as a power supply control IC) on a single semiconductor chip such as single crystal silicon.
  • the secondary side of the transformer T1 is connected between the rectifying diode D2 connected in series with the secondary side winding Ns and between the cathode terminal of the diode D2 and the other terminal of the secondary side winding Ns.
  • Smoothing capacitor C2 is provided, and the primary side winding Np is rectified and smoothed by rectifying and smoothing the AC voltage induced in the secondary side winding Ns by passing a current intermittently through the primary side winding Np.
  • DC voltage Vout corresponding to the winding ratio of the secondary winding Ns.
  • the secondary side of the transformer T1 is provided with a coil L3 and a capacitor C3 which constitute a filter for cutting off switching ripple, noise, etc. generated by the switching operation on the primary side, and detects the output voltage Vout.
  • a photodiode 15a as a light emitting side element of a photocoupler connected to the detection circuit 14 and transmitting a signal corresponding to the detection voltage to the power supply control IC 13 is provided.
  • a phototransistor 15b is provided as a light receiving side element that is connected between the feedback terminal FB of the power supply control IC 13 and a ground point and receives a signal from the detection circuit 14.
  • the primary side of the AC-DC converter of this embodiment is connected between the rectifying diode D0 connected in series with the auxiliary winding Nb, and between the cathode terminal of the diode D0 and the ground point GND.
  • a rectifying / smoothing circuit including a smoothing capacitor C0 is provided, and a voltage rectified and smoothed by the rectifying / smoothing circuit is applied to the power supply voltage terminal VDD of the power supply control IC 13.
  • the power supply control IC 13 is provided with a high voltage input starting terminal HV to which a voltage before being rectified by the diode bridge circuit 12 is applied via the diodes D11 and D12 and the resistor R1. Immediately after the plug is inserted into the outlet, it is configured to be able to operate with the voltage from the high voltage input starting terminal HV.
  • the current detection resistor Rs is connected between the source terminal of the switching transistor SW and the ground point GND, and the node N1 between the switching transistor SW and the current detection resistor Rs and the power source
  • a resistor R2 is connected between the current detection terminal CS of the control IC 13.
  • a capacitor C4 is connected between the current detection terminal CS of the power supply control IC 13 and the ground point, and a low-pass filter is configured by the resistor R2 and the capacitor C4.
  • the power supply control IC 13 of this embodiment includes an oscillation circuit 31 that oscillates at a frequency corresponding to the voltage VFB of the feedback terminal FB, and a primary signal based on the oscillation signal ⁇ c generated by the oscillation circuit 31.
  • Clock generating circuit 32 comprising a circuit such as a one-shot pulse generating circuit for generating a clock signal CK that gives the timing for turning on the side switching transistor SW, an RS flip-flop 33 set by the clock signal CK, and the flip-flop A driver (drive circuit) 34 that generates a drive pulse GATE of the switching transistor SW according to the output of 33 is provided.
  • the power supply control IC 13 also amplifies the voltage Vcs input to the current detection terminal CS, and the potential Vcs ′ amplified by the amplifier 35 and a comparison voltage (threshold for monitoring an overcurrent state).
  • a comparator 36a as a voltage comparison circuit for comparing the hold voltage (Vocp), a waveform generation circuit 37 for generating a voltage RAMP having a predetermined waveform as shown in FIG. 3 (A) based on the voltage VFB of the feedback terminal FB,
  • a comparator 36b for comparing the waveform potential Vcs ′ amplified by the amplifier 35 and the waveform RAMP generated by the waveform generation circuit 37 as shown in FIG. 3B, and the logical sum of the outputs of the comparators 36a and 36b.
  • OR gate G1 is provided.
  • the voltage RAMP in FIG. 3A is generated so as to decrease with a certain slope from the feedback voltage VFB.
  • the output RS of the OR gate G1 (see FIG. 3C) is input to the reset terminal of the flip-flop 33 via the OR gate G2, thereby giving a timing for turning off the switching transistor SW. Yes.
  • a pull-up resistor or a constant current source is provided between the feedback terminal FB and the internal power supply voltage terminal, and a current flowing through the phototransistor 15b is converted into a voltage by the resistor.
  • the waveform generation circuit 37 is provided to prevent subharmonic oscillation, and the voltage VFB may be directly or level-shifted and input to the comparator 36b.
  • the flip-flop when the power is turned on when no significant voltages VFB and Vcs are generated at the feedback terminal FB and the current detection terminal CS, the flip-flop is used to gradually increase the primary side current so that excessive current does not flow through the primary side winding.
  • a soft start circuit for generating a signal for resetting the group 33 may be provided.
  • the power supply control IC 13 of this embodiment includes a frequency control circuit 38 that changes the oscillation frequency of the oscillation circuit 31, that is, the switching frequency in accordance with the voltage VFB of the feedback terminal FB according to the characteristics shown in FIG.
  • the frequency f1 in FIG. 4 is set to a value such as 22 kHz
  • f2 is set to an arbitrary value in a range such as 66 kHz to 100 kHz.
  • the frequency control circuit 38 includes a buffer such as a voltage follower and a clamp circuit that clamps to 1.8 V when the voltage of the feedback terminal FB is, for example, 1.8 V or less, and to 2.1 V when the voltage is 2.1 V or more. And can be configured.
  • the oscillation circuit 31 includes a current source that supplies a current according to the voltage from the frequency control circuit 38, and can be configured by an oscillator whose oscillation frequency changes depending on the magnitude of the current that the current source flows.
  • the duty (Ton / Tcycle) of the drive pulse GATE is a predetermined maximum value (for example, 85%). ⁇ 90%) is provided for generating a maximum duty reset signal for limiting so as not to exceed the maximum duty reset signal output from the duty limit circuit 39 via the OR gate G2.
  • the switching transistor SW is immediately turned off by resetting at that time.
  • the power supply control IC 13 of this embodiment is connected to the high-voltage input start-up terminal HV and when a voltage at the terminal is input, the switch connected between the high-voltage input start-up terminal HV and the power supply voltage terminal VDD. Detects whether the AC power plug is disconnected from the outlet by monitoring the voltage of the start circuit (start circuit) 50 for starting the IC by turning on S0 (see FIG. 5) and the high voltage input start terminal HV A discharge circuit 40 is provided for discharging the X capacitor Cx when it is determined that it is missing. Whether or not the plug is disconnected is determined, for example, by detecting that the AC input voltage has not fallen below a predetermined value (for example, 30% of the peak value) within a certain time (for example, 30 milliseconds). Can do.
  • a predetermined value for example, 30% of the peak value
  • FIG. 5 shows a configuration example of the discharge circuit 40 in the power supply control IC of FIG.
  • the discharge circuit 40 is divided by the voltage dividing circuit 41 composed of resistors R3 and R4 connected in series between the high voltage input starting terminal HV and the ground point, and the voltage dividing circuit 41.
  • Vn2 is obtained by comparing the peak hold circuit 42 for holding the peak value of the measured voltage, the potential Vn2 of the connection node N2 of the resistors R3 and R4 and the voltage Vth obtained by proportionally reducing the voltage Vp held in the peak hold circuit 42.
  • a voltage comparison circuit 43 for determining whether or not Vth is below, a timer circuit 44 for measuring a time during which Vn2 is not below Vth, and a switch S0 are connected in series between the high-voltage input starting terminal HV and the ground point. And a discharge means 45 comprising a resistor Rd and a switch Sd connected to the.
  • the switch S0 is a switch that is connected between the high-voltage input start-up terminal HV and the power supply voltage terminal VDD and is controlled by the start-up circuit 50, and is composed of, for example, a high voltage MOS transistor.
  • the switch S0 is turned on immediately after an AC voltage is input to the high-voltage input activation terminal HV, and turned off when the VDD terminal becomes a voltage equal to or higher than a predetermined value (for example, 21 V), and the internal circuit starts operating. Then, after that, the voltage from the auxiliary winding is supplied to the power supply voltage terminal VDD, and the internal circuit operates with the voltage from the power supply voltage terminal VDD while the switch S0 is turned off.
  • the resistors R3 and R4 are set to have a ratio of resistance values so that the voltage of the high-voltage input activation terminal HV is dropped to a voltage (for example, 6 V) that is equal to or lower than the withstand voltage of the elements constituting the discharge circuit 40.
  • the voltage comparison circuit 43 compares 30% of the peak value of the potential Vn2 of the connection node N2 with the potential Vn2 of the connection node N2, and detects whether or not it has fallen below.
  • the timer circuit 44 measures the time during which Vn2 does not fall below Vp and determines that the measured time has exceeded, for example, 30 milliseconds
  • the timer circuit 44 outputs a signal for turning on the switch S0 and the discharge switch Sd.
  • the resistance Rd is set to a resistance value that limits the current so that the discharge rate is 47 V / second, for example.
  • the timer circuit 44 is reset each time Vn2 falls below Vp, and is configured to start measuring 30 milliseconds.
  • FIG. 6 shows the operation timing of the discharge circuit 40 shown in FIG.
  • the solid line in (A) shows the waveform of the voltage VHV of the high-voltage input starting terminal HV, and the broken line shows the value of 30% of the peak value.
  • 6B shows the output CP of the voltage comparison circuit 43
  • FIG. 6C shows the output TMR of the timer circuit 44.
  • the pulse CP is output at a period corresponding to the period of the voltage waveform at the high-voltage input activation terminal HV.
  • the voltage CP is not output from the voltage comparison circuit 43.
  • the output TMR of the timer circuit 44 changes to high level, the discharge switch Sd is turned on, the X capacitor is discharged, and the high voltage input is activated.
  • the voltage VHV at the terminal HV falls quickly.
  • the power supply control IC provided with the discharge circuit 40 shown in FIG. 5, as can be seen from FIG. 6, when the AC input is cut off, the residual charge of the X capacitor can be discharged quickly.
  • the power supply switch S0 is turned off by the starting circuit 50, so that it is possible to eliminate power loss due to the discharge resistor Rd.
  • the discharging resistor Rd has a resistance value necessary for defining the discharge speed, whereas the resistors R3 and R4 constituting the voltage dividing circuit 41 Since the resistance value can be set sufficiently higher than that of the discharge resistor Rd, the power loss of the discharge circuit 40 as a whole can be reduced as compared with the conventional case.
  • FIG. 7 shows a specific circuit configuration example of the discharge circuit 40 of FIG. 5 constituting the power supply control IC 13 of the present embodiment.
  • the discharge circuit 40 includes a voltage dividing circuit 41, a peak hold circuit 42, a voltage comparison circuit 43, a timer circuit 44, and a discharge means 45.
  • the peak hold circuit 42 is a connection node.
  • An input terminal is connected to a diode D4 having an anode terminal connected to N2, a capacitive element C4 connected between the cathode terminal of the diode D4 and a ground point, and a connection node N3 between the diode D4 and the capacitive element C4.
  • a buffer BFF4 comprising a voltage follower.
  • the voltage comparison circuit 43 includes resistors R5 and R6 for voltage division connected in series between the output terminal of the BFF 4 and the ground point, and a voltage divided by the resistors R5 and R6 (the potential Vn3 of the connection node N3). ) And a voltage (voltage Vn2 of the connection node N2) divided by the voltage dividing circuit 41 is compared with the comparator CMP1.
  • the comparator CMP1 can detect whether or not the potential Vn2 of the connection node N2 has fallen below about 30% of its peak value.
  • the timer circuit 44 is composed of a down counter CNT that counts in response to the oscillation signal ⁇ c from the oscillation circuit 31 or the clock signal CK from the clock generation circuit 32. When the number of clocks corresponding to 30 milliseconds is counted, the output is at a high level. It is comprised so that it may change. Further, the output of the comparator CMP1 is input to the reset terminal of the down counter CNT, and the down counter CNT restarts the counting operation for 30 milliseconds every time the output pulse of the comparator CMP1 is input.
  • the discharge switch Sd is composed of a medium breakdown voltage enhancement type MOS transistor
  • the power supply switch S0 is composed of a high breakdown voltage depletion type MOS transistor. Accordingly, as shown in FIG. 7, resistors R7 and R8 connected in series between the drain terminal of the switch S0 and the grounding point are connected to the gate terminal as the control terminal of the power supply switch S0. And a switch control circuit 52 composed of an enhancement-type MOS transistor Q1 and a clamping Zener diode D3 provided in parallel with the transistor Q1 is connected.
  • a depletion-type MOS transistor A negative voltage with respect to the source voltage is applied to the gate terminal of the switch S0, so that the channel can be made non-conductive (a state where no drain current flows).
  • the switch S0 is turned on.
  • the gate terminal of the MOS transistor Q1 is applied with the output signal of the NOR gate G3 that takes the logical sum of the signal ST from the start control circuit 53 and the signal TMR from the timer circuit 44 of the discharge circuit 40.
  • Q1 is turned off to turn on the MOS transistor as the power supply switch S0.
  • the start control circuit 53 has a built-in voltage comparator, and turns on the switch S0 when the voltage of the power supply voltage terminal VDD is 6.5 V or less, for example, and turns off the switch S0 when the voltage of VDD becomes 21 V or more, for example.
  • a combination of the switch control circuit 52 and the start control circuit 53 corresponds to the start circuit 50.
  • a logic circuit such as an OR gate G4 is provided in the preceding stage of the reset terminal of the down counter CNT, and a signal obtained by taking a logical sum of the output of the comparator CMP1 and the output of the down counter CNT is reduced. It is also possible to configure so that the down counter CNT stops the timing operation once it is input to the reset terminal of the counter CNT and the output of the down counter CNT once changes to a high level. Further, the discharging resistor Rd may be replaced with a constant current circuit. Further, the order of connection between the discharge resistor Rd or the constant current circuit and the discharge switch Sd may be reversed.
  • the discharge resistor Rd and the discharge switch Sd are provided in series with the power supply switch S0 between the high-voltage input starting terminal HV and the ground point.
  • the resistor Rd and the discharge switch Sd may be provided between the high-voltage input starting terminal HV and the grounding point.
  • it is necessary to use a high breakdown voltage MOS transistor constituting the discharge switch Sd but it is provided in series with the power switch S0 as in the above embodiment.
  • a MOS transistor with a low breakdown voltage can be formed, and the chip size can be reduced.
  • the switching transistor SW that allows current to flow intermittently through the primary winding of the transformer is a separate element from the power supply control IC 13.
  • the switching transistor SW is incorporated into the power supply control IC 13. You may comprise as one semiconductor integrated circuit.
  • the present invention is not limited to the forward-type or quasi-resonant-type AC-DC converter or the primary side.
  • the present invention can also be applied to a power supply control IC that constitutes a so-called Primary Side Regulation (hereinafter PSR) type AC-DC converter that controls the output voltage on the secondary side only by the information obtained in (1).
  • PSR Primary Side Regulation
  • Line filter 11 Line filter 12 Diode bridge circuit (rectifier circuit) 13 Power control circuit (Power control IC) 14 Secondary side detection circuit (IC for detection) 15a Light-emitting diode of photocoupler 15b Light-receiving transistor of photocoupler 31 Oscillation circuit 32 Clock generation circuit 34 Driver (drive circuit) 35 Amplifier (Non-inverting amplifier circuit) 36a Overcurrent detection comparator (overcurrent detection circuit) 36b Voltage / current control comparator (voltage / current control circuit) 37 Waveform generation circuit 38 Frequency control circuit 39 Duty limit circuit 40 Discharge circuit 41 Voltage divider circuit 42 Peak hold circuit (high voltage input monitoring circuit) 43 Voltage comparison circuit (high voltage input monitoring circuit) 44 Timer circuit (High voltage input monitoring circuit) 45 Discharge means 50 Start circuit HV High voltage input start terminal VDD Power supply voltage terminal (power supply terminal)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 課題は、外付け素子や部品を増加させることなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電することができるようにすることにある。 スイッチング素子(SW)をオン、オフ制御する駆動パルスを生成し出力する電源制御回路(13)に、電圧変換用のトランスの一次側巻線に間欠的に電流を流すためのスイッチング素子(SW)をオン、オフ制御する制御信号を生成するオン、オフ制御信号生成回路と、整流前の交流電圧が入力される高圧入力起動端子(HV)と、該高圧入力起動端子の電圧を監視する高圧入力監視回路(40)と、高圧入力起動端子と接地点との間に接続された放電手段(45)とを設け、高圧入力監視回路が、高圧入力起動端子の電圧が所定の電圧値を下回らない時間が所定時間継続したことを検出すると前記放電手段がオンされるように構成した。

Description

電源制御用半導体装置
 本発明は、電源制御用半導体装置に関し、特に電圧変換用トランスを備えた絶縁型直流電源装置を構成する制御用半導体装置に利用して有効な技術に関する。
 直流電源装置には、交流電源を整流するダイオード・ブリッジ回路と、該回路で整流された直流電圧を降圧して所望の電位の直流電圧に変換するDC-DCコンバータなどで構成された絶縁型AC-DCコンバータがある。
 絶縁型のAC-DCコンバータにおいては、一般に、ノーマルモードノイズを減衰するためAC端子間にXコンデンサが接続されているとともに、コンセントからプラグを引き抜した際にXコンデンサに残留する電荷を速やかに放電するため、Xコンデンサと並列に放電用の抵抗が接続されている。
特開2012-170289号公報
 しかしながら、Xコンデンサと並列に放電用の抵抗を接続した構成のAC-DCコンバータにあっては、AC電源接続中、常に電力を消費するので、無負荷時やスタンバイ時の待機電力消費を増加させる原因となる。
 なお、待機時における消費電力を低減するため、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電することができるようにした発明が提案されている(例えば特許文献1参照)。
 上記特許文献1に記載されている発明は、プラグの引き抜きを検知する回路(フィルタ)を設けるとともに、放電手段(スイッチ)としてサイリスタを使用し、それぞれディスクリートの電子部品を使用して放電回路を構成している。そのため、放電回路を構成する部品点数が増加するという課題がある。
 本発明は上記のような課題に着目してなされたもので、その目的とするところは、絶縁型直流電源装置を構成する制御用半導体装置において、外付け素子や部品を増加させることなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電することができる技術を提供することにある。
 本発明の他の目的は、外部端子数を増やすことなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電する放電回路を内蔵した電源制御用半導体装置を提供することにある。
 上記目的を達成するため本発明は、
 電圧変換用のトランスの一次側巻線に間欠的に電流を流すためのスイッチング素子を、前記トランスの一次側巻線に流れる電流に比例した電圧と、前記トランスの二次側からの出力電圧検出信号が入力されることでオン、オフ制御する駆動パルスを生成し出力する電源制御用半導体装置であって、
 前記スイッチング素子をオン、オフ制御する制御信号を生成するオン、オフ制御信号生成回路と、
 AC入力の交流電圧またはダイオード・ブリッジで整流された後の電圧が入力される高圧入力起動端子と、
 前記高圧入力起動端子に接続され該高圧入力起動端子の電圧を監視する高圧入力監視回路と、
 前記高圧入力起動端子と接地点との間に接続された放電手段と、
を備え、前記高圧入力監視回路が、前記高圧入力起動端子の電圧が所定の電圧値を下回らない時間が所定時間継続したことを検出した場合に、前記放電手段がオンされるように構成した。
 上記した構成によれば、外付けの素子や部品を増加させることなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電することができる。また、放電手段および該放電手段を動作させる信号を生成する回路を、スイッチング制御用の半導体装置のチップ上に形成するとともに高圧の端子に接続しているので、外付けの放電用スイッチをオン、オフさせる制御する信号を出力するための新たな外部端子が不要であり、外部端子数を増やすことなく、従って大幅にチップサイズを増大させることなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電することができる。
 ここで、望ましくは、前記トランスの補助巻線に誘起される電圧が入力される電源端子と、
 前記高圧入力起動端子と前記電源端子との間に設けられたスイッチ手段と、
を備え、前記放電手段は前記高圧入力起動端子と接地点との間に前記スイッチ手段と直列形態に接続され、前記高圧入力監視回路が前記高圧入力起動端子の電圧が所定の電圧値を下回らない時間が所定時間継続したことを検出した場合に、前記スイッチ手段および前記放電手段がオンされるように構成する。
 かかる構成によれば、スイッチ手段を介した電圧が放電手段に印加されるため、スイッチ手段を介さない場合に比べて放電手段を耐圧の低い素子で構成することができ、それによってチップサイズの大幅な増大を抑制することができる。
 また、望ましくは、前記高圧入力起動端子の電圧を監視し、前記スイッチ手段を制御する起動回路を備え、
 前記スイッチ手段は、前記高圧入力監視回路の出力と前記起動回路の出力の論理和に応じてオン、オフ制御されるように構成する。
 これにより、高圧と低圧の電源端子間に設けられているスイッチ手段(電源供給用スイッチ)をオン、オフ制御する仕組み(回路)を利用して、放電用スイッチをオン、オフさせる制御信号によって電源供給用スイッチをオン、オフさせることができ、回路規模ひいてはチップサイズが大幅に増大するのを回避することができる。
 さらに、望ましくは、 前記高圧入力監視回路は、
 前記高圧入力起動端子に接続され該高圧入力起動端子の電圧を分圧する分圧回路と、
 前記分圧回路により分圧された電圧のピーク電圧を保持するピークホールド回路と、
 前記分圧回路により分圧された電圧と前記ピークホールド回路に保持されている電圧を比例縮小した電圧とを比較する電圧比較回路と、
 前記電圧比較回路の出力に基づいて、前記分圧回路により分圧された電圧が前記比例縮小した電圧を下回らない時間を計時するタイマ回路と、
を備え、前記タイマ回路が予め定められた所定の時間を計時した場合に前記放電手段または前記スイッチ手段および前記放電手段がオンされるように構成する。
 これにより、公知の回路技術を組み合わせて容易に放電手段を動作させる信号を生成する回路を構成することができ、電源仕様に変更があった場合に短期間に仕様変更に対応可能な回路を設計することが可能となる。
 本発明によれば、電圧変換用のトランスを備え一次側巻線に流れる電流をオン、オフして出力を制御する絶縁型直流電源装置を構成する制御用半導体装置において、外付け素子や部品を増加させることなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電することができる。また、本発明によれば、外部端子数を増やすことなく、プラグ引き抜き時にXコンデンサの残留電荷を速やかに放電する放電回路を内蔵した電源制御用半導体装置を提供することができるという効果がある。
本発明に係る絶縁型直流電源装置としてのAC-DCコンバータの一実施形態を示す回路構成図である。 図1のAC-DCコンバータにおけるトランスの一次側スイッチング電源制御回路(電源制御用IC)の構成例を示すブロック図である。 実施例の電源制御用ICにおける各部の電圧の変化の様子を示す波形図である。 実施例の電源制御用ICにおけるスイッチング周波数とフィードバック電圧VFBの関係を示す特性図である。 実施例の電源制御用ICにおける放電回路の構成例を示す回路構成図である。 図5の放電回路による放電時の動作タイミングを示すタイミングチャートである。 図5の放電回路のより具体的な回路構成例を示す回路構成図である。
 以下、本発明の好適な実施形態を図面に基づいて説明する。
 図1は、本発明を適用した絶縁型直流電源装置としてのAC-DCコンバータの一実施形態を示す回路構成図である。
 この実施形態のAC-DCコンバータは、ノーマルモードノイズを減衰するためにAC入力端子間に接続されたXコンデンサCxと、コモンモードコイルなどからなるノイズ遮断用のラインフィルタ11と、交流電圧(AC)を整流するダイオード・ブリッジ回路12と、整流後の電圧を平滑する平滑用コンデンサC1と、一次側巻線Npと二次側巻線Nsおよび補助巻線Nbとを有する電圧変換用のトランスT1と、このトランスT1の一次側巻線Npと直列に接続されたNチャネルMOSFETからなるスイッチングトランジスタSWと、該スイッチングトランジスタSWを駆動する電源制御回路13を有する。この実施形態では、電源制御回路13は、単結晶シリコンのような1個の半導体チップ上に半導体集積回路(以下、電源制御用ICと称する)として形成されている。
 上記トランスT1の二次側には、二次側巻線Nsと直列に接続された整流用ダイオードD2と、このダイオードD2のカソード端子と二次側巻線Nsの他方の端子との間に接続された平滑用コンデンサC2とが設けられ、一次側巻線Npに間歇的に電流を流すことで二次側巻線Nsに誘起される交流電圧を整流し平滑することによって、一次側巻線Npと二次側巻線Nsとの巻線比に応じた直流電圧Voutを出力する。
 さらに、トランスT1の二次側には、一次側のスイッチング動作で生じたスイッチングリップル・ノイズ等を遮断するためのフィルタを構成するコイルL3およびコンデンサC3が設けられているとともに、出力電圧Voutを検出するための検出回路14と、該検出回路14に接続され検出電圧に応じた信号を電源制御用IC13へ伝達するフォトカプラの発光側素子としてのフォトダイオード15aが設けられている。そして、一次側には、上記電源制御用IC13のフィードバック端子FBと接地点との間に接続され上記検出回路14からの信号を受信する受光側素子としてのフォトトランジスタ15bが設けられている。
 また、この実施形態のAC-DCコンバータの一次側には、上記補助巻線Nbと直列に接続された整流用ダイオードD0と、このダイオードD0のカソード端子と接地点GNDとの間に接続された平滑用コンデンサC0とからなる整流平滑回路が設けられ、該整流平滑回路で整流、平滑された電圧が上記電源制御用IC13の電源電圧端子VDDに印加されている。
 一方、電源制御用IC13には、ダイオード・ブリッジ回路12で整流される前の電圧がダイオードD11,D12および抵抗R1を介して印加される高圧入力起動端子HVが設けられており、電源投入時(プラグがコンセントに差し込まれた直後)は、この高圧入力起動端子HVからの電圧で動作することができるように構成されている。
 さらに、本実施形態においては、スイッチングトランジスタSWのソース端子と接地点GNDとの間に電流検出用の抵抗Rsが接続されているとともに、スイッチングトランジスタSWと電流検出用抵抗RsとのノードN1と電源制御用IC13の電流検出端子CSとの間に抵抗R2が接続されている。さらに、電源制御用IC13の電流検出端子CSと接地点との間にはコンデンサC4が接続され、抵抗R2とコンデンサC4によりローパスフィルタが構成されるようになっている。
 次に、図2を用いて、上記電源制御用IC13の具体的な構成例について説明する。
 図2に示すように、本実施例の電源制御用IC13は、フィードバック端子FBの電圧VFBに応じた周波数で発振する発振回路31と、該発振回路31で生成された発振信号φcに基づいて一次側スイッチングトランジスタSWをオンさせるタイミングを与えるクロック信号CKを生成するワンショットパルス生成回路のような回路からなるクロック生成回路32と、クロック信号CKによってセットされるRS・フリップフロップ33と、該フリップフロップ33の出力に応じてスイッチングトランジスタSWの駆動パルスGATEを生成するドライバ(駆動回路)34を備える。
 また、電源制御用IC13は、電流検出端子CSに入力されている電圧Vcsを増幅するアンプ35と、該アンプ35により増幅された電位Vcs’と過電流状態の監視のための比較電圧(スレッシホールド電圧)Vocpとを比較する電圧比較回路としてのコンパレータ36aと、フィードバック端子FBの電圧VFBに基づいて図3(A)に示すような所定の波形の電圧RAMPを生成する波形生成回路37と、前記アンプ35により増幅された図3(B)に示すような波形の電位Vcs’と波形生成回路37により生成された波形RAMPとを比較するコンパレータ36bと、コンパレータ36aと36bの出力の論理和をとるORゲートG1を備える。本実施例の電源制御用IC13においては、図3(A)の電圧RAMPは、フィードバック電圧VFBからある一定の傾きをもって低下するように生成される。
 上記ORゲートG1の出力RS(図3(C)参照)がORゲートG2を介して上記フリップフロップ33のリセット端子に入力されることで、スイッチングトランジスタSWをオフさせるタイミングを与えるように構成されている。なお、フィードバック端子FBと内部電源電圧端子と間にはプルアップ抵抗もしくは定電流源が設けられており、フォトトランジスタ15bに流れる電流は該抵抗によって電圧に変換される。また、波形生成回路37を設けているのは、サブハーモニック発振対策のためであり、電圧VFBを直接あるいはレベルシフトしてコンパレータ36bへ入力するように構成しても良い。さらに、フィードバック端子FBや電流検出端子CSに有意な電圧VFB,Vcsが発生していない電源投入時に、一次側巻線に過大な電流が流れないように徐々に一次側電流を増加させるようにフリップフロップ33をリセットさせる信号を生成するソフトスタート回路を設けても良い。
 また、本実施例の電源制御用IC13は、フィードバック端子FBの電圧VFBに応じて前記発振回路31の発振周波数すなわちスイッチング周波数を、図4に示すような特性に従って変化させる周波数制御回路38を備える。図4における周波数f1は例えば22kHzのような値に、またf2は例えば66kHz~100kHzのような範囲の任意の値に設定される。周波数制御回路38は、ボルテージフォロワのようなバッファと、フィードバック端子FBの電圧が例えば1.8V以下のときは1.8Vに、また2.1V以上のときは2.1Vにそれぞれクランプするクランプ回路とで構成することができる。図示しないが、発振回路31は、周波数制御回路38からの電圧に応じた電流を流す電流源を備え、該電流源が流す電流の大きさによって発振周波数が変化するオシレータによって構成することができる。
 また、本実施例の電源制御用IC13には、上記クロック生成回路32から出力されるクロック信号CKに基づいて、駆動パルスGATEのデューティ(Ton/Tcycle)が予め規定された最大値(例えば85%~90%)を超えないように制限をかけるための最大デューティリセット信号を生成するデューティ制限回路39が設けられており、デューティ制限回路39から出力される最大デューティリセット信号を、ORゲートG2を介して上記フリップフロップ33に供給してパルスが最大デューティに達した場合にはその時点でリセットさせることでスイッチングトランジスタSWを直ちにオフさせるように構成されている。
 さらに、本実施例の電源制御用IC13には、高圧入力起動端子HVに接続され該端子の電圧が入力されると、高圧入力起動端子HVと電源電圧端子VDDとの間に接続されているスイッチS0(図5参照)をオンさせてICを起動させるための起動回路(スタート回路)50と、高圧入力起動端子HVの電圧を監視してAC電源のプラグがコンセントから抜けているか否か検出し、抜けていると判断した場合にはXコンデンサCxを放電させるための放電回路40とが設けられている。プラグが抜けているか否かは、例えばある一定時間(例えば30m秒)内にAC入力電圧が所定の値(例えばピーク値の30%)を下回ることがなかったことを検出することで判断することができる。
 図5には、図2の電源制御用ICにおける放電回路40の構成例が示されている。
 図5に示すように、放電回路40は、高圧入力起動端子HVと接地点との間に直列に接続された抵抗R3,R4からなる分圧回路41と、該分圧回路41によって分圧された電圧のピーク値を保持するピークホールド回路42と、抵抗R3,R4の接続ノードN2の電位Vn2とピークホールド回路42に保持されている電圧Vpを比例縮小した電圧Vthとを比較してVn2がVthを下回ったか否か判定する電圧比較回路43と、Vn2がVthを下回らない時間を計時するタイマ回路44と、高圧入力起動端子HVと接地点との間に、スイッチS0と直列形態となるように接続された抵抗RdおよびスイッチSdとからなる放電手段45とを備えて構成されている。
 ここで、スイッチS0は、高圧入力起動端子HVと電源電圧端子VDDとの間に接続され、起動回路50によって制御されるスイッチであり、例えば高耐圧のMOSトランジスタにより構成される。スイッチS0は、高圧入力起動端子HVに交流電圧が入力された直後にオンされ、VDD端子が所定値(例えば21V)以上の電圧になるとオフされ、内部回路が動作を開始する。すると、その後は補助巻線からの電圧が電源電圧端子VDDに供給されるようになり、スイッチS0がオフされたまま内部回路は電源電圧端子VDDからの電圧で動作する。
 抵抗R3,R4は、高圧入力起動端子HVの電圧を、放電回路40を構成する素子の耐圧以下の電圧(例えば6V)に落とし込むように抵抗値の比が設定される。
 上記電圧比較回路43は、接続ノードN2の電位Vn2のピーク値の30%の値と接続ノードN2の電位Vn2とを比較して、下回ることがなかったか否かを検出する。タイマ回路44は、Vn2がVpを下回らない時間を計時して計時時間が例えば30m秒を越えたと判定すると、スイッチS0および放電用スイッチSdをオンさせる信号を出力する。抵抗Rdは、例えば放電速度が47V/秒となるように電流を制限する抵抗値に設定される。タイマ回路44は、Vn2がVpを下回わる度にリセットされ、30m秒の計時を開始するように構成されている。
 図6には、図5に示す放電回路40による動作タイミングが示されている。図6において、(A)の実線は高圧入力起動端子HVの電圧VHVの波形を示すもので、破線はピーク値の30%の値を表わしている。また、図6(B)は電圧比較回路43の出力CP、図6(C)はタイマ回路44の出力TMRを表わしている。
 図6に示すように、正常な期間T1中においては、高圧入力起動端子HVの電圧波形の周期に対応した周期でパルスCPが出力される。タイミングt2でプラグが外れた場合には、電圧比較回路43からパルスCPが出力されなくなる。そして、最後のパルスの出力時点t1から30m秒経過した時点t3で、タイマ回路44の出力TMRがハイレベルに変化して放電用スイッチSdがオンされてXコンデンサの放電が行なわれ、高圧入力起動端子HVの電圧VHVが速やかに立ち下がるようになる。
 このように、図5に示す放電回路40を設けた電源制御用ICにおいては、図6から分かるように、AC入力が遮断された場合にXコンデンサの残留電荷を速やかに放電させることができるとともに、通常動作状態では起動回路50によって電源供給用のスイッチS0がオフされるため、放電用抵抗Rdによる電力損失をなくすことができる。なお、分圧回路41においては常時電力損失が生じるが、放電用抵抗Rdは放電速度を規定するのに必要な抵抗値とされるのに対し、分圧回路41を構成する抵抗R3,R4は放電用抵抗Rdに比べて充分に高い抵抗値に設定できるので、放電回路40全体としての電力損失は従来に比べて低減することができる。
 図7には、本実施形態の電源制御用IC13を構成する図5の放電回路40の具体的な回路構成例が示されている。
 図7に示すように、放電回路40は分圧回路41とピークホールド回路42と電圧比較回路43とタイマ回路44と放電手段45とから構成されており、このうちピークホールド回路42は、接続ノードN2にアノード端子が接続されたダイオードD4と、該ダイオードD4のカソード端子と接地点との間に接続された容量素子C4と、ダイオードD4と容量素子C4との接続ノードN3に入力端子が接続されたボルテージフォロワからなるバッファBFF4とにより構成されている。
 電圧比較回路43は、上記BFF4の出力端子と接地点との間に直列に接続された分圧用の抵抗R5,R6と、該抵抗R5,R6によって分圧された電圧(接続ノードN3の電位Vn3)と上記分圧回路41によって分圧された電圧(接続ノードN2の電位Vn2)とを比較するコンパレータCMP1とにより構成されている。抵抗R5,R6の抵抗値の比が2:1となるように設定されることにより、容量素子C4に保持されているピーク電圧の1/3の大きさの電圧が接続ノードN3に現れる。これにより、コンパレータCMP1は、接続ノードN2の電位Vn2がそのピーク値のおよそ30%の値を下回ったか否かを検出することができる。
 タイマ回路44は、発振回路31からの発振信号φcまたはクロック生成回路32からのクロック信号CKにより計数動作するダウンカウンタCNTにより構成されており、30m秒に相当するクロック数を計数すると出力がハイレベルに変化するように構成されている。また、上記コンパレータCMP1の出力がダウンカウンタCNTのリセット端子に入力されており、ダウンカウンタCNTは、コンパレータCMP1の出力パルスが入力される毎に30m秒の計時動作をリスタートする。
 通常は、30m秒を経過する前にコンパレータCMP1からのパルスCPが入力されるため、出力が変化することはないが、プラグが抜かれてコンパレータCMP1からのリセットパルスCPが入力されなくなると、30m秒を計時した時点でダウンカウンタCNTの出力がハイレベルに変化し、その出力によって放電用のスイッチSdがオンされる。
 さらに、本実施例では、放電用のスイッチSdが中耐圧のエンハンスメント型MOSトランジスタで構成されるのに対し、電源供給用のスイッチS0は高耐圧のデプレッション型のMOSトランジスタにより構成される。また、それに応じて、電源供給用のスイッチS0の制御端子としてのゲート端子には、図7に示すように、スイッチS0のドレイン端子と接地点との間に直列に接続された抵抗R7,R8およびエンハンスメント型のMOSトランジスタQ1と、該トランジスタQ1と並列に設けられたクランプ用のツェナーダイオードD3とからなるスイッチ制御回路52が接続されており、トランジスタQ1をオンさせることで、デプレッション型のMOSトランジスタであるスイッチS0のゲート端子に、ソース電圧に対して負の電圧を印加して、チャンネルを非導通状態(ドレイン電流が流れない状態)にさせることができるように構成されている。また、トランジスタQ1がオフされるとスイッチS0がオン状態になる。
 そして、上記MOSトランジスタQ1のゲート端子には、スタート制御回路53からの信号STと上記放電回路40のタイマ回路44からの信号TMRとの論理和をとるNORゲートG3の出力信号が印加されており、放電用のスイッチSdをオンさせる際にQ1をオフさせて、電源供給用スイッチS0としてのMOSトランジスタをオンさせるように構成されている。スタート制御回路53は、電圧コンパレータを内蔵しており、電源電圧端子VDDの電圧が例えば6.5V以下であるとスイッチS0をオンさせ、VDDの電圧が例えば21V以上になるとスイッチS0をオフさせるように動作する。本明細書では、スイッチ制御回路52とスタート制御回路53を合わせたものが起動回路50に相当する。
 なお、図7に破線で示すように、ダウンカウンタCNTのリセット端子の前段にORゲートG4等のロジック回路を設け、コンパレータCMP1の出力とダウンカウンタCNTの出力との論理和をとった信号をダウンカウンタCNTのリセット端子に入力して、ダウンカウンタCNTの出力が一旦ハイレベルに変化したら、ダウンカウンタCNTが計時動作を停止するように構成しても良い。
 また、放電用の抵抗Rdは、定電流回路に置き換えても良い。また、放電用の抵抗Rdもしくは定電流回路と放電用スイッチSdの接続の順序は逆であっても良い。
 さらに、上記実施例では、放電用の抵抗Rdと放電用スイッチSdを、高圧入力起動端子HVと接地点との間に、電源供給用のスイッチS0と直列をなすように設けているが、放電用の抵抗Rdと放電用スイッチSdは、原理的には高圧入力起動端子HVと接地点との間に設けるようにしても良い。ただし、そのような接続を行うと、放電用スイッチSdを構成するMOSトランジスタとして高耐圧のものを使用する必要があるが、上記実施例のように電源用のスイッチS0と直列をなすように設けることで、耐圧の低いMOSトランジスタで構成することができ、チップサイズを低減することができる。
 以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではない。例えば、前記実施形態では、トランスの一次側巻線に間歇的に電流を流すスイッチングトランジスタSWを、電源制御用IC13とは別個の素子としているが、このスイッチングトランジスタSWを電源制御用IC13に取り込んで、1つの半導体集積回路として構成してもよい。
 前記実施形態では、本発明をフライバック方式のAC-DCコンバータを構成する電源制御用ICに適用した場合について説明したが、本発明はフォワード型や疑似共振型のAC-DCコンバータさらには一次側で取得した情報のみで二次側の出力電圧の制御を行ういわゆる Primary Side Regulation (以下PSR)方式のAC-DCコンバータ
を構成する電源制御用ICにも適用することができる。
 11 ラインフィルタ
 12 ダイオード・ブリッジ回路(整流回路)
 13 電源制御回路(電源制御用IC)
 14 二次側検出回路(検出用IC)
 15a フォトカプラの発光側ダイオード
 15b フォトカプラの受光側トランジスタ
 31 発振回路
 32 クロック生成回路
 34 ドライバ(駆動回路)
 35 アンプ(非反転増幅回路)
 36a 過電流検出用コンパレータ(過電流検出回路)
 36b 電圧/電流制御用コンパレータ(電圧/電流制御回路)
 37 波形生成回路
 38 周波数制御回路
 39 デューティ制限回路
 40 放電回路
 41 分圧回路
 42 ピークホールド回路(高圧入力監視回路)
 43 電圧比較回路(高圧入力監視回路)
 44 タイマ回路(高圧入力監視回路)
 45 放電手段
 50 起動回路
 HV 高圧入力起動端子
 VDD 電源電圧端子(電源端子)

Claims (4)

  1.  電圧変換用のトランスの一次側巻線に間欠的に電流を流すためのスイッチング素子を、前記トランスの一次側巻線に流れる電流に比例した電圧と、前記トランスの二次側からの出力電圧検出信号が入力されることでオン、オフ制御する駆動パルスを生成し出力する電源制御用半導体装置であって、
     前記スイッチング素子をオン、オフ制御する制御信号を生成するオン、オフ制御信号生成回路と、
     AC入力の交流電圧またはダイオード・ブリッジで整流された後の電圧が入力される高圧入力起動端子と、
     前記高圧入力起動端子に接続され該高圧入力起動端子の電圧を監視する高圧入力監視回路と、
     前記高圧入力起動端子と接地点との間に接続された放電手段と、
    を備え、前記高圧入力監視回路が、前記高圧入力起動端子の電圧が所定の電圧値を下回らない時間が所定時間継続したことを検出した場合に、前記放電手段がオンされるように構成されていることを特徴とする電源制御用半導体装置。
  2.  前記トランスの補助巻線に誘起される電圧が入力される電源端子と、
     前記高圧入力起動端子と前記電源端子との間に設けられたスイッチ手段と、
    を備え、前記放電手段は前記高圧入力起動端子と接地点との間に前記スイッチ手段と直列形態に接続され、前記高圧入力監視回路が前記高圧入力起動端子の電圧が所定の電圧値を下回らない時間が所定時間継続したことを検出した場合に、前記スイッチ手段および前記放電手段がオンされるように構成されていることを特徴とする請求項1に記載の電源制御用半導体装置。
  3.  前記高圧入力起動端子の電圧を監視し、前記スイッチ手段を制御する起動回路を備え、
     前記スイッチ手段は、前記高圧入力監視回路の出力と前記起動回路の出力の論理和に応じてオン、オフ制御されるように構成されていることを特徴とする請求項2に記載の電源制御用半導体装置。
  4.  前記高圧入力監視回路は、
     前記高圧入力起動端子に接続され該高圧入力起動端子の電圧を分圧する分圧回路と、
     前記分圧回路により分圧された電圧のピーク電圧を保持するピークホールド回路と、
     前記分圧回路により分圧された電圧と前記ピークホールド回路に保持されている電圧を比例縮小した電圧とを比較する電圧比較回路と、
     前記電圧比較回路の出力に基づいて、前記分圧回路により分圧された電圧が前記比例縮小した電圧を下回らない時間を計時するタイマ回路と、
    を備え、前記タイマ回路が予め定められた所定の時間を計時した場合に前記放電手段または前記スイッチ手段および前記放電手段がオンされるように構成されていることを特徴とする請求項1~3のいずれかに記載の電源制御用半導体装置。
PCT/JP2016/054530 2015-02-23 2016-02-17 電源制御用半導体装置 WO2016136546A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177022378A KR20170119683A (ko) 2015-02-23 2016-02-17 전원 제어용 반도체 장치
US15/552,653 US10284071B2 (en) 2015-02-23 2016-02-17 Semiconductor device for controlling power source
EP16755293.4A EP3264579A4 (en) 2015-02-23 2016-02-17 Semiconductor device for controlling power source
CN201680011675.3A CN107251397B (zh) 2015-02-23 2016-02-17 电源控制用半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-032442 2015-02-23
JP2015032442A JP6443120B2 (ja) 2015-02-23 2015-02-23 電源制御用半導体装置

Publications (1)

Publication Number Publication Date
WO2016136546A1 true WO2016136546A1 (ja) 2016-09-01

Family

ID=56788522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054530 WO2016136546A1 (ja) 2015-02-23 2016-02-17 電源制御用半導体装置

Country Status (6)

Country Link
US (1) US10284071B2 (ja)
EP (1) EP3264579A4 (ja)
JP (1) JP6443120B2 (ja)
KR (1) KR20170119683A (ja)
CN (1) CN107251397B (ja)
WO (1) WO2016136546A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI837644B (zh) 2022-04-15 2024-04-01 宏碁股份有限公司 電源供應器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6481407B2 (ja) * 2015-02-19 2019-03-13 ミツミ電機株式会社 電源制御用半導体装置
KR102231095B1 (ko) * 2015-06-29 2021-03-22 온세미컨덕터코리아 주식회사 소프트 스타트 회로 및 이를 포함하는 벅 컨버터
JP6880865B2 (ja) 2017-03-16 2021-06-02 富士電機株式会社 Ac/dcコンバータの制御回路
JP2019047621A (ja) * 2017-09-01 2019-03-22 ミツミ電機株式会社 電源制御用半導体装置および電源装置並びにxコンデンサの放電方法
JP6858692B2 (ja) * 2017-11-13 2021-04-14 ニチコン株式会社 低電圧検出装置
JP6987645B2 (ja) * 2018-01-05 2022-01-05 東芝テック株式会社 電力変換装置及び画像形成装置
JP2019149614A (ja) * 2018-02-26 2019-09-05 ルネサスエレクトロニクス株式会社 電流検出回路、半導体装置、及び、半導体システム
CN109039092B (zh) * 2018-09-20 2024-01-16 广州金升阳科技有限公司 一种电压检测电路及应用该电路的双向变换器
KR102573270B1 (ko) 2018-10-08 2023-08-31 삼성전자주식회사 반도체 메모리 장치 및 이의 구동 방법
JP7193710B2 (ja) 2018-10-23 2022-12-21 ミツミ電機株式会社 スイッチング電源制御用半導体装置およびac-dcコンバータ
KR102211122B1 (ko) 2018-12-20 2021-02-02 삼성전자주식회사 스토리지 장치 및 스토리지 시스템
CN109856461A (zh) * 2019-01-22 2019-06-07 湖北三江航天红林探控有限公司 一种电容测试电路
JP7215268B2 (ja) * 2019-03-22 2023-01-31 セイコーエプソン株式会社 電源制御装置およびスイッチング電源
US11437842B2 (en) * 2019-03-22 2022-09-06 Seiko Epson Corporation Power supply control device, switching power supply, and electronic apparatus
JP7215269B2 (ja) * 2019-03-22 2023-01-31 セイコーエプソン株式会社 電源制御装置およびスイッチング電源
WO2021049404A1 (ja) * 2019-09-13 2021-03-18 新電元工業株式会社 制御回路及び電源装置
JP7421075B2 (ja) 2019-12-25 2024-01-24 ミツミ電機株式会社 スイッチング電源用半導体装置並びにスイッチング電源装置
CN112290800A (zh) * 2020-10-20 2021-01-29 华源智信半导体(深圳)有限公司 X电容放电控制电路、方法及开关电源
CN113037066B (zh) * 2021-03-17 2023-04-25 深圳市必易微电子股份有限公司 开关控制电路、开关控制方法和开关电源
US20220311351A1 (en) * 2021-03-23 2022-09-29 Texas Instruments Incorporated Restart of an ac-to-dc converter upon a temporary drop-out of an ac voltage
CN115498863B (zh) * 2022-11-21 2023-05-02 成都智融微电子有限公司 一种用于电源管理芯片的hv泄流电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140840A1 (ja) * 2011-04-14 2012-10-18 パナソニック株式会社 コンバータ装置及び半導体装置
JP2014204573A (ja) * 2013-04-05 2014-10-27 キヤノン株式会社 電源装置及び画像形成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100525025C (zh) * 2006-09-12 2009-08-05 崇贸科技股份有限公司 功率转换器的具有前馈补偿的启动电路
CN103081322B (zh) * 2010-09-10 2016-08-03 富士电机株式会社 电源控制电路以及电源切断检测方法
JP5645700B2 (ja) 2011-02-16 2014-12-24 キヤノン株式会社 放電回路、放電回路を有する電源及び画像形成装置
JP5887081B2 (ja) * 2011-07-26 2016-03-16 ローム株式会社 Ac/dcコンバータおよびそれを用いたac電源アダプタおよび電子機器
JP2013188093A (ja) * 2012-03-09 2013-09-19 Konica Minolta Inc 電源装置
CN102545195B (zh) * 2012-03-16 2014-11-05 成都芯源系统有限公司 Emi滤波电容器放电电路及放电方法
JP6155586B2 (ja) * 2012-09-21 2017-07-05 サンケン電気株式会社 スイッチング電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140840A1 (ja) * 2011-04-14 2012-10-18 パナソニック株式会社 コンバータ装置及び半導体装置
JP2014204573A (ja) * 2013-04-05 2014-10-27 キヤノン株式会社 電源装置及び画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264579A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI837644B (zh) 2022-04-15 2024-04-01 宏碁股份有限公司 電源供應器

Also Published As

Publication number Publication date
CN107251397B (zh) 2019-11-22
JP6443120B2 (ja) 2018-12-26
KR20170119683A (ko) 2017-10-27
JP2016158310A (ja) 2016-09-01
US10284071B2 (en) 2019-05-07
US20180019656A1 (en) 2018-01-18
CN107251397A (zh) 2017-10-13
EP3264579A1 (en) 2018-01-03
EP3264579A4 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6443120B2 (ja) 電源制御用半導体装置
US10978945B2 (en) Semiconductor device for switching power supply control and AC-DC converter
JP7161102B2 (ja) スイッチング電源装置
JP6428360B2 (ja) 電源制御用半導体装置
US9602010B2 (en) Insulated DC power supply and a method of controlling same
JP7193710B2 (ja) スイッチング電源制御用半導体装置およびac-dcコンバータ
JP6424644B2 (ja) 電源制御用半導体装置
JP6476997B2 (ja) 電源制御用半導体装置
KR20190025493A (ko) 전원 제어용 반도체 장치, 전원 장치 및 x 콘덴서의 방전 방법
JP6481407B2 (ja) 電源制御用半導体装置
JP6531424B2 (ja) 電源制御用半導体装置
JP2020162326A (ja) スイッチング電源装置
CN111726004B (zh) 电源控制装置以及开关电源
US9525353B2 (en) Switching power-supply device for performing control of output voltage switching operation
JP6455180B2 (ja) 電源制御用半導体装置
JP2019047655A (ja) 電源制御用半導体装置および電源装置並びにxコンデンサの放電方法およびスイッチ制御方法
JP2016116319A (ja) 絶縁型直流電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022378

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15552653

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016755293

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE