WO2016132589A1 - リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池 - Google Patents

リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池 Download PDF

Info

Publication number
WO2016132589A1
WO2016132589A1 PCT/JP2015/077897 JP2015077897W WO2016132589A1 WO 2016132589 A1 WO2016132589 A1 WO 2016132589A1 JP 2015077897 W JP2015077897 W JP 2015077897W WO 2016132589 A1 WO2016132589 A1 WO 2016132589A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
electrode
lithium secondary
mass
secondary battery
Prior art date
Application number
PCT/JP2015/077897
Other languages
English (en)
French (fr)
Inventor
克夫 高橋
文弥 金子
宮村 岳志
修一 伊藤
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to KR1020177022456A priority Critical patent/KR20170118071A/ko
Priority to CN201580076249.3A priority patent/CN107251288A/zh
Priority to JP2017500274A priority patent/JP6927874B2/ja
Publication of WO2016132589A1 publication Critical patent/WO2016132589A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for an electrode of a lithium secondary battery, an electrode manufactured using the binder, and a lithium secondary battery using the electrode.
  • Lithium secondary batteries have high voltage and good energy density, and have been widely used as power sources for portable electronic devices. In response to demands for miniaturization and the like, performance improvement is being studied.
  • the characteristics of the battery are greatly influenced by the electrode, electrolyte and other battery materials used.
  • the characteristics are determined by the electrode active material, the current collector, and the binder that provides an adhesive force between them. Is determined.
  • the amount and type of active material used can determine the amount of lithium ions that can bind to the active material, the higher the amount of active material and the higher the specific capacity active material, the higher the capacity.
  • a battery can be obtained.
  • the binder when the binder has a good adhesive force between the active materials and between the active material and the current collector, electrons and lithium ions move smoothly in the electrode, and the internal resistance of the electrode is reduced. Therefore, highly efficient charging / discharging becomes possible. Furthermore, in order to maintain the charge / discharge cycle of the battery for a long period of time, the binder needs to have low swellability with respect to the electrolytic solution.
  • a composite electrode such as carbon and graphite, carbon and silicon is required as an anode active material, but volume expansion and contraction of the active material greatly occur during charging and discharging.
  • the above-mentioned binder is required to have excellent elasticity in addition to excellent adhesive force, and is required to maintain the original adhesive force and restoring force even when the electrode volume repeatedly undergoes considerable expansion and contraction. Is done.
  • it is required to reduce the internal resistance of the electrode.
  • SBR styrene-butadiene latex
  • SBR styrene-butadiene latex
  • the present inventors have high adhesion to a current collector, excellent binding properties, and resistance to electrolytic solution, and suppress the internal resistance of the battery without reducing the content of the binder component.
  • Another object of the present invention is to provide a lithium secondary battery excellent in charge and discharge characteristics using an electrode manufactured using the binder.
  • the inventors of the present invention have a specific structure, a binder for an electrode of a lithium secondary battery containing an aqueous dispersion of a polyurethane resin having a specific acid value, It has been found that the above problems can be solved, and the present invention has been completed.
  • this invention relates to the invention hung up below.
  • (1) Contains at least (A) a polyisocyanate, (B) a compound having one or more active hydrogen groups and a hydrophilic group, and (C) an aqueous dispersion of a polyurethane resin (X) obtained using a chain extender.
  • the adhesion to the current collector is high, the binding property and the electrolytic solution resistance are excellent, and the internal resistance of the battery can be suppressed without reducing the content of the binder component. It is possible to provide a lithium secondary battery excellent in charge and discharge characteristics using an electrode manufactured using the binder, and providing an adhesive.
  • a binder for an electrode of a lithium secondary battery of the present invention is obtained using at least (A) a polyisocyanate, (B) a compound having one or more active hydrogen groups and a hydrophilic group, and (C) a chain extender. It is done.
  • the polyisocyanate (A) of the present invention is not particularly limited as long as it is a polyisocyanate generally used in this technical field.
  • the aliphatic polyisocyanate is not particularly limited.
  • the alicyclic polyisocyanate is not particularly limited.
  • isophorone diisocyanate hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3- Bis (isocyanatomethyl) cyclohexane and the like can be mentioned.
  • the aromatic polyisocyanate is not particularly limited.
  • tolylene diisocyanate 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate (MDI), 4,4 ′ -Dibenzyl diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate and the like.
  • MDI 4,4′-diphenylmethane diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • 1,5-naphthylene diisocyanate xylylene diisocyanate
  • 1,3-phenylene diisocyanate 1,4-phenylene diisocyanate and the like.
  • the araliphatic polyisocyanate is not particularly limited, and examples thereof include dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, ⁇ , ⁇ , ⁇ , ⁇ -tetramethylxylylene diisocyanate.
  • aliphatic polyisocyanates and alicyclic polyisocyanates are preferred, and hexamethylene diisocyanate, isophorone diisocyanate, and 4,4'-dicyclohexylmethane diisocyanate are more preferred.
  • dimers or trimers of these polyisocyanates, and modified products such as bulleted isocyanate can be exemplified. These may be used alone or in combination of two or more.
  • (B) Compound having at least one active hydrogen group and hydrophilic group>
  • the compound having one or more active hydrogen groups and a hydrophilic group is not particularly limited as long as it is a compound having one or more active hydrogen groups and a hydrophilic group.
  • the active hydrogen group is not particularly limited as long as it is reactive with an NCO group, and examples thereof include a hydroxyl group, a primary or secondary amino group, and a thiol group (SH group).
  • the hydrophilic group is not particularly limited, and examples thereof include an anionic hydrophilic group, a cationic hydrophilic group, and a nonionic hydrophilic group.
  • the anionic hydrophilic group is not particularly limited, and examples thereof include a carboxyl group and a salt thereof, a sulfonic acid group and a salt thereof, and the like.
  • the cationic hydrophilic group is not particularly limited, and examples thereof include tertiary ammonium salts and quaternary ammonium salts.
  • the nonionic hydrophilic group is not particularly limited, and examples thereof include a group composed of an ethylene oxide repeating unit and a group composed of an ethylene oxide repeating unit and another alkylene oxide repeating unit. Among these, an anionic hydrophilic group and a nonionic hydrophilic group are preferable.
  • the compound containing one or more active hydrogen groups and a carboxyl group is not particularly limited.
  • 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolvaleric acid In addition to carboxylic acid-containing compounds such as dioxymaleic acid, 2,6-dioxybenzoic acid, and 3,4-diaminobenzoic acid, derivatives thereof, and salts thereof, polyester polyols obtained by using these compounds are included. .
  • amino acids such as alanine, aminobutyric acid, aminocaproic acid, glycine, glutamic acid, aspartic acid, and histidine
  • carboxylic acids such as succinic acid, adipic acid, maleic anhydride, phthalic acid, and trimellitic anhydride.
  • the compound having one or more active hydrogen groups and sulfonic acid groups and salts thereof is not particularly limited, and examples thereof include 2-oxyethanesulfonic acid, phenolsulfonic acid, sulfobenzoic acid, sulfosuccinic acid, 5-sulfosulfonic acid.
  • Sulfonic acid-containing compounds such as isophthalic acid, sulfanilic acid, 2-aminoethanesulfonic acid, 1,3-phenylenediamine-4,6-disulfonic acid, 2,4-diaminotoluene-5-sulfonic acid, and derivatives thereof, and examples thereof include polyester polyols, polyamide polyols, and polyamide polyester polyols obtained by copolymerizing these.
  • the final obtained polyurethane resin can be made water-dispersible by neutralizing the carboxyl group or sulfonic acid group into a salt.
  • the neutralizing agent in this case is not particularly limited, and examples thereof include non-volatile bases, tertiary amines, and volatile bases.
  • the non-volatile base is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
  • the tertiary amines are not particularly limited, and examples thereof include trimethylamine, triethylamine, dimethylethanolamine, methyldiethanolamine, and triethanolamine.
  • the volatile base is not particularly limited, and examples thereof include ammonia. Neutralization can be performed before, during or after the urethanization reaction.
  • the compound containing one or more active hydrogen groups and a tertiary ammonium salt is not particularly limited, and examples thereof include alkanolamine.
  • the alkanolamine is not particularly limited, and examples thereof include methylaminoethanol and methyldiethanolamine.
  • an organic carboxylic acid such as formic acid or acetic acid, or an inorganic acid such as hydrochloric acid or sulfuric acid to form a salt
  • the polyurethane can be made water-dispersible. Neutralization can be performed before, during or after the urethanization reaction.
  • those obtained by neutralizing methyldiethanolamine with an organic carboxylic acid are preferable.
  • the compound having one or more active hydrogen groups and a quaternary ammonium salt is not particularly limited, and examples thereof include compounds obtained by quaternizing alkanolamines such as methylaminoethanol and methyldiethanolamine with dialkyl sulfuric acid. Can be given.
  • the dialkyl sulfuric acid is not particularly limited, and examples thereof include alkyl halides such as methyl chloride and methyl bromide, dimethyl sulfuric acid, and the like. Among these, from the viewpoint of easy emulsification of polyurethane, a compound obtained by quaternizing methyldiethanolamine with dimethyl sulfate is preferable.
  • the compound having one or more active hydrogen groups and a nonionic hydrophilic group is not particularly limited.
  • polyoxyethylene glycol or polyoxyethylene-polyoxypropylene copolymer glycol polyoxyethylene-polyoxy Nonionic group-containing compounds such as butylene copolymer glycol, polyoxyethylene-polyoxyalkylene copolymer glycol, or monoalkyl ethers thereof, or polyester polyether polyols obtained by copolymerizing these compounds.
  • compounds containing at least 30% by mass of ethylene oxide repeating units and having a number average molecular weight of 300 to 20,000 are preferred.
  • a compound containing one or more active hydrogen groups and a carboxyl group in the molecule is preferable, and dimethylolpropionic acid and dimethylolbutanoic acid are more preferable.
  • the content of the compound having (B) one or more active hydrogen groups and a hydrophilic group of the present invention is not particularly limited, but with respect to the polyurethane resin (X) in the polyurethane resin (X) aqueous dispersion, 10 to 60% by mass is preferable, and 20 to 45% by mass is more preferable. If it is 10 mass% or more, the internal resistance of the battery is particularly reduced, and if it is 60 mass% or less, the binding property is particularly excellent.
  • the content of the compound having (B) one or more active hydrogen groups and a hydrophilic group in the present invention is not particularly limited, but in the case of an anionic hydrophilic group-containing compound, the anionic hydrophilic group content is represented.
  • the acid value is preferably 40 to 200 mg KOH / g.
  • the amine value representing the cationic hydrophilic group content is preferably 40 to 200 mgKOH / g.
  • the acid value or amine value is 40 mgKOH / g or more, the reduction of the internal resistance of the battery is particularly excellent, and when the acid value is 200 mgKOH / g or less, the binding property is particularly excellent.
  • the acid value can be determined from the amount of KOH (mg) required to neutralize free carboxyl groups contained in 1 g of the solid content of the polyurethane water dispersion in accordance with JIS K K0070-1992.
  • the amine value can be determined from the amount of HCI (mg) required to neutralize the total amine value contained in 1 g of urethane prepolymer, in accordance with JIS K 7237-1995.
  • the nonionic group-containing compound is used, it is preferably 1 to 30 parts by mass, particularly preferably 5 to 20 parts by mass.
  • the (C) chain extender of the present invention is not particularly limited as long as it is a chain extender generally used in this technical field.
  • Examples thereof include diamine and polyamine.
  • the diamine is not particularly limited, and examples thereof include ethylene diamine, trimethylene diamine, piperazine, and isophorone diamine.
  • the polyamine is not particularly limited, and examples thereof include diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine. Of these, ethylenediamine and diethylenetriamine are preferred.
  • (C) not only chain extension by a chain extender but also chain extension can be performed by water molecules present in the system at the time of dispersion emulsification in water.
  • the content of the (C) chain extender of the present invention is not particularly limited, but is preferably 0.1 to 20% by mass with respect to the polyurethane resin (X) in the polyurethane resin (X) aqueous dispersion. 0.2 to 10% by mass is more preferable. When the content is 0.1% by mass or more, a coating film exhibiting excellent electrolytic solution resistance is obtained, and when the content is 20% by mass or less, reduction of the internal resistance of the battery is particularly excellent.
  • (D) Compound having two or more active hydrogen groups
  • (D) a compound having two or more active hydrogen groups
  • (D) because the binding property becomes better.
  • the compound having (D) two or more active hydrogen groups is not particularly limited.
  • polyether, polyester, polyether ester, polycarbonate, polythioether, polyacetal, acrylic, polysiloxane, fluorine, Or a vegetable oil type compound etc. can be mention
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide and the like. Of these, polyester, polytetramethylene glycol, polybutadiene polyol, and trimethylolpropane are preferable.
  • the number average molecular weight of the compound having two or more active hydrogen groups is not particularly limited, but is preferably 90 or more and 5000 or less. Here, the number average molecular weight refers to a calculated value obtained by weighted averaging with the amount used when two or more types are used in combination.
  • As a compound which has 2 or more active hydrogen groups these can be used 1 type or in combination of 2 or more types.
  • the number average molecular weight of the polyurethane resin (X) of the present invention is not particularly limited, but is preferably increased by introducing a branched structure or an internal cross-linked structure, and more preferably 50,000 or more. By increasing the molecular weight and making it insoluble in a solvent, it becomes easy to obtain a coating film excellent in electrolytic solution resistance.
  • the method for producing the aqueous dispersion of the polyurethane resin (X) of the present invention is not particularly limited, and for example, the following method is used.
  • (D) an isocyanate group contained in a compound having two or more active hydrogen groups The stoichiometric excess of (A) polyisocyanate is set by setting the equivalent ratio of the total active hydrogen groups having the property to the isocyanate groups contained in (A) polyisocyanate to 0.5 to 1.3: 1.
  • the crosslinking density in the emulsified micelle is improved, and a three-dimensional crosslinked structure is formed.
  • a coating film having excellent electrolytic solution resistance can be obtained.
  • the polyurethane water dispersion can be obtained by removing the solvent used as needed.
  • generate can also be used.
  • these solvents include, but are not limited to, dioxane, acetone, methyl ethyl ketone, dimethylformamide, tetrahydrofuran, N-methyl-2-pyrrolidone, toluene, propylene glycol monomethyl ether acetate, and the like.
  • These hydrophilic organic solvents used in the reaction are preferably finally removed.
  • a crosslinking agent can also be used.
  • the crosslinking agent is not particularly limited, and examples thereof include aziridine, oxazoline, carbodiimide, modified polyisocyanate, and polyepoxide compound. These crosslinking agents can be used alone or in combination of two or more.
  • the electrolytic solution resistance of the film formed from the aqueous dispersion of the polyurethane resin (X) of the present invention is a carbonate mixed solvent (weight) consisting of dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate. It is preferable that the weight increase rate of the film after immersion for 3 days at 60 ° C. is 50 wt% or less. Further, the weight reduction rate of the film after being dried under reduced pressure at 80 ° C. for 24 hours is preferably 10% or less, and more preferably 5% or less. If the weight increase rate of the film after immersion for 3 days at 60 ° C.
  • the life of the battery is improved because peeling between the wet electrode layer and the current collector can be suppressed.
  • the weight reduction rate of the film after being dried under reduced pressure at 80 ° C. for 24 hours under a condition of 60 ° C. for 3 days is 10% or less, there is no elution of the components of the film into the electrolyte solution, and the inside of the battery It is preferable because deterioration due to the electrochemical reaction can be suppressed and the battery life is improved.
  • the binder for an electrode of a lithium secondary battery containing an aqueous dispersion of the polyurethane resin (X) of the present invention can be used for production of an electrode.
  • the polyurethane resin (X) of the present invention can be used alone, or other binders can be used in combination.
  • the other binder is not particularly limited, but polyvinylidene fluoride, polyvinylidene fluoride copolymer resin, fluorine resin, styrene-butadiene rubber, ethylene-propylene rubber, styrene-acrylonitrile copolymer, acrylic copolymer.
  • One or more (Y) selected from the group consisting of a coalescence and an aqueous dispersion of urethane resin (excluding (X)) is preferred.
  • aqueous dispersions of styrene-butadiene rubber and urethane resin (excluding (X)) are preferred.
  • the content of the binder for an electrode of the lithium secondary battery containing the aqueous dispersion of the polyurethane resin (X) is preferably 20% by mass or more, and more preferably 25% by mass or more. preferable.
  • the adhesion to the current collector is high, the binding property and the electrolytic solution resistance are excellent, and the internal resistance of the battery can be suppressed without reducing the content of the binder component.
  • a binder is obtained, and the charge / discharge characteristics using an electrode produced using the binder are excellent.
  • a positive electrode and a negative electrode used in a lithium secondary battery are composed of an electrode active material, a conductive agent, a binder that binds the electrode active material and the conductive agent to a current collector, and the like.
  • the binder of the present invention can be used for both the positive electrode and the negative electrode.
  • the positive electrode active material used for the positive electrode of the lithium secondary battery of the present invention is not particularly limited as long as it can insert and desorb lithium ions.
  • metal oxides such as CuO, Cu2O, MnO2, MoO3, V2O5, CrO3, MoO3, Fe2O3, Ni2O3, CoO3, composite oxides of lithium and transition metals such as LixCoO2, LixNiO2, LixMn2O4, LiFePO4, TiS2, MoS2 And metal chalcogenides such as NbSe3, conductive polymer compounds such as polyacene, polyparaphenylene, polypyrrole, and polyaniline.
  • a composite oxide of lithium and at least one selected from transition metals such as cobalt, nickel and manganese which is generally called a high voltage system, is capable of obtaining lithium ion release properties and high voltage.
  • transition metals such as cobalt, nickel and manganese
  • lithium composite oxides doped with a small amount of elements such as fluorine, boron, aluminum, chromium, zirconium, molybdenum, iron, etc., and the lithium composite oxide particles surface are made of carbon, MgO, Al2O3, SiO2 A surface-treated product can also be used.
  • LiFePO4, LiMn2O4, and LiNixCo (1-x) O2 are preferable. Two or more kinds of the positive electrode active materials can be used in combination.
  • the negative electrode active material used for the negative electrode of the lithium secondary battery of the present invention is not particularly limited as long as metallic lithium or lithium ions can be inserted and removed.
  • Examples thereof include carbon materials, metal materials, lithium transition metal nitrides, crystalline metal oxides, amorphous metal oxides, silicon compounds, and conductive polymers.
  • the carbon material is not particularly limited, and examples thereof include natural graphite, artificial graphite, non-graphitizable carbon, and graphitizable carbon.
  • metallic lithium, an alloy, a tin compound etc. are mention
  • Specific examples include Li 4 Ti 5 O 12 and NiSi 5 C 6 . Of these, natural graphite, SiO, and Li 4 Ti 5 O 12 are preferable.
  • a conductive agent is used for the positive electrode and the negative electrode of the lithium secondary battery of the present invention.
  • the conductive agent any electronic conductive material that does not adversely affect the battery performance can be used without particular limitation.
  • carbon black such as acetylene black and kettin black is used, but natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon whisker, carbon fiber and metal (copper, nickel, aluminum)
  • conductive materials such as powder, metal fibers, and conductive ceramic materials can be used. These can also be used as a mixture of two or more. Of these, carbon black is preferred.
  • the addition amount is preferably 0.1 to 30% by mass, more preferably 0.2 to 20% by mass with respect to the amount of active material.
  • the current collector for the electrode active material of the lithium secondary battery of the present invention can be used without particular limitation as long as it is an electronic conductor that does not adversely affect the battery constructed.
  • a positive electrode current collector aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., in addition to aluminum for the purpose of improving adhesiveness, conductivity, and oxidation resistance.
  • a material obtained by treating the surface of copper or copper with carbon, nickel, titanium, silver or the like can be used.
  • the current collector for negative electrode copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al—Cd alloy, etc., adhesiveness, conductivity, oxidation resistance
  • adhesiveness, conductivity, oxidation resistance it is possible to use a surface of copper or the like treated with carbon, nickel, titanium, silver or the like.
  • the surface of these current collector materials can be oxidized.
  • molded bodies such as a film form, a sheet form, a net form, the punched or expanded thing, a lath body, a porous body, and a foam other than foil shape, are also used.
  • the thickness is not particularly limited, but a thickness of 1 to 100 ⁇ m is usually used.
  • the electrode of the lithium secondary battery of the present invention is a slurry obtained by mixing an electrode active material, a conductive agent, a current collector of the electrode active material, and a binder that binds the electrode active material and the conductive agent to the current collector.
  • a thickener such as a water-soluble polymer can be used as a slurry viscosity modifier.
  • celluloses such as carboxymethylcellulose salt, methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose; polycarboxylic acid compounds such as polyacrylic acid and polyacrylic acid soda; vinylpyrrolidone such as polyvinylpyrrolidone Compound having structure: One or more selected from polyacrylamide, polyethylene oxide, polyvinyl alcohol, sodium alginate, xanthan gum, carrageenan, guar gum, agar, starch, etc. can be used, among which carboxymethyl cellulose salt is preferred .
  • the method and order of mixing the electrode materials are not particularly limited.
  • the active material and the conductive agent can be mixed and used in advance.
  • a mortar, a mill mixer, a planetary ball mill can be used.
  • a ball mill such as a shaker type ball mill, a mechano-fusion, or the like can be used.
  • the binding property according to the evaluation method described in the examples is preferably 4 or more, more preferably 5 from the viewpoint of workability and battery performance reliability.
  • the lithium secondary battery of the present invention is constituted by using an electrode manufactured using a binder containing the polyurethane aqueous dispersion (X).
  • the electrode produced using the binder containing the polyurethane aqueous dispersion (X) may be used for at least one of the positive electrode and the negative electrode.
  • a lithium secondary battery includes a positive electrode and a negative electrode, a separator provided between the positive electrode and the negative electrode, and a separator for separating the two, a lithium salt as a supporting electrolyte in a solvent for conducting lithium ions And an electrolyte layer containing a polymer or a polymer gel electrolyte.
  • the separator used in the lithium secondary battery of the present invention is not particularly limited as long as it is a separator used in an ordinary lithium secondary battery.
  • a porous material made of polyethylene, polypropylene, polyolefin, polytetrafluoroethylene, or the like. Resins, ceramics, non-woven fabrics and the like can be mentioned.
  • an organic electrolytic solution and an ionic liquid that have been conventionally used in lithium secondary batteries can be used without any particular limitation.
  • electrolyte solution salt used for the lithium secondary battery of this invention
  • inorganic lithium salts such as LiPF 6, LiBF 4, LiClO 4, and LiAsF 6, and organic lithium salts represented by LiN (SO 2 C ⁇ F 2 x + 1) (SO 2 CyF 2 y + 1) can be given.
  • x and y represent 0 or an integer of 1 to 4
  • x + y is an integer of 2 to 8.
  • organic lithium salt examples include LiN (SO2F) 2, LiN (SO2CF3) (SO2C2F5), LiN (SO2CF3) (SO2C3F7), LiN (SO2CF3) (SO2C4F9), LiN (SO2C2F5) 2, and LiN (SO2C2F5).
  • SO2C3F7, LiN (SO2C2F5) (SO2C4F9), and the like it is preferable to use LiPF6, LiBF4, LiN (CF3SO2) 2, LiN (SO2F) 2, LiN (SO2C2F5) 2 or the like as the electrolyte because it has excellent electrical characteristics.
  • the said electrolyte salt can also be used individually by 1 type, and can also be used 2 or more types.
  • Such a lithium salt is desirably contained in the electrolytic solution at a concentration of usually 0.1 to 2.0 mol / liter, preferably 0.3 to 1.5 mol / liter.
  • the organic solvent for dissolving the electrolyte salt of the lithium secondary battery of the present invention is not particularly limited as long as it is an organic solvent used for a non-aqueous electrolyte solution of a normal lithium secondary battery.
  • organic solvent used for a non-aqueous electrolyte solution of a normal lithium secondary battery.
  • carbonates, lactones examples thereof include ethers, sulfolanes, dioxolanes, ketones, nitriles, halogenated hydrocarbons, ionic liquids and the like.
  • the carbonates are not particularly limited, and examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate, vinylene carbonate, and the like.
  • the lactone is not particularly limited, and examples thereof include ⁇ -butyrolactone.
  • the ethers are not particularly limited, and examples thereof include dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like.
  • the sulfolanes are not particularly limited, and examples thereof include sulfolane and 3-methylsulfolane.
  • the dioxolanes are not particularly limited, and examples thereof include 1,3-dioxolane.
  • the ketones are not particularly limited, and examples thereof include 4-methyl-2-pentanone.
  • the nitriles are not particularly limited, and examples thereof include acetonitrile, propionitrile, valeronitrile, and benzonitrile.
  • the halogenated hydrocarbons are not particularly limited, and examples thereof include 1,2-dichloroethane.
  • the ionic liquid is not particularly limited, and examples thereof include methyl formate, dimethylformamide, diethylformamide, dimethyl sulfoxide, imidazolium salt, and quaternary ammonium salt.
  • These organic solvents can be used alone or in combination of two or more.
  • a polymer compound having an ether structure such as polyethylene oxide is more preferable.
  • the liquid battery is an electrolyte
  • the gel battery is a precursor solution in which a polymer is dissolved in the electrolyte
  • the solid electrolyte battery is a polymer before crosslinking in which an electrolyte salt is dissolved.
  • the lithium secondary battery of the present invention can be formed into a cylindrical shape, a coin shape, a rectangular shape, or any other shape, and the basic configuration of the battery is the same regardless of the shape, and the design can be changed according to the purpose. Can be implemented.
  • a wound body in which a negative electrode formed by applying a negative electrode active material to a negative electrode current collector and a positive electrode formed by applying a positive electrode active material to a positive electrode current collector are wound through a separator. It is housed in a battery can, sealed with a non-aqueous electrolyte injected, and insulating plates placed on top and bottom.
  • a disc-shaped negative electrode, a separator, a disc-shaped positive electrode, and a stainless steel plate are stacked and stored in a coin-type battery can, and a non-aqueous electrolyte is injected, Sealed.
  • the direct current internal resistance (DC-IR) according to the evaluation method described in the examples is preferably 95% or less, and 90% or less from the viewpoint of sufficiently extracting the battery capacity. It is more preferable.
  • the capacity retention after charge / discharge cycle characteristics according to the evaluation method described in the examples is preferably 90% or more, and 95% or more from the viewpoint of highly efficient charge / discharge. It is more preferable.
  • Example 2 Synthesis of Polyurethane Water Dispersion B
  • ETERRNACOLL UH-100 manufactured by Ube Industries, Ltd., average hydroxyl value 112 mgKOH / g, Active hydrogen group number 2) 60.0 parts by mass, trimethylolpropane (active hydrogen group number 3) 3.0 parts by mass, dimethylolpropionic acid (active hydrogen group number 2) 66.6 parts by mass, isophorone diisocyanate 170.4 parts by mass, 200 parts by mass of methyl ethyl ketone was added and reacted at 75 ° C.
  • Example 3 Synthesis of polyurethane water dispersion C PolyTHF 1000 (manufactured by BASF Japan Ltd., average hydroxyl value 112 mgKOH / g, active hydrogen) was added to a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube. 2) 60.0 parts by mass, 3.0 parts by mass of trimethylolpropane (3 active hydrogen groups), 66.6 parts by mass of dimethylolpropionic acid (2 active hydrogen groups), 170.4 parts by mass of isophorone diisocyanate, 200 of methyl ethyl ketone Mass parts were added and reacted at 75 ° C.
  • Example 4 Synthesis of Polyurethane Water Dispersion D POLY BD R-15HT (produced by Idemitsu Kosan Co., Ltd., average hydroxyl value 102.7 mgKOH) was added to a four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube. / G, active hydrogen group number 2.3) 60.0 parts by mass, dimethylolpropionic acid (active hydrogen group number 2) 69.6 parts by mass, dicyclohexylmethane diisocyanate 170.4 parts by mass, methyl ethyl ketone 200 parts by mass, 75 ° C.
  • Example 5 Synthesis of polyurethane water dispersion E POLY BD R-45HT (manufactured by Idemitsu Kosan Co., Ltd., average hydroxyl value of 46.5 mg KOH) was added to a four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube. / G, active hydrogen group number 2.3) 60.0 parts by mass, dimethylolbutanoic acid (number of active hydrogen groups 2) 69.6 parts by mass, dicyclohexylmethane diisocyanate 170.4 parts by mass, methyl ethyl ketone 200 parts by mass, 75 ° C.
  • Example 6 Synthesis of polyurethane water dispersion F
  • dicyclohexylmethane 210.0 parts by mass of diisocyanate and 300 parts by mass of methyl ethyl ketone were added and reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 5.5% based on the nonvolatile content.
  • the solution was cooled to 45 ° C., neutralized by adding 60.0 parts by mass of triethylamine, and then 1500 parts by mass of water was gradually added and emulsified and dispersed using a homogenizer. Subsequently, an aqueous solution obtained by diluting 10.0 parts by mass of ethylenediamine (number of active hydrogen groups 2) with 100 parts by mass of water was added, and a chain extension reaction was performed for 1 hour. The solvent was removed while heating at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion F having a nonvolatile content of about 20%. The acid value of the obtained resin was 105 mgKOH / g.
  • Example 7 Synthesis of polyurethane water dispersion G To 1000 parts by mass of polyurethane water dispersion F obtained in Synthesis Example 5, 291.6 g of 5% aqueous sodium hydroxide solution was added, and this was heated under reduced pressure at 50 ° C. Then, triethylamine was distilled off to obtain a polyurethane water dispersion G having a nonvolatile content of about 20%. The acid value of the obtained resin was estimated to be the same as that of the polyurethane water dispersion F.
  • Example 8 Synthesis of polyurethane water dispersion H 120.0 parts by mass of dimethylolbutanoic acid (2 active hydrogen groups), hexamethylene in a four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube 180.0 parts by mass of diisocyanate and 300 parts by mass of methyl ethyl ketone were added and reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 7.4% with respect to the nonvolatile content.
  • the solution was cooled to 45 ° C., neutralized by adding 77.8 parts by mass of triethylamine, and then 1500 parts by mass of water was gradually added and emulsified and dispersed using a homogenizer. Subsequently, an aqueous solution obtained by diluting 10.0 parts by mass of ethylenediamine (number of active hydrogen groups 2) with 100 parts by mass of water was added, and a chain extension reaction was performed for 1 hour. The solvent was removed while heating at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion H having a nonvolatile content of about 20%. The acid value of the obtained resin was 141 mgKOH / g.
  • Example 9 Synthesis of polyurethane water dispersion I 238.7 g of 5% aqueous lithium hydroxide solution was added to 1000 parts by mass of the polyurethane water dispersion H obtained in Synthesis Example 8, and this was heated under reduced pressure at 50 ° C. Then, triethylamine was distilled off to obtain a polyurethane water dispersion I having a nonvolatile content of about 20%. The acid value of the obtained resin was estimated to be the same as that of polyurethane water dispersion I.
  • Example 10 Synthesis of polyurethane water dispersion J POLY BD R-45HT (manufactured by Idemitsu Kosan Co., Ltd., average hydroxyl value of 46.5 mgKOH) was added to a four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube. / G, active hydrogen group number 2.3) 145.8 parts by mass, dimethylolbutanoic acid (active hydrogen group number 2) 39.6 parts by mass, dicyclohexylmethane diisocyanate 114.6 parts by mass, methyl ethyl ketone 200 parts by mass, 75 ° C.
  • a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 5.1% based on the nonvolatile content The solution was cooled to 45 ° C., neutralized by adding 11.3 parts by mass of triethylamine, and then 1500 parts by mass of water was gradually added and emulsified and dispersed using a homogenizer. Subsequently, an aqueous solution in which 10.0 parts by mass of diethylenetriamine (3 active hydrogen groups) was diluted with 100 parts by mass of water was added, and a chain extension reaction was performed for 1 hour. The solvent was removed while heating at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion K having a nonvolatile content of about 20%. The acid value of the obtained resin was 19 mgKOH / g.
  • Table 1 shows the free isocyanate group content with respect to the nonvolatile content of the methyl ethyl ketone solution of the urethane prepolymer synthesized by the reaction.
  • Nonvolatile content of polyurethane water dispersion Measured according to JIS K 6828.
  • Acid value of polyurethane resin Measured according to JIS K 0070-1992.
  • Electrolyte resistance of polyurethane resin The obtained polyurethane water dispersion was poured on a Teflon (registered trademark) processed plate so that the dry film thickness was about 200 ⁇ m, and dried at 60 ° C. for 4 hours, further at 80 ° C. for 2 hours, and further at 130 ° C. for 2 hours. A test piece was prepared.
  • a carbonate-based mixed solvent a mixed solvent composed of five kinds of dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate (weight ratio: 1) : 1: 1: 1: 1 composition).
  • the polyurethane water dispersion of the present invention was measured for the weight increase rate of the film after immersion of the film formed from the polyurethane water dispersion in the mixed solvent in the mixed solvent at 60 ° C. for 3 days under the following conditions. Judged from evaluation criteria. Evaluation criteria; ⁇ : Resin weight increase rate is less than 50% ⁇ : Resin weight increase rate is 50% or more and less than 100% ⁇ : Resin weight increase rate is 100% or more or dissolved In addition, the above operation is performed at 60 ° C. for 3 days. The soaked film was dried under reduced pressure at 80 ° C. for 24 hours, and the weight reduction rate of the film was measured and judged from the following criteria. Evaluation criteria; ⁇ : Resin weight reduction rate of less than 5% ⁇ : Resin weight reduction rate of less than 10% ⁇ : Resin weight reduction rate of 10% or more
  • Table 2 below shows the binder used for the production of the electrodes.
  • Bindability evaluation After the coated surface of the obtained electrode was bent 180 ° outward and returned, the degree of falling off of the active material on the coated surface (the ratio of the area of the dropped portion to the whole) was visually judged. Evaluation criteria; 5 points: No abnormal appearance 4 points: 5% or less dropout 3 points: 5 to 75% dropout 2 points: 75% or more dropout 1 point: 100% dropout
  • Negative electrode 1 100 g of natural graphite as a negative electrode active material, 0.5 g of carbon black as a conductive agent (Supercal-P, manufactured by Timcal) and carboxymethylcellulose sodium salt as a thickener (Daiichi Kogyo Seiyaku Co., Ltd., product name: Serogen WS-C) ) 100 g of a 2 wt% aqueous solution and 10.2 g of a 20 wt% polyurethane water dispersion A solution as a binder were mixed with a planetary mixer to prepare a negative electrode slurry so that the solid content was 50%.
  • This negative electrode slurry was coated on an electrolytic copper foil having a thickness of 10 ⁇ m with a coating machine, dried at 120 ° C., and then subjected to a roll press treatment, to obtain a negative electrode 1 having a negative electrode active material of 7 mg / cm 2 .
  • the polyurethane water dispersion A was prepared in the same manner as the negative electrode 1 except that the polyurethane water dispersion shown in Table 2 was changed to SBR.
  • This negative electrode slurry was coated on an electrolytic copper foil having a thickness of 10 ⁇ m with a coating machine, dried at 120 ° C., and then subjected to a roll press treatment, to obtain a negative electrode 11 having a negative electrode active material of 7 mg / cm 2.
  • NiO negative electrode active material
  • SiO average particle diameter 4.5 ⁇ m, specific surface area 5.5 m 2 / g
  • carbon black manufactured by Timcal, Super-P
  • carboxymethylcellulose sodium salt No. 1
  • Serogen WS-C a thickener carboxymethylcellulose sodium salt
  • This negative electrode slurry was coated on an electrolytic copper foil having a thickness of 10 ⁇ m with a coating machine, dried at 120 ° C., and then subjected to a roll press treatment, to obtain a negative electrode 19 having a negative electrode active material of 2.5 mg / cm 2 .
  • a negative electrode 20 was prepared in the same manner as the negative electrode 19 except that the polyurethane water dispersion G was changed to SBR.
  • This negative electrode slurry was coated on an electrolytic copper foil having a thickness of 10 ⁇ m with a coating machine, dried at 120 ° C., and then subjected to a roll press treatment, to obtain a negative electrode 21 having a negative electrode active material of 9.7 mg / cm 2 .
  • a negative electrode 22 was prepared in the same manner as the negative electrode 21 except that the polyurethane water dispersion D was changed to SBR.
  • Positive electrode 1 LiNi 1/3 Co 1/3 Mn 1/3 O 2 100 g as the positive electrode active material, 7.8 g of carbon black (Super-P, manufactured by Timcal) as a conductive agent, 6 g of polyvinylidene fluoride as a binder, dispersed As a medium, 61.3 g of N-methyl-2-pyrrolidone was mixed with a planetary mixer to prepare a positive electrode slurry to a solid content of 65%.
  • Carbon black Super-P, manufactured by Timcal
  • This positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment to obtain a positive electrode 1 having a positive electrode active material of 13.8 mg / cm 2 .
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 100 g as a positive electrode active material, 7.8 g of carbon black (manufactured by Timcal, Super-P) as a conductive agent, carboxymethyl cellulose sodium salt (No. 1) as a thickener Made by Ichi Kogyo Seiyaku Co., Ltd., product name: Serogen WS-C) 100 g of a 2% by weight aqueous solution and 10.2 g of a 20% by weight polyurethane aqueous dispersion listed in Table 2 as a binder were mixed with a planetary mixer to obtain a solid.
  • a positive electrode slurry was prepared so as to have a content of 50%.
  • This positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment to obtain positive electrodes 2 and 3 having a positive electrode active material of 13.8 mg / cm 2 .
  • a positive electrode slurry was prepared by mixing 5.1 g of a mass% solution with a planetary mixer so that the solid content was 50%.
  • This positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment, to obtain a positive electrode 4 having a positive electrode active material of 13.8 mg / cm 2 .
  • LiMn 2 O 4 100 g as a positive electrode active material, 5 g of carbon black (Super-P, manufactured by Timcal) as a conductive agent, 6 g of polyvinylidene fluoride as a binder, 59.8 g of N-methyl-2-pyrrolidone as a dispersion medium
  • a positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment, whereby a positive electrode 5 having a positive electrode active material of 22 mg / cm 2 was obtained.
  • LiMn 2 O 4 100 g as a positive electrode active material, carbon black (Supercal-P, manufactured by Timcal Co., Ltd.) 5 g as a conductive agent, carboxymethylcellulose sodium salt (Daiichi Kogyo Seiyaku Co., Ltd., product name: Cellogen WS-) as a thickener C) 100 g of a 2% by mass aqueous solution and 10.2 g of a 20% by mass solution of polyurethane water dispersion B as a binder were mixed with a planetary mixer to prepare a positive electrode slurry so as to have a solid content of 50%.
  • This positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment, to obtain a positive electrode 6 having a positive electrode active material of 22 mg / cm 2 .
  • Patent electrode 7 100 g LiFePO 4 as a positive electrode active material, 5 g carbon black (manufactured by Timcal, Super-P) as a conductive agent, 6 g polyvinylidene fluoride as a binder, and 135.7 g N-methyl-2-pyrrolidone as a dispersion medium
  • a positive electrode slurry was prepared so as to have a solid content of 45% by mixing with a mold mixer. This positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment to obtain a positive electrode 7 having a positive electrode active material of 14.5 mg / cm 2 .
  • LiFePO 4 100 g as a positive electrode active material, carbon black (manufactured by Timcal, Super-P) as a conductive agent, carboxymethyl cellulose sodium salt as a thickener (Daiichi Kogyo Seiyaku Co., Ltd., product name: Serogen WS-C)
  • a positive electrode slurry was prepared by mixing 100 g of a 2 mass% aqueous solution and 10.2 g of a 20 mass% solution of polyurethane water dispersion B as a binder with a planetary mixer.
  • This positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment to obtain a positive electrode 8 having a positive electrode active material of 14.5 mg / cm 2 .
  • DC internal resistance (DC internal resistance) (DC-IR)
  • the direct current internal resistance (DC-IR) was measured by the following method. A constant current during discharging corresponding to 1C, 2C, and 3C was passed through the manufactured lithium secondary battery (SOC 50%), and the voltage drop at each rate after 10 seconds from the initial stage was measured. The direct current internal resistance (DC-IR) was calculated from the current and voltage drop results at each of the three points. In the case of Examples 1 to 13 and 16 to 19, the direct current internal resistance ratio was measured based on Comparative Example 3, Example 14 was based on Comparative Example 4, and Example 15 was performed based on Comparative Example 5. Example 20 was evaluated based on Comparative Example 6 and Example 21 was evaluated based on Comparative Example 7. DC internal resistance ratio: 90% or less ⁇ About 95% ⁇ Standard (100%) ⁇
  • CC constant current
  • CV constant voltage
  • CC constant current charging is performed up to 4.2 V at a current density equivalent to 1 C, and then After switching to CV (constant voltage) charging at 4.2V and charging for 1.5 hours, 50 cycles of CC discharge to 2.7V at a current density equivalent to 1C were performed at 20 ° C, and the initial 1C discharge at this time
  • the 1C discharge capacity ratio after 50 cycles with respect to the capacity was defined as the 1C charge / discharge cycle retention rate.
  • the DC internal resistance is lower when the polyurethane water dispersion of the present invention is used than when the conventional styrene butadiene rubber or polyvinylidene fluoride is used, and the capacity retention after cycle characteristics is maintained. It can be seen that the rate is kept high.
  • the binder for an electrode of a lithium secondary battery of the present invention can be used as an electrode of a lithium secondary battery, and the manufactured electrode is used for manufacturing various lithium secondary batteries.
  • the obtained lithium secondary battery is a medium- or large-sized lithium battery mounted on various portable devices such as mobile phones, notebook computers, personal digital assistants (PDAs), video cameras, and digital cameras, as well as electric bicycles and electric vehicles. It can be suitably used for a secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 集電体に対する密着性が高く、結着性、および耐電解液性に優れ、結着剤成分の含有量を低減することなく、電池の内部抵抗を抑えることのできる結着剤を提供すること、また、この結着剤を用いて製造された電極を使用した充放電特性に優れたリチウム二次電池を提供すること。 少なくとも(A)ポリイソシアネート、(B)1個以上の活性水素基と親水基を有する化合物、および(C)鎖伸張剤を用いて得られるポリウレタン樹脂(X)の水分散体を含有するリチウム二次電池の電極用結着剤であって、Xの酸価またはアミン価が40~200mgKOH/gであるリチウム二次電池の電極用結着剤に関する。

Description

リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池
 本発明は、リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池に関する。
 リチウム二次電池は、高電圧及び良好なエネルギー密度を有しており、携帯用電子機器の電源として広く使われてきた。また小型化等の要求に伴い、性能向上が検討されている。電池の特性は、使われる電極、電解質及びその他電池材料により大きく左右されるが、特に、電極の場合は、電極活物質、集電体及びそれらの間に接着力を付与する結着剤により特性が決定される。例えば、使われる活物質の量及び種類が、活物質と結合できるリチウムイオンの量を決定するために、活物質の量が多いほど、そして固有容量の大きい活物質を使用するほど、高容量の電池を得ることができる。また、結着剤が上記活物質間、及び活物質と集電体との間で良好な接着力を有する場合、電極内で電子及びリチウムイオンの移動が円滑になされ、電極の内部抵抗が減少するので、高効率の充放電が可能になる。さらに、電池の充放電サイクルを長期間維持するためには、結着剤は電解液に対して低膨潤性であることが必要となる。
 そして、高容量電池の場合には、アノード活物質として、カーボン及び黒鉛、カーボン及びケイ素のような複合系電極が必要になるが、充放電時に、活物質の体積膨脹及び収縮が大きく起こるために、上記結着剤は、優れた接着力以外に優れた弾性を有することが必要であり、電極体積が相当の膨脹及び収縮を繰り返しても、本来の接着力及び復原力を維持することが要求される。また、電池の容量を十分に引き出すためには、電極の内部抵抗を小さくすることが要求される。
 このような電極を得るための結着剤としては、有機溶剤中にポリテトラフルオロエチレンやポリフッ化ビニリデン等のフッ素樹脂が溶解されてなるものが知られているが、電極の内部抵抗が増大するため小型化には限界がある等の短所がある。一方、集電体を構成する金属との密着性が高く、しかも、柔軟性が高い電極層を形成することができる結着剤として、スチレン-ブタジエン系ラテックス(SBR)が知られている(特許文献1,2,3)。
 そして、近年、電池高容量化の要請から、電極層を構成する材料として、結着剤成分の含有量を低減する傾向にあり、また、電極の製造工程において電極層に対するプレス加工が行われている。しかし、結着剤成分の含有量が低い電極層においては、プレス加工時に電極層が集電体から剥離しやすい。そのため、電極物質によってプレス加工機の汚染が生じるばかりでなく、電極層の一部が剥離した状態で電極が電池に組み込まれ、電池性能の信頼性が低下するという問題が指摘されている。上記例のように結着剤成分の含有量を低減することは、電極の性能を低下や、加工時の作業性の低下の要因となるため、結着剤成分の含有量を低減することなく、電池の内部抵抗を抑えることのできる結着剤が必要とされる。
特開平05-21068号公報 特開平11-7948号公報 特開2011-210318号公報
 しかし、スチレン-ブタジエン系ラテックス(SBR)は弾性特性には優れるが、接着力が弱く、充放電が反復されるにつれて電極の構造を維持できず、電池の寿命が十分とは言えない。また、SBRは絶縁性の樹脂であるため、電極の内部抵抗を増大する成分となり、電池の小型化には限界が生じる。
 本発明者らは上記に鑑み、集電体に対する密着性が高く、結着性、および耐電解液性に優れ、結着剤成分の含有量を低減することなく、電池の内部抵抗を抑えることのできる結着剤を提供すること、また、この結着剤を用いて製造された電極を使用した充放電特性に優れたリチウム二次電池を提供することにある。
 本発明の発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定構造、特定の酸価のポリウレタン樹脂の水分散体を含有するリチウム二次電池の電極用結着剤により、上記課題を解決できることを見いだし、本発明を完成させるに至った。
 すなわち、本発明は下記に掲げる発明に関する。
(1) 少なくとも(A)ポリイソシアネート、(B)1個以上の活性水素基と親水基を有する化合物、および(C)鎖伸張剤を用いて得られるポリウレタン樹脂(X)の水分散体を含有するリチウム二次電池の電極用結着剤であって、Xの酸価またはアミン価が40~200mgKOH/gであるリチウム二次電池の電極用結着剤、
(2) (B)1個以上の活性水素基と親水基を有する化合物の含有量が、前記ポリウレタン樹脂(X)の10~60質量%である(1)記載のリチウム二次電池の電極用結着剤、
(3) (A)ポリイソシアネートと(B)1個以上の活性水素基と親水基を有する化合物の含有量の比(重量比)が(A)/(B)=1/0.2~1/1.5である(1)または(2)記載のリチウム二次電池の電極用結着剤、
(4) さらに、(D)2個以上の活性水素基を有する化合物を含有する(1)~(3)のいずれか記載のリチウム二次電池の電極用結着剤、
(5) さらに、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体樹脂、フッ素系樹脂、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、スチレン-アクリロニトリル共重合体、アクリル共重合体、およびウレタン樹脂(ただし(X)を除く)の水分散体、からなる群より選ばれる1種以上(Y)を含有する(1)~(4)のいずれか記載のリチウム二次電池の電極用結着剤、
(6) (1)~(5)のいずれ記載のリチウム二次電池の電極用結着剤を用いて製造された電極、
(7) (6)記載の電極を有するリチウム二次電池。
 本発明によれば、集電体に対する密着性が高く、結着性、および耐電解液性に優れ、結着剤成分の含有量を低減することなく、電池の内部抵抗を抑えることのできる結着剤を提供すること、また、この結着剤を用いて製造された電極を使用した充放電特性に優れたリチウム二次電池を提供することができる。
 本発明のリチウム二次電池の電極用結着剤は、少なくとも(A)ポリイソシアネート、(B)1個以上の活性水素基と親水基を有する化合物、および(C)鎖伸張剤を用いて得られる。
<(A)ポリイソシアネート>
 本発明の(A)ポリイソシアネートとしては、本技術分野で一般的に使用されるポリイソシアネートであれば特に限定されるものではないが、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどをあげることができる。
 前記、脂肪族ポリイソシアネートとしては特に限定されないが、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネートなどをあげることができる。
 前記、脂環族ポリイソシアネートとしては特に限定されないが、例えば、イソホロンジイソシアネート、水添キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサンなどをあげることができる。
 前記、芳香族ポリイソシアネートとしては特に限定されないが、例えば、トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネートなどをあげることができる。
 前記、芳香脂肪族ポリイソシアネートとしては特に限定されないが、例えば、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、α,α,α,α-テトラメチルキシリレンジイソシアネートなどをあげることができる。
 これらのうち、脂肪族ポリイソシアネート、脂環族ポリイソシアネートが好ましく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネートがより好ましい。
 また、これらのポリイソシアネートの2量体又は3量体や、ビュレット化イソシアネート等の変性体を挙げることができる。これらは1種または2種以上を併用することもできる。
<(B)1個以上の活性水素基と親水基を有する化合物>
 本発明の(B)1個以上の活性水素基と親水基を有する化合物としては、1個以上の活性水素基と親水性基を有する化合物であれば特に限定されるものではない。
 前記、活性水素基としてはNCO基と反応性を有するものであれば、特に限定されないが、例えば、水酸基、第1級又は第2級アミノ基、チオール基(SH基)などがあげられる。前記、親水性基としては、特に限定されないが、例えば、アニオン性親水基、カチオン性親水基、ノニオン性親水基などがあげられる。前記、アニオン性親水基としては、特に限定されないが、例えば、カルボキシル基及びその塩、スルホン酸基及びその塩などがあげられる。前記、カチオン性親水基としては、特に限定されないが、例えば、第三級アンモニウム塩、第四級アンモニウム塩などがあげられる。前記、ノニオン性親水基としては、特に限定されないが、例えば、エチレンオキシドの繰り返し単位からなる基や、エチレンオキシドの繰り返し単位とその他のアルキレンオキシドの繰り返し単位からなる基などがあげられる。これらのうち、アニオン性親水基、ノニオン性親水基が好ましい。
 前記、1個以上の活性水素基とカルボキシル基を含有する化合物としては、特に限定されないが、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロール酪酸、2,2-ジメチロール吉草酸、ジオキシマレイン酸、2,6-ジオキシ安息香酸、3,4-ジアミノ安息香酸等のカルボン酸含有化合物及びこれらの誘導体並びにそれらの塩に加え、これらを使用して得られるポリエステルポリオールなどがあげられる。更に、アラニン、アミノ酪酸、アミノカプロン酸、グリシン、グルタミン酸、アスパラギン酸、ヒスチジン等のアミノ酸類、コハク酸、アジピン酸、無水マレイン酸、フタル酸、無水トリメリット酸等のカルボン酸類などがあげられる。
 前記、1個以上の活性水素基とスルホン酸基及びその塩を有する化合物としては、特に限定されないが、例えば、2-オキシエタンスルホン酸、フェノールスルホン酸、スルホ安息香酸、スルホコハク酸、5-スルホイソフタル酸、スルファニル酸、2-アミノエタンスルホン酸、1,3-フェニレンジアミン-4,6-ジスルホン酸、2,4-ジアミノトルエン-5-スルホン酸等のスルホン酸含有化合物及びこれらの誘導体、並びにこれらを共重合して得られるポリエステルポリオール、ポリアミドポリオール、ポリアミドポリエステルポリオールなどがあげられる。
 前記、カルボキシル基又はスルホン酸基は、中和して塩にすることにより、最終的に得られるポリウレタン樹脂を水分散性にすることができる。この場合の中和剤としては、特に限定されないが、例えば、不揮発性塩基、第三級アミン類、揮発性塩基などがあげられる。前記、不揮発性塩基としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウムなどがあげられる。前記、第三級アミン類としては、特に限定されないが、例えば、トリメチルアミン、トリエチルアミン、ジメチルエタノールアミン、メチルジエタノールアミン、トリエタノールアミンなどがあげられる。前記、揮発性塩基としては、特に限定されないが、例えば、アンモニアなどがあげられる。中和は、ウレタン化反応前、反応中、又は反応後の何れにおいても行うことができる。
 前記、1個以上の活性水素基と第3級アンモニウム塩を含有する化合物としては、特に限定されないが、例えば、アルカノールアミンなどがあげられる。前記、アルカノールアミンとしては、特に限定されないが、例えば、メチルアミノエタノール、メチルジエタノールアミンなどがあげられる。これらを、ギ酸、酢酸などの有機カルボン酸、塩酸、硫酸などの無機酸で中和して塩にすることによりポリウレタンを水分散性にすることができる。中和は、ウレタン化反応前、反応中、又は反応後の何れにおいても行うことができる。これらのうち、ポリウレタンの乳化の容易性の観点からは、メチルジエタノールアミンを有機カルボン酸で中和したものが好ましい。
 前記、1個以上の活性水素基と第4級アンモニウム塩を有する化合物としては、特に限定されないが、例えば、前記、メチルアミノエタノール、メチルジエタノールアミンなどのアルカノールアミンをジアルキル硫酸により4級化した化合物などがあげられる。前記、ジアルキル硫酸としては、特に限定されないが、例えば、塩化メチル、臭化メチルなどのハロゲン化アルキル、ジメチル硫酸などがあげられる。これらのうち、ポリウレタンの乳化の容易性の観点からは、メチルジエタノールアミンをジメチル硫酸で4級化した化合物が好ましい。
 前記、1個以上の活性水素基とノニオン性親水基を有する化合物としては、特に限定されないが、例えば、ポリオキシエチレングリコール又はポリオキシエチレン-ポリオキシプロピレン共重合体グリコール、ポリオキシエチレン-ポリオキシブチレン共重合体グリコール、ポリオキシエチレン-ポリオキシアルキレン共重合体グリコール又はそのモノアルキルエーテル等のノニオン性基含有化合物又はこれらを共重合して得られるポリエステルポリエーテルポリオールなどがあげられる。これらのうち、エチレンオキシドの繰り返し単位を少なくとも30質量%以上含有し、数平均分子量300~20,000の化合物が好ましい。
 これらのうち、集電体との密着性の観点から、分子中に1個以上の活性水素基とカルボキシル基を含有する化合物が好ましく、ジメチロールプロピオン酸、ジメチロールブタン酸がより好ましい。
 (B)1個以上の活性水素基と親水基を有する化合物としては、これらを1種または2種以上を併用して使用することができる。
 本発明の、(B)1個以上の活性水素基と親水基を有する化合物の含有量としては、特に限定されないが、ポリウレタン樹脂(X)水分散体中のポリウレタン樹脂(X)に対して、10~60質量%が好ましく、20~45質量%がより好ましい。10質量%以上であれば電池の内部抵抗の低減が特に優れ、60質量%以下であれば結着性が特に優れたものとなる。
 本発明の、(A)ポリイソシアネートと(B)1個以上の活性水素基と親水基を有する化合物の含有量の比(重量比)としては、特に限定されないが、電池の内部抵抗の低減や結着性の観点から(A)/(B)=1/0.2~1/1.5が好ましく、1/0.3~1/1.0がより好ましい。
 本発明の、(B)1個以上の活性水素基と親水基を有する化合物の含有量としては、特に限定されないが、アニオン性親水基含有化合物の場合は、そのアニオン性親水基含有量を表す酸価が40~200mgKOH/gであることが好ましい。カチオン性親水基含有化合物の場合は、そのカチオン性親水基含有量を表すアミン価が40~200mgKOH/gであることが好ましい。酸価またはアミン価が40mgKOH/g以上であれば電池の内部抵抗の低減が特に優れ、酸価が200mgKOH/g以下であれば結着性が特に優れたものとなる。本発明において、酸価は、JIS K 0070-1992に準拠して、ポリウレタン水分散体の固形分1g中に含まれる遊離カルボキシル基を中和するのに要するKOH量(mg)より求めることができる。アミン価は、JIS K 7237-1995に準拠して、ウレタンプレポリマー1g中に含まれる全アミン価を中和するのに要するHCI量(mg)より求めることができる。ノニオン性基含有化合物を使用する場合は、1~30質量部とし、特に5~20質量部使用したものであることが好ましい。
<(C)鎖伸張剤>
 本発明の(C)鎖伸張剤としては、本技術分野で一般的に使用される鎖伸長剤であれば特に限定されるものではない。例えば、ジアミンやポリアミンなどがあげられる。前記、ジアミンとしては、特に限定されないが、例えば、エチレンジアミン、トリメチレンジアミン、ピペラジン、イソホロンジアミンなどがあげられる。前記、ポリアミンとしては、特に限定されないが、例えば、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどがあげられる。これらのうち、エチレンジアミン、ジエチレントリアミンが好ましい。なお、(C)鎖伸長剤による鎖伸長だけでなく、水中に分散乳化時に系中に存在する水分子により鎖伸長を行うこともできる。
 本発明の、(C)鎖伸張剤の含有量としては、特に限定されないが、ポリウレタン樹脂(X)水分散体中のポリウレタン樹脂(X)に対して、0.1~20質量%が好ましく、0.2~10質量%がより好ましい。0.1質量%以上であれば優れた耐電解液性を示す塗膜が得られ、20質量%以下であれば電池の内部抵抗の低減が特に優れたものとなる。
<(D)2個以上の活性水素基を有する化合物>
 本発明のポリウレタン樹脂(X)の水分散体には、(D)2個以上の活性水素基を有する化合物を用いることも好ましい態様である。(D)を用いることによって、結着性がより良好となることから、好ましい。前記、(D)2個以上の活性水素基を有する化合物としては、特に限定されないが、例えば、ポリエーテル、ポリエステル、ポリエーテルエステル、ポリカーボネート、ポリチオエーテル、ポリアセタール、アクリル系、ポリシロキサン、フッ素系、又は植物油系化合物などをあげることができる。具体的には、エチレングリコール、プロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-シクロヘキサンジメタノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、水素添加ビスフェノールA、ジブロモビスフェノールA、ジヒドロキシエチルテレフタレート、ハイドロキノンジヒドロキシエチルエーテル、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール、それらのオキシアルキレン誘導体、又はそれらの多価アルコール及びオキシアルキレン誘導体と、多価カルボン酸、多価カルボン酸無水物、若しくは多価カルボン酸エステルからのエステル化合物、ポリカーボネートポリオール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリチオエーテルポリオール、ポリアセタールポリオール、ポリテトラメチレングリコール、フッ素ポリオール、シリコンポリオール、アクリルポリオール、ダイマー酸系ポリオール、ヒマシ油系ポリオール、大豆油系ポリオール、ポリブタジエンポリオールなどのポリオール化合物やその変性体が挙げられる。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどがあげられる。これらのうち、ポリエステル、ポリテトラメチレングリコール、ポリブタジエンポリオール、トリメチロールプロパンが好ましい。(D)としては、前記(B)を除く。(D)2個以上の活性水素基を有する化合物の数平均分子量としては、特に限定されないが、90以上5000以下であることが好ましい。ここで数平均分子量とは、2種以上併用する場合、使用量で加重平均をした計算値をいう。(D)2個以上の活性水素基を有する化合物としては、これらを1種または2種以上を併用して使用することができる。
 本発明のポリウレタン樹脂(X)の数平均分子量としては、特に限定されないが、分岐構造や内部架橋構造を導入して大きくすることが好ましく、50,000以上であることがより好ましい。分子量を大きくして溶剤に不溶とすることにより、耐電解液性に優れた塗膜が得られ易くなる。
 本発明のポリウレタン樹脂(X)の水分散体の製造方法としては、特に限定されないが、例えば次の方法が用いられる。(B)1個以上の活性水素基と親水基を有する化合物、(C)鎖伸張剤、および必要に応じて(D)2個以上の活性水素基を有する化合物に含まれるイソシアネート基との反応性を有する活性水素基の合計と、(A)ポリイソシアネートに含まれるイソシアネート基との当量比を0.5~1.3:1に設定し、化学量論的に過剰の(A)ポリイソシアネートと(B)1個以上の活性水素基と親水基を有する化合物、および必要に応じて(D)2個以上の活性水素基を有する化合物を溶剤なしに、又は活性水素基を有しない有機溶媒中で反応させてイソシアネート末端のウレタンプレポリマーを合成した後、必要に応じて(B)成分のアニオン性親水基、カチオン性親水基の中和、又は4級化を行ってから、水中に分散乳化を行う。その後、残存するイソアネート基を(C)鎖伸長剤を加えて、乳化ミセル中のイソシアシネート基と(C)鎖伸長剤とを界面重合反応させてウレア結合を生成させる。これにより乳化ミセル内の架橋密度が向上し、三次元架橋構造が形成される。このように三次元架橋構造の形成により、優れた耐電解液性を示す塗膜が得られる。その後、必要に応じて使用した溶剤を除去することにより、ポリウレタン水分散体を得ることができる。
 なお、ウレタンプレポリマーの合成においては、イソシアネート基と不活性で、かつ、生成するウレタンプレポリマーを溶解し得る溶剤を用いることもできる。これらの溶剤としては、特に限定されないが、例えば、ジオキサン、アセトン、メチルエチルケトン、ジメチルホルムアミド、テトラヒドロフラン、N-メチル-2-ピロリドン、トルエン、プロピレングリコールモノメチルエーテルアセテートなどがあげられる。反応で使用したこれら親水性有機溶剤は、最終的には除去するのが好ましい。
 本発明のポリウレタン樹脂(X)の水分散体を製造の際には架橋剤を使用することもできる。架橋剤としては、特に限定されないが、アジリジン、オキサゾリン、カルボジイミド、変性ポリイソシアネート、ポリエポキシド化合物などがあげられる。これらの架橋剤は1種または2種以上を併用して使用することができる。
 本発明のポリウレタン樹脂(X)の水分散体から形成された皮膜の耐電解液性は、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートの5種類からなるカーボネート系混合溶媒(重量比で1:1:1:1:1となる組成)に60℃条件下3日間浸漬後の皮膜の重量増加率が50wt%以下であることが好ましい。さらに上記60℃条件下3日間浸漬後の皮膜を、80℃で24時間減圧乾燥した後の皮膜の重量減少率が10%以下であることが好ましく、5%以下であることがさらに好ましい。60℃条件下で3日間浸漬後の皮膜の重量増加率が50wt%以下であれば、電解液によって皮膜の膨潤が小さく、充放電時の活物質の体積膨張及び収縮に結着剤が追従でき、潤電極層と集電体との剥離を抑制できるため電池の寿命が良好となることから好ましい。また、60℃条件下3日間浸漬した皮膜を80℃で24時間減圧乾燥した後の皮膜の重量減少率が10%以下であれば、皮膜の成分の電解液への溶出がなく、電池内部での電気化学的な反応による劣化が抑制でき、電池の寿命が良好となることから好ましい。
 本発明のポリウレタン樹脂(X)の水分散体を含有するリチウム二次電池の電極用結着剤は、電極の製造に用いることができる。電極の製造に際しては、結着剤として、本発明のポリウレタン樹脂(X)単独で使用することもでき、他の結着剤を併用することもできる。前記他の結着剤としては、特に限定されないが、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体樹脂、フッ素系樹脂、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、スチレン-アクリロニトリル共重合体、アクリル共重合体、およびウレタン樹脂(ただし(X)を除く)の水分散体、からなる群より選ばれる1種以上(Y)が好ましい。これらのうち、スチレン-ブタジエンゴム、ウレタン樹脂(ただし(X)を除く)の水分散体が好ましい。他の結着剤を併用する場合、ポリウレタン樹脂(X)の水分散体を含有するリチウム二次電池の電極用結着剤の含有量は、20質量%以上が好ましく、25質量%以上がより好ましい。これらの範囲であれば、集電体に対する密着性が高く、結着性、および耐電解液性に優れ、結着剤成分の含有量を低減することなく、電池の内部抵抗を抑えることのできる結着剤が得られ、かつこの結着剤を用いて製造された電極を使用した充放電特性に優れる。リチウム二次電池に用いられる正極及び負極は、電極活物質、導電剤、及び電極活物質並びに導電剤を集電体に結着させる結着剤等から構成される。また、本発明の結着剤は正極と負極のどちらにでも利用可能である。
 本発明のリチウム二次電池の正極に使用する正極活物質としては、リチウムイオンの挿入、脱離が可能であるものであれば、特に制限されることはない。例えば、CuO、Cu2O、MnO2、MoO3、V2O5、CrO3、MoO3、Fe2O3、Ni2O3、CoO3等の金属酸化物、LixCoO2、LixNiO2、LixMn2O4、LiFePO4などのリチウムと遷移金属との複合酸化物や、TiS2、MoS2、NbSe3などの金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等の導電性高分子化合物等が挙げられる。上記の中でも、一般に高電圧系と呼ばれる、コバルト、ニッケル、マンガン等の遷移金属から選ばれる1種以上とリチウムとの複合酸化物が、リチウムイオンの放出性や、高電圧が得られやすい点で好ましい。コバルト、ニッケル、マンガンとリチウムとの複合酸化物の具体例としては、LiCoO2、LiMnO2、LiMn2O4、LiNiO2、LiNixCo(1-x)O2、LiMnaNibCoc(a+b+c=1)などがあげられる。また、これらのリチウム複合酸化物に、少量のフッ素、ホウ素、アルミニウム、クロム、ジルコニウム、モリブデン、鉄などの元素をドーブしたものや、リチウム複合酸化物の粒子表面を、炭素、MgO、Al2O3、SiO2などで表面処理したものも使用できる。これらのうち、LiFePO4、LiMn2O4、LiNixCo(1-x)O2が好ましい。上記正極活物質は2種類以上を併用することも可能である。
 本発明のリチウム二次電池の負極に使用する負極活物質としては、金属リチウム又はリチウムイオンの挿入、脱離が可能であるものであれば、特に制限されることはない。例えば、炭素材料、金属材料、リチウム遷移金属窒化物、結晶性金属酸化物、非晶質金属酸化物、ケイ素化合物、導電性ポリマーなどがあげられる。前記、炭素材料としては、特に限定されないが、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素などがあげられる。前記、金属材料としては、特に限定されないが、例えば、金属リチウムや合金、スズ化合物などがあげられる。具体例としては、LiTi12、NiSiなどがあげられる。これらのうち、天然黒鉛、SiO、LiTi12が好ましい。
 本発明のリチウム二次電池の正極及び負極には導電剤が用いられる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば、特に制限なく使用することができる。通常は、アセチレンブラックやケッチンブラック等のカーボンブラックが使用されるが、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金等)粉末、金属繊維、導電性セラミックス材料等の導電性材料も使用可能である。これらは2種類以上の混合物として使用することもできる。これらのうち、カーボンブラックが好ましい。その添加量は活物質量に対して0.1~30質量%が好ましく、0.2~20質量%がより好ましい。
 本発明のリチウム二次電池の電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば特に制限なく使用可能である。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面を、カーボン、ニッケル、チタンや銀等で処理した物を用いることができる。また、負極用集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。これらの集電体材料は表面を酸化処理することも可能である。また、その形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体等の成形体も用いられる。厚みは特に限定されないが、1~100μmのものが通常用いられる。
 本発明のリチウム二次電池の電極は、電極活物質、導電剤、電極活物質の集電体、及び電極活物質並びに導電剤を集電体に結着させる結着剤等を混合してスラリー状の電極材料を調製し、集電体となるアルミ箔或いは銅箔等に塗布して分散媒を揮発させることにより製造することができる。
 本発明のリチウム二次電池の電極材料にはスラリー化の粘性調整剤として、水溶性高分子などの増粘剤を使用できる。具体的には、カルボキシメチルセルロース塩、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース類;ポリアクリル酸、ポリアクリル酸ソーダなどのポリカルボン酸系化合物;ポリビニルピロリドンなどのビニルピロリドン構造を有する化合物;ポリアクリルアマイド、ポリエチレンオキシド、ポリビニルアルコール、アルギン酸ソーダ、キサンタンガム、カラギーナン、グアーガム、カンテン、デンプンなどから選択された1種又は2種以上が使用可能であり、中でもカルボキシメチルセルロース塩が好ましい。
 上記電極材料の混合の方法や順序等は特に限定されず、例えば、活物質と導電剤は予め混合して用いることが可能であり、その場合の混合には、乳鉢、ミルミキサー、遊星型ボールミル又はシェイカー型ボールミルなどのボールミル、メカノフュージョン等を用いることができる。
 本発明のリチウム二次電池の電極は、実施例に記載した評価方法による結着性が、加工性および電池性能の信頼性の観点から4点以上であることが好ましく、5点がより好ましい。
 本発明のリチウム二次電池は、上記ポリウレタンの水分散体(X)を含有する結着剤を使用して製造された電極を用いて構成されるものである。前記上記ポリウレタンの水分散体(X)を含有する結着剤を使用して製造された電極は、正極または負極の少なくとも一方に使用されていればよい。前記、特に限定されないが、例えば、リチウム二次電池は、正極と負極、この正極と負極との間に設けられ両者を隔離するセパレータと、リチウムイオンを伝導するための溶媒に支持電解質としてリチウム塩を溶解した非水電解液やポリマーまたは高分子ゲル電解質を含む電解質層とで構成される。
 本発明のリチウム二次電池に使用するセパレータとしては、通常のリチウム二次電池に用いられるセパレータであれば、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリテトラフルオロエチレン等よりなる多孔質樹脂、セラミック、不織布などがあげられる。
 本発明のリチウム二次電池に使用する電解液としては、従来からリチウム二次電池に用いられている有機電解液及びイオン液体等を特に制限なく使用することができる。
 本発明のリチウム二次電池に使用する電解液塩としては、特に限定されないが、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCl、LiBr、LiCF3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LiI、LiAlCl4、NaClO4、NaBF4、NaI等を挙げることができ、特に、LiPF6、LiBF4、LiClO4、LiAsF6などの無機リチウム塩、LiN(SO2CxF2x+1)(SO2CyF2y+1)で表される有機リチウム塩を挙げることができる。ここで、x及びyは、0又は1~4の整数を表し、また、x+yは2~8の整数である。有機リチウム塩としては、具体的には、LiN(SO2F)2、LiN(SO2CF3)(SO2C2F5)、LiN(SO2CF3)(SO2C3F7)、LiN(SO2CF3)(SO2C4F9)、LiN(SO2C2F5)2、LiN(SO2C2F5)(SO2C3F7)、LiN(SO2C2F5)(SO2C4F9)等が挙げられる。中でも、LiPF6、LiBF4、LiN(CF3SO2)2、LiN(SO2F)2、LiN(SO2C2F5)2などを電解質に使用すると、電気特性に優れるので好ましい。上記電解質塩は1種単独で用いることもでき、2種以上用いることもできる。このようなリチウム塩は、通常、0.1~2.0モル/リットル、好ましくは0.3~1.5モル/リットルの濃度で、電解液に含まれていることが望ましい。
 本発明のリチウム二次電池の電解質塩を溶解させる有機溶媒としては、通常のリチウム二次電池の非水電解液に用いられる有機溶媒であれば特に限定されず、例えば、カーボネート類、ラクトン類、エーテル類、スルホラン類、ジオキソラン類、ケトン類、ニトリル類、ハロゲン化炭化水素類、イオン性液体などがあげられる。前記、カーボネート類としては特に限定されないが、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、エチレングリコールジメチルカーボネート、プロピレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、ビニレンカーボネートなどがあげられる。前記、ラクトン類としては特に限定されないが、例えば、γ-ブチロラクトンなどがあげられる。前記、エーテル類としては特に限定されないが、例えば、ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどがあげられる。前記、スルホラン類としては特に限定されないが、例えば、スルホラン、3-メチルスルホランなどがあげられる。前記、ジオキソラン類としては特に限定されないが、例えば、1,3-ジオキソランなどがあげられる。前記、ケトン類としては特に限定されないが、例えば、4-メチル-2-ペンタノンなどがあげられる。前記、ニトリル類としては特に限定されないが、例えば、アセトニトリル、プロピオニトリル、バレロニトリル、ベンゾニトリルなどがあげられる。前記、ハロゲン化炭化水素類としては特に限定されないが、例えば、1,2-ジクロロエタンなどがあげられる。前記、イオン性液体としては特に限定されないが、例えば、メチルフオールメート、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルスルホキシド、イミダゾリウム塩、4級アンモニウム塩などがあげられる。これらの有機溶媒は1種または2種以上を併用して使用することができる。これらの有機溶媒のうち、特に、カーボネート類からなる群より選ばれた非水溶媒を一種類以上含有することが、電解質の溶解性、誘電率及び粘度において優れている点から好ましい。
 本発明のリチウム二次電池において、ポリマー電解質又は高分子ゲル電解質を用いる場合は、エーテル、エステル、シロキサン、アクリロニトリル、ビニリデンフロライド、ヘキサフルオロプロピレン、アクリレート、メタクリレート、スチレン、酢酸ビニル、塩化ビニル、オキセタンなどの重合体又はその共重合体構造を有する高分子又はその架橋体などの高分子化合物が用いられ、これらは1種単独でも使用でき、2種以上使用することもできる。特に限定されるものではないが、ポリエチレンオキサイドなどのエーテル構造を有する高分子化合物がより好ましい。
 本発明のリチウム二次電池において、液系の電池は電解液を、ゲル系の電池はポリマーを電解液に溶解したプレカーサー溶液を、固体電解質電池は電解質塩を溶解した架橋前のポリマーをそれぞれ電池容器内に収容する。
 本発明のリチウム二次電池は、円筒型、コイン型、角型、その他任意の形状に形成することができ、電池の基本構成は形状によらず同じであり、目的に応じて設計変更して実施することができる。例えば、円筒型では、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、セパレータを介して捲回した捲回体を電池缶に収納し、非水電解液を注入し上下に絶縁板を載置した状態で密封して得られる。また、コイン型リチウム二次電池に適用する場合では、円盤状負極、セパレータ、円盤状正極、及びステンレスの板が積層された状態でコイン型電池缶に収納され、非水電解液が注入され、密封される。
 本発明のリチウム二次電池は、電池の容量を十分に引き出す観点から、実施例に記載した評価方法による直流内部抵抗(DC-IR)が95%以下であることが好ましく、90%以下であることがより好ましい。
 本発明のリチウム二次電池は、高効率の充放電の観点から、実施例に記載した評価方法による充放電サイクル特性後の容量保持率が90%以上であることが好ましく、95%以上であることがより好ましい。
 以下、実施例及び比較例に基づいて、本発明について詳細に説明する。本発明はこれらの実施例に限定されるものではない。
[ポリウレタンの水分散体の合成]
(実施例1)ポリウレタン水分散体Aの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにクラレポリオールP-1010(クラレ株式会社製、平均水酸基価112mgKOH/g、活性水素基数2)60.0質量部、トリメチロールプロパン(活性水素基数3)3.0質量部、ジメチロールプロピオン酸(活性水素基数2)66.6質量部、イソホロンジイソシアネート170.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.1%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを47.8質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、ジエチレントリアミン(活性水素基数3)10.0質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Aを得た。得られた樹脂の酸価は88mgKOH/gであった。
(実施例2)ポリウレタン水分散体Bの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにETERNACOLL UH-100(宇部興産株式会社製、平均水酸基価112mgKOH/g、活性水素基数2)60.0質量部、トリメチロールプロパン(活性水素基数3)3.0質量部、ジメチロールプロピオン酸(活性水素基数2)66.6質量部、イソホロンジイソシアネート170.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.1%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを47.8質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、ジエチレントリアミン(活性水素基数3)10.0質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Bを得た。得られた樹脂の酸価は87mgKOH/gであった。
(実施例3)ポリウレタン水分散体Cの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにPolyTHF 1000(BASFジャパン株式会社製、平均水酸基価112mgKOH/g、活性水素基数2)60.0質量部、トリメチロールプロパン(活性水素基数3)3.0質量部、ジメチロールプロピオン酸(活性水素基数2)66.6質量部、イソホロンジイソシアネート170.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.1%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを47.8質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、ジエチレントリアミン(活性水素基数3)10.0質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Cを得た。得られた樹脂の酸価は88mgKOH/gであった。
(実施例4)ポリウレタン水分散体Dの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにPOLY BD R-15HT(出光興産株式会社製、平均水酸基価102.7mgKOH/g、活性水素基数2.3)60.0質量部、ジメチロールプロピオン酸(活性水素基数2)69.6質量部、ジシクロヘキシルメタンジイソシアネート170.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量2.2%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを49.9質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、エチレンジアミン(活性水素基数2)3.7質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Dを得た。得られた樹脂の酸価は95mgKOH/gであった。
(実施例5)ポリウレタン水分散体Eの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにPOLY BD R-45HT(出光興産株式会社製、平均水酸基価46.5mgKOH/g、活性水素基数2.3)60.0質量部、ジメチロールブタン酸(活性水素基数2)69.6質量部、ジシクロヘキシルメタンジイソシアネート170.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量4.4%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを45.2質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、エチレンジアミン(活性水素基数2)7.2質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Eを得た。得られた樹脂の酸価は85mgKOH/gであった。
(実施例6)ポリウレタン水分散体Fの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにジメチロールブタン酸(活性水素基数2)90.0質量部、ジシクロヘキシルメタンジイソシアネート210.0質量部、メチルエチルケトン300質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.5%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを60.0質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、エチレンジアミン(活性水素基数2)10.0質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Fを得た。得られた樹脂の酸価は105mgKOH/gであった。
(実施例7)ポリウレタン水分散体Gの合成
 合成例5で得られたポリウレタン水分散体F1000質量部に、5%水酸化ナトリウム水溶液291.6gを加え、これを減圧、50℃での加熱下、トリエチルアミンの留去を行い、不揮発分約20%のポリウレタン水分散体Gを得た。得られた樹脂の酸価はポリウレタン水分散体Fと同値と見積もった。
(実施例8)ポリウレタン水分散体Hの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにジメチロールブタン酸(活性水素基数2)120.0質量部、ヘキサメチレンジイソシアネート180.0質量部、メチルエチルケトン300質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量7.4%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを77.8質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、エチレンジアミン(活性水素基数2)10.0質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Hを得た。得られた樹脂の酸価は141mgKOH/gであった。
(実施例9)ポリウレタン水分散体Iの合成
 合成例8で得られたポリウレタン水分散体H1000質量部に、5%水酸化リチウム水溶液238.7gを加え、これを減圧、50℃での加熱下、トリエチルアミンの留去を行い、不揮発分約20%のポリウレタン水分散体Iを得た。得られた樹脂の酸価はポリウレタン水分散体Iと同値と見積もった。
(実施例10)ポリウレタン水分散体Jの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにPOLY BD R-45HT(出光興産株式会社製、平均水酸基価46.5mgKOH/g、活性水素基数2.3)145.8質量部、ジメチロールブタン酸(活性水素基数2)39.6質量部、ジシクロヘキシルメタンジイソシアネート114.6質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量3.0%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを29.9質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、エチレンジアミン(活性水素基数2)5.7質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Jを得た。得られた樹脂の酸価は48mgKOH/gであった。
(比較例1)ポリウレタン水分散体Kの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにクラレポリオールP-1010(クラレ株式会社製、平均水酸基価112mgKOH/g、活性水素基数2)171.6質量部、トリメチロールプロパン(活性水素基数3)3.0質量部、ジメチロールプロピオン酸(活性水素基数2)15.0質量部、イソホロンジイソシアネート110.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.1%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを11.3質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、ジエチレントリアミン(活性水素基数3)10.0質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Kを得た。得られた樹脂の酸価は19mgKOH/gであった。
(比較例2)ポリウレタン水分散体Lの合成
 攪拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコにPOLY BD R-15HT(出光興産株式会社製、平均水酸基価102.7mgKOH/g、活性水素基数2.3)179.6質量部、ジメチロールプロピオン酸(活性水素基数2)15.0質量部、ジシクロヘキシルメタンジイソシアネート105.4質量部、メチルエチルケトン200質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量3.5%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを11.3質量部加えて中和後、水1500質量部を徐々に加えてホモジナイザーを使用して乳化分散させた。続いて、エチレンジアミン(活性水素基数2)6.4質量部を水100質量部で希釈した水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃での加熱下、脱溶剤を行い、不揮発分約20%のポリウレタン水分散体Lを得た。得られた樹脂の酸価は19mgKOH/gであった。
[ポリウレタン水分散体の評価]
 反応によって合成されたウレタンプレポリマーのメチルエチルケトン溶液の不揮発分に対する遊離のイソシアネート基含有量を下記表1に示す。
 得られたポリウレタン水分散体に関する各測定に際しては、下記方法を用いた。また、その結果を下記表1に示す。
ポリウレタン水分散体の不揮発分の重量:JIS K 6828に準じて測定した。
ポリウレタン樹脂の酸価:JIS K 0070-1992に準じて測定した。
ポリウレタン樹脂の耐電解液性:
 得られたポリウレタン水分散体を乾燥膜厚が約200μmになるようにテフロン(登録商標)加工板上に流して、60℃で4時間、さらに80℃で2時間、さらに130℃で2時間乾燥して試験片を作成した。耐電解液性を判断するための具体的な方法としては、カーボネート系の混合溶媒として、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートの5種類からなる混合溶媒(重量比で1:1:1:1:1となる組成)を用いて試験を実施した。本発明のポリウレタン水分散体は、耐電解液性が前記ポリウレタン水分散体から形成された皮膜を前記混合溶媒に60℃条件下で3日間浸漬後の皮膜の重量増加率を測定し、以下の評価基準から判断した。
評価基準;
 ○:樹脂の重量増加率が50%未満
 △:樹脂の重量増加率が50%以上100%未満
 ×:樹脂の重量増加率が100%以上、または溶解
 また、上記操作によって60℃条件下3日間浸漬した皮膜を、80℃で24時間減圧乾燥した後の皮膜の重量減少率を測定し、以下の基準から判断した。
評価基準;
 ○:樹脂の重量減少率が5%未満
 △:樹脂の重量減少率が10%未満
 ×:樹脂の重量減少率が10%以上
Figure JPOXMLDOC01-appb-T000001
[電極の作製]
電極の作製に用いた結着剤を下記表2に示す。
結着性評価:
得られた電極の塗工面を外側に180°折り曲げて戻した後に、塗工面の活物質の脱落程度(脱落部分の面積が全体に占める割合)を目視で判断した。
評価基準;
5点:外観異常なし
4点:5%以下脱落
3点:5~75%脱落
2点:75%以上脱落
1点:100%脱落
Figure JPOXMLDOC01-appb-T000002
[負極の作製]
(負極1)
 負極活物質として、天然黒鉛100g、導電剤としてカーボンブラック0.5g(Timcal社製、Super-P)と増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤としてポリウレタン水分散体Aの20質量%溶液10.2gを遊星型ミキサーで混合し、固形分50%になるように負極スラリーを調製した。この負極スラリーを塗工機で厚み10μmの電解銅箔上にコーティングを行い、120℃で乾燥後、ロールプレス処理を行い、負極活物質7mg/cmの負極1を得た。
(負極2~10、16~18)
 上記ポリウレタン水分散体Aを、表2に記載のポリウレタン水分散体、SBRに変更した以外は負極1と同様の方法で作成した。
(負極11)
 負極活物質として、天然黒鉛100g、導電剤としてカーボンブラック0.5g(Timcal社製、Super-P)と増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤としてポリウレタン水分散体Fの20質量%溶液5.1gとSBRの20質量%溶液5.1gを遊星型ミキサーで混合し、固形分50%になるように負極スラリーを調製した。この負極スラリーを塗工機で厚み10μmの電解銅箔上にコーティングを行い、120℃で乾燥後、ロールプレス処理を行い、負極活物質7mg/cm2の負極11を得た。
(負極12~15)
 上記ポリウレタン水分散体F、SBRを、表2に記載の結着剤に変更した以外は負極11と同様の方法で作成した。
(負極19)
 負極活物質として、SiO(平均粒径4.5μm、比表面積5.5m2/g)100g、導電剤としてカーボンブラック(Timcal社製、Super-P)5gと増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤としてポリウレタン水分散体Gの20質量%溶液25.1gを遊星型ミキサーで混合し、固形分50%になるように負極スラリーを調製した。この負極スラリーを塗工機で厚み10μmの電解銅箔上にコーティングを行い、120℃で乾燥後、ロールプレス処理を行い、負極活物質2.5mg/cmの負極19を得た。
(負極20)
 上記ポリウレタン水分散体GをSBRに変更した以外は負極19と同様の方法で負極20を作成した。
(負極21)
 負極活物質として、LiTi12100g、導電剤としてカーボンブラック5g(Timcal社製、Super-P)と増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤としてポリウレタン水分散体Dの20質量%溶液10.2gを遊星型ミキサーで混合し、固形分50%になるように負極スラリーを調製した。この負極スラリーを塗工機で厚み10μmの電解銅箔上にコーティングを行い、120℃で乾燥後、ロールプレス処理を行い、負極活物質9.7mg/cmの負極21を得た。
(負極22)
 上記ポリウレタン水分散体DをSBRに変更した以外は負極21と同様の方法で負極22を作成した。
[正極の作製]
(正極1)
 正極活物質であるLiNi1/3Co1/3Mn1/3100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を7.8g、結着剤としてポリフッ化ビニリデン6g、分散媒としてN-メチル-2-ピロリドン61.3gを遊星型ミキサーで混合し、固形分65%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質13.8mg/cmの正極1を得た。
(正極2~3)
 正極活物質であるLiNi1/3Co1/3Mn1/3100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を7.8g、増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤として表2に記載のポリウレタン水分散体の20質量%溶液10.2gを遊星型ミキサーで混合し、固形分50%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質13.8mg/cmの正極2、3を得た。
(正極4)
 正極活物質であるLiNi1/3Co1/3Mn1/3100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を7.8g、増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤として表2に記載のポリウレタン水分散体Gの20質量%溶液5.1gとポリウレタン水分散体Kの20質量%溶液5.1gを遊星型ミキサーで混合し、固形分50%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質13.8mg/cmの正極4を得た。
(正極5)
 正極活物質であるLiMn100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を5g、結着剤としてポリフッ化ビニリデン6g、分散媒としてN-メチル-2-ピロリドン59.8gを遊星型ミキサーで混合し、固形分65%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質22mg/cmの正極5を得た。
(正極6)
 正極活物質であるLiMn100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を5g、増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤としてポリウレタン水分散体Bの20質量%溶液10.2gを遊星型ミキサーで混合し、固形分50%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質22mg/cmの正極6を得た。
(正極7)
 正極活物質であるLiFePO100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を5g、結着剤としてポリフッ化ビニリデン6g、分散媒としてN-メチル-2-ピロリドン135.7gを遊星型ミキサーで混合し、固形分45%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質14.5mg/cmの正極7を得た。
(正極8)
 正極活物質であるLiFePO100g、導電剤としてカーボンブラック(Timcal社製、Super-P)を5g、増粘剤としてカルボキシメチルセルロースナトリウム塩(第一工業製薬株式会社製、品名:セロゲンWS-C)2質量%水溶液100g、結着剤としてポリウレタン水分散体Bの20質量%溶液10.2gを遊星型ミキサーで混合し、固形分50%になるように正極スラリーを調製した。この正極スラリーを塗工機で厚み20μmのアルミニウム箔上にコーティングを行い、130℃で乾燥後、ロールプレス処理を行い、正極活物質14.5mg/cmの正極8を得た。
[リチウム二次電池の作製]
 上記表2により得られた正極及び負極を表3のようにそれぞれ組み合わせて、電極間にセパレータとしてポリオレフィン系(PE/PP)セパレータを挟んで積層し、各正負極に正極端子と負極端子を超音波溶接した。この積層体をアルミラミネート包材に入れ、注液用の開口部を残しヒートシールした。正極面積18cm、負極面積19.8cmとした注液前電池を作製した。次にエチレンカーボネートとジエチルカーボネート(30/70vol比)とを混合した溶媒にLiPF(1.0mol/L)を溶解させた電解液を注液し、開口部をヒートシールし、評価用電池を得た。
[電池性能の評価]
 作製したリチウム二次電池について、20℃における性能試験を行った。試験方法は下記の通りである。試験結果を表3に示す。
(直流内部抵抗)(DC-IR)
 直流内部抵抗(DC-IR)は以下の方法で測定した。
 作製したリチウム二次電池(SOC50%)に各1C、2C、3C相当の放電時の定電流を流し、初期から10秒後の各レートの電圧降下を測定した。上記3点の各レートの電流と電圧降下の結果から直流内部抵抗(DC-IR)を算出した。
 直流内部抵抗化率は、実施例1~13、16~19の場合は、比較例3を基準に、実施例14は比較例4を基準に、実施例15は比較例5を基準に、実施例20は比較例6を基準に、実施例21は比較例7を基準に評価した。
 直流内部抵抗化率 :      90%以下      ◎
              95%程度      〇
              基準(100%) △
(充放電サイクル特性)
 充放電サイクル特性を、以下の条件で測定した。
 正極活物質としてLiNi1/3Co1/3Mn1/3或いはLiMn、負極活物質として天然黒鉛を使用した場合は、1C相当の電流密度で4.2VまでCC(定電流)充電を行い、続いて4.2VでCV(定電圧)充電に切り替え、1.5時間充電したのち、1C相当の電流密度で2.7VまでCC放電するサイクルを20℃で300サイクル行い、このときの初回1C放電容量に対する300サイクル後1C放電容量比を1C充放電サイクル保持率とした。
 正極活物質としてLiFePO、負極活物質として天然黒鉛を使用した場合は、1C相当の電流密度で4.0VまでCC(定電流)充電を行い、続いて4.0VでCV(定電圧)充電に切り替え、1.5時間充電したのち、1C相当の電流密度で2.0VまでCC放電するサイクルを20℃で300サイクル行い、このときの初回1C放電容量に対する300サイクル後1C放電容量比を1C充放電サイクル保持率とした。
 正極活物質としてLiNi1/3Co1/3Mn1/3、負極活物質としてLiTi12を使用した場合は、1C相当の電流密度で2.9VまでCC(定電流)充電を行い、続いて2.9VでCV(定電圧)充電に切り替え、1.5時間充電したのち、1C相当の電流密度で1.0VまでCC放電するサイクルを20℃で300サイクル行い、このときの初回1C放電容量に対する300サイクル後1C放電容量比を1C充放電サイクル保持率とした。
 正極活物質としてLiNi1/3Co1/3Mn1/3、負極活物質としてSiOを使用した場合は、1C相当の電流密度で4.2VまでCC(定電流)充電を行い、続いて4.2VでCV(定電圧)充電に切り替え、1.5時間充電したのち、1C相当の電流密度で2.7VまでCC放電するサイクルを20℃で50サイクル行い、このときの初回1C放電容量に対する50サイクル後1C放電容量比を1C充放電サイクル保持率とした。
Figure JPOXMLDOC01-appb-T000003
 表3より、従来から使用されてきたスチレンブタジエンゴム或いはポリフッ化ビニリデンを使用した場合より、本発明のポリウレタン水分散体を使用した場合の方が、直流内部抵抗が低く、サイクル特性後の容量保持率が高く保持されることがわかる。
 本発明のリチウム二次電池の電極用結着剤は、リチウム二次電池の電極として利用でき、製造された電極は各種リチウム二次電池の製造に用いられる。得られたリチウム二次電池は、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなどの各種携帯型機器や、更には電動自転車、電気自動車などに搭載する中型又は大型リチウム二次電池に好適に使用することができる。

Claims (7)

  1.  少なくとも(A)ポリイソシアネート、(B)1個以上の活性水素基と親水基を有する化合物、および(C)鎖伸張剤を用いて得られるポリウレタン樹脂(X)の水分散体を含有するリチウム二次電池の電極用結着剤であって、Xの酸価またはアミン価が40~200mgKOH/gであるリチウム二次電池の電極用結着剤。
  2.  (B)1個以上の活性水素基と親水基を有する化合物の含有量が、前記ポリウレタン樹脂(X)の10~60質量%である請求項1記載のリチウム二次電池の電極用結着剤。
  3.  (A)ポリイソシアネートと(B)1個以上の活性水素基と親水基を有する化合物の含有量の比(重量比)が(A)/(B)=1/0.2~1/1.5である請求項1または2記載のリチウム二次電池の電極用結着剤。
  4.  さらに、(D)2個以上の活性水素基を有する化合物を含有する請求項1~3のいずれか記載のリチウム二次電池の電極用結着剤。
  5.  さらに、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体樹脂、フッ素系樹脂、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、スチレン-アクリロニトリル共重合体、アクリル共重合体、およびウレタン樹脂(ただし(X)を除く)の水分散体、からなる群より選ばれる1種以上(Y)を含有する請求項1~4のいずれか記載のリチウム二次電池の電極用結着剤。
  6.  請求項1~5のいずれか記載のリチウム二次電池の電極用結着剤を用いて製造された電極。
  7.  請求項6記載の電極を有するリチウム二次電池。
PCT/JP2015/077897 2015-02-20 2015-10-01 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池 WO2016132589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177022456A KR20170118071A (ko) 2015-02-20 2015-10-01 리튬 이차 전지의 전극용 결착제, 그 결착제를 사용하여 제조된 전극, 그 전극을 사용한 리튬 이차 전지
CN201580076249.3A CN107251288A (zh) 2015-02-20 2015-10-01 锂二次电池的电极用粘结剂、使用所述粘结剂制造的电极、使用所述电极的锂二次电池
JP2017500274A JP6927874B2 (ja) 2015-02-20 2015-10-01 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015031895 2015-02-20
JP2015-031895 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016132589A1 true WO2016132589A1 (ja) 2016-08-25

Family

ID=56688846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077897 WO2016132589A1 (ja) 2015-02-20 2015-10-01 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池

Country Status (4)

Country Link
JP (1) JP6927874B2 (ja)
KR (1) KR20170118071A (ja)
CN (1) CN107251288A (ja)
WO (1) WO2016132589A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062091B1 (ja) * 2016-04-14 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
CN111357136A (zh) * 2017-11-03 2020-06-30 株式会社Lg化学 硫碳复合材料和包含所述硫碳复合材料的锂硫电池
CN115353593A (zh) * 2022-08-25 2022-11-18 深圳科博源科技有限公司 一种溶胀薄膜原材料及其改性合金工艺
WO2023183298A1 (en) * 2022-03-22 2023-09-28 Huntsman International Llc Thermoplastic polyurethane binder and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980227B (zh) * 2019-04-04 2021-09-14 北京理工大学 一种锂硫电池用复合粘结剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097816A (ja) * 2008-10-16 2010-04-30 Toyo Ink Mfg Co Ltd リチウム二次電池用正極合剤ペースト
JP2010146993A (ja) * 2008-12-22 2010-07-01 Toyo Ink Mfg Co Ltd リチウム二次電池用正極合剤ペースト
JP2012204244A (ja) * 2011-03-28 2012-10-22 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極用バインダー樹脂組成物
WO2013114849A1 (ja) * 2012-02-02 2013-08-08 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
JP2013206627A (ja) * 2012-03-27 2013-10-07 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池。
JP2014191942A (ja) * 2013-03-27 2014-10-06 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
WO2015019598A1 (ja) * 2013-08-06 2015-02-12 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097816A (ja) * 2008-10-16 2010-04-30 Toyo Ink Mfg Co Ltd リチウム二次電池用正極合剤ペースト
JP2010146993A (ja) * 2008-12-22 2010-07-01 Toyo Ink Mfg Co Ltd リチウム二次電池用正極合剤ペースト
JP2012204244A (ja) * 2011-03-28 2012-10-22 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極用バインダー樹脂組成物
WO2013114849A1 (ja) * 2012-02-02 2013-08-08 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
JP2013206627A (ja) * 2012-03-27 2013-10-07 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池。
JP2014191942A (ja) * 2013-03-27 2014-10-06 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
WO2015019598A1 (ja) * 2013-08-06 2015-02-12 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062091B1 (ja) * 2016-04-14 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP2017190409A (ja) * 2016-04-14 2017-10-19 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
CN111357136A (zh) * 2017-11-03 2020-06-30 株式会社Lg化学 硫碳复合材料和包含所述硫碳复合材料的锂硫电池
CN111357136B (zh) * 2017-11-03 2022-09-06 株式会社Lg新能源 硫碳复合材料和包含所述硫碳复合材料的锂硫电池
US11611067B2 (en) 2017-11-03 2023-03-21 Lg Energy Solution, Ltd. Sulfur-carbon composite and lithium-sulfur battery including same
WO2023183298A1 (en) * 2022-03-22 2023-09-28 Huntsman International Llc Thermoplastic polyurethane binder and uses thereof
CN115353593A (zh) * 2022-08-25 2022-11-18 深圳科博源科技有限公司 一种溶胀薄膜原材料及其改性合金工艺

Also Published As

Publication number Publication date
CN107251288A (zh) 2017-10-13
JPWO2016132589A1 (ja) 2017-11-30
KR20170118071A (ko) 2017-10-24
JP6927874B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
JP5713515B1 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池
TWI479727B (zh) A lithium secondary battery electrode, and a lithium secondary battery using an electrode manufactured by using the adhesive
JP5794943B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池。
JP6927874B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池
KR102233321B1 (ko) 리튬 이차 전지의 전극용 결착제
US20220200001A1 (en) Electrode binder composition, electrode coating composition, power storage device electrode, and power storage device
EP4235844A1 (en) Binding agent composition for electrode, coating liquid composition for electrode, electrode for power storage device, and power storage device
JP6124645B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
JP5794942B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池。
JP6062091B1 (ja) ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP6916363B1 (ja) リチウム二次電池に用いる結着剤用ポリウレタン樹脂水分散体、電極用結着剤及びリチウム二次電池
US12040492B2 (en) Electrode binder composition, electrode coating liquid composition, power storage device electrode, and power storage device
JP2015023027A (ja) リチウム二次電池の負極用結着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500274

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022456

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882690

Country of ref document: EP

Kind code of ref document: A1