JP2015023027A - リチウム二次電池の負極用結着剤 - Google Patents

リチウム二次電池の負極用結着剤 Download PDF

Info

Publication number
JP2015023027A
JP2015023027A JP2014143334A JP2014143334A JP2015023027A JP 2015023027 A JP2015023027 A JP 2015023027A JP 2014143334 A JP2014143334 A JP 2014143334A JP 2014143334 A JP2014143334 A JP 2014143334A JP 2015023027 A JP2015023027 A JP 2015023027A
Authority
JP
Japan
Prior art keywords
weight
active hydrogen
parts
negative electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014143334A
Other languages
English (en)
Inventor
克夫 高橋
Katsuo Takahashi
克夫 高橋
宮村 岳志
Takashi Miyamura
岳志 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2014143334A priority Critical patent/JP2015023027A/ja
Publication of JP2015023027A publication Critical patent/JP2015023027A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】負極活物質にケイ素を含む物質を単独または複合化した負極層の形成において、充放電時に活物質の体積膨張及び収縮に対して結着性を持続することのできる結着剤を提供する。【解決手段】ポリウレタン水分散体含有リチウム二次電池の負極用結着剤であって、ポリウレタン水分散体が、少なくとも有機ポリイソシアネート及び1以上の活性水素基を有する化合物を用いて得られる親水基含有ポリウレタンを含有し、有機ポリイソシアネートの含有量が、親水基含有ポリウレタンに対して50以上80質量%以下であり、1以上の活性水素基を有する化合物が、2以上の活性水素基を有する化合物及び1以上の活性水素基と1以上のイオン性親水基を有する化合物を含有し、負極活物質にケイ素を含む物質を単独または複合化したものであり、親水基含有ポリウレタンが、芳香環構造または脂環構造を含み、芳香環構造または脂環構造の含有割合が40質量%以上である。【選択図】なし

Description

本発明は、リチウム二次電池用の活物質用結着剤に関する。
最近、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなど、携帯用電子機器が多く普及し、かかる電子機器の小型化、軽量化が一段と要求されるにつれ、駆動電源である電池の小型化、軽量化、薄型化及び高容量化に対する要求が高まっており、本課題に対する研究が活発に進められている。リチウム電池は、高電圧及び良好なエネルギー密度を有し、かつNi−Cd電池などに比べて向上した安全性を有しており、携帯用電子機器の電源として広く使われてきた。しかし、小型、軽量化されたディスプレイ産業の発展と共に、さらに小型化されて軽量化された電池が要求されることにより、従来のリチウム電池に比べてさらに高い駆動電圧、延長した寿命、及び高いエネルギー密度など、向上した電池特性が要求される。また最近では、車載用、産業用などの中型もしくは大型のリチウム電池の開発が進められており、高容量・高出力化向上の開発に期待が寄せられている。従って、このような要求を充足させるために、リチウム電池の各種構成要素の性能を向上させる努力が続けられている。
電池の特性は、使われる電極、電解質及びその他電池材料により大きく左右されるが、特に、電極の場合は、電極活物質、集電体及びそれらの間に接着力を付与する結着剤により特性が決定される。例えば、使われる活物質の量及び種類が、活物質と結合できるリチウムイオンの量を決定するために、活物質の量が多いほど、そして固有容量の大きい活物質を使用するほど、高容量の電池を得ることができる。また、結着剤が前記活物質間、及び活物質と集電体との間で優秀な接着力を有する場合、電極内で電子及びリチウムイオンの移動が円滑になされ、電極の内部抵抗が減少するので、高効率の充放電が可能になる。そして、高容量電池の場合には、負極活物質として、カーボン及び黒鉛、カーボン及びケイ素のような複合系電極が必要になるので、充放電時に、活物質の体積膨脹及び収縮が大きく起こるために、前記結着剤は、優秀な接着力以外にも電極体積が相当の膨脹及び収縮を繰り返すにもかかわらず、本来の接着力及び復原力を維持できねばならない。
このような電極を得るための結着剤としては、有機溶剤中にポリテトラフルオロエチレンやポリフッ化ビニリデン等のフッ素樹脂が溶解されてなるものが知られている。然るに、フッ素樹脂は、集電体を構成する金属との密着性が十分に高いものではない上、柔軟性が十分に高いものではないため、特に倦回型電池を製造する場合には、得られる電極層にクラックが生じたり、得られる電極層と集電体との剥離が生じたりする、という問題がある。十分な接着力を維持するためには、投入量が多くなければならないので、小型化には限界があり、また、有機溶媒と混合して使用するために、製造が複雑であるという短所がある。一方、集電体を構成する金属との密着性が高く、しかも、柔軟性が高い電極層を形成することができる結着剤として、スチレン−ブタジエン系ラテックス(SBR)よりなるものが知られている(特許文献1、2、3)。SBRは弾性特性には優れるが、電極層と集電体との接着力が十分ではなく、充放電が反復されるにつれて電極の構造を維持できず、電池の寿命が十分とは言えない。また、電池の高容量化に向けて負極活物質にケイ素を複合化した場合には、充放電時に、活物質の体積膨張及び収縮に結着剤が追従できず、電池の寿命が大幅に低下することが問題となる。
近年の電池高容量化の要請から、負極活物質にケイ素を含む物質を単独または複合化した電池の開発が積極的に行われており、充放電時の活物質の体積膨張及び収縮に対して結着性を持続することのできる結着剤の開発が求められている。
特開平5−21068号公報 特開平11−7948号公報 特開2001−210318号公報
本発明は、以上のような事情に基づいてなされたものであって、その目的は、負極活物質にケイ素を含む物質を単独または複合化した電極層の形成において、充放電時に、活物質の体積膨張及び収縮に対して結着性を持続することのできる結着剤を提供することにある。
本発明者らは、上記の従来技術の課題点を克服すべく、検討し本発明に至った。
1)ポリウレタン水分散体を含有するリチウム二次電池の負極用結着剤であって、前記ポリウレタン水分散体が、少なくとも(A)有機ポリイソシアネート及び(B)1個以上の活性水素基を有する化合物を用いて得られる親水基含有ポリウレタンを含有し、前記(A)有機ポリイソシアネートの含有量が、前記親水基含有ポリウレタンに対して50質量%以上80質量%以下であり、前記(B)1個以上の活性水素基を有する化合物が、(B1)2個以上の活性水素基を有する化合物及び(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物を含有し、前記負極が、負極活物質にケイ素を含む物質を単独または複合化したものであり、且つ、前記親水基含有ポリウレタンが、芳香環構造または脂環構造を含み、かつ芳香環構造または脂環構造の含有割合の合計が40質量%以上であることを特徴とするリチウム二次電池の負極用結着剤を提供する。
2)前記1)記載のポリウレタン樹脂水分散体は、前記(B)2個以上の活性水素基を有する化合物と、前記(C)1個以上の活性水素基と1個以上の親水基とを有する化合物の平均水酸基価が300mgKOH/g以上であることが好ましい。
3)前記1)記載のポリウレタン樹脂水分散体は、該ポリウレタンの分子量1000あたりの分岐密度を示す指標が0.3〜1.0の範囲であることが好ましい。
本発明のポリウレタン樹脂水分散体から形成された皮膜は、電解液に対する膨潤率が低いことが特徴であり、本発明のポリウレタン樹脂水分散体をリチウム二次電池の負極用結着剤として使用した、負極活物質にケイ素を含む物質を単独または複合化した負極は、活物質の体積膨張及び収縮に対して結着性を持続することができる。
本発明のリチウム二次電池の負極用結着剤はポリウレタン水分散体を含有する。また、ポリウレタン水分散体が、(A)有機ポリイソシアネート及び(B)1個以上の活性水素基を有する化合物を少なくとも用いて得られる親水基含有ポリウレタンを含有するものである。
本発明のリチウム二次電池の負極用結着剤のポリウレタン樹脂水分散体組成物の調製に使用される(A)有機ポリイソシアネートとしては、特に限定されることなく当該技術分野で一般に使用されるイソシアネートを使用することができる。例えば脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートを挙げることができる。
前記脂肪族ポリイソシアネートとしては、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2−メチルペンタン−1,5−ジイソシアネート、3−メチルペンタン−1,5−ジイソシアネート等を挙げることができる。脂環族ポリイソシアネートとしては、イソホロンジイソシアネート、水添キシリレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、2,4’−ジシクロヘキシルメタンジイソシアネート、2,2’−ジシクロヘキシルメタンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサン等を挙げることができる。
前記芳香族ポリイソシアネートとしては、トリレンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート(MDI)、4,4’−ジベンジルジイソシアネート、1,5−ナフチレンジイソシアネート、キシリレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート等を挙げることができる。
前記芳香脂肪族ポリイソシアネートとしては、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、α,α,α,α−テトラメチルキシリレンジイソシアネート等を挙げることができる。
また、これらの有機ポリイソシアネートの2量体、3量体やビュレット化イソシアネート等の変性体を挙げることができる。尚、これらは、単独で又は2種以上を併用して用いることもできる。尚、有機ポリイソシアネートとしては、結着性及び耐電解液性の面から脂環族系及び/または芳香族系イソシアネートが好ましく、4,4’−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサンが特に好ましい。
本発明のリチウム二次電池の負極用結着剤のポリウレタン樹脂水分散体組成物を得るためには、前記(A)有機ポリイソシアネートの含有量が、ポリウレタン水分散体中のポリウレタンに対して50質量%以上80質量%以下であり、50質量%以上75質量%以下であることが好ましい。有機ポリイソシアネートの含有量が50質量%以上であれば耐電解液性が良好となり、80質量%以下であればポリウレタン樹脂の乳化特性が良好で安定したポリウレタン水分散体を得ることができる。
本発明に於ける(B)1個以上の活性水素基を有する化合物は、1個以上のヒドロキシル基、アミノ基またはメルカプト基を有する化合物である。活性水素基は、分子末端、分子内、またはこれらの両方のいずれに有するものであってもよい。
前記(B)1個以上の活性水素基を有する化合物は(B1)2個以上の活性水素基を有する化合物および(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物である。
前記(B1)2個以上の活性水素基を有する化合物は、一般に公知のポリエーテル、ポリエステル、ポリエーテルエステル、ポリカーボネート、ポリチオエーテル、ポリアセタ
ル、ポリオレフィン、ポリシロキサン、フッ素系、植物油系等を例示することができ、好ましいのは、分子末端に2個以上のヒドロキシル基を有する化合物である。これら活性水素基を2個以上有する化合物の分子量は、作業性の観点から50〜5000の範囲であることが好ましい。例えば、エチレングリコール、プロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、3−メチル−1,5−ペンタンジオール、ヘキサンジオール、ネオペチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4−シクロヘキサンジメタノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、水素添加ビスフェノールA、ジブロモビスフェノールA、1,4−シクロヘキサンジメタノール、ジヒドロキシエチルテレフタレート、ハイドロキノンジヒドロキシエチルエーテル、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール、それらのオキシアルキレン誘導体又はそれらの多価アルコール及びオキシアルキレン誘導体と多価カルボン酸、多価カルボン酸無水物、若しくは多価カルボン酸エステルからのエステル化合物、ポリカーボネートポリオール、ポリカプロラクトンポリオール、ポリエステルポリオ−ル、ポリチオエーテルポリオ−ル、ポリアセタールポリオ−ル、ポリテトラメチレングリコ−ル、ポリブタジエンポリオ−ル、ヒマシ油ポリオ−ル、大豆油ポリオール、フッ素ポリオール、シリコンポリオール等のポリオ−ル化合物やその変性体が挙げられる。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどが挙げられる。これら2個以上の活性水素原子を有する基を有する化合物は、単独で使用してもよく、2種以上を併用してもよい。
前記(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物におけるイオン性とは、アニオンまたはカチオンのことをいう。イオン性親水基としては、例えば、カルボキシル基、スルホン酸基及びその塩を有する化合物、第三級または第四級アンニウム塩が挙げられる。これらの中で、集電体との密着性の面からカルボキシル基を含有しているものが好ましい。
前記カルボキシル基を含有する化合物としては、例えば、2,2−ジメチロールプロピオン酸、2,2−ジメチロール酪酸、2,2−ジメチロール吉草酸、ジオキシマレイン酸、2,6−ジオキシ安息香酸、3,4−ジアミノ安息香酸等のカルボン酸含有化合物及びこれらの誘導体並びにそれらの塩に加え、これらを使用して得られるポリエステルポリオールが挙げられる。更に、アラニン、アミノ酪酸、アミノカプロン酸、グリシン、グルタミン酸、アスパラギン酸、ヒスチジン等のアミノ酸類、コハク酸、アジピン酸、無水マレイン酸、フタル酸、無水トリメリット酸等のカルボン酸類も挙げられる。
前記スルホン酸基含有化合物としては、例えば、2−オキシエタンスルホン酸、フェノールスルホン酸、スルホ安息香酸、スルホコハク酸、5−スルホイソフタル酸、スルファニル酸、1,3−フェニレンジアミン−4,6−ジスルホン酸、2,4−ジアミノトルエン−5−スルホン酸等のスルホン酸含有化合物及びこれらの誘導体、並びにこれらを共重合して得られるポリエステルポリオール、ポリアミドポリオール、ポリアミドポリエステルポリオール等が挙げられる。
前記カルボキシル基又はスルホン酸基は、中和して塩にすることにより、最終的に得られるポリウレタン樹脂を水分散性にすることができる。この場合の中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム等の不揮発性塩基、トリメチルアミン、トリエチルアミン、ジメチルエタノールアミン、メチルジエタノールアミン、トリエタノールアミン等の三級アミン類、アンモニア等の揮発性塩基等が挙げられる。中和は、ウレタン化反応前、反応中、又は反応後の何れにおいても行うことができる。
前記第4級アンモニウム塩の場合は、上述のようにハロゲン化アルキル、ジアルキル硫酸との反応により4級化することにより導入される。カチオン性官能基導入のためには、まず、ジメチルアミノエタノール、メチルジエタノールアミン等のアルカノールアミンが導入される。次に、中和塩基を導入する場合は、ギ酸、酢酸などの有機カルボン酸、塩酸、硫酸などの無機酸が加えられ、第4級アンモニウム塩を導入する場合は、4級化試薬として塩化メチル、臭化メチルなどのハロゲン化アルキル、ジメチル硫酸などのジアルキル硫酸が使用される。乳化の容易性の観点から、好ましいものは、メチルジエタノールアミンと有機カルボン酸との組み合わせ、又はメチルジエタノールアミンとジメチル硫酸との組合せである。
前記(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物としては、前記化合物をそれぞれ単独で用いてもよく、組み合わせて使用してもよい。前記(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物の含有量は、最終的に得られるポリウレタン樹脂固形分100重量部当り少なくとも0.005〜0.2当量であることが好ましく、0.01〜0.1当量であることがより好ましい。前記範囲であれば、乳化特性が良好なものとなる。
前記(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物に加えて、1個以上の活性水素基と1個以上のノニオン性親水基を有する化合物を併用することもできる。分子内に少なくとも1個の活性水素原子を有しかつエチレンオキシドの繰り返し単位からなる基、エチレンオキシドの繰り返し単位とその他のアルキレンオキシドの繰り返し単位からなる基を含有するノニオン性の化合物等が挙げられる。前記ノニオン性基含有化合物としては、エチレンオキシドの繰り返し単位を少なくとも30重量%以上含有し、分子中に少なくとも1個以上の活性水素を含有する分子量300〜20,000の化合物が好ましく、例えば、ポリオキシエチレングリコール又はポリオキシエチレン−ポリオキシプロピレン共重合体グリコール、ポリオキシエチレン−ポリオキシブチレン共重合体グリコール、ポリオキシエチレン−ポリオキシアルキレン共重合体グリコール又はそのモノアルキルエーテル等のノニオン性基含有化合物又はこれらを共重合して得られるポリエステルポリエーテルポリオールが挙げられる。ノニオン性基含有化合物を使用する場合は、最終的に得られるポリウレタン樹脂固形分100重量部当り少なくとも該化合物を1〜30重量部とし、特に5〜20重量部使用したものであることが好ましい。
本発明のリチウム二次電池の負極用ポリウレタン系結着剤のポリウレタン樹脂水分散体組成物を得るためには、前記(B)1個以上の活性水素基を有する化合物の平均水酸基価が300mgKOH/g以上2000mgKOH/g以下であることが好ましく、350mgKOH/g以上2000mgKOH/g以下であることがより好ましく、400mgKOH/g以上2000mgKOH/g以下であることが最も好ましい。前記範囲であれば、耐電解液性が良好なものとなる。
前記(B)1個以上の活性水素基を有する化合物として、鎖伸長剤を併用することも好ましい形態である。鎖伸長剤としてはジアミンや、内部架橋構造を導入する機能をも果たすポリアミンが使用される。ジアミンとしては、エチレンジアミン、トリメチレンジアミン、ピペラジン、イソホロンジアミン、キシリレンジアミン、4,4’−ビフェニルジアミン、4,4’−メチレンジアニリン、4,4’−オキシジアニリンなどを例示することができ、ポリアミンとしては、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミンを例示することができる。鎖伸長剤を使用することによって、ポリウレタン樹脂の分子量を増大させることができ、得られるウレタン樹脂水分散体の耐電解液性が向上するという効果が得られるので好ましい。
ポリウレタン水分散体の調製に際し、親水基含有ポリウレタンを分散させるために、界面活性剤を使用してもよい。界面活性剤としては、ノニオン性界面活性剤が好適に使用される。ただし、界面活性剤の使用することで、カーボネート系溶剤に浸漬したときの皮膜の重量減少率が大きくなるため、極力使用しない方が好ましい。
ポリウレタン水分散体における親水基含有ポリウレタンの分子量は、分岐構造や内部架橋構造を導入して可能な限り大きくすることが好ましく、重量平均分子量50,000以上であることが好ましい。分子量を大きくして溶剤に不溶とした方が、耐電解液性に優れた塗膜が得られるからである。
ポリウレタン水分散体の製造方法は、特に限定されるものではないが、一般的には、ポリオール、親水性官能基導入材料、単鎖ポリオール及び鎖伸長剤に含まれるイソシアネート基との反応性を有する官能基の合計より、化学量論的に過剰のポリイソシアネート(イソシアネート基と反応性官能基との当量比1:0.5〜0.98)を溶剤なしに、又は活性水素を有しない有機溶媒中で反応させてイソシアネート末端のウレタンプレポリマーを合成した後、親水性官能基を中和して水中に分散乳化を行う。その後、残存するイソアネート基より少ない当量の鎖伸長剤(イソシアネート基と鎖伸長剤との当量比1:0.5〜0.95)を加えて乳化ミセル中のイソシアシネート基と鎖伸長剤のポリアミンを界面重合反応させてウレア結合を生成させる。これにより乳化ミセル内の架橋密度が向上し、三次元架橋構造が形成される。このように三次元架橋構造の形成により、優れた耐電解液性を示す塗膜が得られる。その後、必要に応じて使用した溶剤を除去することにより、ポリウレタン水分散体を得ることができる。
本発明のポリウレタン水分散体は、耐電解液性や60℃における弾性率を向上させるために、親水基含有ポリウレタン中の芳香環構造または脂環構造の含有割合の合計が前記ポリウレタン中の40質量%以上であり、43質量%以上が好ましい。
本発明のポリウレタン樹脂水分散体は、そのカルボキシル基含有量を表す酸価が3mgKOH/g以上であることが好ましい。酸価が3mgKOH/g以上であれば、水への分散性が良好である。酸価は、JIS K 1557に準拠して測定した。
ウレタンプレポリマーの合成においては、イソシアネート基と不活性で、かつ、生成するウレタンプレポリマーを溶解し得る溶剤を用いてもよい。これらの溶剤として、ジオキサン、メチルエチルケトン、ジメチルホルムアミド、テトラヒドロフラン、N−メチル−2−ピロリドン、トルエン、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。反応で使用したこれら親水性有機溶剤は最終的に除去するのが好ましい。
本発明の親水基含有ポリウレタンの架橋密度は、該ポリウレタン樹脂水分散体の1000分子量あたり0.3以上1.0以下であることが好ましい。ここでいう架橋密度とは数1に示す式によって計算することにより求めることができる。すなわち、分子量MWA1、官能基数FA1の有機ポリイソシアネート(A)をWA1 gと、分子量MWA2及び官能基数FA2の有機ポリイソシアネート(A)をWA2 gと、分子量MWAj及び官能基数FAjの有機ポリイソシアネート(A)をWAj g(jは1以上の整数)と、分子量MWB1及び官能基数FB1の1以上の活性水素基を有する化合物(B)をWB1 gと、分子量MWB2及び官能基数FB2の1以上の活性水素基を有する化合物(B)をWB2 gと、分子量MWBk及び官能基数FBkの1以上の活性水素基を有する化合物(B)をWBk g(kは1以上の整数)とを反応せしめて得られたポリウレタン水分散体に含まれる樹脂固形分の1000分子量あたりの架橋密度は、下記の数1により計算で求めることができる。架橋密度が、0.3以上では架橋密度が高いため耐電解液性や60℃における弾性率が良好であり、1.0以下であれば電極層作成時にひび割れを生じ難くなるため、最適な電極層を得ることが容易となる。
Figure 2015023027
本発明のポリウレタン水分散体の耐電解液性を評価する方法としては、前記ポリウレタン水分散体から形成された皮膜を、電解液に特定の温度条件下、特定の時間浸漬し、浸漬後の重量増加率や、浸漬後の皮膜を減圧乾燥後、重量減少率を測定することで評価することができる。
前記電解液としては、通常のリチウム二次電池の非水電解液に用いられる有機溶媒であれば特に限定されず、例えば、カーボネート化合物、ラクトン化合物、エーテル化合物、スルホラン化合物、ジオキソラン化合物、ケトン化合物、ニトリル化合物、ハロゲン化炭化水素化合物等を挙げることができる。詳しくは、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、エチレングリコールジメチルカーボネート、プロピレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、ビニレンカーボネート等のカーボネート類、γ−ブチルラクトン等のラクトン類、ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサンなどのエーテル類、スルホラン、3−メチルスルホラン等のスルホラン類、1,3−ジオキソラン等のジオキソラン類、4−メチル−2−ペンタノン等のケトン類、アセトニトリル、ピロピオニトリル、バレロニトリル、ベンソニトリル等のニトリル類、1,2−ジクロロエタン等のハロゲン化炭化水素類、その他のメチルフォルメート、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルスルホキシド、イミダゾリウム塩、4級アンモニウム塩などのイオン性液体等を挙げることができる。さらに、これらの混合物であってもよい。これらの有機溶媒のうち、特に、カーボネート類からなる群より選ばれた非水溶媒を1種類以上含有することが、電解質の溶解性、誘電率および粘度において優れているので好ましい。
本発明のポリウレタン水分散体は、耐電解液性が前記親水基含有ポリウレタンから形成された皮膜をカーボネート系の混合溶媒として、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートの5種類からなる混合溶媒(重量比で1:1:1:1:1となる組成)に60℃条件下3日間浸漬後の皮膜の重量増加率は低いことが好ましい。
さらには、カーボネート系の混合溶媒として、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートの5種類からなる混合溶媒(重量比で1:1:1:1:1となる組成)に60℃条件下3日間浸漬した皮膜を、80℃で24時間減圧乾燥した後の皮膜の重量減少率は低いことが好ましい。
60℃条件下で3日間浸漬後の皮膜の重量増加率が50wt%を超える場合、電解液によって皮膜の膨潤が大きくなり、充放電時の活物質の体積膨張及び収縮に結着剤が追従できず、潤電極層と集電体との剥離が生じて電池の寿命が大幅に低下することが問題となる。また、60℃条件下3日間浸漬した皮膜を80℃で24時間減圧乾燥した後の皮膜の重量減少率が10%を超える場合は、皮膜の成分が電解液に溶出していることとなり、電解液を通じて正極側に移行した成分が酸価劣化することにより、電池性能を低下させる懸念があるため好ましくない。
本発明のポリウレタン水分散体を使用するリチウム二次電池は、正極と負極、この正極と負極との間に設けられ両者を隔離するセパレータと、リチウムイオンを伝導するための媒に支持電解質としてリチウム塩を溶解した非水電解液やポリマーまたは高分子ゲル電解質を含む電解質層とで構成される。
本発明のポリウレタン水分散体を使用するリチウム二次電池に用いられる正極及び負極は、電極活物質、導電剤、電極活物質の集電体、及び電極活物質並びに導電剤を集電体に結着させる結着剤から構成される。
本発明のポリウレタン水分散体を使用するリチウム二次電池は、前記ポリウレタン水分散体を前記結着剤として利用して製造された電極から構成されるものである。前記結着剤として、本発明のポリウレタン水分散体を正極と負極のどちらでも利用可能であるが、特に負極用結着剤としての利用が好ましい。
本発明のポリウレタン樹脂水分散体を使用するリチウム二次電池において、前記ポリウレタン水分散体を使用しない方の正極或いは負極用結着剤としては、ポリフッ化ビニリデン(PVDF)、PVDFとヘキサフルオロプロピレン(HFP)やパーフルオロメチルビニルエーテル(PFMV)及びテトラフルオロエチレン(TFE)との共重合体などのPVDF共重合体樹脂、ポリテトラフルオロエチレン(PTFE)、フッ素ゴムなどのフッ素系樹脂や、スチレン−ブタジエンゴム(SBR)、エチレン−プロピレンゴム(EPDM)スチレン−アクリロニトリル共重合体などのポリマーが使用可能であるが、これに限定されるものではなく、また、前記ポリウレタン水分散体との混合が可能なポリマーであれば併用して使用することも可能である。
本発明のポリウレタン水分散体を使用するリチウム二次電池の正極に使用する正極活物質としては、リチウムイオンの挿入、脱離が可能であるものであれば、特に制限されることはない。例としては、CuO、Cu2O、MnO2、MoO3、V2O5、CrO3、MoO3、Fe2O3、Ni2O3、CoO3等の金属酸化物、LixCoO2、LixNiO2、LixMn2O4、LiFePO4等のリチウムと遷移金属との複合酸化物や、TiS2、MoS2、NbSe3等の金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等の導電性高分子化合物等が挙げられる。前記の中でも、一般に高電圧系と呼ばれる、コバルト、ニッケル、マンガン等の遷移金属から選ばれる1種以上とリチウムとの複合酸化物がリチウムイオンの放出性や、高電圧が得られやすい点で好ましい。コバルト、ニッケル、マンガンとリチウムとの複合酸化物の具体例としては、LiCoO2、LiMnO2、LiMn2O4、LiNiO2、LiNixCo(1−x)O2、LiMnaNibCoc(a+b+c=1)などが挙げられる。
また、これらのリチウム複合酸化物に、少量のフッ素、ホウ素、アルミニウム、クロム、ジルコニウム、モリブデン、鉄などの元素をドーブしたものや、リチウム複合酸化物の粒子表面を、炭素、MgO、Al2O3、SiO2等で表面処理したものも使用できる。
上記正極活物質は2種類以上を併用することも可能である。
本発明のポリウレタン水分散体を使用するリチウム二次電池の負極に使用する負極活物質は、負極活物質にケイ素を含む物質を単独または複合化したものであり、具体的にはNiSi5C6、SiC、SiO2およびSi結晶粒を含むシリコンオキシド粉末SiOx(xは0.5≦x≦1.5)等が挙げられる。また、金属リチウム又はリチウムイオンを挿入/脱離することができるものであれば公知の活物質を特に限定なく併用することができる。たとえば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素などの炭素材料を用いることができる。また、金属リチウムや合金、スズ化合物などの金属材料、リチウム遷移金属窒化物、結晶性金属酸化物、非晶質金属酸化物、導電性ポリマー等を用いることもできる。
本発明のポリウレタン水分散体を使用するリチウム二次電池の正極及び負極には導電剤が用いられる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば使用することができる。通常、アセチレンブラックやケッチンブラック等のカーボンブラックが使用されるが、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金等)粉末、金属繊維、導電性セラミックス材料等の導電性材料でもよい。これらは2種類以上の混合物として含ませることができる。その添加量は活物質量に対して0.1〜30重量%が好ましく、特に0.2〜20重量%が好ましい。
電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でも使用可能である。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面を、カーボン、ニッケル、チタンや銀等で処理した物を用いることができる。また、負極用集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。
これらの集電体材料は表面を酸化処理することも可能である。また、その形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体等の成形体も用いられる。厚みは特に限定はないが、1〜100μmのものが通常用いられる。
セパレータについても、通常のリチウム二次電池に用いられるセパレータを特に限定なしに使用でき、その例としては、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリテトラフルオロエチレン等よりなる多孔質樹脂、セラミック、不織布などが挙げられる。電解液は通常のリチウム二次電池に用いられる電解液であればよく、有機電解液およびイオン液体等の一般的なものを含める。
電解質塩としては、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCl、LiBr、LiCF3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LiI、LiAlCl4、NaClO4、NaBF4、NaI等を挙げることができ、特に、LiPF6、LiBF4、LiClO4、LiAsF6などの無機リチウム塩、LiN(SO2CxF2x+1)(SO2CyF2y+1)で表される有機リチウム塩を挙げることができる。ここで、xおよびyは0又は1〜4の整数を表し、また、x+yは2〜8である。有機リチウム塩としては、具体的には、LiN(SO2F)2、LiN(SO2CF3)(SO2C2F5)、LiN(SO2CF3)(SO2C3F7)、LiN(SO2CF3)(SO2C4F9)、LiN(SO2C2F5)2、LiN(SO2C2F5)(SO2C3F7)、LiN(SO2C2F5)(SO2C4F9)等が挙げられる。中でも、LiPF6、LiBF4、LiN(CF3SO2)2、LiN(SO2F)2、LiN(SO2C2F5)2などを電解質に使用すると、電気特性に優れるので好ましい。上記電解質塩は1種類用いても2種類以上用いても良い。このようなリチウム塩は、通常、0.1〜2.0モル/リットル、好ましくは0.3〜1.5モル/リットルの濃度で、電解液に含まれていることが望ましい。
電解質塩を溶解させる有機溶媒としては、通常のリチウム二次電池の非水電解液に用いられる有機溶媒であれば特に限定されず、例えば、カーボネート化合物、ラクトン化合物、エーテル化合物、スルホラン化合物、ジオキソラン化合物、ケトン化合物、ニトリル化合物、ハロゲン化炭化水素化合物等を挙げることができる。詳しくは、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、エチレングリコールジメチルカーボネート、プロピレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、ビニレンカーボネート等のカーボネート類、γ−ブチルラクトン等のラクトン類、ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサンなどのエーテル類、スルホラン、3−メチルスルホラン等のスルホラン類、1,3−ジオキソラン等のジオキソラン類、4−メチル−2−ペンタノン等のケトン類、アセトニトリル、ピロピオニトリル、バレロニトリル、ベンソニトリル等のニトリル類、1,2−ジクロロエタン等のハロゲン化炭化水素類、その他のメチルフォルメート、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルスルホキシド、イミダゾリウム塩、4級アンモニウム塩などのイオン性液体等を挙げることができる。さらに、これらの混合物であってもよい。これらの有機溶媒のうち、特に、カーボネート類からなる群より選ばれた非水溶媒を一種類以上含有することが、電解質の溶解性、誘電率および粘度において優れているので好ましい。
ポリマー電解質または高分子ゲル電解質に用いる高分子化合物は、エーテル、エステル、シロキサン、アクリロニトリル、ビニリデンフロライド、ヘキサフルオロプロピレン、アクリレート、メタクリレート、スチレン、酢酸ビニル、塩化ビニル、オキセタンなどの重合体またはその共重合体構造を有する高分子またはその架橋体などが挙げられ、高分子は一種類でも二種類以上でもよい。高分子構造は特に限定されるものではないが、ポリエチレンオキサイドなどのエーテル構造を有する高分子が特に好ましい。
液系の電池は電解液、ゲル系の電池はポリマーを電解液に溶解したプレカーサー溶液、固体電解質電池は電解質塩を溶解した架橋前のポリマーを電池容器内に収容する。
本発明のポリウレタン樹脂水分散体を使用するリチウム二次電池の負極を製造するには、上記各成分を混合してペースト状の負極材料を調製し、集電体となるアルミ箔或いは銅箔等に塗布して分散媒を揮発させればよい。
負極材料のペースト化の粘性調整剤として、水溶性高分子などの増粘剤を使用できる。具体的には、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース類; ポリアクリル酸、ポリアクリル酸ソーダなどのポリカルボン酸系化合物; ポリビニルピロリドンなどのビニルピロリドン構造を有する化合物; ポリアクリルアマイド、ポリエチレンオキシド、ポリビニルアルコール、アルギン酸ソーダ、キサンタンガム、カラギーナン、グアーガム、カンテン、デンプンなどから選択された1 種又は2 種以上が使用可能であり、中でもカルボキシメチルセルロース塩が好ましい。上記各成分の混合の方法・順序等は特に限定されず、例えば、活物質と導電剤は予め混合して用いることが可能であり、その場合の混合には、乳鉢、ミルミキサー、遊星型ボールミル又はシェイカー型ボールミルなどのボールミル、メカノフュージョン等を用いることができる。
本発明のポリウレタン水分散体を使用するリチウム二次電池は、円筒型、コイン型、角型、その他任意の形状に形成することができ、電池の基本構成は形状によらず同じであり、目的に応じて設計変更して実施することができる。例えば、円筒型では、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、セバレータを介して捲回した捲回体を電池缶に収納し、非水電解液を注入し上下に絶縁板を載置した状態で密封して得られる。また、コイン型リチウム二次電池に適用する場合では、円盤状負極、セパレータ、円盤状正極、およびステンレスの板が積層された状態でコイン型電池缶に収納され、非水電解液が注入され、密封される。
以下、ポリウレタン樹脂水分散体の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
実施例1
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにクラレポリオールP−520(商品名、クラレ社製、平均水酸基価224mgKOH/g、活性水素原子数2)34.0重量部、トリメチロールプロパン(活性水素原子数3)3.0重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート54.2重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量6.0%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、ジエチレントリアミン(活性水素原子数3) 4.0重量部を水30重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.64)。
得られたポリウレタン水分散体20重量部に対してエチルセロソルブ20重量部を加え、乾燥膜厚が約200μmになるようにテフロン(登録商標)加工板上に流して、60℃で4時間、さらに80℃で2時間、さらに130℃で2時間乾燥して試験片を作成した。耐電解液性を判断するための具体的な方法としては、カーボネート系の混合溶媒として、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネートの5種類からなる混合溶媒(重量比で1:1:1:1:1となる組成)を用いて試験を実施した。
本発明のポリウレタン水分散体は、耐電解液性が前記ポリウレタン水分散体から形成された皮膜を前記混合溶媒に60℃条件下で3日間浸漬後の皮膜の重量増加率を測定した。また60℃条件下3日間浸漬した皮膜を、80℃で24時間減圧乾燥した後の皮膜の重量減少率を測定した。
以下の実施例2〜比較例4についても同様に評価した。
実施例2
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにクラレポリオールP−520(商品名、クラレ社製、平均水酸基価224mgKOH/g、活性水素原子数2)27.0重量部、トリメチロールプロパン(活性水素原子数3)5.2重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート28.0重量部、イソホロンジイソシアネート28.0重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量7.6%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、ピペラジン・6水和物(活性水素原子数2) 15.8重量部を温水70重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.42)。
実施例3
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにETERNACOLL UH−50(商品名、宇部興産社製、平均水酸基価224mgKOH/g、活性水素原子数2)22.4重量部、トリメチロールプロパン(活性水素原子数3)5.2重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート60.6重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量8.3%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、ピペラジン・6水和物(活性水素原子数2) 15.8重量部を温水70重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.42)。
実施例4
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにニューポールBPE−20NK(商品名、三洋化成社製、ビスフェノールAのエチレンオキサイド付加物、平均水酸基価360mgKOH/g、活性水素原子数2)22.3重量部、トリメチロールプロパン(活性水素原子数3)5.0重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート56.9重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.8%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、メチレンジアニリン(活性水素原子数2) 11.0重量部をメチルエチルケトン70重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.41)。
実施例5
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにニューポールBPE−20NK(商品名、三洋化成社製、ビスフェノールAのエチレンオキサイド付加物、平均水酸基価360mgKOH/g、活性水素原子数2)9.0重量部、トリメチロールプロパン(活性水素原子数3)7.1重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート62.7重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量9.9%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、メチレンジアニリン(活性水素原子数2) 16.4重量部をメチルエチルケトン90重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.56)。
実施例6
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにアデカポリエーテルBPX−11(商品名、ADEKA社製、ビスフェノールAのプロピレンオキサイド付加物、平均水酸基価312mgKOH/g、活性水素原子数2)25.0重量部、トリメチロールプロパン(活性水素原子数3)5.0重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート58.0重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量5.4%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、キシリレンジアミン(活性水素原子数2) 7.2重量部を水80重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.41)。
実施例7
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに1,4−シクロヘキサンジメタノール(活性水素原子数2)6.4重量部、トリメチロールプロパン(活性水素原子数3)7.1重量部、ジメチロールプロピオン酸(活性水素原子数2)7.8重量部、ジシクロヘキシルメタンジイソシアネート72.0重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量8.4%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを5.9重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、エチレンジアミン(活性水素原子数2) 6.7重量部を水70重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.56)。
実施例8
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに1,4−シクロヘキサンジメタノール(活性水素原子数2)6.4重量部、トリメチロールプロパン(活性水素原子数3)7.1重量部、ジメチロールプロピオン酸(活性水素原子数2)7.8重量部、ジシクロヘキシルメタンジイソシアネート72.0重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量8.4%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、水300重量部に水酸化ナトリウム2.3重量部を溶解させた水溶液を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、エチレンジアミン(活性水素原子数2) 6.7重量部を水70重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.56)。
実施例9
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにクラレポリオールP−1020(商品名、クラレ社製、平均水酸基価112mgKOH/g、活性水素原子数2)41.0重量部、トリメチロールプロパン(活性水素原子数3)4.5重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート46.0重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量6.0%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、ピペラジン・6水和物(活性水素原子数2) 8.3重量部を温水40重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.34)。
実施例10
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにクラレポリオールP−520(商品名、クラレ社製、平均水酸基価224mgKOH/g、活性水素原子数2)34.0重量部、トリメチロールプロパン(活性水素原子数3)3.0重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート54.5重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量6.0%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、エチレンジアミン(活性水素原子数2) 3.7重量部を水40重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.23)。
比較例1
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにETERNACOLL UH−100(商品名、宇部興産社製、平均水酸基価112mgKOH/g、活性水素原子数2)41.0重量部、トリメチロールプロパン(活性水素原子数3)4.5重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、ジシクロヘキシルメタンジイソシアネート46.0重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量6.0%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、ピペラジン・6水和物(活性水素原子数2) 8.3重量部を温水40重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.34)。
比較例2
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにETERNACOLL UH−50(商品名、宇部興産社製、平均水酸基価224mgKOH/g、活性水素原子数2)27.0重量部、トリメチロールプロパン(活性水素原子数3)5.2重量部、ジメチロールプロピオン酸(活性水素原子数2)4.8重量部、イソホロンジイソシアネート55.2重量部、メチルエチルケトン60重量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量9.1%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を45℃まで冷却し、トリエチルアミンを3.6重量部加え中和後、水300重量部を徐々に加えてホモジナイザーを使用し乳化分散させた。続いて、ピペラジン・6水和物(活性水素原子数2) 17.6重量部を温水80重量部で希釈したアミン水溶液を加え、1時間鎖伸長反応を行った。これを減圧、50℃下、脱溶剤を行い、不揮発分約30%のポリウレタン水分散体を得た(架橋密度:0.42)。
得られた水性ポリウレタン樹脂組成物に関する各測定に際しては、下記方法を用いた。
[遊離のイソシアネート基含有量]JIS K 7301に準じて測定した。
[水性ポリウレタン樹脂分散体中の不揮発分の重量]JIS K 6828に準じて測定
した。
[水性ポリウレタン樹脂組成物の樹脂固形分中の架橋密度]数1の式より算出した。
[芳香環構造の含有割合、脂環構造の含有割合、芳香環構造または脂環構造の含有割合の
合計]親水基含有ポリウレタンを構成する分子構造における芳香環構造、脂環構造の質量
%から算出した。
[酸価]JIS K 1557に準じて測定した。
Figure 2015023027
実施例3のETERNACOLL UH−50をETERNACOLL UH−100に置き換えた比較例1は、有機ポリイソシアネートの含有量が、ポリウレタンに対して低くなるため、また芳香族または脂環族を有する構造体の含有量が、ポリウレタンに対して低くなるため、カーボネート系溶媒に60℃条件下3日間浸漬後の皮膜の重量増加率が大きくなり耐電解液性に劣る。
実施例3のETERNACOLL UH−50をETERNACOLL UH−100に置き換えた比較例2は、芳香族または脂環族を有する構造体の含有量が、ポリウレタンに対して低くなるため、カーボネート系溶媒に60℃条件下3日間浸漬後の皮膜の重量増加率が大きくなり耐電解液性に劣る。
本発明の結着剤は、リチウム二次電池用負極の結着剤として利用でき、当該結着剤を用いて製造された負極は充放電特性を向上させることが可能であることから各種リチウム二次電池の製造に用いられる。得られたリチウム二次電池は、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなどの各種携帯型機器や、更には産業用や電動自転車、電気自動車などに搭載する中型又は大型リチウム二次電池に使用することが出来る。

Claims (3)

  1. ポリウレタン水分散体を含有するリチウム二次電池の負極用結着剤であって、
    前記ポリウレタン水分散体が、少なくとも(A)有機ポリイソシアネート及び(B)1個以上の活性水素基を有する化合物を用いて得られる親水基含有ポリウレタンを含有し、
    前記(A)有機ポリイソシアネートの含有量が、前記親水基含有ポリウレタンに対して50質量%以上80質量%以下であり、
    前記(B)1個以上の活性水素基を有する化合物が、(B1)2個以上の活性水素基を有する化合物及び(B2)1個以上の活性水素基と1個以上のイオン性親水基を有する化合物を含有し、
    前記負極が、負極活物質にケイ素を含む物質を単独または複合化したものであり、且つ、
    前記親水基含有ポリウレタンが、芳香環構造または脂環構造を含み、かつ芳香環構造または脂環構造の含有割合の合計が40質量%以上であることを特徴とする
    リチウム二次電池の負極用結着剤。
  2. 前記(B)1個以上の活性水素基を有する化合物の平均水酸基価が300mgKOH/g以上であることを特徴とする、請求項1に記載のリチウム二次電池の負極用結着剤。
  3. 前記親水基含有ポリウレタンが、該ポリウレタンの分子量1000あたり0.3以上1.0以下の架橋密度であることを特徴とする、請求項1または2に記載のリチウム二次電池の負極用結着剤。
JP2014143334A 2014-07-11 2014-07-11 リチウム二次電池の負極用結着剤 Pending JP2015023027A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143334A JP2015023027A (ja) 2014-07-11 2014-07-11 リチウム二次電池の負極用結着剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143334A JP2015023027A (ja) 2014-07-11 2014-07-11 リチウム二次電池の負極用結着剤

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013149042A Division JP5721151B2 (ja) 2013-07-18 2013-07-18 リチウム二次電池の電極用結着剤

Publications (1)

Publication Number Publication Date
JP2015023027A true JP2015023027A (ja) 2015-02-02

Family

ID=52487274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143334A Pending JP2015023027A (ja) 2014-07-11 2014-07-11 リチウム二次電池の負極用結着剤

Country Status (1)

Country Link
JP (1) JP2015023027A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085726A (ja) * 2018-11-28 2020-06-04 セイコーエプソン株式会社 慣性センサー、電子機器および移動体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085726A (ja) * 2018-11-28 2020-06-04 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP7099284B2 (ja) 2018-11-28 2022-07-12 セイコーエプソン株式会社 慣性センサー、電子機器および移動体

Similar Documents

Publication Publication Date Title
US10553872B2 (en) Binder for electrode in lithium secondary cell, electrode manufactured using said binder, and lithium secondary cell in which said electrode is used
JP6009469B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
JP5721151B2 (ja) リチウム二次電池の電極用結着剤
JP5794943B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池。
JP6927874B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池
US20230261196A1 (en) Electrode binder composition, electrode coating liquid composition, power storage device electrode, and power storage device
JP6124645B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
WO2022145264A1 (ja) 電解質及び蓄電デバイス
JP5794942B2 (ja) リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池。
JP6062091B1 (ja) ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP2015023027A (ja) リチウム二次電池の負極用結着剤
JP6916363B1 (ja) リチウム二次電池に用いる結着剤用ポリウレタン樹脂水分散体、電極用結着剤及びリチウム二次電池