WO2016132574A1 - セレンの分析方法 - Google Patents

セレンの分析方法 Download PDF

Info

Publication number
WO2016132574A1
WO2016132574A1 PCT/JP2015/073969 JP2015073969W WO2016132574A1 WO 2016132574 A1 WO2016132574 A1 WO 2016132574A1 JP 2015073969 W JP2015073969 W JP 2015073969W WO 2016132574 A1 WO2016132574 A1 WO 2016132574A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
gas
collection
collecting
hydride
Prior art date
Application number
PCT/JP2015/073969
Other languages
English (en)
French (fr)
Inventor
勝 千代丸
幹哉 末永
昭宏 野▲崎▼
範明 仙波
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2016132574A1 publication Critical patent/WO2016132574A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Definitions

  • the present invention relates to a method for analyzing selenium, for example, a method for analyzing selenium in a gas capable of efficiently analyzing selenium contained in coal gasification gas.
  • exhaust gas of coal gasification gas discharged from IGCC Integrated Gasification Combined Cycle
  • IGCC Integrated Gasification Combined Cycle
  • ASTM Standard Method for Mobile Communications
  • BS Standard Method for Mobile Communications
  • an analysis method using a mixed solution of hydrogen peroxide and nitric acid is defined as an analysis method for collecting all selenium
  • bromine-saturated hydrogen bromide is used as an analysis method for collecting selenium hydride.
  • Analytical methods using acids are defined.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a selenium analysis method that can easily and accurately analyze the total selenium concentration in an analysis target gas.
  • the method for analyzing selenium includes a selenium oxide collecting step of collecting selenium oxide contained in an analysis target gas with a first collection liquid containing hydrogen peroxide and nitric acid, and the gas to be analyzed. And a selenium hydride collecting step of collecting selenium hydride contained in a second collecting solution containing at least one selected from the group consisting of an aqueous alkali metal solution and an aqueous copper sulfate solution. To do.
  • selenium oxide in all selenium components contained in the gas to be analyzed can be collected by the first collection liquid, and the second collection containing the alkali metal or copper sulfate aqueous solution of selenium hydride. Since it can be collected by the liquid, a selenium analysis method capable of analyzing the total selenium concentration in the gas to be analyzed simply and with high accuracy can be realized.
  • the selenium oxide collecting step after the hydrogenated selenium collecting step.
  • selenium hydride can be efficiently collected.
  • the second collection liquid preferably contains at least one of an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous copper sulfate solution.
  • the gas to be analyzed is preferably a reducing gas. This method makes it possible to efficiently analyze the total selenium concentration contained in the reducing gas.
  • the present invention it is possible to realize a selenium analysis method capable of analyzing the total selenium concentration in the analysis target gas with ease and high accuracy.
  • FIG. 1 is a schematic diagram showing an example of a gas collection device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing another example of the gas collection device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart of the selenium analysis method according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart of the selenium analysis method according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing measurement results of the selenium hydride collection rate according to the example of the present invention.
  • selenium has been tightened as a hazardous metal in Japan and the United States. Since selenium takes various ion forms (SeO, SeO 3 2 ⁇ , SeO 4 2 ⁇ , H 2 Se), in order to suppress the emission of selenium from the plant, the selenium concentration at each location in the plant is set. It is important to set up the equipment design and operating conditions, etc. through accurate analysis and proper understanding.
  • the present inventors paid attention to an alkali metal hydroxide aqueous solution and a copper sulfate aqueous solution as a selenium hydride collection solution. Then, the inventors have prepared a mixed solution of hydrogen peroxide and nitric acid for collecting selenium oxide contained in the analysis target gas, and an alkali metal hydroxide for collecting selenium hydride contained in the analysis target gas. It is possible to analyze the total selenium concentration contained in the analysis target gas with high accuracy by collecting and analyzing each selenium component contained in the analysis target gas using a mixed solution of an aqueous solution and a copper sulfate aqueous solution.
  • the headline and the present invention have been completed.
  • FIG. 1 is a schematic diagram of a gas collection device 1 according to the present embodiment.
  • the gas collection device 1 according to the present embodiment collects selenium in exhaust gas (analysis target gas) G such as coal gasification gas to be collected and analyzes the total selenium concentration contained in the exhaust gas G. It is the gas collection device used for.
  • exhaust gas is a product obtained by concentrating components removed from coal gasification gas in the process of coal gasification gas.
  • Ammonia (NH 3 ), hydrogen sulfide (H 2 S), and carbon dioxide (CO 2 ) A reducing gas having a main composition.
  • the gas collection device 1 has a gas collection device in which one end is connected to a hole 11b provided in the flange portion 11a of the gas mother pipe 11 through which the exhaust gas G flows, and a ribbon heater 12a is wound around the one end portion.
  • Line 12 is provided.
  • the gas collection line 12 includes a shutoff valve V 1 for closing the gas collection line 12 from one end side to the other end side of the gas collection line 12, and a flow rate of the exhaust gas G flowing through the gas collection line 12.
  • the selenium oxide collection unit 13 includes a first collection unit 13a provided on the upstream side of the gas collection line 12, and a second collection unit 13b provided at a subsequent stage of the first collection unit 13a.
  • the first sampling unit 13a and the second collecting unit 13b is provided with a collecting bottle first absorption liquid L 1 is a mixed solution of hydrogen peroxide and nitric acid inside each of which is enclosed.
  • the suction bottles of the first collection unit 13a and the second collection unit 13b are immersed in an ice bath 17 and cooled.
  • the selenium oxide collection part 13 demonstrated the example provided with the 1st collection part 13a and the 2nd collection part 13b, the selenium oxide collection part 13 is selenium oxide in the waste gas G. It is not always necessary to provide the second collection part 13b as long as it can be collected, and there may be one collection part.
  • the first absorption liquid L 1 not particularly limited as long as it contains the hydrogen peroxide and nitric acid.
  • the concentration of hydrogen peroxide solution in the first absorption liquid L 1, for example, is 6 mass% 1 mass% or more.
  • the mixing ratio of hydrogen peroxide solution and nitric acid is 1: 5 to 5: 1 by mass ratio.
  • the selenium hydride collection unit 14 includes a first collection unit 14a provided on the upstream side of the gas collection line 12, and a second collection unit 14b provided at a subsequent stage of the first collection unit 14a. .
  • the first sampling unit 14a and the second collecting unit 14b, a second absorption liquid L 2 containing at least one selected from the group consisting of alkali metal solution and copper sulfate aqueous hydroxide therein is enclosed respectively Provide a collection bottle.
  • the suction bottles of the first collection unit 14a and the second collection unit 14b are immersed in an ice bath 17 and cooled.
  • the selenium hydride contained in the exhaust gas G is brought into contact with the exhaust gas G by bringing the second collection liquid L 2 containing at least one selected from the group consisting of an aqueous alkali metal hydroxide solution and an aqueous copper sulfate solution into contact therewith. it is possible to collect the second absorption liquid L 2.
  • the hydrogenation selenium collection part 14 demonstrated the example provided with the 1st collection part 14a and the 2nd collection part 14b, the hydrogenation selenium collection part 14 is in the waste gas G. If the selenium oxide can be collected, it is not always necessary to provide the second collection part 14b.
  • the second absorption liquid L 2 not particularly limited as long as it contains at least one selected from the group consisting of alkali metal solution and copper sulfate aqueous hydroxide.
  • alkali metal hydroxide aqueous solution include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • concentration of the second absorption liquid L 2 0.01 mol / L or more 10 mol / L or less, more preferably 0.1 mol / L or more 5 mol / L or less, 0.5 mol / L or more 1.5 mol / L The following is more preferable.
  • the gas collection apparatus 1 which provided the selenium oxide collection part 13 and the hydrogenation selenium collection part 14 toward the downstream from the upstream of the gas collection line 12 was demonstrated.
  • the selenium analysis method according to the present embodiment is provided with a hydrogenated selenium collector 14 and a selenium oxide collector 13 from the upstream side to the downstream side of the gas collection line 12.
  • a gas collecting device 2 can also be used.
  • FIG. 3 is a flowchart of the selenium analysis method according to the first embodiment of the present invention.
  • the selenium analysis method according to the present embodiment is an oxidation method in which selenium oxide contained in a gas to be analyzed is collected by a first collection liquid L 1 containing hydrogen peroxide and nitric acid.
  • selenium absorption step ST11 collecting the hydrogenated selenium contained in the analyte gas in the second absorption liquid L 2 containing at least one selected from alkali metal hydroxide aqueous solution, and the group consisting of copper sulfate aqueous solution And selenium hydride collecting step ST12.
  • the exhaust gas G introduced into the selenium oxide collecting unit 13 from the gas mother pipe 11 through the gas collecting line 12 by suction by the suction pump 15 is converted into the first collecting unit 13a and the second collecting unit 13a.
  • collecting part 13b in contact with the first absorption liquid L 1 selenium oxide in an exhaust gas (tetravalent selenium: SeO 3, 6-valent selenium: SeO 4) it is collected in the first absorption liquid L 1.
  • the gas collection line 12 is heated (for example, 120 ° C.) by the ribbon heater 12a.
  • the exhaust gas G is sucked at a constant speed by the suction pump 15 at a gas flow rate of 4 L / min or more and 10 L / min or more, for example.
  • the exhaust gas G in which selenium oxide is collected by the selenium oxide collecting unit 13 is introduced into the hydrogenated selenium collecting unit 14 through the gas collection line 12.
  • Exhaust gas G introduced into the hydrogenation selenium collecting unit 14 reaction formula by the first sampling unit 14a and the second collecting part 14b in contact with the second absorption liquid L 2 is hydrogenated selenium is shown below ( in reaction 1) is collected in the second collecting liquid L 2.
  • the first collection liquid L 1 and the second collection liquid L 1 are analyzed with an ICP emission spectrometer or the like, respectively, so that selenium oxide and hydrogenated selenium in the exhaust gas G It is possible to calculate the total selenium concentration, which is the total concentration.
  • the selenium oxide of the total selenium component contained in the exhaust gas G can collected by the first collecting liquid L 1, water hydride selenium since it collected by the second collecting liquid L 2 containing an alkali metal oxide aqueous solution or an aqueous copper sulfate solution, the total selenium concentration of the analyte in the gas can be realized simply and analytical methods can be analyzed selenium with high accuracy.
  • the second collected liquid L 2 makes it possible to efficiently collect selenium hydride in the gas.
  • the present invention is not limited to this, for example, NH 3 plant, petroleum It can also be used for analysis of selenium in exhaust gas discharged from plants, land boilers, various environmental devices, waste disposal devices, and the like.
  • FIG. 4 is a flowchart of the selenium analysis method according to the second embodiment of the present invention.
  • selenium hydride contained in the analysis target gas is at least one selected from the group consisting of an alkali metal hydroxide aqueous solution and a copper sulfate aqueous solution.
  • the exhaust gas G introduced into the hydrogenated selenium collecting unit 14 from the gas mother pipe 11 through the gas collecting line 12 by suction by the suction pump 15 is converted into the first collecting unit 14a and in contact with the second absorption liquid L 2 are hydrogen selenide in the exhaust gas are collected by the second collecting liquid L 2 in the reaction of the reaction equation (1) shown below in the second collecting unit 14b.
  • the gas collection line 12 is heated (for example, 120 ° C.) by the ribbon heater 12a.
  • the exhaust gas G is sucked at a constant speed by the suction pump 15 at a gas flow rate of 4 L / min or more and 10 L / min or more, for example.
  • the exhaust gas G in which selenium oxide is collected by the hydrogenated selenium collecting unit 14 is introduced into the selenium oxide collecting unit 13 through the gas collecting line 12.
  • Exhaust gas G introduced into the selenium oxide collecting unit 13, first collecting portion 13a and the first absorption liquid L 1 and contact with selenium oxide in the second collecting unit 13b (4-valent selenium: SeO 3, 6 Valent selenium: SeO 4 ) is collected.
  • the total of selenium oxide and hydrogen selenide in the exhaust gas G It is possible to calculate the total selenium concentration, which is the concentration.
  • selenium hydride in all selenium components contained in the exhaust gas G contains the second collection containing an alkali metal hydroxide aqueous solution or an aqueous copper sulfate solution. Since selenium oxide is collected by the first collection liquid L 1 after being collected by the liquid L 2 , the total selenium concentration can be simply and highly accurately even when the selenium hydride concentration in the analysis target gas is high. The analysis method of selenium that can be analyzed with can be realized.
  • Example 2 The collection rate of selenium hydride was measured in the same manner as in Example 1 except that 500 ml of a 1.0 mol / L sodium hydroxide aqueous solution was used as the second collection solution.
  • FIG. 5 also shows the results of repeating selenium hydride collection three times.
  • Example 1 The collection rate of selenium hydride was measured in the same manner as in Example 1 except that 500 ml of a mixture of 250 ml of 3% by mass hydrogen peroxide and 250 ml of 6% by mass nitric acid aqueous solution was used as the second collection solution. It was measured.
  • FIG. 5 also shows the results of repeating selenium hydride collection three times.
  • Example 2 The collection rate of selenium hydride was measured in the same manner as in Example 1 except that 500 ml of a 1.0 mol / L potassium chloride aqueous solution was used as the second collection solution.
  • FIG. 5 also shows the results of repeating selenium hydride collection three times.
  • Example 3 The collection rate of selenium hydride was measured in the same manner as in Example 1 except that 500 ml of a mixture of 250 ml of 3% by weight potassium permanganate aqueous solution and 250 ml of 5% by weight sulfuric acid was used as the second collection liquid. It was measured.
  • FIG. 5 also shows the results of repeating selenium hydride collection three times.
  • Example 4 The collection rate of selenium hydride was measured in the same manner as in Example 1 except that 500 ml of water was used as the second collection liquid.
  • FIG. 5 also shows the results of repeating selenium hydride collection three times.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 分析対象ガス中の全セレン濃度を簡便かつ高精度で分析可能なセレンの分析方法を提供すること。本発明のセレンの分析方法は、分析対象ガス中に含まれる酸化セレンを過酸化水素水及び硝酸を含有する第1捕集液で捕集する酸化セレン捕集工程ST11と、分析対象ガス中に含まれる水素化セレンを水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含有する第2捕集液で捕集する水素化セレン捕集工程ST12とを含むことを特徴とする。

Description

セレンの分析方法
 本発明は、セレンの分析方法に関し、例えば、石炭ガス化ガスに含まれるセレンを効率良く分析可能なガス中のセレンの分析方法に関する。
 従来、試料水に含まれる水溶性セレンを分析する水溶性セレンの分析方法が提案されている(例えば、特許文献1参照)。この水溶性セレンの分析方法では、試料水に対して、過マンガン酸カリウムと硫酸とを添加することにより、過マンガン酸カリウムの酸化力を増強させて試料水の硫黄化合物を分解させることができるので、硫化水素の発生を防いで正確な分析値を得ることが可能となる。
特開2013-096876号公報
 ところで、IGCC(Integrated Gasification Combined Cycle)などから排出される石炭ガス化ガスの排ガスは、JIS、EPA、ASTM及びBSなどの各種公定法を用いて分析されている。例えば、JIS法では、全セレンを捕集する分析方法として、過酸化水素水と硝酸との混合溶液を用いる分析方法が規定され、水素化セレンを捕集する分析方法として、臭素飽和臭化水素酸を用いる分析方法が規定されている。
 しかしながら、過酸化水素水と硝酸との混合溶液を用いる分析方法では、排ガス中の硫化水素などの濃度が高い場合など、ガス組成によっては水素化セレンの捕集効率が低減して全セレンの捕集ができない場合がある。また、臭素飽和臭化水素酸を用いる分析方法では、臭素飽和臭化水素酸が室温でも揮散する物質であるので、排ガスの温度及び排ガスの計測環境下の温度が高い場合には取り扱いが難しく、水素化セレンの分析が困難となる場合がある。
 本発明は、このような実情に鑑みてなされたものであり、分析対象ガス中の全セレン濃度を簡便かつ高精度で分析可能なセレンの分析方法を提供することを目的とする。
 本発明のセレンの分析方法は、分析対象ガス中に含まれる酸化セレンを過酸化水素水及び硝酸を含有する第1捕集液で捕集する酸化セレン捕集工程と、前記分析対象となるガス中に含まれる水素化セレンをアルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含有する第2捕集液で捕集する水素化セレン捕集工程とを含むことを特徴とする。
 このセレンの分析方法によれば、分析対象ガスに含まれる全セレン成分中の酸化セレンを第1捕集液により捕集でき、水素化セレンをアルカリ金属又は硫酸銅水溶液を含有する第2捕集液により捕集できるので、分析対象ガス中の全セレン濃度を簡便かつ高精度で分析可能なセレンの分析方法を実現できる。
 本発明のガス中セレンの分析方法においては、前記酸化セレン捕集工程後に、前記水素化セレン捕集工程を実施することが好ましい。この方法により、酸化セレンを効率良く捕集することが可能となる。
 本発明のガス中セレンの分析方法においては、前記水素化セレン捕集工程後に、前記酸化セレン捕集工程を実施することが好ましい。この方法により、水素化セレンを効率良く捕集することが可能となる。
 本発明のガス中セレンの分析方法においては、前記第2捕集液が、水酸化ナトリウム水溶液、水酸化カリウム水溶液及び硫酸銅水溶液の少なくとも1種を含有することが好ましい。この方法により、第2捕集液により分析対象ガス中に含まれる水素化セレンを効率良く捕集できるので、分析対象ガス中のセレン濃度の測定精度がより一層向上する。
 本発明のガス中セレンの分析方法においては、前記分析対象となるガスが還元性ガスであることが好ましい。この方法により、還元性ガス中に含まれる全セレン濃度を効率良く分析することが可能となる。
 本発明によれば、分析対象ガス中の全セレン濃度を簡便かつ高精度で分析可能なセレンの分析方法を実現できる。
図1は、本発明の実施の形態に係るガス捕集装置の一例を示す模式図である。 図2は、本発明の実施の形態に係るガス捕集装置の他の例を示す模式図である。 図3は、本発明の第1の実施の形態に係るセレンの分析方法のフロー図である。 図4は、本発明の第2の実施の形態に係るセレンの分析方法のフロー図である。 図5は、本発明の実施例に係る水素化セレン捕集率の測定結果を示す図である。
 近年、セレンは日本及び米国において有害金属の一つとして規制が強化されつつある。セレンは、様々なイオン形態(SeO、SeO 2-、SeO 2-、HSe)をとるので、プラントなどからのセレンの排出を抑えるためには、プラント内の各場所のセレン濃度を正確に分析して適切に把握し、機器の設計及び運転条件などを設定することが重要である。
 また、還元性雰囲気となるIGCCなどの排ガスの分析では、排ガス中に含まれる水素化セレン濃度が増大するので、水素化セレン濃度を高い精度で分析できる分析方法が必要とされる。また、IGCCなどの排ガスは、硫化水素などの捕集液に対して容易に捕集される分析妨害物質が多いので、捕集液が劣化して捕集液による水素化セレンの捕集率が低減し、排ガス中に含まれる水素化セレンを完全に捕集することができず、排ガス中の全セレン濃度を正確に分析できない場合がある。
 本発明者らは、水素化セレンの捕集溶液としての水酸化アルカリ金属水溶液及び硫酸銅水溶液に着目した。そして、本発明者らは、分析対象ガス中に含まれる酸化セレンを捕集する過酸化水素水及び硝酸の混合溶液と、分析対象ガス中に含まれる水素化セレンを捕集する水酸化アルカリ金属水溶液及び硫酸銅水溶液の混合溶液と、を用いて分析対象ガス中に含まれるセレン成分をそれぞれ捕集して分析することにより、分析対象ガス中に含まれる全セレン濃度を高い精度で分析できることを見出し、本発明を完成させるに至った。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態は適宜組み合わせて実施可能である。
(第1の実施の形態)
 図1は、本実施の形態に係るガス捕集装置1の模式図である。本実施の形態に係るガス捕集装置1は、被捕集対象となる石炭ガス化ガスなどの排ガス(分析対象ガス)G中のセレンを捕集して排ガスGに含まれる全セレン濃度の分析に用いられるガス捕集装置である。ここで、排ガスとは、石炭ガス化ガスの過程において、石炭ガス化ガスから除去された成分が濃縮したものであり、アンモニア(NH)、硫化水素(HS)、及び二酸化炭素(CO)などを主要組成とする還元性ガスである。
 本実施の形態に係るガス捕集装置1は、排ガスGが流れるガス母管11のフランジ部11aに設けられた孔11bに一端が接続され、一端部にリボンヒーター12aが巻き付けられたガス捕集ライン12を備える。このガス捕集ライン12には、ガス捕集ライン12の一端側から他端側に向けて、ガス捕集ライン12を閉止する閉止弁Vと、ガス捕集ライン12を流れる排ガスGの流量を調整する流量調整弁Vと、排ガスGに含まれる酸化セレンを捕集する酸化セレン捕集部13と、排ガスGに含まれる水素化セレンを捕集する水素化セレン捕集部14と、ガス母管11内部の排ガスGをガス捕集ライン12に吸引する吸引ポンプ15と、ガス捕集ライン12を流れる排ガスGのガス流量を表示するガスメーター16とがこの順に設けられている。
 酸化セレン捕集部13は、ガス捕集ライン12の上流側に設けられた第1捕集部13aと、第1捕集部13aの後段に設けられた第2捕集部13bとを備える。第1捕集部13a及び第2捕集部13bは、それぞれ内部に過酸化水素水及び硝酸の混合溶液である第1捕集液Lが封入された捕集瓶を備える。この第1捕集部13a及び第2捕集部13bの吸引瓶は、氷浴17に浸されて冷却されている。このように過酸化水素水及び硝酸の混合溶液である第1捕集液Lと排ガスGとを接触させることにより、排ガスG中に含まれる酸化セレンを第1捕集液Lによって捕集することが可能となる。なお、本実施の形態では、酸化セレン捕集部13が第1捕集部13a及び第2捕集部13bを備える例について説明したが、酸化セレン捕集部13は、排ガスG中の酸化セレンを捕集できれば必ずしも第2捕集部13bを設ける必要はなく、捕集部は一つであってもよい。
 第1捕集液Lとしては、過酸化水素水及び硝酸を含有するものであれば特に制限はない。第1捕集液Lにおける過酸化水素水の濃度としては、例えば、1質量%以上6質量%以下である。第1捕集液Lにおける硝酸の濃度としては、例えば、0.1mol/L以上5mol/L以下である。過酸化水素水及び硝酸の混合比(過酸化水素水:硝酸)としては、質量比で1:5~5:1である。
 水素化セレン捕集部14は、ガス捕集ライン12における上流側に設けられた第1捕集部14aと、第1捕集部14aの後段に設けられた第2捕集部14bとを備える。第1捕集部14a及び第2捕集部14bは、それぞれ内部に水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含む第2捕集液Lが封入された捕集瓶を備える。この第1捕集部14a及び第2捕集部14bの吸引瓶は、氷浴17に浸されて冷却されている。このように水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含む第2捕集液Lと排ガスGとを接触させることにより、排ガスG中に含まれる水素化セレンを第2捕集液Lによって捕集することが可能となる。なお、本実施の形態では、水素化セレン捕集部14が第1捕集部14a及び第2捕集部14bを備える例について説明したが、水素化セレン捕集部14は、排ガスG中の酸化セレンを捕集できれば必ずしも第2捕集部14bを設ける必要はない。
 第2捕集液Lとしては、水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含有するものであれば特に制限はない。水酸化アルカリ金属水溶液としては、例えば、水酸化ナトリウム水溶液及び水酸化カリウム水溶液が挙げられる。第2捕集液Lの濃度としては、0.01mol/L以上10mol/L以下が好ましく、0.1mol/L以上5mol/L以下がより好ましく、0.5mol/L以上1.5mol/L以下が更に好ましい。
 なお、上述した実施の形態においては、ガス捕集ライン12の上流側から下流側に向けて酸化セレン捕集部13及び水素化セレン捕集部14を設けたガス捕集装置1について説明したが、本実施の形態に係るセレンの分析方法は、図2に示すように、ガス捕集ライン12の上流側から下流側に向けて水素化セレン捕集部14及び酸化セレン捕集部13を設けたガス捕集装置2を用いることもできる。
 次に、本実施の形態に係るセレンの分析方法について詳細に説明する。図3は、本発明の第1の実施の形態に係るセレンの分析方法のフロー図である。図3に示すように、本実施の形態に係るセレンの分析方法は、分析対象ガス中に含まれる酸化セレンを過酸化水素水及び硝酸を含有する第1捕集液Lで捕集する酸化セレン捕集工程ST11と、分析対象ガス中に含まれる水素化セレンを水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含有する第2捕集液Lで捕集する水素化セレン捕集工程ST12とを含む。
 酸化セレン捕集工程ST11では、吸引ポンプ15による吸引でガス母管11からガス捕集ライン12を介して酸化セレン捕集部13に導入された排ガスGが、第1捕集部13a及び第2捕集部13bで第1捕集液Lと接触して排ガス中の酸化セレン(4価セレン:SeO、6価セレン:SeO)が第1捕集液Lに捕集される。ここでは、ガス捕集ライン12は、リボンヒーター12aによって加温(例えば、120℃)される。また、排ガスGは、例えば、4L/min以上10L/min以上のガス流速で吸引ポンプ15によって等速吸引される。
 水素化セレン捕集工程ST12では、酸化セレン捕集部13で酸化セレンが捕集された排ガスGが、ガス捕集ライン12を介して水素化セレン捕集部14に導入される。水素化セレン捕集部14に導入された排ガスGは、第1捕集部14a及び第2捕集部14bで第2捕集液Lと接触して水素化セレンが以下に示す反応式(1)の反応で第2捕集液Lに捕集される。
 HSe+2NaOH → NaSe+2HO ・・・式(1)
 次に、吸引ポンプ15を停止した後、第1捕集液L及び第2捕集液LをそれぞれICP発光分析装置などで分析することにより、排ガスG中の酸化セレン及び水素化セレンの合計濃度である全セレン濃度を算出することが可能となる。
 以上説明したように、本実施の形態に係るセレンの分析方法によれば、排ガスGに含まれる全セレン成分中の酸化セレンを第1捕集液Lにより捕集でき、水素化セレンを水酸化アルカリ金属水溶液又は硫酸銅水溶液を含有する第2捕集液Lにより捕集できるので、分析対象ガス中の全セレン濃度を簡便かつ高精度で分析可能なセレンの分析方法を実現できる。特に、本実施の形態によれば、分析対象ガスがIGCCから排出される排ガスGのように、水素化セレン濃度が高く、また硫化水素濃度が高いガスであっても、第2捕集液Lによりガス中の水素化セレンを効率良く捕集することが可能となる。
 なお、上述した実施の形態においては、石炭ガス化ガスなどから排ガスG中のセレンを分析する例について説明したが、本発明は、これに限定されるものではなく、例えば、NHプラント、石油プラント、陸用ボイラ、各種環境装置及びゴミ処理装置などから排出される排ガス中のセレンの分析などにも用いることができる。
(第2の実施の形態)
 以下、本発明の第2の実施の形態について説明する。本実施の形態に係るセレンの分析方法は、上述したガス捕集装置2を用いるものである。図4は、本発明の第2の実施の形態に係るセレンの分析方法のフロー図である。図4に示すように、本実施の形態に係るセレンの分析方法は、分析対象ガス中に含まれる水素化セレンを水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含有する第2捕集液Lで捕集する水素化セレン捕集工程ST21と、分析対象ガス中に含まれる酸化セレンを過酸化水素水及び硝酸を含有する第1捕集液Lで捕集する酸化セレン捕集工程ST22と、を含む。すなわち、上述した第1の実施の形態に係るセレンの分析方法では、排ガスG中に含まれる酸化セレンを捕集してから水素化セレンを捕集したのに対し、本実施の形態では、排ガスG中に含まれる水素化セレンを捕集してから酸化セレンを捕集する。
 水素化セレン捕集工程ST21では、吸引ポンプ15による吸引でガス母管11からガス捕集ライン12を介して水素化セレン捕集部14に導入された排ガスGが、第1捕集部14a及び第2捕集部14bで第2捕集液Lと接触して排ガス中の水素化セレンが以下に示す反応式(1)の反応で第2捕集液Lに捕集される。ここでは、ガス捕集ライン12は、リボンヒーター12aによって加温(例えば、120℃)される。また、排ガスGは、例えば、4L/min以上10L/min以上のガス流速で吸引ポンプ15によって等速吸引される。
 HSe+2NaOH → NaSe+2HO ・・・式(1)
 酸化セレン捕集工程ST22では、水素化セレン捕集部14で酸化セレンが捕集された排ガスGが、ガス捕集ライン12を介して酸化セレン捕集部13に導入される。酸化セレン捕集部13に導入された排ガスGは、第1捕集部13a及び第2捕集部13bで第1捕集液Lと接触して酸化セレン(4価セレン:SeO、6価セレン:SeO)が捕集される。
 次に、吸引ポンプ15を停止した後、第1捕集液L及び第2捕集液LをそれぞれICP発光分析装置で分析することにより、排ガスG中の酸化セレン及び水素化セレンの合計濃度である全セレン濃度を算出することが可能となる。
 以上説明したように、本実施の形態に係るセレンの分析方法によれば、排ガスGに含まれる全セレン成分中の水素化セレンを水酸化アルカリ金属水溶液又は硫酸銅水溶液を含有する第2捕集液Lにより捕集してから酸化セレンを第1捕集液Lにより捕集するので、分析対象ガス中の水素化セレン濃度が高い場合であっても、全セレン濃度を簡便かつ高精度で分析可能なセレンの分析方法を実現できる。
 次に、本発明の効果を明確にするために行った実施例に基づいて、本発明についてより詳細に説明する。なお、本発明は、以下の実施例及び比較例によって何ら限定されるものではない。
(実施例1)
 塩酸ガス、水素化ホウ素ナトリウム及びセレン(Se4+)を混合して水素化セレン標準ガスを作製し、作製した水素化セレン標準ガスを1L/mimの流速で、第2捕集液としての0.1mol/Lの硫酸銅水溶液500mlに吸収させた。以下の式(2)に基づいて水素化セレンの捕集率を測定した。図5に水素化セレンの捕集を3回繰り返した結果を示す。
 水素化セレン捕集率(%)=吸収液捕集量(mg)/標準ガス量(mg)×100 ・・・式(2)
(実施例2)
 第2捕集液として1.0mol/Lの水酸化ナトリウム水溶液500mlを用いたこと以外は、実施例1と同様にして水素化セレンの捕集率を測定した。図5に水素化セレンの捕集を3回繰り返した結果を併記する。
(比較例1)
 第2捕集液として3質量%の過酸化水素水250mlと6質量%の硝酸水溶液250mlとの混合液500mlを用いたこと以外は、実施例1と同様にして水素化セレンの捕集率を測定した。図5に水素化セレンの捕集を3回繰り返した結果を併記する。
(比較例2)
 第2捕集液として1.0mol/Lの塩化カリウム水溶液500mlを用いたこと以外は、実施例1と同様にして水素化セレンの捕集率を測定した。図5に水素化セレンの捕集を3回繰り返した結果を併記する。
(比較例3)
 第2捕集液として3質量%の過マンガン酸カリウム水溶液250mlと5質量%の硫酸250mlとの混合液500mlを用いたこと以外は、実施例1と同様にして水素化セレンの捕集率を測定した。図5に水素化セレンの捕集を3回繰り返した結果を併記する。
(比較例4)
 第2捕集液として水500mlを用いたこと以外は、実施例1と同様にして水素化セレンの捕集率を測定した。図5に水素化セレンの捕集を3回繰り返した結果を併記する。
 図5に示すように、第2捕集液として硫酸銅水溶液及び水酸化アルカリ金属水溶液である水酸化ナトリウム水溶液を用いた場合には、良好な水素化セレンの捕集率が得られることが分かる(実施例1及び実施例2)。これに対して、第2捕集液として硫酸銅水溶液及びアルカリ金属水溶液を用いた場合には、いずれも水素化セレンの捕集率が極めて悪化することが分かる。これらの結果から、本実施の形態においては、硫酸銅水溶液及び水酸化アルカリ金属水溶液の少なくとも1種を用いることにより、分析対象ガス中の水素化セレンを効率良く吸収できることが分かる。
 1、2 ガス捕集装置
 11 ガス母管
 12 ガス捕集ライン
 12a リボンヒーター
 13 酸化セレン捕集部
 13a 第1捕集部
 13b 第2捕集部
 14 水素化セレン捕集部
 14a 第1捕集部
 14b 第2捕集部
 15 吸引ポンプ
 16 ガスメーター
 17 氷浴
 G 排ガス
 L 第1捕集液
 L 第2捕集液
 V 閉止弁
 V 流量制御弁

Claims (5)

  1.  分析対象ガス中に含まれる酸化セレンを過酸化水素水及び硝酸を含有する第1捕集液で捕集する酸化セレン捕集工程と、
     前記分析対象ガス中に含まれる水素化セレンを水酸化アルカリ金属水溶液及び硫酸銅水溶液からなる群から選択された少なくとも1種を含有する第2捕集液で捕集する水素化セレン捕集工程とを含むことを特徴とする、セレンの分析方法。
  2.  前記酸化セレン捕集工程後に、前記水素化セレン捕集工程を実施する、請求項1に記載のセレンの分析方法。
  3.  前記水素化セレン捕集工程後に、前記酸化セレン捕集工程を実施する、請求項1に記載のセレンの分析方法。
  4.  前記第2捕集液が、水酸化ナトリウム水溶液、水酸化カリウム水溶液及び硫酸銅水溶液の少なくとも1種を含有する、請求項1から請求項3のいずれか1項に記載のセレンの分析方法。
  5.  前記分析対象ガスが還元性ガスである、請求項1から請求項4のいずれか1項に記載のセレンの分析方法。
PCT/JP2015/073969 2015-02-19 2015-08-26 セレンの分析方法 WO2016132574A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-030757 2015-02-19
JP2015030757A JP2016151560A (ja) 2015-02-19 2015-02-19 セレンの分析方法

Publications (1)

Publication Number Publication Date
WO2016132574A1 true WO2016132574A1 (ja) 2016-08-25

Family

ID=56689370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073969 WO2016132574A1 (ja) 2015-02-19 2015-08-26 セレンの分析方法

Country Status (2)

Country Link
JP (1) JP2016151560A (ja)
WO (1) WO2016132574A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236520A (ja) * 1987-03-24 1988-10-03 Ube Ind Ltd 有害廃ガス除去剤
JP2524498B2 (ja) * 1987-04-03 1996-08-14 株式会社 ガステツク 半導体製造用ガスの分析用捕集材
JPH11223589A (ja) * 1998-02-05 1999-08-17 Mitsubishi Materials Corp 試料分解処理装置
JPH11293361A (ja) * 1998-04-13 1999-10-26 Sumitomo Metal Mining Co Ltd 銅電解スライムからの高純度セレンの製造方法
JP2001104748A (ja) * 1999-10-08 2001-04-17 Babcock Hitachi Kk 排ガス中のセレン除去方法および除去装置
JP2008076253A (ja) * 2006-09-21 2008-04-03 Mitsubishi Heavy Ind Ltd セレン分析装置及びセレン分別定量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236520A (ja) * 1987-03-24 1988-10-03 Ube Ind Ltd 有害廃ガス除去剤
JP2524498B2 (ja) * 1987-04-03 1996-08-14 株式会社 ガステツク 半導体製造用ガスの分析用捕集材
JPH11223589A (ja) * 1998-02-05 1999-08-17 Mitsubishi Materials Corp 試料分解処理装置
JPH11293361A (ja) * 1998-04-13 1999-10-26 Sumitomo Metal Mining Co Ltd 銅電解スライムからの高純度セレンの製造方法
JP2001104748A (ja) * 1999-10-08 2001-04-17 Babcock Hitachi Kk 排ガス中のセレン除去方法および除去装置
JP2008076253A (ja) * 2006-09-21 2008-04-03 Mitsubishi Heavy Ind Ltd セレン分析装置及びセレン分別定量方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANTONELLA PROFUMO ET AL.: "Sequential extraction procedure for speciation of inorganic selenium in emissions and working areas", TALANTA, vol. 55, no. 1, 2001, pages 155 - 161 *
ATSUSHI TAKAHASHI ET AL.: "Investigation of the determination of gaseous arsenic. (2). Comparison of the absorbing solution of arsine", ANNUAL REPORT OF THE KAWASAKI MUNICIPAL RESEARCH INSTITUTE FOR ENVIRONMENTAL PROTECTION, no. 14, 1987, pages 10 - 15 *
BICHENG ZHANG ET AL.: "Determination of total gaseous selenium in atmosphere by honeycomb denuder/differential pulse cathodic stripping voltammetry", TALANTA, vol. 57, no. 2, 2002, pages 323 - 331 *
JOSEPH PASZEK ET AL.: "Advances in ICP-MS Technologies for Characterization and Ultra- Trace Speciation as a Tool for the Petroleum Industry", JOURNAL OF ASTM INTERNATIONAL, vol. 2, no. 9, 2005 *
MASARU NAKAMURA: "Study of collection efficiency of volatile heavy metal compounds in the atmosphere by nutron activation analysiscompound", BULLETIN OF THE TOKYO METROPOLITAN ISOTOPE RESEARCH CENTER, no. 12, 1995, pages 91 - 98 *
TAKUYA FURUZONO ET AL.: "The development of methods for measuring gaseous boron and selenium in flue gas produced from coal combustion and discuss the behavior of boron and selenium in a coal combustion plant", THE JAPAN INSTITUTE OF ENERGY SEKITAN KAGAKU KAIGI HAPPYO RONBUNSHU, vol. 50th, 2013, pages 50 - 51 *

Also Published As

Publication number Publication date
JP2016151560A (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
Krzyzynska et al. Effect of solution pH on SO2, NOx, and Hg removal from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber
US7144736B2 (en) Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
CN105352945A (zh) 一种脱硫石膏中硫酸钙和亚硫酸钙的icp分析法
CN102621273A (zh) 多晶硅太阳电池制程中所用混酸溶液的检测方法
CN103149271A (zh) 一种同时测定燃煤烟气中不同形态重金属的方法
Guo et al. Absorption of NO into NaClO3/NaOH solutions in a stirred tank reactor
CN105181614B (zh) 三氧化硫分析仪器及方法
US20150111304A1 (en) Carbon analysis using ferrate oxidation
JP2008076253A (ja) セレン分析装置及びセレン分別定量方法
CN108680697A (zh) 一种基于化学转化的大气气溶胶中铵态氮同位素比值测定方法
JP6640701B2 (ja) 地熱発電用蒸気性状監視装置、地熱発電システム、地熱発電用蒸気性状監視方法、及び、地熱発電システム制御方法
WO2016132574A1 (ja) セレンの分析方法
CN102192906A (zh) 一种钒氮合金碳含量的检测装置及检测方法
JP5752563B2 (ja) 水溶性セレン分析システム
CN106492601A (zh) 一种注入式同时脱硫脱硝除汞方法
JP6112914B2 (ja) 石炭灰中水銀測定用試料の作製方法及び石炭灰中水銀の測定方法
CN102721785B (zh) 转炉渣硫磺容量法测定方法
JP6733463B2 (ja) 臭素回収装置及び臭素回収方法
Wu et al. Reduction of nitrogen dioxide from etching vent gases by scrubbing with caustic sodium sulfide solution
CN104535725A (zh) 一种监测系统
Zhao et al. Removal of Hg 0 with sodium chlorite solution and mass transfer reaction kinetics
JP5466870B2 (ja) 水銀濃度の測定方法及び測定装置
JP6976875B2 (ja) 水溶性セレンの分析方法並びにそれを利用したセレン含有排水の排水処理システム
JP5752564B2 (ja) 水溶性セレンの分析方法
CN203385588U (zh) 液体集中取样柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882675

Country of ref document: EP

Kind code of ref document: A1