WO2016132571A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2016132571A1
WO2016132571A1 PCT/JP2015/070711 JP2015070711W WO2016132571A1 WO 2016132571 A1 WO2016132571 A1 WO 2016132571A1 JP 2015070711 W JP2015070711 W JP 2015070711W WO 2016132571 A1 WO2016132571 A1 WO 2016132571A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolution
unit
camera shake
imaging
super
Prior art date
Application number
PCT/JP2015/070711
Other languages
English (en)
French (fr)
Inventor
林太郎 西原
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP15882672.7A priority Critical patent/EP3261329A4/en
Priority to CN201580002020.5A priority patent/CN106068643B/zh
Priority to US15/060,554 priority patent/US9769384B2/en
Publication of WO2016132571A1 publication Critical patent/WO2016132571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters

Definitions

  • the present invention relates to an imaging apparatus including a camera shake correction unit.
  • a camera shake correction unit that suppresses image blur that occurs in a captured image due to camera shake or the like by moving the image sensor is known.
  • various proposals have been made to use the function of moving an image sensor by such a camera shake correction unit in addition to camera shake correction.
  • an imaging apparatus proposed in Japanese Patent Application Laid-Open No. 2014-224940 has an optical low-pass filter effect as well as camera shake correction by changing the imaging position of a subject image by moving an imaging element. To get.
  • the image pickup apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-224940 discloses a position detection signal from a position detection unit that detects the position of the image sensor so that the position of the image sensor can be controlled with high accuracy.
  • a superimposed position signal is generated by superimposing a modulation signal representing a minute vibration component, and position control of the image sensor is performed based on the superimposed position signal.
  • the image stabilization unit can also be used for super-resolution photography.
  • Super-resolution photography using the image stabilization unit takes multiple shots while shifting the image sensor in units of the pixel pitch or less, and generates a super-resolution image by combining the captured images obtained by multiple shots. It is processing to do.
  • it is necessary to control the position of the image sensor with very high accuracy.
  • it is necessary to increase the accuracy of the position detection system.
  • the present invention has been made in view of the above circumstances, and provides an imaging apparatus capable of super-resolution imaging by controlling the position of a camera shake correction unit with high accuracy without using a high-precision position detection element. For the purpose.
  • An imaging apparatus includes a camera shake correction unit that moves a movable unit having an imaging element with respect to a fixed unit using a coil and a magnet, a position detection unit that detects a position of the movable unit, A setting unit for setting a resolution of position detection by the position detection unit to a first resolution or a second resolution higher than the first resolution and having a deviation amount with respect to a target position equal to or less than a pixel shift amount; A drive control unit that performs pixel shift for driving the movable unit at the second resolution set by the setting unit a plurality of times, and a plurality of images obtained by performing imaging using the imaging element at the pixel shift timing. And a photographing control unit for synthesizing the captured images.
  • an imaging device capable of super-resolution imaging by controlling the position of the camera shake correction unit with high accuracy without using a high-precision position detection element.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 shows an assembled state of the image stabilization unit.
  • FIG. 3 is an exploded perspective view of the camera shake correction unit.
  • FIG. 4 is a diagram showing the arrangement of the Hall elements in the movable part.
  • FIG. 5 is a functional block diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 6 is a flowchart showing the operation of the imaging apparatus according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing a process for setting the resolution for super-resolution.
  • FIG. 8 is a diagram illustrating the concept of pixel shifting.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 shows an assembled state of the image stabilization unit.
  • FIG. 3 is an exploded perspective view of the camera shake correction unit.
  • FIG. 4 is a diagram showing the arrangement of the Hall
  • FIG. 9 is a diagram illustrating a change in the position detection signal when the movable unit is moved from the predetermined target position 1 to another target position 2 separated by 0.5 pixel pitch.
  • FIG. 10 is a diagram showing the relationship between the actual position of the movable part and the position detection signal when the position detection signal from the Hall element is amplified with the still image amplification factor.
  • FIG. 11 is a diagram illustrating the relationship between the actual position of the movable part and the position detection signal when the position detection signal from the Hall element is amplified with the super-resolution amplification factor.
  • FIG. 12 is a flowchart showing super-resolution imaging processing.
  • FIG. 13A is a diagram illustrating an example of a target position for super-resolution imaging.
  • FIG. 13B is a diagram illustrating an example of a target position for super-resolution imaging.
  • FIG. 14 is a flowchart illustrating super-resolution imaging processing with camera shake correction.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to the present embodiment.
  • An imaging apparatus 1 illustrated in FIG. 1 includes an interchangeable lens 100 and a main body 200.
  • the interchangeable lens 100 is attached to the main body 200 via a mount 202 provided on the main body 200.
  • the interchangeable lens 100 and the main body 200 are connected to be able to communicate.
  • the interchangeable lens 100 and the main body 200 operate in cooperation.
  • the imaging device 1 is not necessarily an interchangeable lens type imaging device.
  • the imaging device 1 may be a lens-integrated imaging device.
  • the interchangeable lens 100 has an optical system 102.
  • the optical system 102 includes, for example, a plurality of lenses and an aperture, and causes a light beam from a subject (not shown) to enter the camera shake correction unit 206 of the main body 200.
  • the optical system 102 in FIG. 1 is configured by a plurality of lenses, the optical system 102 may be configured by a single lens.
  • the optical system 102 may include a focus lens or may be configured as a zoom lens. In these cases, at least some of the lenses of the optical system 102 are configured to be movable along the Z direction, which is the direction along the optical axis O.
  • the main body 200 includes a shutter 204, a camera shake correction unit 206, a monitor 208, and an operation unit 210.
  • the shutter 204 is a focal plane shutter disposed on the front side (the positive side in the Z direction) of the camera shake correction unit 206, for example.
  • the shutter 204 is opened, the camera shake correction unit 206 is exposed. Further, the shutter 204 is closed to place the camera shake correction unit 206 in a light-shielding state.
  • the camera shake correction unit 206 generates a captured image related to the subject by imaging a subject (not shown). In addition, the camera shake correction unit 206 corrects image blur that occurs in a captured image due to camera shake or the like by moving the movable unit with respect to the fixed unit by a VCM (voice coil motor) using a coil and a magnet.
  • VCM voice coil motor
  • the monitor 208 is, for example, a liquid crystal display, and displays an image based on the captured image generated by the camera shake correction unit 206.
  • the monitor 208 also displays a menu screen for the user to make various settings for the imaging device 1.
  • the monitor 208 may include a touch panel.
  • the operation unit 210 is, for example, a release button.
  • the release button is a button for the user to instruct start of shooting by the imaging apparatus 1.
  • the operation unit 210 includes various operation units other than the release button.
  • FIG. 2 shows an assembled state of the camera shake correction unit 206.
  • the camera shake correction unit 206 is generally configured by two fixed portions 301 and 302 and a movable portion 303 arranged so as to be sandwiched between the fixed portions 301 and 302. Yes.
  • the camera shake correction unit 206 translates the movable portion 303 in a plane perpendicular to the optical axis O (X direction and Y direction in FIG. 3).
  • the camera shake correction unit 206 moves the movable unit 303 in the rotation direction around the optical axis O.
  • FIG. 3 is an exploded perspective view of the camera shake correction unit 206.
  • the fixed portion 301 disposed on the monitor 208 side when viewed from the movable portion 303 is a substantially rectangular plate member and is fixed to the main body 200.
  • a magnet 3011 for moving in the X direction and a magnet 3012 for moving in both the X direction and the Y direction are bonded to the outer periphery of the fixed portion 301, respectively.
  • the magnet 3011 has a rectangular parallelepiped shape in which the Y direction is the longitudinal direction, and the first magnet arranged so that the N pole faces the movable portion 303 side, and the length in the Y direction that is the longitudinal direction are the first.
  • a second magnet that has a rectangular parallelepiped shape shorter than the magnet and is arranged so that the south pole faces the movable portion 303 side.
  • the second magnet of the fixed portion 301 is disposed so as to be adjacent to the central portion on the right side surface of the first magnet when viewed from the movable portion 303.
  • the magnet 3012 has a rectangular parallelepiped shape in which the Y direction is the longitudinal direction, and the first magnet is disposed so that the N pole faces the movable portion 303 side, and the length in the Y direction is greater than that of the first magnet.
  • a second magnet having a rectangular parallelepiped shape whose X direction is the longitudinal direction and arranged so that the south pole faces the movable portion 303 side. The second magnet is disposed so as to be adjacent to the central portion of the right side surface of the first magnet when viewed from the movable portion 303.
  • the magnet 3012 has a rectangular parallelepiped shape in which the length in the X direction, which is the longitudinal direction, is shorter than the second magnet, and has a third magnet arranged so that the N pole faces the movable portion 303 side. .
  • the third magnet is disposed on the lower surface of the second magnet when viewed from the movable portion 303. That is, the second magnet constituting the magnet 3012 functions as a magnet for moving in the X direction when combined with the first magnet, and functions as a magnet for moving in the Y direction when combined with the third magnet.
  • the fixed portion 302 disposed on the shutter 204 side when viewed from the movable portion 303 is a substantially L-shaped plate member in which an opening for holding the image sensor unit 3034 of the movable portion 303 is formed.
  • the X-direction moving magnet 3021 and the X-direction and Y-direction moving magnets 3022 are respectively bonded.
  • the magnet 3021 has the same configuration as the magnet 3011, and is arranged so that a different polarity faces the magnet 3011.
  • the magnet 3022 has the same configuration as the magnet 3012, and is arranged so that a different polarity is directed to the magnet 3012.
  • the movable portion 303 is a substantially L-shaped plate member in which an opening for mounting the same image sensor unit 3034 as the fixed portion 302 is formed.
  • coils 3031 and 3032a for moving in the X direction and a coil 3032b for moving in the Y direction are arranged on the outer periphery of the movable portion 303.
  • the coil 3031 is disposed at a position corresponding to the magnet 3011 and the magnet 3021 in the plate-like portion extending in the Y direction of the movable portion 303.
  • the coil 3032a is arranged at a position corresponding to the first magnet and the second magnet of the magnet 3012 and the magnet 3022 in the plate-like portion extending in the Y direction of the movable portion 303.
  • the coil 3032b is disposed at a position corresponding to the second magnet and the third magnet of the magnet 3012 and the magnet 3022 in the plate-like portion extending in the X direction of the movable portion 303.
  • an imaging element unit 3034 is mounted in the opening of the movable portion 303.
  • the image sensor unit 3034 is a unit including an image sensor and its control circuit.
  • the image sensor unit 3034 in this embodiment includes an image sensor, a signal processing unit, an A / D conversion unit, and an image processing unit.
  • the imaging element images a subject and generates a captured image signal related to the subject.
  • the signal processing unit performs analog processing such as amplification processing on the captured image signal.
  • the A / D conversion unit converts the captured image signal processed by the signal processing unit into a digital signal.
  • the image processing unit performs image processing on the captured image signal to generate a captured image.
  • the image processing unit also generates a super-resolution image by combining a plurality of captured images.
  • two screw receivers 3015 are formed in the fixing portion 301, and screw receiving holes 3025 are formed in portions corresponding to the screw receivers 3015 of the fixing portion 302.
  • the fixed portion 302 is fixed with screws in a state where the movable portion 303 is sandwiched between the fixed portion 302 and the fixed portion 301.
  • the coil 3031, the coils 3032 a and 3032 b, and the magnet 3011, the magnet 3012, the magnet 3021, and the magnet 3022 are in a non-contact state maintaining a predetermined interval.
  • the movable unit 303 when energization of any of the coils 3031, 3032 a, and 3032 b is started, the movable unit 303 enters a floating state between the fixed unit 301 and the fixed unit 302. In this state, the movable portion 303 is translated or rotated by controlling the magnitude of the drive current supplied to the coils 3031, 3032 a and 3032 b.
  • Three position detection magnets 3013 are arranged in the fixed portion 301.
  • One of the position detection magnets 3013 is disposed on the upper portion of the fixed portion 301.
  • One of the position detection magnets 3013 is disposed below the fixed portion 301.
  • One of the position detection magnets 3013 is arranged on the left part of the fixed part 301.
  • three Hall elements 3033 are provided as shown in FIG.
  • a first displacement amount in the X direction of the movable portion 303 is detected as a change amount of the magnetic field by a pair of a position detection magnet 3013 provided at the upper portion of the fixed portion 301 and a Hall element 3033 provided at the upper portion of the movable portion 303.
  • the second displacement amount in the X direction of the movable portion 303 is set as the change amount of the magnetic field by the pair of the position detection magnet 3013 provided in the lower portion of the fixed portion 301 and the Hall element 3033 provided in the lower portion of the movable portion 303.
  • the displacement of the movable portion 303 in the Y direction is detected as the amount of change in the magnetic field by the pair of the position detection magnet 3013 provided on the left portion of the fixed portion 301 and the Hall element 3033 provided on the left portion of the movable portion 303. To do. And the position of the movable part 303 is detected by the difference of the signal detected by each Hall element 3033.
  • FIG. 5 is a functional block diagram of the imaging apparatus 1 according to the present embodiment.
  • the imaging device 1 in this embodiment performs camera shake correction, normal still image shooting, and super-resolution shooting.
  • the camera shake correction is a process of moving the movable unit 303 so as to suppress image blur that occurs in a captured image due to camera shake or the like.
  • Normal still image shooting is a process of performing one shooting and obtaining one captured image.
  • Super-resolution imaging is performed multiple times while shifting the movable unit 303 by a pixel shift amount equal to or less than the pixel pitch, and a plurality of captured images obtained by the multiple imaging are combined to obtain the original image sensor. This is a process for obtaining a captured image with a resolution higher than the number of pixels.
  • the imaging apparatus 1 includes a camera shake correction unit 206, a position detection unit 402, a camera shake detection unit 404, a shooting control unit 406, a target position generation unit 408, a subtraction unit 410, and drive control.
  • the unit 412, the determination unit 414, and the setting unit 416 are included as functional blocks.
  • the imaging control unit 406, the target position generation unit 408, the subtraction unit 410, the drive control unit 412, the determination unit 414, and the setting unit 416 are configured by a CPU, an ASIC, or the like.
  • the position detection unit 402 amplifies the position detection signal from the hall element 3033 of the camera shake correction unit 206, generates a current position signal representing the position of the movable unit 303 by capturing the amplified position detection signal as a digital signal, The current position signal is output to the subtracting unit 410.
  • the camera shake detection unit 404 detects the amount of camera shake occurring in the main body 200 of the imaging apparatus 1 and outputs a signal corresponding to the detected amount of camera shake. For example, the camera shake detection unit 404 detects the amount of camera shake using an angular velocity sensor. In addition, the camera shake detection unit 404 detects the amount of camera shake from the movement of the subject in the captured image generated by the camera shake correction unit 206.
  • the imaging control unit 406 controls driving of the image sensor of the camera shake correction unit 206. In addition, the imaging control unit 406 outputs a signal indicating whether to perform camera shake correction and / or super-resolution imaging to the target position generation unit 408. Furthermore, when executing super-resolution imaging, the imaging control unit 406 instructs the target position generation unit 408 to indicate a signal indicating a target position that is predetermined for each super-resolution imaging. In addition, the imaging control unit 406 instructs the setting unit 416 to execute normal still image shooting or super-resolution shooting.
  • the target position generation unit 408 generates a target position signal indicating a target position that is a target for position control of the movable unit 303, and outputs the generated target position signal to the subtraction unit 410.
  • the target position generation unit 408 When camera shake correction is executed, the target position generation unit 408 generates a target position signal based on a camera shake correction signal based on a signal corresponding to the amount of camera shake from the camera shake detection unit 404.
  • the target position generation unit 408 When super-resolution imaging is executed, the target position generation unit 408 generates a target position signal based on a signal indicating the target position from the imaging control unit 406.
  • the target position generation unit 408 combines both the camera shake correction signal from the camera shake detection unit 404 and the signal according to the target position from the imaging control unit 406. A target position signal is generated (added).
  • the subtraction unit 410 outputs a deviation signal between the target position signal generated by the target position generation unit 408 and the current position signal generated by the position detection unit 402 to the drive control unit 412.
  • the drive control unit 412 generates a drive current to be supplied to the coils 3031, 3032 a, and 3032 b of the camera shake correction unit 206 based on the deviation signal output from the subtraction unit 410, and the generated drive current is generated in the coils 3031, 3032 a, and 3032 b. To move the movable part 303.
  • the determination unit 414 determines whether or not camera shake has occurred in the main body of the imaging apparatus 1 according to the amount of camera shake detected by the camera shake detection unit 404, and sends a signal indicating the determination result to the imaging control unit 406 and the setting unit. 416.
  • the setting unit 416 sets the position detection resolution in the position detection unit 402.
  • the setting unit 416 sets the position detection resolution in the position detection unit 402 to a predetermined first resolution when normal still image shooting is executed.
  • the setting unit 416 sets the resolution of position detection in the position detection unit 402 to a second resolution determined according to the pixel pitch of the image sensor.
  • FIG. 6 is a flowchart showing the operation of the imaging apparatus 1. The process in FIG. 6 is started when the power of the imaging apparatus 1 is turned on.
  • step S101 the determination unit 414 determines whether or not the amount of camera shake detected by the camera shake detection unit 404 is equal to or less than a reference value.
  • This reference value is a value of the amount of camera shake that is considered to cause image blur, and is stored in advance in the determination unit 414. If it is determined in step S101 that the amount of camera shake detected by the camera shake detection unit 404 is not less than or equal to the reference value, the process proceeds to step S102. If it is determined in step S101 that the amount of camera shake detected by the camera shake detection unit 404 is less than or equal to the reference value, the process proceeds to step S104.
  • the setting unit 416 sets the resolution of position detection in the position detection unit 402 to the resolution for still images that is the first resolution.
  • the resolution in the present embodiment refers to the unit length [ ⁇ m / LSB] indicated by the least significant bit of the signal captured as digital data from each Hall element 3033 of the camera shake correction unit 206.
  • the still image resolution is the resolution in the normal still image shooting mode, and for example, the resolution stored in the setting unit 416 as a fixed value is used.
  • step S103 the imaging control unit 406 turns on the camera shake correction mode. Thereafter, the process proceeds to step S106. Since it is determined in step S101 that the amount of camera shake exceeds the reference value, that is, a large image blur has occurred, the camera shake correction mode is turned on. Thereby, image blurring that occurs in the captured image is suppressed.
  • step S104 the setting unit 416 sets the resolution of position detection in the position detection unit 402 to the super-resolution resolution that is the second resolution.
  • the super-resolution resolution is a resolution that varies depending on the pixel pitch of the image sensor. The super-resolution resolution setting process will be described in detail later.
  • step S105 the imaging control unit 406 turns off the camera shake correction mode. Thereafter, the process proceeds to step S106. Since it is determined in step S101 that the amount of camera shake does not exceed the reference value, that is, image blur has not occurred, the camera shake correction mode is turned off.
  • the shooting control unit 406 sets a shooting mode.
  • the shooting modes include a normal still image shooting mode for performing normal still image shooting and a super-resolution shooting mode for performing super-resolution shooting. Which shooting mode is set is set by a user operation on a menu screen displayed on the monitor 208, for example.
  • step S107 the imaging control unit 406 starts driving the image sensor of the camera shake correction unit 206 in order to perform live view display. Then, the shooting control unit 406 causes the monitor 208 to sequentially display the captured images obtained by the camera shake correction unit 206.
  • step S108 the shooting control unit 406 determines whether or not the start of normal still image shooting is instructed. That is, the shooting control unit 406 determines whether or not the current shooting mode is the normal still image shooting mode and the user has instructed to start shooting.
  • the instruction to start shooting is a release button pressing operation or a touch release operation.
  • step S109 the shooting control unit 406 starts driving the image sensor of the camera shake correction unit 206 in order to perform normal still image shooting. Then, the imaging control unit 406 records the captured image obtained by the camera shake correction unit 206 on a recording medium (not shown). Thereafter, the process proceeds to step S116. Although explanation is omitted, when the camera shake correction mode is on, camera shake correction is performed together with normal still image shooting.
  • step S110 the imaging control unit 406 determines whether or not the start of super-resolution imaging has been instructed. That is, the imaging control unit 406 determines whether or not the current imaging mode is the super-resolution imaging mode and the user has instructed the imaging start. As in normal still image shooting, the shooting start instruction is a release button pressing operation or a touch release operation. If it is determined in step S110 that the start of super-resolution imaging has been instructed, the process proceeds to step S111. If it is determined in step S110 that the start of super-resolution imaging has not been instructed, the process proceeds to step S116.
  • step S111 the setting unit 416 sets the resolution of position detection in the position detection unit 402 to the super-resolution resolution that is the second resolution.
  • the super-resolution resolution setting process will be described in detail later.
  • step S112 the imaging control unit 406 determines whether or not the camera shake correction mode is currently on. If it is determined in step S112 that the camera shake correction mode is not turned on, the process proceeds to step S113. If it is determined in step S112 that the camera shake correction mode is on, the process proceeds to step S114.
  • step S113 the imaging control unit 406 performs super-resolution imaging.
  • the super-resolution imaging process will be described in detail later. After super-resolution imaging is completed, the process proceeds to step S115.
  • step S114 the imaging control unit 406 performs super-resolution imaging with camera shake correction. Processing for super-resolution imaging with camera shake correction will be described in detail later. After completion of super-resolution imaging with camera shake correction, the process proceeds to step S115.
  • step S115 the setting unit 416 sets the resolution of position detection in the position detection unit 402 to the resolution for still images that is the first resolution. Thereafter, the process proceeds to step S116.
  • step S116 the imaging control unit 406 determines whether or not the power of the imaging apparatus 1 has been turned off. If it is determined in step S116 that the imaging apparatus 1 is not powered off, the process returns to step S101. If it is determined in step S116 that the power of the imaging device 1 has been turned off, the processing in FIG. 6 ends.
  • FIG. 7 is a flowchart showing a process for setting the resolution for super-resolution. The process of FIG. 7 can be applied to both steps S104 and S111.
  • step S201 the setting unit 416 calculates a super-resolution target resolution.
  • calculation of the super-resolution target resolution will be described.
  • FIG. 8 shows the concept of pixel shifting in this embodiment.
  • the pixel pitch is assumed to be the distance P between the centers of the openings of the pixels PIX1 and PIX2 adjacent to each other.
  • Pixel shift is a process of shifting the position of the movable unit 303 (imaging device) by a pixel shift amount within a pixel pitch range. For this reason, the pixel shift amount has a relationship of 0 ⁇ pixel shift amount ⁇ pixel pitch.
  • the pixel shift is performed by shifting the pixel PIX1 and the pixel PIX2 by 0.5 pixels in a predetermined direction (rightward in FIG. 8) to the pixel PIX1 ′ and the pixel PIX2 ′. It is processing to do.
  • the deviation amount of the movable unit 303 with respect to the target position is three times or more the position detection resolution of the position detection unit 402. This is because the movable part 303 vibrates slightly due to the principle of VCM. Due to this vibration, a positional deviation occurs in each of the positive direction and the negative direction with respect to the target position. Therefore, the deviation amount of the movable unit 303 with respect to the target position becomes three times or more the position detection resolution of the position detection unit 402.
  • FIG. 9 is a diagram showing a change in the position detection signal when the movable unit 303 is moved from the predetermined target position 1 to another target position 2 separated by 0.5 pixel pitch. Even if a position detection signal indicating that the position of the movable part 303 is the target position 1 is output due to a deviation caused when the movable part 303 is moved by the VCM, the actual position of the movable part 303 is as shown in FIG. In the range of the deviation amount 1. When shooting is performed in this state, the captured image is an image captured at any position within the range of the deviation amount 1 with respect to the target position 1.
  • the captured image is an image captured at any position within the range of the deviation amount 2 with respect to the target position 2.
  • the position of the movable portion 303 overlaps as shown by A in FIG. 9, so that the actual position of the movable portion 303 is reversed before and after the pixel shift.
  • a captured image is acquired when the image sensor is in the pixels PIX1 ′ and PIX2 ′ in the first shooting, and the image sensor is detected in the next shooting. Captured images of PIX1 and PIX2 are acquired. If such captured images are combined, the resolution of the finally obtained super-resolution image is reduced.
  • the super-resolution target resolution (resolution of position detection of the position detection unit 402 during super-resolution imaging) is set so that the deviation amount is smaller than the pixel shift amount.
  • the super-resolution resolution is set to 1/3 or less of the pixel shift amount. In this way, even if a deviation of three times or more of the resolution occurs with respect to the target position of the movable unit 303 due to the movement by the VCM, it is possible to fit the actual position of the movable unit 303 within the pixel pitch. is there.
  • the setting unit 416 sets the super-resolution resolution to 1/3 or less of the pixel shift amount and 1 / integer of the pixel shift amount.
  • the setting unit 416 sets, for example, the super-resolution resolution to 0.5 pixel pitch / 3 [ ⁇ m / LSB]. Since the deviation amount may be larger than three times the position detection resolution, the super-resolution resolution is preferably set to 1 / integer larger than 4 of the pixel shift amount.
  • the setting unit 416 acquires a still image gain and a still image resolution.
  • the still image amplification factor is the amplification factor of the position detection signal from the Hall element 3033 by the position detection unit 402 in the normal still image shooting mode, and is stored as a fixed value in the position detection unit 402, for example. Used.
  • the setting unit 416 calculates the super-resolution amplification factor.
  • the super-resolution amplification factor is an amplification factor of the position detection signal from the Hall element 3033 by the position detection unit 402 in the super-resolution imaging mode.
  • FIG. 10 is a diagram illustrating the relationship between the actual position of the movable unit 303 and the position detection signal when the position detection signal from the Hall element 3033 is amplified with the still image amplification factor.
  • FIG. 11 is a diagram showing the relationship between the actual position of the movable unit 303 and the position detection signal when the position detection signal from the Hall element 3033 is amplified with the super-resolution gain.
  • the super-resolution gain is larger than the still-image gain.
  • step S204 the setting unit 416 sets the calculated super-resolution amplification factor in the position detection unit 402. Thereafter, the process of FIG. 7 ends.
  • FIG. 12 is a flowchart showing super-resolution imaging processing.
  • the imaging control unit 406 performs a loop process for repeating i times of super-resolution imaging.
  • the imaging control unit 406 instructs the target position generation unit 408 for a target position in order to move the movable unit 303 of the camera shake correction unit 206 to the i-th position.
  • the target position generation unit 408 generates a target position signal.
  • the drive control unit 412 moves the movable unit 303 to the target position in accordance with the drive signal generated based on the deviation signal between the target position signal and the current position signal.
  • a preset fixed value is used as the target position for super-resolution imaging.
  • 13A and 13B show examples of target positions for super-resolution imaging.
  • the settings in FIGS. 13A and 13B are merely examples. There is no particular limitation on how to set the target position as long as it is configured by a combination of upward, downward, left, right, and diagonal movements.
  • step S302 the imaging control unit 406 starts driving the image sensor of the camera shake correction unit 206. Then, the imaging control unit 406 records the captured image obtained by the camera shake correction unit 206 in a RAM (not shown). Thereafter, if i times of shooting have not been completed, i is incremented, and the process returns to step S301, which is the start of the loop. If i times of shooting have been completed, the process proceeds to step S303.
  • step S303 the image processing unit of the camera shake correction unit 206 generates a super-resolution image by synthesizing i captured images obtained by i times of shooting. Thereafter, the process of FIG. 12 ends.
  • FIG. 14 is a flowchart illustrating super-resolution imaging processing with camera shake correction.
  • the imaging control unit 406 performs a loop process for repeating i times of super-resolution imaging.
  • the imaging control unit 406 instructs the target position generation unit 408 for a target position in order to move the movable unit 303 of the camera shake correction unit 206 to the i-th position.
  • the camera shake detection unit 404 outputs a signal corresponding to the amount of camera shake to the target position generation unit 408.
  • the target position generation unit 408 generates a target position signal by combining both the camera shake correction signal based on the signal corresponding to the amount of camera shake from the camera shake detection unit 404 and the signal corresponding to the target position from the imaging control unit 406.
  • the drive control unit 412 moves the movable unit 303 to the target position in accordance with the drive signal generated based on the deviation signal between the target position signal and the current position signal.
  • the drive signal generated in step S401 takes into account the amount of camera shake. Therefore, even if camera shake or the like occurs, or without using a highly accurate position detection element, it is possible to move the movable portion 303 to the target position correctly.
  • step S402 the imaging control unit 406 starts driving the image sensor of the camera shake correction unit 206. Then, the imaging control unit 406 records the captured image obtained by the camera shake correction unit 206 in a RAM (not shown). Thereafter, if i times of shooting have not been completed, i is incremented, and the process returns to step S401, which is the start of the loop. If i times of shooting have been completed, the process proceeds to step S403.
  • step S403 the image processing unit of the camera shake correction unit 206 generates a super-resolution image by synthesizing i captured images obtained by i times of shooting. Thereafter, the process of FIG. 14 ends.
  • the position detection resolution of the position detection unit 402 in the super-resolution imaging mode is set so that the deviation amount with respect to the target position of the movable unit 303 is equal to or less than the pixel shift amount.
  • the accuracy of the position control of the movable part 303 can be improved, and it is possible to perform photographing in a state where the position of the movable part 303 is set to an accurate position in each photographing in the super-resolution photographing mode. Therefore, a high-resolution super-resolution image can be generated without using a highly accurate position detection element.
  • the present invention has been described above based on the embodiments, but the present invention is not limited to the above-described embodiments, and various modifications and applications are naturally possible within the scope of the present invention.
  • the above-described configuration of the camera shake correction unit 206 is an example and can be changed as appropriate.
  • the VCM configuration may be different.
  • the super-resolution target resolution is calculated every time the imaging apparatus 1 is turned on.
  • the super-resolution target resolution can be set if the pixel pitch of the image sensor is determined. Therefore, the super-resolution target resolution may be calculated and stored in the setting unit 416 at the time of manufacturing the imaging apparatus 1, and thereafter, the stored super-resolution target resolution may be used.
  • each process according to the above-described embodiment can be stored as a program that can be executed by a CPU or the like as a computer.
  • the data can be stored and distributed in a storage medium of an external storage device such as a memory card, a magnetic disk, an optical disk, or a semiconductor memory.
  • the CPU or the like can execute the above-described processing by reading a program stored in the storage medium of the external storage device and controlling the operation by the read program.

Abstract

 撮像装置(1)は、撮像素子を有する可動部をコイルと磁石とを用いて固定部に対して移動させる手ぶれ補正ユニット(206)と、可動部の位置を検出する位置検出部(402)と、位置検出部(402)による位置の検出の分解能を第1の分解能又は前記第1の分解能より高い分解能であって目標位置に対する偏差量が画素ずらし量以下となる第2の分解能に設定する設定部(416)と、設定部(416)によって設定された第2の分解能で可動部を移動させる画素ずらしを複数回行う駆動制御部(412)と、画素ずらしのタイミングで撮像素子による撮像を実行させ、撮像により得られた複数の撮像画像を合成させる撮影制御部(406)とを含む。

Description

撮像装置
 本発明は、手ぶれ補正ユニットを備えた撮像装置に関する。
 撮像素子を移動させることで手ぶれ等に起因して撮像画像に生じる像ぶれを抑制する手ぶれ補正ユニットが知られている。近年、このような手ぶれ補正ユニットによる撮像素子の移動機能を手ぶれ補正以外に用いるようにした各種の提案がなされている。例えば、日本国特開2014-224940号公報において提案されている撮像装置は、撮像素子を移動させることによって被写体像の結像位置を変化させることで、手ぶれの補正とともに光学的なローパスフィルタ効果を得るものである。この日本国特開2014-224940号公報の撮像装置は、撮像素子の位置制御を高い精度で行うことができるように、撮像素子の位置を検出する位置検出部からの位置検出信号に撮像素子の微振動成分を表した変調信号を重畳して重畳位置信号を生成し、この重畳位置信号に基づいて撮像素子の位置制御を行うようにしている。
 手ぶれ補正ユニットは、超解像撮影にも利用され得る。手ぶれ補正ユニットを利用した超解像撮影は、撮像素子を画素ピッチ以下の単位でずらしながら複数回の撮影を行い、複数回の撮影によって得られた撮像画像を合成して超解像画像を生成する処理である。このような超解像撮影をするためには、非常に高い精度で撮像素子の位置制御をする必要がある。しかしながら、日本国特開2014-224940号公報の技術で超解像撮影を実施するためには、位置検出系をより高精度化する必要が生じる。
 本発明は、前記の事情に鑑みてなされたもので、高精度の位置検出素子を用いることなく、高精度に手ぶれ補正ユニットの位置制御をして超解像撮影が可能な撮像装置を提供することを目的とする。
 本発明の一態様の撮像装置は、撮像素子を有する可動部をコイルと磁石とを用いて固定部に対して移動させる手ぶれ補正ユニットと、前記可動部の位置を検出する位置検出部と、前記位置検出部による位置の検出の分解能を第1の分解能又は前記第1の分解能より高い分解能であって目標位置に対する偏差量が画素ずらし量以下となる第2の分解能に設定する設定部と、前記設定部によって設定された前記第2の分解能で前記可動部を駆動する画素ずらしを複数回行う駆動制御部と、前記画素ずらしのタイミングで前記撮像素子による撮像を実行させ、撮像により得られた複数の撮像画像を合成させる撮影制御部とを具備する。
 本発明によれば、高精度の位置検出素子を用いることなく、高精度に手ぶれ補正ユニットの位置制御をして超解像撮影が可能な撮像装置を提供することができる。
図1は、本発明の一実施形態に係る撮像装置の概略の構成を示す図である。 図2は、手ぶれ補正ユニットの組み立て状態の図を示している。 図3は、手ぶれ補正ユニットの分解斜視図である。 図4は、可動部におけるホール素子の配置を示した図である。 図5は、本発明の一実施形態に係る撮像装置の機能ブロック図である。 図6は、本発明の一実施形態に係る撮像装置の動作を示すフローチャートである。 図7は、超解像用分解能への設定処理を示すフローチャートである。 図8は、画素ずらしの概念を示す図である。 図9は、予め定められた目標位置1から0.5画素ピッチだけ離れた別の目標位置2まで可動部を移動させる際の位置検出信号の変化を示した図である。 図10は、静止画用増幅率でホール素子からの位置検出信号を増幅したときの可動部の実際の位置と位置検出信号との関係を示す図である。 図11は、超解像用増幅率でホール素子からの位置検出信号を増幅したときの可動部の実際の位置と位置検出信号との関係を示す図である。 図12は、超解像撮影の処理を示すフローチャートである。 図13Aは、超解像撮影の目標位置の例を示す図である。 図13Bは、超解像撮影の目標位置の例を示す図である。 図14は、手ぶれ補正を伴う超解像撮影の処理を示すフローチャートである。
 以下、図面を参照して本発明の実施形態を説明する。図1は、本実施形態に係る撮像装置の概略の構成を示す図である。図1に示す撮像装置1は、交換レンズ100と、本体200とを有している。交換レンズ100は、本体200に設けられたマウント202を介して本体200に装着される。交換レンズ100が本体200に装着されることによって、交換レンズ100と本体200とは通信自在に接続される。これにより、交換レンズ100と本体200とは協働して動作する。なお、撮像装置1は、必ずしもレンズ交換式の撮像装置でなくて良い。例えば、撮像装置1は、レンズ一体型の撮像装置であっても良い。
 交換レンズ100は、光学系102を有している。光学系102は、例えば複数のレンズ及び絞りを含み、図示しない被写体からの光束を本体200の手ぶれ補正ユニット206に入射させる。図1の光学系102は、複数のレンズによって構成されているが、光学系102は、1枚のレンズで構成されていても良い。また、光学系102は、フォーカスレンズを有していても良いし、ズームレンズとして構成されていても良い。これらの場合、光学系102の少なくとも一部のレンズは、光軸Oに沿った方向であるZ方向に沿って移動自在に構成されている。
 本体200は、シャッタ204と、手ぶれ補正ユニット206と、モニタ208と、操作部210とを有している。
 シャッタ204は、例えば手ぶれ補正ユニット206の前側(Z方向の正の側とする)に配置されるフォーカルプレーンシャッタである。このシャッタ204は、開かれることにより、手ぶれ補正ユニット206を露出状態にする。また、シャッタ204は、閉じられることにより、手ぶれ補正ユニット206を遮光状態にする。
 手ぶれ補正ユニット206は、図示しない被写体を撮像することによって被写体に係る撮像画像を生成する。また、手ぶれ補正ユニット206は、可動部をコイルと磁石とを用いたVCM(ボイスコイルモータ)によって固定部に対して移動させることにより、手ぶれ等によって撮像画像に生じる像ぶれを補正する。手ぶれ補正ユニット206の構成については後で詳しく説明する。
 モニタ208は、例えば液晶ディスプレイであり、手ぶれ補正ユニット206で生成された撮像画像に基づく画像を表示する。また、モニタ208は、ユーザが撮像装置1の各種の設定を行うためのメニュー画面を表示する。なお、モニタ208は、タッチパネルを有していても良い。
 操作部210は、例えばレリーズボタンである。レリーズボタンは、ユーザが撮像装置1による撮影開始を指示するためのボタンである。なお、操作部210は、レリーズボタン以外の各種の操作部も含む。
 次に、手ぶれ補正ユニット206の構成についてさらに説明する。図2は、手ぶれ補正ユニット206の組み立て状態の図を示している。図2に示すように、手ぶれ補正ユニット206は、概略的には、2つの固定部301、302と、固定部301及び302の間に挟まれるように配置された可動部303とによって構成されている。このような構成において、手ぶれ補正ユニット206は、可動部303を光軸Oに対して垂直な面内(図3のX方向及びY方向)で平行移動させる。また、手ぶれ補正ユニット206は、可動部303を光軸Oの周りの回転方向に移動させる。
 まず、手ぶれ補正ユニット206における可動部303の移動に関する構成について説明する。図3は、手ぶれ補正ユニット206の分解斜視図である。図3に示すように、可動部303から見てモニタ208の側に配置される固定部301は、略長方形状の板部材であって本体200に固定されている。この固定部301の外周には、X方向移動用の磁石3011と、X方向及びY方向の両方の移動用の磁石3012とがそれぞれ接着されている。
 磁石3011は、Y方向が長手方向である直方体状であって可動部303の側にN極が向くように配置された第1の磁石と、長手方向であるY方向の長さが第1の磁石よりも短い直方体状であって可動部303の側にS極が向くように配置された第2の磁石とを有している。固定部301の第2の磁石は、可動部303から見て第1の磁石の右側面中央部に隣接するように配置されている。また、磁石3012は、Y方向が長手方向である直方体状であって可動部303の側にN極が向くように配置された第1の磁石と、Y方向の長さが第1の磁石よりも短く、X方向が長手方向である直方体状であって可動部303の側にS極が向くように配置された第2の磁石とを有している。第2の磁石は、可動部303から見て第1の磁石の右側面中央部に隣接するように配置されている。
 磁石3012は、長手方向であるX方向の長さが第2の磁石よりも短い直方体状であって可動部303の側にN極が向くように配置された第3の磁石を有している。第3の磁石は、可動部303から見て第2の磁石の下側面に配置されている。すなわち、磁石3012を構成する第2の磁石は、第1の磁石との組合せによってX方向移動用の磁石として機能するとともに、第3の磁石との組合せによってY方向移動用の磁石として機能する。
 可動部303から見てシャッタ204の側に配置される固定部302は、可動部303の撮像素子ユニット3034を保持するための開口が形成された略L字状の板部材である。固定部302における固定部301の磁石3011及び3012と対応する位置には、X方向移動用の磁石3021と、X方向及びY方向の両方の移動用の磁石3022とがそれぞれ接着されている。磁石3021は、磁石3011と同一の構成を有しており、磁石3011に対して異極が向くように配置されている。磁石3022は、磁石3012と同一の構成を有しており、磁石3012に対して異極が向くように配置されている。
 可動部303は、固定部302と同様の撮像素子ユニット3034を搭載するための開口が形成された略L字状の板部材である。この可動部303の外周部には、X方向移動用のコイル3031及び3032aと、Y方向移動用のコイル3032bとが配置されている。コイル3031は、可動部303のY方向に延びている板状部における磁石3011と磁石3021とに対応する位置に配置されている。コイル3032aは、可動部303のY方向に延びている板状部における磁石3012及び磁石3022の第1の磁石と第2の磁石とに対応する位置に配置されている。コイル3032bは、可動部303のX方向に延びている板状部における磁石3012及び磁石3022の第2の磁石と第3の磁石とに対応する位置に配置されている。
 また、可動部303の開口には、撮像素子ユニット3034が搭載されている。撮像素子ユニット3034は、撮像素子及びその制御回路を含むユニットである。本実施形態における撮像素子ユニット3034は、撮像素子と、信号処理部と、A/D変換部と、画像処理部とを有する。撮像素子は、被写体を撮像して被写体に係る撮像画像信号を生成する。信号処理部は、撮像画像信号に対して増幅処理等のアナログ処理を施す。A/D変換部は、信号処理部で処理された撮像画像信号をデジタル信号に変換する。画像処理部は、撮像画像信号に対して画像処理を施して撮像画像を生成する。また、画像処理部は、複数の撮像画像を合成して超解像画像を生成することも行う。
 さらに、固定部301には2つのねじ受け3015が形成されており、固定部302のねじ受け3015と対応する部分には、ねじ受け穴3025が形成されている。そして、固定部302は、固定部301との間に可動部303を挟んだ状態でねじ止め固定される。このとき、コイル3031、コイル3032a及び3032bと、磁石3011、磁石3012、磁石3021、磁石3022とは、所定の間隔を維持した非接触状態になっている。
 このような構成において、コイル3031、3032a、3032bの何れかに対する通電が開始されると、可動部303は、固定部301と固定部302との間で浮遊状態となる。この状態でコイル3031、3032a、3032bに通電する駆動電流の大きさを制御することで、可動部303は平行移動又は回転する。
 次に、可動部303の位置検出に係る構成について説明する。固定部301には、3つの位置検出磁石3013が配置されている。位置検出磁石3013のうちの1つは、固定部301の上部に配置されている。また、位置検出磁石3013のうちの1つは、固定部301の下部に配置されている。また、位置検出磁石3013のうちの1つは、固定部301の左部に配置されている。さらに、可動部303の裏面の位置検出磁石3013に対応する位置には、図4に示すように3つのホール素子3033が設けられている。固定部301の上部に設けられた位置検出磁石3013と可動部303の上部に設けられたホール素子3033との対によって可動部303のX方向の第1の変位量を磁界の変化量として検出する。また、固定部301の下部に設けられた位置検出磁石3013と可動部303の下部に設けられたホール素子3033との対によって可動部303のX方向の第2の変位量を磁界の変化量として検出する。また、固定部301の左部に設けられた位置検出磁石3013と可動部303の左部に設けられたホール素子3033との対によって可動部303のY方向の変位量を磁界の変化量として検出する。そして、それぞれのホール素子3033で検出される信号の差異により、可動部303の位置は検出される。
 図5は、本実施形態に係る撮像装置1の機能ブロック図である。本実施形態における撮像装置1は、手ぶれ補正、通常静止画撮影、超解像撮影を行う。手ぶれ補正は、手ぶれ等に起因して撮像画像に生じる像ぶれを抑制するように可動部303を移動させる処理である。通常静止画撮影は、1回の撮影を行って1枚の撮像画像を得る処理である。超解像撮影は、可動部303を画素ピッチ以下の画素ずらし量だけずらしながら複数回の撮影を行い、複数回の撮影によって得られた複数の撮像画像を合成することにより、本来の撮像素子の画素数よりも高解像度の撮像画像を得る処理である。
 図5に示すように、撮像装置1は、手ぶれ補正ユニット206と、位置検出部402と、手ぶれ検出部404と、撮影制御部406と、目標位置生成部408と、減算部410と、駆動制御部412と、判断部414と、設定部416とを機能ブロックとして有している。これらの各機能ブロックのうち、撮影制御部406と、目標位置生成部408と、減算部410と、駆動制御部412と、判断部414と、設定部416とは、CPUやASIC等によって構成される。
 位置検出部402は、手ぶれ補正ユニット206のホール素子3033からの位置検出信号を増幅し、増幅した位置検出信号をデジタル信号として取り込むことで可動部303の位置を表す現在位置信号を生成し、生成した現在位置信号を減算部410に出力する。
 手ぶれ検出部404は、撮像装置1の本体200に発生した手ぶれの量を検出し、検出した手ぶれの量に応じた信号を出力する。例えば手ぶれ検出部404は、角速度センサによって手ぶれ量を検出する。この他、手ぶれ検出部404は、手ぶれ補正ユニット206で生成される撮像画像における被写体の動きから手ぶれ量を検出する。
 撮影制御部406は、手ぶれ補正ユニット206の撮像素子の駆動を制御する。また、撮影制御部406は、手ぶれ補正及び/又は超解像撮影を行うか否かを示す信号を目標位置生成部408に出力する。さらに、撮影制御部406は、超解像撮影を実行するときには、超解像撮影のそれぞれの撮影毎に予め定められた目標位置を示す信号を目標位置生成部408に指示する。また、撮影制御部406は、通常静止画撮影を実行するか又は超解像撮影を実行するかを設定部416に指示する。
 目標位置生成部408は、可動部303の位置制御の目標となる目標位置を示す目標位置信号を生成し、生成した目標位置信号を減算部410に出力する。手ぶれ補正が実行されるときには、目標位置生成部408は、手ぶれ検出部404からの手ぶれ量に応じた信号に基づく手ぶれ補正信号に基づいて目標位置信号を生成する。また、超解像撮影が実行されるときには、目標位置生成部408は、撮影制御部406からの目標位置を示す信号に基づいて目標位置信号を生成する。さらに、手ぶれ補正と超解像撮影の両方を実行するときには、目標位置生成部408は、手ぶれ検出部404からの手ぶれ補正信号と撮影制御部406からの目標位置に応じた信号の両方を合わせて(加算して)目標位置信号を生成する。
 減算部410は、目標位置生成部408で生成された目標位置信号と位置検出部402で生成された現在位置信号との偏差信号を駆動制御部412に出力する。
 駆動制御部412は、減算部410から出力された偏差信号に基づいて、手ぶれ補正ユニット206のコイル3031、3032a、3032bに供給する駆動電流を生成し、生成した駆動電流をコイル3031、3032a、3032bに供給することによって可動部303を移動させる。
 判断部414は、手ぶれ検出部404で検出された手ぶれ量に応じて撮像装置1の本体に手ぶれが発生しているか否かを判断し、この判断結果を示す信号を撮影制御部406と設定部416とに出力する。
 設定部416は、位置検出部402における位置検出の分解能を設定する。設定部416は、通常静止画撮影が実行されるときには、位置検出部402における位置検出の分解能を、予め定められた第1の分解能に設定する。一方、設定部416は、超解像撮影が実行されるときには、位置検出部402における位置検出の分解能を、撮像素子の画素ピッチに応じて定められる第2の分解能に設定する。
 以下、撮像装置1の動作を説明する。図6は、撮像装置1の動作を示すフローチャートである。図6の処理は、撮像装置1の電源がオンされた場合に開始される。
 ステップS101において、判断部414は、手ぶれ検出部404で検出された手ぶれ量が基準値以下であるか否かを判定する。この基準値は、像ぶれが生じていると考えられる手ぶれ量の値であって判断部414に予め記憶されているものである。ステップS101において手ぶれ検出部404で検出された手ぶれ量が基準値以下でないと判定された場合に、処理はステップS102に移行する。ステップS101において手ぶれ検出部404で検出された手ぶれ量が基準値以下であると判定された場合に、処理はステップS104に移行する。
 ステップS102において、設定部416は、位置検出部402における位置検出の分解能を第1の分解能である静止画用分解能に設定する。ここで、本実施形態における分解能は、手ぶれ補正ユニット206の各ホール素子3033からデジタルデータとして取り込まれる信号の最下位ビットが示す単位長さ[μm/LSB]のことを言うものとする。静止画用分解能は、通常静止画撮影モード時の分解能であり、例えば、設定部416に固定値として記憶されているものが用いられる。
 ステップS103において、撮影制御部406は、手ぶれ補正モードをオンにする。その後、処理はステップS106に移行する。ステップS101において基準値を超える手ぶれ量である、すなわち大きな像ぶれが発生していると判定されているので、手ぶれ補正モードはオンにされる。これにより、撮像画像に生じる像ぶれは抑制される。
 ステップS104において、設定部416は、位置検出部402における位置検出の分解能を第2の分解能である超解像用分解能に設定する。超解像用分解能は、撮像素子の画素ピッチにより変化する分解能である。超解像用分解能の設定処理については後で詳しく説明する。
 ステップS105において、撮影制御部406は、手ぶれ補正モードをオフにする。その後、処理はステップS106に移行する。ステップS101において基準値を超える手ぶれ量でない、すなわち像ぶれが発生していないと判定されているので、手ぶれ補正モードはオフにされる。
 ステップS106において、撮影制御部406は、撮影モードを設定する。撮影モードは、通常静止画撮影を行うための通常静止画撮影モードと、超解像撮影を行うための超解像撮影モードとを含む。何れの撮影モードとするかは、例えばモニタ208に表示されるメニュー画面上でのユーザの操作によって設定される。
 ステップS107において、撮影制御部406は、ライブビュー表示を行うために、手ぶれ補正ユニット206の撮像素子の駆動を開始する。そして、撮影制御部406は、手ぶれ補正ユニット206で得られた撮像画像をモニタ208に逐次に表示させる。
 ステップS108において、撮影制御部406は、通常静止画撮影の開始が指示されたか否かを判定する。すなわち、撮影制御部406は、現在の撮影モードが通常静止画撮影モードで、かつ、ユーザによって撮影開始の指示が行われたか否かを判定する。撮影開始の指示は、レリーズボタンの押下操作やタッチレリーズ操作である。ステップS108において通常静止画撮影の開始が指示されたと判定された場合に、処理はステップS109に移行する。ステップS108において通常静止画撮影の開始が指示されていないと判定された場合に、処理はステップS110に移行する。
 ステップS109において、撮影制御部406は、通常静止画撮影を行うために、手ぶれ補正ユニット206の撮像素子の駆動を開始する。そして、撮影制御部406は、手ぶれ補正ユニット206で得られた撮像画像を図示しない記録メディアに記録する。その後、処理はステップS116に移行する。なお、説明を省略しているが、手ぶれ補正モードがオンである場合には、通常静止画撮影と併せて手ぶれ補正が行われる。
 ステップS110において、撮影制御部406は、超解像撮影の開始が指示されたか否かを判定する。すなわち、撮影制御部406は、現在の撮影モードが超解像撮影モードで、かつ、ユーザによって撮影開始の指示が行われたか否かを判定する。通常静止画撮影のときと同様、撮影開始の指示は、レリーズボタンの押下操作やタッチレリーズ操作である。ステップS110において超解像撮影の開始が指示されたと判定された場合に、処理はステップS111に移行する。ステップS110において超解像撮影の開始が指示されていないと判定された場合に、処理はステップS116に移行する。
 ステップS111において、設定部416は、位置検出部402における位置検出の分解能を第2の分解能である超解像用分解能に設定する。超解像用分解能の設定処理については後で詳しく説明する。
 ステップS112において、撮影制御部406は、現在、手ぶれ補正モードをオンにしているか否かを判定する。ステップS112において手ぶれ補正モードをオンにしていないと判定された場合に、処理はステップS113に移行する。ステップS112において手ぶれ補正モードをオンにしていると判定された場合に、処理はステップS114に移行する。
 ステップS113において、撮影制御部406は、超解像撮影を行う。超解像撮影の処理については後で詳しく説明する。超解像撮影の終了後、処理はステップS115に移行する。
 ステップS114において、撮影制御部406は、手ぶれ補正を伴う超解像撮影を行う。手ぶれ補正を伴う超解像撮影の処理については後で詳しく説明する。手ぶれ補正を伴う超解像撮影の終了後、処理はステップS115に移行する。
 ステップS115において、設定部416は、位置検出部402における位置検出の分解能を第1の分解能である静止画用分解能に設定する。その後、処理はステップS116に移行する。
 ステップS116において、撮影制御部406は、撮像装置1の電源がオフされたか否かを判定する。ステップS116において撮像装置1の電源がオフされていないと判定された場合に、処理はステップS101に戻る。ステップS116において撮像装置1の電源がオフされたと判定された場合に、図6の処理は終了する。
 次に、超解像用分解能への設定処理について説明する。図7は、超解像用分解能への設定処理を示すフローチャートである。図7の処理は、ステップS104及びS111の両方に対して適用され得る。
 ステップS201において、設定部416は、超解像目標分解能を算出する。以下、超解像目標分解能の算出について説明する。
 図8は、本実施形態における画素ずらしの概念を示している。図8において、画素ピッチは、互いに隣接する画素PIX1と画素PIX2の開口中心間距離Pであるとする。画素ずらしは、画素ピッチの範囲内の画素ずらし量ずつ可動部303(撮像素子)の位置をずらしていく処理である。このため、画素ずらし量は、0<画素ずらし量<画素ピッチの関係を有する。例えば、画素ずらし量を0.5画素ピッチとした場合の画素ずらしは、画素PIX1及び画素PIX2を0.5画素だけ所定方向(図8では右方向)にずらして画素PIX1´及び画素PIX2´とする処理である。
 ここで、VCMによって可動部303の位置制御をする場合、可動部303の目標位置に対する偏差量は、位置検出部402の位置の検出の分解能の3倍以上になる。これは、VCMの原理上、可動部303が微小に振動してしまうためである。この振動により、目標位置を基準として正方向と負方向のそれぞれに位置の偏差が生じるので、可動部303の目標位置に対する偏差量は位置検出部402の位置検出の分解能の3倍以上になる。
 図9は、予め定められた目標位置1から0.5画素ピッチだけ離れた別の目標位置2まで可動部303を移動させる際の位置検出信号の変化を示した図である。VCMによって可動部303を移動させる場合に生じる偏差により、可動部303の位置が目標位置1であることを示す位置検出信号が出力されていたとしても、実際の可動部303の位置は、図9の偏差量1の範囲で変化している。この状態で撮影が行われると、撮像画像は、目標位置1を基準とした偏差量1の範囲内の何れかの位置で撮像された画像となる。
 同様に、可動部303の位置が目標位置2であることを示す位置検出信号が出力されていたとしても、実際の可動部303の位置は、図9の偏差量2の範囲で変化している。この状態で撮影が行われると、撮像画像は、目標位置2を基準とした偏差量2の範囲内の何れかの位置で撮像された画像となる。
 ここで、偏差量が画素ずらし量よりも大きい場合、図9のAで示したような可動部303の位置の重なりが生じることにより、画素ずらしの前後で実際の可動部303の位置が逆転する可能性がある。可動部303の位置が逆転した状態で2回の撮影が行われると、最初の撮影で撮像素子が画素PIX1´及びPIX2´にあるときの撮像画像が取得され、次の撮影で撮像素子が画素PIX1及びPIX2の撮像画像が取得される。このような撮像画像を合成してしまうと最終的に得られる超解像画像における解像度の低下につながる。
 したがって、本実施形態では、偏差量を画素ずらし量よりも小さくするように超解像目標分解能(超解像撮影時における位置検出部402の位置の検出の分解能)を設定する。具体的には、超解像分解能を、画素ずらし量の1/3以下にする。このようにすることで、VCMによる移動によって可動部303の目標位置に対して分解能の3倍以上の偏差が生じたとしても、可動部303の実際の位置を画素ピッチ内に収めることが可能である。
 さらに、最終的に正しい目標位置に可動部303を移動させるためには、超解像目標分解能は、画素ずらし量の整数分の1である必要もある。したがって、設定部416は、超解像分解能を、画素ずらし量の1/3以下、かつ、画素ずらし量の整数分の1にする。画素ずらし量が0.5画素ピッチの場合、設定部416は、例えば超解像分解能を0.5画素ピッチ/3[μm/LSB]に設定する。なお、偏差量は、位置の検出の分解能の3倍よりも大きくなる可能性があるので、超解像分解能は、画素ずらし量の4よりも大きい整数分の1にすることが好ましい。
 ここで、図7の説明に戻る。ステップS202において、設定部416は、静止画用増幅率と静止画用分解能とをそれぞれ取得する。静止画用増幅率は、通常静止画撮影モード時の位置検出部402によるホール素子3033からの位置検出信号の増幅率であって、例えば、位置検出部402に固定値として記憶されているものが用いられる。
 ステップS203において、設定部416は、超解像用増幅率を算出する。超解像用増幅率は、超解像撮影モード時の位置検出部402によるホール素子3033からの位置検出信号の増幅率である。超解像用増幅率は、例えば以下のように算出される。 
   (超解像用増幅率[倍])=(静止画用増幅率[倍])×(静止画用分解能[μm/LSB])/(超解像目標分解能[μm/LSB])
 図10は、静止画用増幅率でホール素子3033からの位置検出信号を増幅したときの可動部303の実際の位置と位置検出信号との関係を示す図である。一方、図11は、超解像用増幅率でホール素子3033からの位置検出信号を増幅したときの可動部303の実際の位置と位置検出信号との関係を示す図である。上記の式から明らかなように、超解像用増幅率は、静止画用増幅率よりも大きな値になる。このような超解像用増幅率によって位置検出信号を増幅することにより、偏差量を画素ずらし量以下とすることができる。これにより、解像度の高い超解像画像を生成することが可能である。
 ステップS204において、設定部416は、算出した超解像用増幅率を位置検出部402に設定する。その後、図7の処理は終了する。
 次に、超解像撮影の処理について説明する。図12は、超解像撮影の処理を示すフローチャートである。
 撮影制御部406は、i回の超解像撮影を繰り返すためのループ処理を行う。まず、ステップS301において、撮影制御部406は、手ぶれ補正ユニット206の可動部303を第i位置に移動させるために、目標位置生成部408に対して目標位置を指示する。これを受けて、目標位置生成部408は、目標位置信号を生成する。そして、駆動制御部412は、目標位置信号と現在位置信号との偏差信号に基づいて生成した駆動信号に従って可動部303を目標位置まで移動させる。ここで、超解像撮影の目標位置は、例えば予め設定されている固定値が用いられる。図13A及び図13Bは、超解像撮影の目標位置の例を示している。図13Aは、初期位置1(i=0に対応)から8回に分けて正方形状に可動部303を移動させる例である。この例では、i=0からi=7の8個の目標位置が設定される。一方、図13Bは、可動部303の斜め方向の移動も組み入れ、初期位置1から9回に分けて可動部303を移動させる例である。この例では、i=0からi=8の9個の目標位置が設定される。図13A及び図13Bの設定はあくまでも一例である。上、下、左、右、斜め方向の移動の組み合わせによって構成されていれば、目標位置をどのように設定するかは特に限定されない。
 ステップS302において、撮影制御部406は、手ぶれ補正ユニット206の撮像素子の駆動を開始する。そして、撮影制御部406は、手ぶれ補正ユニット206で得られた撮像画像を図示しないRAMに記録する。その後、i回の撮影が終了していなければ、iがインクリメントされ、処理はループの開始であるステップS301に戻る。i回の撮影が終了してれば、処理はステップS303に移行する。
 ステップS303において、手ぶれ補正ユニット206の画像処理部は、i回の撮影によって得られたi枚の撮像画像を合成して超解像画像を生成する。その後、図12の処理は終了する。
 次に、手ぶれ補正を伴う超解像撮影について説明する。図14は、手ぶれ補正を伴う超解像撮影の処理を示すフローチャートである。
 撮影制御部406は、i回の超解像撮影を繰り返すためのループ処理を行う。まず、ステップS401において、撮影制御部406は、手ぶれ補正ユニット206の可動部303を第i位置に移動させるために、目標位置生成部408に対して目標位置を指示する。一方、手ぶれ補正モードがオンになっているとき、手ぶれ検出部404は、手ぶれ量に応じた信号を目標位置生成部408に対して出力する。目標位置生成部408は、手ぶれ検出部404からの手ぶれ量に応じた信号に基づく手ぶれ補正信号と撮影制御部406からの目標位置に応じた信号の両方を合わせて目標位置信号を生成する。そして、駆動制御部412は、目標位置信号と現在位置信号との偏差信号に基づいて生成した駆動信号に従って可動部303を目標位置まで移動させる。ステップS401で生成される駆動信号は、手ぶれ量を考慮したものである。したがって、手ぶれ等が発生していても、また、高精度の位置検出素子を用いなくとも、可動部303を正しく目標位置まで移動させることが可能である。
 ステップS402において、撮影制御部406は、手ぶれ補正ユニット206の撮像素子の駆動を開始する。そして、撮影制御部406は、手ぶれ補正ユニット206で得られた撮像画像を図示しないRAMに記録する。その後、i回の撮影が終了していなければ、iがインクリメントされ、処理はループの開始であるステップS401に戻る。i回の撮影が終了してれば、処理はステップS403に移行する。
 ステップS403において、手ぶれ補正ユニット206の画像処理部は、i回の撮影によって得られたi枚の撮像画像を合成して超解像画像を生成する。その後、図14の処理は終了する。
 以上説明したように本実施形態によれば、超解像撮影モードのときの位置検出部402の位置の検出の分解能を、可動部303の目標位置に対する偏差量が画素ずらし量以下となる分解能にするようにしている。これにより、可動部303の位置制御の精度を向上させることができ、超解像撮影モードの個々の撮影において可動部303の位置を正確な位置とした状態で撮影することが可能である。したがって、また、高精度の位置検出素子を用いなくとも、高解像度の超解像画像を生成することができる。
 以上実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。例えば、前述した手ぶれ補正ユニット206の構成は一例であって適宜変更され得る。例えば、VCMの構成が異なっていても良い。また、前述した実施形態では、撮像装置1の電源がオンされる毎に超解像目標分解能の算出が行われる。超解像目標分解能は、撮像素子の画素ピッチが決まれば設定できるものである。したがって、撮像装置1の製造時に超解像目標分解能を算出して設定部416に記憶させておき、それ以後は記憶された超解像目標分解能が用いられるように構成されても良い。
 また、前述した実施形態による各処理は、コンピュータとしてのCPU等に実行させることができるプログラムとして記憶させておくこともできる。この他、メモリカード、磁気ディスク、光ディスク、半導体メモリ等の外部記憶装置の記憶媒体に格納して配布することができる。そして、CPU等は、この外部記憶装置の記憶媒体に記憶されたプログラムを読み込み、この読み込んだプログラムによって動作が制御されることにより、上述した処理を実行することができる。

Claims (6)

  1.  撮像素子を有する可動部をコイルと磁石とを用いて固定部に対して移動させる手ぶれ補正ユニットと、
     前記可動部の位置を検出する位置検出部と、
     前記位置検出部による位置の検出の分解能を第1の分解能又は前記第1の分解能より高い分解能であって目標位置に対する偏差量が画素ずらし量以下となる第2の分解能に設定する設定部と、
     前記設定部によって設定された前記第2の分解能で前記可動部を移動させる画素ずらしを複数回行う駆動制御部と、
     前記画素ずらしのタイミングで前記撮像素子による撮像を実行させ、撮像により得られた複数の撮像画像を合成させる撮影制御部と、
     を具備する撮像装置。
  2.  前記可動部の移動量は前記画素ずらしの量に相当する量であって、前記第2の分解能は、前記画素ずらしの量の整数分の1になるように設定される請求項1に記載の撮像装置。
  3.  前記第1の分解能に設定されている際の前記偏差量は、前記第1の分解能の3倍以上であり、前記第2の分解能に設定されている際の前記偏差量は、前記第2の分解能の3倍以上である請求項1記載の撮像装置。
  4.  前記設定部は、超解像画像を取得するための超解像撮影モードにおける撮影開始時に前記位置の検出の分解能を前記第2の分解能に設定する請求項3に記載の撮像装置。
  5.  手ぶれ検出部と、
     前記手ぶれ検出部の出力信号に基づいて手ぶれ補正するか否かを判断する判断部と、
     を含み、
     前記設定部は、手ぶれ補正しないと判断されたときに前記位置の検出の分解能を前記第2の分解能に設定する請求項1に記載の撮像装置。
  6.  手ぶれ検出部と、
     手ぶれ検出部の出力信号と前記画素ずらしの量とに基づいて前記可動部の移動量を設定する目標位置設定部と、
     を含み、
     前記設定部は、前記目標位置設定部によって設定された目標位置に対する偏差量が前記画素ずらし量以下となるように前記第2の分解能を設定する請求項1に記載の撮像装置。
PCT/JP2015/070711 2015-02-19 2015-07-21 撮像装置 WO2016132571A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15882672.7A EP3261329A4 (en) 2015-02-19 2015-07-21 Image capturing device
CN201580002020.5A CN106068643B (zh) 2015-02-19 2015-07-21 摄像装置
US15/060,554 US9769384B2 (en) 2015-02-19 2016-03-03 Imaging apparatus capable of detecting position of movable image pickup device at first resolving power and at second resolving power higher than first resolving power and, at which second resolving power, deviation amount is less than or equal to pixel shift amount

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-030903 2015-02-19
JP2015030903A JP5914716B1 (ja) 2015-02-19 2015-02-19 撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/060,554 Continuation US9769384B2 (en) 2015-02-19 2016-03-03 Imaging apparatus capable of detecting position of movable image pickup device at first resolving power and at second resolving power higher than first resolving power and, at which second resolving power, deviation amount is less than or equal to pixel shift amount

Publications (1)

Publication Number Publication Date
WO2016132571A1 true WO2016132571A1 (ja) 2016-08-25

Family

ID=55951971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070711 WO2016132571A1 (ja) 2015-02-19 2015-07-21 撮像装置

Country Status (5)

Country Link
US (1) US9769384B2 (ja)
EP (1) EP3261329A4 (ja)
JP (1) JP5914716B1 (ja)
CN (1) CN106068643B (ja)
WO (1) WO2016132571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310426B2 (en) 2017-08-01 2022-04-19 Sony Semiconductor Solutions Corporation Control device, controlling method, and imaging apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476286B (zh) * 2016-10-17 2020-09-08 华为技术有限公司 一种图像输出方法以及电子设备
JP6755807B2 (ja) * 2017-01-16 2020-09-16 オリンパス株式会社 駆動装置及び駆動装置の制御方法
KR102514487B1 (ko) * 2018-06-07 2023-03-27 엘지이노텍 주식회사 카메라 모듈 및 그의 깊이 정보 추출 방법
JP6872080B2 (ja) * 2018-07-27 2021-05-19 富士フイルム株式会社 撮像装置
CN112369009B (zh) * 2018-08-08 2022-06-07 谷歌有限责任公司 用于创建场景的超分辨率图像的光学图像稳定移动
JP2020056953A (ja) * 2018-10-03 2020-04-09 キヤノン株式会社 防振装置、画像処理装置、及び検出方法
JP7236847B2 (ja) 2018-11-21 2023-03-10 オリンパス株式会社 内視鏡システム
JP7248415B2 (ja) 2018-12-04 2023-03-29 オリンパス株式会社 内視鏡システム、プロセッサ
JP2020096301A (ja) 2018-12-13 2020-06-18 オリンパス株式会社 撮像装置
JP7166957B2 (ja) 2019-02-27 2022-11-08 オリンパス株式会社 内視鏡システム、プロセッサ、キャリブレーション装置、内視鏡
JP7304193B2 (ja) 2019-04-10 2023-07-06 Omデジタルソリューションズ株式会社 追尾装置および追尾方法
JP7008243B2 (ja) * 2019-06-07 2022-01-25 パナソニックIpマネジメント株式会社 撮像装置
KR102414840B1 (ko) * 2020-11-09 2022-06-30 삼성전기주식회사 틸트리스 ois 회로 및 장치
KR20230008402A (ko) * 2021-07-07 2023-01-16 엘지이노텍 주식회사 카메라 장치 및 광학 기기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138461A (ja) * 1997-07-18 1999-02-12 Canon Inc 支持状態判定装置及び像振れ補正装置
JP2000013670A (ja) * 1998-06-22 2000-01-14 Canon Inc 撮像装置及び撮像装置の制御方法
JP2012217179A (ja) * 2012-05-29 2012-11-08 Olympus Imaging Corp 撮像ユニットおよび撮像装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044106B2 (ja) * 1991-10-09 2000-05-22 キヤノン株式会社 像ぶれ防止機能付カメラ
JP2002218328A (ja) * 2001-01-19 2002-08-02 Ricoh Co Ltd 画像入力装置、画像入力方法、およびその方法を実行するためのプログラムを格納したことを特徴とするコンピュータが読み取り可能な記録媒体
JP4072348B2 (ja) * 2002-01-25 2008-04-09 キヤノン株式会社 振れ補正装置、撮像装置、振れ補正方法、振れ補正装置の制御プログラム、及び記憶媒体
JP2007017706A (ja) * 2005-07-07 2007-01-25 Matsushita Electric Ind Co Ltd カメラモジュール
JP2007189502A (ja) * 2006-01-13 2007-07-26 Matsushita Electric Ind Co Ltd 撮像素子駆動装置およびそれを用いた撮影装置
JP4991497B2 (ja) * 2007-11-28 2012-08-01 三星電子株式会社 像ぶれ補正装置
US8077247B2 (en) * 2007-12-07 2011-12-13 Fujinon Corporation Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
JP5274130B2 (ja) * 2008-07-15 2013-08-28 キヤノン株式会社 像振れ補正装置及び光学機器、撮像装置並びに像振れ補正装置の制御方法
JP2010063088A (ja) 2008-08-08 2010-03-18 Sanyo Electric Co Ltd 撮像装置
JP5404256B2 (ja) * 2009-08-31 2014-01-29 キヤノン株式会社 振れ補正装置および撮像装置
JP5120356B2 (ja) * 2009-10-13 2013-01-16 株式会社ニコン 撮像装置
JP2011123360A (ja) * 2009-12-11 2011-06-23 Hoya Corp 光学要素の位置制御装置
US9288395B2 (en) * 2012-11-08 2016-03-15 Apple Inc. Super-resolution based on optical image stabilization
JP6268749B2 (ja) 2013-05-17 2018-01-31 リコーイメージング株式会社 撮影装置
GB2516918A (en) * 2013-08-06 2015-02-11 St Microelectronics Res & Dev Method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138461A (ja) * 1997-07-18 1999-02-12 Canon Inc 支持状態判定装置及び像振れ補正装置
JP2000013670A (ja) * 1998-06-22 2000-01-14 Canon Inc 撮像装置及び撮像装置の制御方法
JP2012217179A (ja) * 2012-05-29 2012-11-08 Olympus Imaging Corp 撮像ユニットおよび撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3261329A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310426B2 (en) 2017-08-01 2022-04-19 Sony Semiconductor Solutions Corporation Control device, controlling method, and imaging apparatus

Also Published As

Publication number Publication date
JP2016152602A (ja) 2016-08-22
JP5914716B1 (ja) 2016-05-11
EP3261329A1 (en) 2017-12-27
CN106068643B (zh) 2019-06-28
US20160248978A1 (en) 2016-08-25
US9769384B2 (en) 2017-09-19
EP3261329A4 (en) 2018-08-15
CN106068643A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5914716B1 (ja) 撮像装置
JP5259851B1 (ja) 位置制御装置
WO2013145482A1 (ja) 位置検出装置及び位置制御装置
JP4513879B2 (ja) 像ぶれ補正装置、レンズ鏡筒装置及びカメラ装置
US9332184B2 (en) Image-shake correction apparatus and imaging apparatus incorporating the same
JP2007323030A (ja) 撮像装置及びその制御方法、画像処理装置、画像処理方法、撮像システム並びにプログラム
JP6470478B2 (ja) 撮像装置及び撮像制御方法
US9749538B2 (en) Imaging apparatus
JP4875971B2 (ja) 撮影装置及びその調整方法
JP2006337680A (ja) 駆動装置、振れ補正ユニット及び撮像装置
KR20150061561A (ko) 상 흔들림 보정 장치 및 그 제어 방법
JP6099404B2 (ja) ぶれ補正装置及びそれを備えた撮像装置
JP6558891B2 (ja) 像振れ補正装置および撮像装置
JP6614852B2 (ja) 撮像装置
JP2009180990A (ja) カメラおよび交換レンズ
JP5427264B2 (ja) 可動部材制御装置及びそれを備えた撮像装置
JP2013073201A (ja) 像振れ補正装置及びそれを備えた撮像装置
JP6099405B2 (ja) ぶれ補正装置及びそれを備えた撮像装置
JP5788280B2 (ja) 像振れ補正装置及びそれを備えた撮像装置
JP5487643B2 (ja) カメラ
JP2010026172A (ja) レンズ鏡筒、レンズ鏡筒の調整方法、光学装置、および光学装置の調整方法
JP4941569B2 (ja) 像ぶれ補正装置、レンズ鏡筒装置及びカメラ装置
JP6308381B2 (ja) 位置検出用装置、位置補正装置及び撮影装置
JP2013246413A (ja) 像ぶれ補正装置及び撮像装置
JP2008224723A (ja) 手振れ補正装置及びそれを備えた光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015882672

Country of ref document: EP