WO2016132542A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2016132542A1
WO2016132542A1 PCT/JP2015/054846 JP2015054846W WO2016132542A1 WO 2016132542 A1 WO2016132542 A1 WO 2016132542A1 JP 2015054846 W JP2015054846 W JP 2015054846W WO 2016132542 A1 WO2016132542 A1 WO 2016132542A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
ferrite
Prior art date
Application number
PCT/JP2015/054846
Other languages
English (en)
French (fr)
Inventor
龍雄 横井
吉田 充
杉浦 夏子
洋志 首藤
脇田 昌幸
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to ES15882644T priority Critical patent/ES2743814T3/es
Priority to PCT/JP2015/054846 priority patent/WO2016132542A1/ja
Priority to US15/538,404 priority patent/US11401571B2/en
Priority to JP2017500251A priority patent/JP6327395B2/ja
Priority to PL15882644T priority patent/PL3260565T3/pl
Priority to BR112017013229-0A priority patent/BR112017013229A2/ja
Priority to KR1020177018427A priority patent/KR101957078B1/ko
Priority to MX2017008622A priority patent/MX2017008622A/es
Priority to CN201580075484.9A priority patent/CN107208209B/zh
Priority to EP15882644.6A priority patent/EP3260565B1/en
Priority to TW105105139A priority patent/TWI602933B/zh
Publication of WO2016132542A1 publication Critical patent/WO2016132542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a hot-rolled steel sheet, and more particularly, to a hot-rolled steel sheet using a transformation-induced plasticity (TRIP) phenomenon.
  • TRIP transformation-induced plasticity
  • Patent Documents 1 to 11 describe high-strength steel sheets for the purpose of improving formability and the like. However, these conventional techniques cannot provide a hot-rolled steel sheet having sufficient strength and sufficient formability.
  • Non-Patent Document 1 discloses a method for ensuring uniform elongation by allowing austenite to remain in a steel sheet.
  • this Non-Patent Document 1 also discloses a method for controlling the metal structure of a steel sheet that improves the local ductility required for bending, hole expanding, and burring.
  • Non-Patent Document 2 it is disclosed in Non-Patent Document 2 that if inclusions are controlled, the microstructure is controlled to a single structure, and the hardness difference between the microstructures is reduced, it is effective for bendability and hole expansion processing. ing.
  • Non-Patent Document 3 the technology for obtaining an appropriate fraction of ferrite and bainite by controlling the metal structure by cooling control after hot rolling and controlling precipitates and transformation structure is also disclosed in Non-Patent Document 3. Is disclosed. However, since either method is a method for improving the local deformability depending on the structure control (control of the microstructure on the classification), the local deformability is greatly influenced by the base structure.
  • Non-Patent Document 4 discloses a technique for improving the material of a hot-rolled steel sheet by increasing the amount of reduction in the continuous hot rolling process. Such a technique is a so-called crystal grain refining technique.
  • the main phase of a product is obtained by transforming unrecrystallized austenite into ferrite by performing large pressure at the lowest possible temperature in the austenite region. A certain ferrite crystal grain is refined to enhance strength and toughness.
  • no consideration is given to improvement of local deformability and ductility.
  • the structure control mainly including inclusions has been performed.
  • TRIP steel is excellent in strength and ductility, it has a characteristic point that it has low local deformability, typically represented by hole expandability related to stretch flangeability. Therefore, in order to use this TRIP steel as, for example, a high-strength steel plate for undercarriage parts, local deformability must be improved.
  • An object of the present invention is to provide a hot-rolled steel sheet that has a high strength while ensuring excellent ductility by using the TRIP phenomenon and can also obtain excellent stretch flangeability.
  • the present inventors With the general manufacturing method of a hot-rolled steel sheet being carried out on an industrial scale using a normal continuous hot rolling mill, the present inventors have obtained high strength, while maintaining the ductility of the hot-rolled steel sheet and Intensive research was conducted to improve moldability such as stretch flangeability. As a result, the present inventors have found a new structure that is extremely effective in securing high strength and improving moldability, and has not been formed by the prior art. This structure is not based on the structure recognized by optical microscope observation, but is recognized based on the orientation difference within each crystal grain.
  • this region is defined as a crystal grain
  • a region surrounded by grain boundaries having a misorientation of 15 ° or more and an equivalent circle diameter of 0.3 ⁇ m or more is defined as an average within the crystal grain. It is a structure composed of crystal grains having a misorientation of 5 ° to 14 °.
  • this organization is sometimes referred to as a “new recognition organization”. The inventors have newly found that the stretch flangeability can be greatly improved while maintaining the excellent ductility of TRIP steel by controlling the ratio of the newly recognized structure within a certain range.
  • a new recognition organization cannot be formed by a conventional method such as the method described in Patent Documents 1 to 13 above.
  • the bainite contained in the conventional thin steel plate is composed of bainitic ferrite and iron carbide, or composed of bainitic ferrite and retained austenite.
  • iron carbide and retained austenite promotes the progress of cracks during hole expansion. Accordingly, the newly recognized structure has a local ductility superior to that of bainite contained in conventional thin steel sheets.
  • the newly recognized structure is a structure different from the ferrite contained in the conventional thin steel sheet.
  • the formation temperature of the newly recognized structure is lower than the bainite transformation start temperature predicted from the steel components, and a grain boundary with a small inclination is formed inside one crystal grain surrounded by the large angle grain boundary of the newly recognized structure.
  • the new recognition structure has characteristics different from ferrite at least in these points.
  • FIG. 1 is a diagram showing a region representing the microstructure of a hot-rolled steel sheet.
  • FIG. 2A is a perspective view showing a vertical stretch flange test method.
  • FIG. 2B is a top view showing the vertical stretch flange test method.
  • FIG. 3A is a diagram showing an EBSD analysis result of an example of a hot-rolled steel sheet.
  • FIG. 3B is a diagram showing an EBSD analysis result of an example of a hot-rolled steel sheet.
  • FIG. 4 is a diagram showing an outline of a temperature history from hot rolling to winding.
  • the hot-rolled steel sheet according to the present embodiment is represented by residual austenite: 2% to 30%, ferrite: 20% to 85%, bainite: 10% to 60%, pearlite: 5% or less, martensite: 10% or less. It has a microstructure that can be Further, in the hot-rolled steel sheet according to the present embodiment, when a region surrounded by a grain boundary having an orientation difference of 15 ° or more and having an equivalent circle diameter of 0.3 ⁇ m or more is defined as a crystal grain, an intragranular orientation The proportion of crystal grains having a difference of 5 ° to 14 ° in the total crystal grains is 5% to 50% in terms of area ratio.
  • % which is a unit of the ratio of each phase and structure contained in the hot-rolled steel sheet, means “volume%” unless otherwise specified.
  • the microstructure of the hot-rolled steel sheet can be represented by a microstructure in a region from the surface of the hot-rolled steel sheet to 3/8 to 5/8 of the thickness of the hot-rolled steel sheet. This region 1 is shown in FIG. FIG. 1 also shows a cross section 2 that is an object for observing ferrite and the like.
  • a hot-rolled steel sheet that can be applied to a member that requires high formability and stretch formability related to severe ductility and stretch flangeability related to local ductility is obtained.
  • Stretch flangeability can be evaluated using the flange height H (mm) in the vertical stretch flange test method (corner radius of curvature R: 50 mm to 60 mm).
  • the vertical stretch flange test method will be described.
  • a vertical molded product 23 simulating an elongated flange shape including a straight portion 21 and an arc portion 22 is pressed, and limit molding at that time is performed. This is a technique for evaluating stretch flangeability by height.
  • the limit molding height obtained when the radius of curvature R of the arc portion 22 is 50 mm to 60 mm, the opening angle ⁇ is 120 °, and the clearance when punching the arc portion 22 is 11% is the flange height. Used as H (mm).
  • the determination of the limit molding height was made by the presence or absence of cracks having a length of 1/3 or more of the plate thickness visually after molding.
  • the conventional hole expansion test which is used as a test method corresponding to stretch flange formability, the strain in the circumferential direction is almost not distributed, and breakage occurs. Evaluation is performed at the time when a through-thickness fracture with different stress gradients occurs. Therefore, it cannot be said that the hole expansion test is an evaluation method reflecting the original stretch flange molding.
  • the vertical stretch flange test method is also described, for example, in the literature (Yoshida et al., Nippon Steel Technical Report (2012) No. 393, p. 18).
  • the ratio of the crystal grains having an intra-grain orientation difference of 5 ° to 14 ° to the total crystal grains can be measured by the following method.
  • the length in the rolling direction (RD) centering on the 1/4 depth position (1 / 4t portion) of the thickness t from the steel sheet surface is 200 ⁇ m
  • the rolling The crystal orientation of a rectangular region having a normal direction (ND) length of 100 ⁇ m is analyzed by electron back scattering diffraction (EBSD) method at intervals of 0.2 ⁇ m. Obtain crystal orientation information.
  • This analysis is performed using, for example, an EBSD analyzer equipped with a thermal field emission scanning electron microscope (JSMOL 7001F manufactured by JEOL Ltd.) and an EBSD detector (HIKARI detector manufactured by TSL) at 200 points / It is carried out at a speed of 2 to 300 points / second.
  • a region surrounded by a grain boundary with an orientation difference of 15 ° or more and an equivalent circle diameter of 0.3 ⁇ m or more is defined as a crystal grain, and an intragranular orientation difference Is calculated, and the ratio of the crystal grains having an in-granular orientation difference of 5 ° to 14 ° to the total crystal grains is obtained.
  • the ratio obtained in this way is the area fraction, but is equivalent to the volume fraction.
  • “Intragranular orientation difference” means “Grain Orientation Spread (GOS)”, which is orientation dispersion within crystal grains. Intragranular orientation differences are described in the literature “Hidehiko Kimura, Inou, Yoshiaki Akiba, Keisuke Tanaka“ Analysis of misorientation in plastic deformation of stainless steel by EBSD method and X-ray diffraction method ”Transactions of the Japan Society of Mechanical Engineers (Part A), 71 Volume 712, 2005, p. 1722-1728. As the average value of misorientation between the reference crystal orientation and the crystal orientation at all measurement points in the crystal grain. As the “reference crystal orientation”, an orientation obtained by averaging crystal orientations at all measurement points in the crystal grain is used. The intragranular orientation difference can be calculated using, for example, software “OIM Analysis TM Version 7.0.1” attached to the EBSD analyzer.
  • FIGS. 3A and 3B show examples of EBSD analysis results.
  • FIG. 3A shows the analysis result of a TRIP steel sheet having a tensile strength of 590 MPa
  • FIG. 3B shows the analysis result of a TRIP steel sheet having a tensile strength of 780 MPa.
  • the gray regions in FIGS. 3A and 3B indicate crystal grains having an in-granular orientation difference of 5 ° to 14 °.
  • region shows the crystal grain whose orientation difference within a grain is less than 5 degrees or more than 14 degrees.
  • region shows the area
  • the crystal orientation within the grain has a correlation with the dislocation density contained in the crystal grain.
  • an increase in the dislocation density in the grains brings about an improvement in strength while lowering workability.
  • the strength can be improved without degrading the workability. Therefore, in the hot-rolled steel sheet according to the present embodiment, the ratio of crystal grains having an in-grain direction difference of 5 ° to 14 ° is set to 5% to 50% as described below. Crystal grains having an in-granular orientation difference of less than 5 ° are excellent in workability but are difficult to increase in strength.
  • a crystal grain having an average orientation difference in the grain of more than 14 ° does not contribute to improvement of stretch flangeability because the deformability is different in the crystal grain.
  • the crystal structure of retained austenite contained in the microstructure is a face-centered cubic (fcc) structure and is excluded from the measurement of GOS in the body-centered cubic (bcc) structure in the present invention.
  • the ratio of “crystalline grains having an intragranular orientation difference of 5 ° to 14 °” is obtained by first subtracting the ratio of retained austenite from 100%, and from there, “intragranular orientation difference is 5 ° to 14 °. It is defined as a value obtained by subtracting the proportion of crystal grains other than “certain crystal grains”.
  • Crystal grains having an intragranular orientation difference of 5 ° to 14 ° can be obtained by the method described later. As described above, the present inventors have found that crystal grains having an in-granular orientation difference of 5 ° to 14 ° are extremely effective in securing high strength and improving formability such as stretch flangeability. Crystal grains having an in-grain orientation difference of 5 ° to 14 ° contain almost no carbide in the crystal grains. That is, the crystal grains having an in-granular orientation difference of 5 ° to 14 ° contain almost nothing that promotes the progress of cracks during stretch flange molding. Accordingly, the crystal grains having an in-granular orientation difference of 5 ° to 14 ° contribute to securing high strength and improving ductility and stretch flangeability.
  • the proportion of crystal grains having an in-grain orientation difference of 5 ° to 14 ° is less than 5% in terms of area ratio, sufficient strength cannot be obtained. Therefore, the proportion of crystal grains having an intra-grain orientation difference of 5 ° to 14 ° is set to 5% or more. On the other hand, if the proportion of crystal grains having an in-granular orientation difference of 5 ° to 14 ° exceeds 50% in terms of area ratio, sufficient ductility cannot be obtained. Therefore, the proportion of crystal grains having an in-grain orientation difference of 5 ° to 14 ° is set to 50% or less.
  • the tensile strength is generally 590 MPa or more, the flange height H (mm) and the tensile strength TS (MPa).
  • H ⁇ TS is 19500 (mm ⁇ MPa) or more.
  • Crystal grains having an in-granular orientation difference of 5 ° to 14 ° are effective for obtaining a steel sheet having an excellent balance between strength and workability. Therefore, by setting the ratio of the structure composed of such crystal grains, that is, the newly recognized structure to a predetermined range, in this embodiment, the area ratio is 5% to 50%, while maintaining the desired strength and ductility. The stretch flangeability can be greatly improved.
  • the retained austenite contributes to the ductility related to the stretch formability. If the retained austenite is less than 2%, sufficient ductility cannot be obtained. Therefore, the ratio of retained austenite is 2% or more. On the other hand, if the proportion of retained austenite is more than 30%, the progress of cracks is promoted at the interface with ferrite or bainite during stretch flange molding, and stretch flangeability is deteriorated. Therefore, the proportion of retained austenite is 30% or less.
  • the product (H ⁇ TS) of the flange height H (mm) and the tensile strength TS (MPa) is 19500 (mm ⁇ MPa) or more. Suitable for processing parts.
  • Ferrite (Ferrite: 20% to 85%) Ferrite exhibits excellent deformability and enhances uniform ductility. When the proportion of ferrite is less than 20%, good uniform ductility cannot be obtained. Therefore, the ratio of ferrite is 20% or more. Moreover, since ferrite is produced at the time of cooling after completion of hot rolling and C is concentrated in retained austenite, it is essential for improving ductility by the TRIP effect. However, if the proportion of ferrite is more than 85%, stretch flangeability is significantly reduced. Therefore, the ratio of ferrite is 85% or less.
  • bainite Since bainite is generated after winding and concentrates C in the retained austenite, it is essential for improving ductility by the TRIP effect. Furthermore, bainite contributes to the improvement of hole expansibility. The fraction of ferrite and bainite can be changed depending on the strength level targeted for development. However, if the ratio of bainite is less than 10%, the above-described effects cannot be sufficiently obtained. Therefore, the ratio of bainite is 10% or more. On the other hand, when the proportion of bainite is more than 60%, the uniform elongation is lowered. Therefore, the ratio of bainite is 60% or less.
  • Martensite (Martensite: 10% or less) Martensite promotes the growth of cracks at the interface with ferrite or bainite during stretch flange molding, and reduces stretch flangeability. When the martensite exceeds 10%, such a decrease in stretch flangeability becomes remarkable. If the martensite is 10% or less, the product (H ⁇ TS) of the flange height H (mm) and the tensile strength TS (MPa) is 19500 (mm ⁇ MPa) or more. Suitable for processing.
  • the volume fraction of the structure observed in an optical microscope structure such as ferrite and bainite in a hot-rolled steel sheet is not directly related to the proportion of crystal grains having an intra-grain orientation difference of 5 ° to 14 °.
  • the difference in grain orientation between the plurality of hot-rolled steel sheets is 5 ° to 14 °.
  • the ratio of the crystal grains is not necessarily the same. Therefore, the characteristics corresponding to the hot-rolled steel sheet according to this embodiment cannot be obtained only by controlling the ferrite volume fraction, the bainite volume fraction, and the retained austenite volume fraction.
  • the conditions relating to the proportion of each phase and structure described above are not only the region from the surface of the hot rolled steel sheet to 3/8 to 5/8 of the thickness of the hot rolled steel sheet, but also a wider range. It is preferable that the above is satisfied, and as the range satisfying this condition is wider, more excellent strength and workability can be obtained.
  • the ratio (volume fraction) of ferrite, bainite, pearlite, and martensite is in the section 2 parallel to the rolling direction in the region from 3/8 to 5/8 of the thickness from the surface of the hot-rolled steel sheet. It is equivalent to the area ratio.
  • the area ratio in the cross section 2 is obtained by cutting a sample from a 1/4 W or 3/4 W position of the plate width of the steel plate, polishing a surface parallel to the rolling direction of this sample, etching using a Nital reagent, and using an optical microscope. Thus, it can be measured by observing at a magnification of 200 to 500 times.
  • Residual austenite can be easily distinguished crystallographically because of its different crystal structure from ferrite. Therefore, the ratio of the retained austenite can be experimentally determined also by the X-ray diffraction method using the property that the reflection surface strength is different between austenite and ferrite. That is, from the image obtained by the X-ray diffraction method using Mo K ⁇ ray, the ratio V ⁇ of retained austenite can be obtained using the following equation.
  • V ⁇ (2/3) ⁇ 100 / (0.7 ⁇ ⁇ (211) / ⁇ (220) +1) ⁇ + (1/3) ⁇ 100 / (0.78 ⁇ ⁇ (211) / ⁇ (311) +1) ⁇
  • ⁇ (211) is the intensity of the reflecting surface on the (211) plane of ferrite
  • ⁇ (220) is the intensity of the reflecting surface on the (220) plane of austenite
  • ⁇ (311) is the intensity of the reflecting surface on the (311) plane of austenite. It is.
  • the ratio of retained austenite can also be measured by optical microscope observation under the above conditions using the reagents described in JP-A-5-163590. Since almost the same value can be obtained by using any of the optical microscope observation and the X-ray diffraction method, the value obtained by any method can be used.
  • the chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention and the steel ingot or slab used for manufacturing the hot-rolled steel sheet will be described. Although details will be described later, the hot-rolled steel sheet according to the embodiment of the present invention is manufactured through hot rolling of a steel ingot or slab, subsequent cooling, and subsequent winding. Therefore, the chemical composition of the hot-rolled steel sheet and the slab considers not only the properties of the hot-rolled steel sheet but also these treatments.
  • “%”, which is a unit of content of each element contained in a hot-rolled steel sheet means “mass%” unless otherwise specified.
  • the hot-rolled steel sheet according to the present embodiment has C: 0.06% to 0.22%, Si: 1.0% to 3.2%, Mn: 0.8% to 2.2%, P: 0.00. 05% or less, S: 0.005% or less, Al: 0.01% to 1.00%, N: 0.006% or less, Cr: 0.00% to 1.00%, Mo: 0.000% To 1.000%, Ni: 0.000% to 2.000%, Cu: 0.000% to 2.000%, B: 0.0000% to 0.0050%, Ti: 0.000% to 0 200%, Nb: 0.000% to 0.200%, V: 0.000% to 1.000%, W: 0.000% to 1.000%, Sn: 0.0000% to 0.2000 %, Zr: 0.0000% to 0.2000%, As: 0.0000% to 0.5000%, Co: 0.0000% to 1.000%, Ca: 0.0 00% to 0.0100%, Mg: 0.0000% to 0.0100%, rare earth metal (REM): 0.0000% to 0.1000%, balance:
  • C forms various precipitates in the hot-rolled steel sheet and contributes to the improvement of strength by precipitation strengthening. C also contributes to securing retained austenite that improves ductility. If the C content is less than 0.06%, sufficient retained austenite cannot be secured, and sufficient strength and ductility cannot be obtained. Therefore, the C content is 0.06% or more. From the viewpoint of further improving strength and elongation, the C content is preferably 0.10% or more. On the other hand, if the C content is more than 0.22%, sufficient stretch flangeability cannot be obtained or weldability is impaired. Therefore, the C content is 0.22% or less. In order to further improve the weldability, the C content is preferably 0.20% or less.
  • Si 1.0% to 3.2%
  • Si stabilizes ferrite during temperature control after hot rolling, and suppresses precipitation of cementite after winding (during bainite transformation).
  • Si increases the C concentration of austenite and contributes to securing retained austenite. If the Si content is less than 1.0%, the effect cannot be sufficiently obtained. Therefore, the Si content is 1.0% or more. On the other hand, if the Si content exceeds 3.2%, the surface properties, paintability and weldability deteriorate. Therefore, the Si content is 3.2% or less.
  • Mn 0.8% to 2.2%) Mn is an element that stabilizes austenite and improves hardenability. If the Mn content is less than 0.8%, sufficient hardenability cannot be ensured. Therefore, the Mn content is 0.8% or more. On the other hand, if the Mn content exceeds 2.2%, slab cracking occurs. Therefore, the Mn content is 2.2% or less.
  • P is not an essential element but is contained as an impurity in steel, for example. From the viewpoint of workability, weldability and fatigue properties, the lower the P content, the better. In particular, when the P content exceeds 0.05%, the workability, weldability, and fatigue characteristics are significantly reduced. Therefore, the P content is 0.05% or less.
  • S is not an essential element but is contained as an impurity in steel, for example.
  • the S content exceeds 0.005%, the stretch flangeability is significantly reduced. Therefore, the S content is 0.005% or less.
  • Al 0.01% to 1.00%
  • Al is a deoxidizer, and if the Al content is less than 0.01%, sufficient deoxidation cannot be performed in the current general refining (including secondary refining). Therefore, the Al content is 0.01% or more.
  • Al stabilizes ferrite during temperature control after hot rolling, and suppresses precipitation of cementite during bainite transformation. In this way, Al increases the C concentration of austenite and contributes to securing retained austenite.
  • the Al content exceeds 1.00%, the surface properties, paintability and weldability deteriorate. Therefore, the Al content is 1.00% or less. In order to obtain more stable retained austenite, the Al content is preferably 0.02% or more.
  • Si also functions as a deoxidizer. Further, as described above, Si and Al increase the C concentration of austenite and contribute to securing retained austenite. However, if the sum of the Si content and the Al content exceeds 4.0%, the surface properties, paintability, and weldability tend to deteriorate. Therefore, the sum of the Si content and the Al content is preferably 4.0% or less. In order to obtain better paintability, this sum is more preferably 3.5% or less, and still more preferably 3.0% or less.
  • N is not an essential element but is contained as an impurity in steel, for example. From the viewpoint of workability, the lower the N content, the better. Particularly, when the N content exceeds 0.006%, the workability is remarkably reduced. Therefore, the N content is 0.006% or less.
  • Cr 0.00% to 1.00%
  • Cr is not an essential element, but is an arbitrary element that may be appropriately contained in the hot-rolled steel sheet within a predetermined amount in order to suppress pearlite transformation and stabilize retained austenite.
  • the Cr content is preferably 0.05% or more, more preferably 0.20% or more, and further preferably 0.40% or more.
  • the Cr content is 1.00% or less. That is, it is preferable that Cr: 0.05% to 1.00% is satisfied.
  • Mo, Ni, Cu, B, Ti, Nb, V, W, Sn, Zr, As, and Co are not essential elements, but are optional elements that may be appropriately contained within a predetermined amount in the hot-rolled steel sheet. .
  • Mo 0.000% to 1.000%
  • Ni 0.000% to 2.000%
  • Cu 0.000% to 2.000%
  • B 0.0000% to 0.0050%
  • Ti 0.000% to 0.200%
  • Nb 0.000% to 0.200%
  • V 0.000% to 1.000%
  • W 0.000% to 1.000%
  • Sn 0 .0000% to 0.2000%
  • Zr 0.0000% to 0.2000%
  • Co 0.0000% to 1.000%)
  • Mo Ni, Cu, B, Ti, Nb, V, W, Sn, Zr, As, and Co contribute to further improving the strength of the hot-rolled steel sheet by precipitation hardening or solid solution strengthening.
  • Mo, Ni, Cu, B, Ti, Nb, V, W, Sn, Zr, As, Co, or any combination thereof may be contained.
  • Mo more than 1.000%
  • Ni more than 2.000%
  • Cu more than 2.000%
  • B more than 0.0050%
  • Ti more than 0.200%
  • Nb more than 0.200%
  • V more than 1.000%
  • W more than 1.000%
  • Sn more than 0.2000%
  • Zr more than 0.2000%
  • Co more than 1.000% or these
  • Mo 1.000% or less
  • Ni 2.000% or less
  • Cu 2.000% or less
  • B 0.0050% or less
  • Ti 0.200% or less
  • Nb 0.200% or less
  • V 1.000% or less
  • W 1.000% or less
  • Sn 0.2000% or less
  • Zr 0.2000% or less
  • Co 1.000% or less To do.
  • Mo 0.000% to 1.000%
  • Ni 0.001% to 2.000%
  • Cu 0.001% to 2.000%
  • B 0.0001% to 0.0050%
  • Ti 0.001% to 0.200%
  • Nb 0.001% to 0.200%
  • V 0.001% to 1.000%
  • W 0.001% to 1.000%
  • Sn 0.0001% to 0.2000%
  • Zr 0.0001% to 0.2000%
  • Co 0.0001% to 1.000%, or these It is preferred that any combination is satisfied.
  • Ca, Mg, and REM are detoxified by changing the form of non-metallic inclusions that become the starting point of fracture or deteriorate workability. Therefore, Ca, Mg, REM, or any combination thereof may be contained. In order to sufficiently obtain this effect, Ca: 0.0001% or more, Mg: 0.0001% or more, REM: 0.0001% or more, or any combination thereof is preferable. However, when Ca: more than 0.0100%, Mg: more than 0.0100%, or REM: more than 0.1000%, or any combination thereof, the effect of the above action is saturated and the cost is increased.
  • Ca 0.0100% or less, Mg: 0.0100% or less, and REM: 0.1000% or less. That is, Ca: 0.0001% to 0.0100%, Mg: 0.0001% to 0.0100%, or REM: 0.0001% to 0.1000%, or any combination thereof may be satisfied. preferable.
  • REM rare earth metal
  • REM content means the total content of these 17 elements.
  • Lanthanoids are added industrially, for example, in the form of misch metal.
  • the hot-rolled steel sheet according to the embodiment can be manufactured according to the method described here, the method of manufacturing the hot-rolled steel sheet according to the embodiment is not limited to this. That is, even a hot-rolled steel sheet manufactured by another method can be said to be within the scope of the embodiment as long as it has crystal grains, microstructure and chemical composition satisfying the above conditions.
  • FIG. 4 shows an outline of the temperature history from hot rolling to winding.
  • a steel ingot or slab having the above chemical composition is cast, and reheating 11 is performed as necessary.
  • Rough rolling 12 of the steel ingot or slab is performed. Rough rolling is included in hot rolling.
  • Finish rolling 13 of the steel ingot or slab is included in hot rolling.
  • the finish rolling the final three stages of rolling are performed with a cumulative strain of more than 0.6 and not more than 0.7, and the end temperatures are Ar3 point or higher and Ar3 point + 30 ° C.
  • Cooling (first cooling) 14 to a temperature of 650 ° C. or higher and 750 ° C.
  • Winding 17 is performed.
  • molten steel whose components are adjusted so that the chemical composition is within the above range is cast.
  • a steel ingot or a slab is sent to a hot rolling mill.
  • the cast steel ingot or slab may be sent directly to the hot rolling mill at a high temperature, or after cooling to room temperature, it may be reheated in a heating furnace and sent to the hot rolling mill.
  • the temperature of the reheating 11 is not particularly limited. If the temperature of the reheating 11 is 1260 ° C. or higher, the amount of scale-off may increase and the yield may decrease, so the temperature of the reheating 11 is preferably less than 1260 ° C. In addition, if the temperature of the reheating 11 is less than 1000 ° C., the operation efficiency may be significantly impaired due to the schedule. Therefore, the temperature of the reheating 11 is preferably 1000 ° C. or more.
  • the final rolling is preferably performed at 1080 ° C. or higher.
  • the rolling temperature of the final stage of the rough rolling 12 is higher than 1150 ° C., that is, when the rolling temperature exceeds 1150 ° C.
  • the final rolling is preferably performed at 1150 ° C. or lower.
  • this cumulative rolling reduction is preferably 65% or less.
  • the cumulative rolling reduction is less than 40%, the austenite grains after finish rolling 13 become large, and the ferrite transformation in the two-phase region occurring in the subsequent cooling is not sufficiently promoted, and it is difficult to obtain a desired microstructure. Sometimes. Therefore, this cumulative rolling reduction is preferably 40% or more.
  • the finish rolling 13 is an important process for generating crystal grains having an in-grain direction difference of 5 ° to 14 °. Crystal grains having an in-granular orientation difference of 5 ° to 14 ° are obtained by transformation of austenite containing strain into bainite. Therefore, it is important that the finish rolling 13 is performed under conditions such that strain remains in the austenite after the finish rolling 13.
  • the final three stages of rolling are performed with a cumulative strain of more than 0.6 and less than 0.7.
  • the cumulative strain in the final three-stage rolling is 0.6 or less, the austenite grains after the finish rolling 13 become large, and the ferrite transformation in the two-phase region that occurs in the subsequent cooling is not sufficiently promoted, and the intragranular orientation
  • the proportion of crystal grains having a difference of 5 ° to 14 ° cannot be made 5% to 50%. If the cumulative strain in the final three-stage rolling exceeds 0.7, excessive strain remains in the austenite after finish rolling 13, and the proportion of crystal grains having an in-granular orientation difference of 5 ° to 14 ° is 5%. It cannot be reduced to ⁇ 50%, and workability deteriorates.
  • the final stage of rolling is performed within a temperature range of Ar 3 point or higher and Ar 3 point + 30 ° C., and at a rolling reduction of 6% or higher and 15% or lower. If the final stage rolling temperature (finish rolling end temperature) is more than Ar3 point + 30 ° C. or the rolling reduction is less than 6%, the residual amount of strain in the austenite after finish rolling 13 becomes insufficient, A desired microstructure cannot be obtained. If the finish rolling end temperature is less than the Ar3 point or the rolling reduction is more than 15%, excessive strain remains in the austenite after the finish rolling 13, and workability deteriorates.
  • Ar1 transformation point temperature (temperature at which austenite completes transformation to ferrite or ferrite and cementite upon cooling), Ar3 transformation point temperature (temperature at which austenite ferrite transformation begins upon cooling), Ac1 transformation
  • the point temperature (temperature at which austenite begins to be generated during heating) and the Ac3 transformation point temperature (temperature at which transformation to austenite is completed at the time of heating) are simple in relation to steel components, for example, by the following formula Indicated.
  • Ar1 transformation point temperature (° C.) 730 ⁇ 102 ⁇ (% C) + 29 ⁇ (% Si) ⁇ 40 ⁇ (% Mn) ⁇ 18 ⁇ (% Ni) ⁇ 28 ⁇ (% Cu) ⁇ 20 ⁇ (% Cr) -18 x (% Mo)
  • Ar3 transformation point temperature (° C.) 900 ⁇ 326 ⁇ (% C) + 40 ⁇ (% Si) ⁇ 40 ⁇ (% Mn) ⁇ 36 ⁇ (% Ni) ⁇ 21 ⁇ (% Cu) ⁇ 25 ⁇ (% Cr) -30 x (% Mo)
  • Ac1 transformation point temperature (° C.) 751-16 ⁇ (% C) + 11 ⁇ (% Si) ⁇ 28 ⁇ (% Mn) ⁇ 5.5 ⁇ (% Cu) ⁇ 16 ⁇ (% Ni) + 13 ⁇ (% Cr ) + 3.4 ⁇ (% Mo)
  • Ac3 transformation temperature (° C.) 910 ⁇ 203 ⁇ (% C) + 45 ⁇ (% Si) ⁇
  • cooling (first cooling) 14 is performed to a temperature of 650 ° C. or higher and 750 ° C. or lower on a run-out table (ROT). If the ultimate temperature of the cooling 14 is less than 650 ° C., the ferrite transformation in the two-phase region becomes insufficient and sufficient ductility cannot be obtained. If the reached temperature of the cooling 14 exceeds 750 ° C., the ferrite transformation is excessively promoted, and the ratio of crystal grains having an in-grain orientation difference of 5 ° to 14 ° cannot be made 5% to 50%.
  • the average cooling rate in the cooling 14 is 10 ° C./second or more. This is because the proportion of crystal grains having an in-grain orientation difference of 5 ° to 14 ° is stably set to 5% to 50%.
  • air cooling 15 is performed for 3 seconds to 10 seconds. If the time of air cooling 15 is less than 3 seconds, ferrite transformation in the two-phase region becomes insufficient and sufficient ductility cannot be obtained. If the time of air cooling 15 exceeds 10 seconds, ferrite transformation in the two-phase region is excessively promoted, and a desired microstructure cannot be obtained.
  • cooling (second cooling) 16 is performed to an average cooling rate of 30 ° C./second or higher to a temperature of 350 ° C. or higher and 450 ° C. or lower.
  • the average cooling rate is less than 30 ° C./second, for example, a large amount of pearlite is generated, and a desired microstructure cannot be obtained.
  • winding 16 is preferably performed at a temperature of 350 ° C. or higher and 450 ° C. or lower.
  • a temperature of the winding 16 exceeds 450 ° C., ferrite is generated and sufficient bainite cannot be obtained, and a desired microstructure cannot be obtained. If the temperature of the winding 16 is less than 350 ° C., martensite is generated and sufficient bainite cannot be obtained, and a desired microstructure cannot be obtained.
  • the hot-rolled steel sheet according to the present embodiment is subjected to surface treatment, the effect of improving strength, ductility and stretch flangeability can be obtained.
  • electroplating, hot dipping, vapor deposition plating, organic film formation, film lamination, organic salt treatment, inorganic salt treatment, non-chromium treatment, and the like may be performed.
  • the proportion of crystal grains having an intra-grain orientation difference of 5 ° to 14 ° was measured by the above method using an EBSD analyzer.
  • the area ratio of retained austenite, ferrite, bainite, pearlite, and martensite was measured by the above method using an optical microscope.
  • Each hot-rolled steel sheet was manufactured as follows under the conditions shown in Table 3. After performing melting and continuous casting in the converter, it was heated at the heating temperature shown in Table 3, and hot rolling including rough rolling and finish rolling was performed. Table 3 shows the heating temperature, the cumulative strain of the final three stages of finish rolling, and the end temperature. After the finish rolling, it was cooled by a run-out table (ROT) at a cooling rate shown in Table 3 up to a temperature T1 shown in Table 3. And as soon as temperature reached temperature T1, air cooling was started. Table 3 shows the air cooling time. After air cooling, it was cooled to a temperature T2 shown in Table 3 at an average cooling rate shown in Table 3, and wound up to produce a hot rolled coil.
  • ROT run-out table
  • Table 3 shows the air cooling time. After air cooling, it was cooled to a temperature T2 shown in Table 3 at an average cooling rate shown in Table 3, and wound up to produce a hot rolled coil.
  • the underline in Table 3 indicates that the numerical value is out of the preferred range.
  • the present invention can be used, for example, in industries related to hot-rolled steel sheets used for automobile undercarriage parts and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 熱延鋼板は所定の化学組成を有し、体積%で、残留オーステナイト:2%~30%、フェライト:20%~85%、ベイナイト:10%~60%、パーライト:5%以下、マルテンサイト:10%以下、で表されるミクロ組織を有し、方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合が面積率で5%~50%である。

Description

熱延鋼板
 本発明は、熱延鋼板に関し、特に、変態誘起塑性(transformation induced plasticity:TRIP)現象を利用した熱延鋼板に関する。
 自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用した自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に自動車車体の軽量化を今後進めていくためには、従来以上に高強度鋼板の使用強度レベルを高めなければならない。したがって、例えば足回り部品に高強度鋼板を用いるには、バーリング加工のための局部変形能を改善しなければならない。しかしながら、一般的に鋼板の強度を高めると、成形性が低下し、絞り成形や張り出し成形に重要な均一伸びが低下する。
 成形性の向上等を目的とした高強度鋼板等が特許文献1~11に記載されている。しかしながら、これらの従来技術によっても十分な強度及び十分な成形性を備えた熱延鋼板を得ることはできない。
 さらに、非特許文献1には、鋼板にオーステナイトを残留させ均一伸びを確保する方法が開示されている。加えて、この非特許文献1では、曲げ成形、穴広げ加工やバーリング加工に求められる局部延性を改善する鋼板の金属組織制御法についても開示されている。また、介在物を制御し、ミクロ組織を単一の組織に制御し、ミクロ組織間の硬度差を低減すれば、曲げ性や穴広げ加工に効果的であることが非特許文献2に開示されている。
 延性と強度とを両立させるために、熱間圧延後の冷却制御により金属組織制御を行い、析出物及び変態組織を制御することでフェライトとベイナイトの適切な分率を得る技術も非特許文献3に開示されている。しかし、いずれの方法も組織制御(分類上のミクロ組織の制御)に頼った局部変形能の改善方法であるため、局部変形能がベース組織に大きく影響されてしまう。
 一方、非特許文献4には、連続熱間圧延工程に於ける圧下量を増加させて熱延鋼板の材質を改善する技術が開示されている。このような技術は、いわゆる、結晶粒微細化の技術であり、非特許文献4では、オーステナイト域内の極力低温で大圧下を行い、未再結晶オーステナイトからフェライトに変態させることで製品の主相であるフェライトの結晶粒を微細化し、強度及び靭性を高めている。しかし、非特許文献4に開示された製法では、局部変形能及び延性の改善について一切配慮されていない。
 上述のように、高強度鋼板の局部変形能を改善するために、主に介在物を含む組織制御が行われていた。
 また、自動車用の部材として高強度鋼板を使用するためには、強度と延性とのバランスが必要である。このような要求に対して、これまでに残留オーステナイトの変態誘起塑性を利用した、いわゆるTRIP鋼板が提案されている(例えば、特許文献13及び14参照)。
 しかしながら、TRIP鋼は、強度、延性に優れるものの、一般に伸びフランジ性に関わる穴広げ性に代表される局部変形能が低いという特徴点がある。したがって、このTRIP鋼を、例えば足回り部品の高強度鋼板として用いるには、局部変形能を改善しなければならない。
特開2012-26032号公報 特開2011-225941号公報 特開2006-274318号公報 特開2005-220440号公報 特開2010-255090号公報 特開2010-202976号公報 特開2012-62561号公報 特開2004-218077号公報 特開2005-82841号公報 特開2007-314828号公報 特表2002-534601号公報 国際公開第2014/171427号 特開昭61-217529号公報 特開平5-59429号公報
高橋、新日鉄技報(2003)No.378、p.7 加藤ら、製鉄研究(1984)vol.312、p.41 K.Sugimoto et al.、ISIJ International(2000)Vol.40、p.920 中山製鋼所 NFG製品紹介 http://www.nakayama-steel.co.jp/menu/product/nfg.html
 本発明は、高い強度を有しながら、TRIP現象を利用して優れた延性を確保すると共に、優れた伸びフランジ性をも得ることができる熱延鋼板を提供することを目的とする。
 本発明者らは、通常の連続熱間圧延機を用いて工業的な規模で実施されている熱延鋼板の一般的な製造方法を念頭において、高い強度を得ながら、熱延鋼板の延性及び伸びフランジ性等の成形性を向上すべく鋭意研究を重ねた。この結果、本発明者らは、高強度の確保及び成形性の向上に極めて有効な、従来技術では形成されていない新たな組織を見出した。この組織は、光学顕微鏡観察で認識される組織ではなく、各結晶粒の粒内の方位差に基づいて認識される。この組織は、具体的には、方位差が15°以上のである粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、当該結晶粒内の平均方位差が5°~14°である結晶粒から構成された組織である。以下、この組織を「新認識組織」ということがある。そして、本発明者らは、新認識組織の割合を一定の範囲に制御することで、TRIP鋼の優れた延性を保ったまま、伸びフランジ性を大きく向上させることができることを新たに見出した。
 また、新認識組織は、上記の特許文献1~13に記載された方法等、従来の方法では形成することができない。例えば、いわゆる中間空冷の終了後から巻き取りまでの冷却速度を高めることによってマルテンサイトを形成して高強度化を行おうとする従来技術では、新認識組織を形成することはできない。従来の薄鋼板に含まれているベイナイトは、ベイニティックフェライト及び鉄炭化物から構成されるか、ベイニティックフェライト及び残留オーステナイトから構成される。このため、従来の薄鋼板では、穴広げ時に、鉄炭化物や残留オーステナイト(又は加工を受けて変態したマルテンサイト)が亀裂の進展を助長する。従って、新認識組織は、従来の薄鋼板に含まれているベイナイトよりも優れた局部延性を持つ。また、新認識組織は、従来の薄鋼板に含まれているフェライトとも異なる組織である。例えば、新認識組織の生成温度は、鋼の成分から予測されるベイナイト変態開始温度以下であり、新認識組織の大角粒界で囲まれた一つの結晶粒の内部には小傾角の粒界が存在する。新認識組織は、少なくともこれらの点でフェライトとは異なる特徴を有している。
 詳細は後述するが、本発明者らは、熱間圧延、その後の冷却、及びその後の巻き取り等の条件を適切なものとすることにより、新認識組織を所望の割合でフェライト、ベイナイト及び残留オーステナイトと共に形成することができることを見出した。なお、特許文献1~3に記載された方法では、中間空冷の終了後かつ巻き取り前の冷却速度、及び巻き取られた状態での冷却速度が著しく高いため、大角粒界で囲まれた一つの結晶粒の内部に小傾角の粒界を持つ新認識組織は生成し得ない。
 本発明者は、このような知見に基づいて更に鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
 (1)
 質量%で、
 C :0.06%~0.22%、
 Si:1.0%~3.2%、
 Mn:0.8%~2.2%、
 P :0.05%以下、
 S :0.005%以下、
 Al:0.01%~1.00%、
 N :0.006%以下、
 Cr:0.00%~1.00%、
 Mo:0.000%~1.000%、
 Ni:0.000%~2.000%、
 Cu:0.000%~2.000%、
 B :0.0000%~0.0050%、
 Ti:0.000%~0.200%、
 Nb:0.000%~0.200%、
 V :0.000%~1.000%、
 W :0.000%~1.000%、
 Sn:0.0000%~0.2000%、
 Zr:0.0000%~0.2000%、
 As:0.0000%~0.5000%、
 Co:0.0000%~1.0000%、
 Ca:0.0000%~0.0100%、
 Mg:0.0000%~0.0100%、
 REM:0.0000%~0.1000%、
 残部:Fe及び不純物、
で表される化学組成を有し、
 体積%で、
 残留オーステナイト:2%~30%、
 フェライト:20%~85%、
 ベイナイト:10%~60%、
 パーライト:5%以下、
 マルテンサイト:10%以下、
で表されるミクロ組織を有し、
 方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合が面積率で5%~50%であることを特徴とする熱延鋼板。
 (2)
 前記化学組成において、
 Cr:0.05%~1.00%が成り立つことを特徴とする(1)に記載の熱延鋼板。
 (3)
 前記化学組成において、
 Mo:0.001%~1.000%、
 Ni:0.001%~2.000%、
 Cu:0.001%~2.000%、
 B :0.0001%~0.0050%、
 Ti:0.001%~0.200%、
 Nb:0.001%~0.200%、
 V :0.001%~1.000%、
 W :0.001%~1.000%、
 Sn:0.0001%~0.2000%、
 Zr:0.0001%~0.2000%、
 As:0.0001%~0.5000%、
 Co:0.0001%~1.0000%、
 Ca:0.0001%~0.0100%、
 Mg:0.0001%~0.0100%、若しくは
 REM:0.0001%~0.1000%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(1)又は(2)に記載の熱延鋼板。
 本発明によれば、高い強度を有しながら、優れた延性及び優れた伸びフランジ性を得ることができる。
図1は、熱延鋼板のミクロ組織を代表する領域を示す図である。 図2Aは、鞍型伸びフランジ試験法を示す斜視図である。 図2Bは、鞍型伸びフランジ試験法を示す上面図である。 図3Aは、熱延鋼板の一例のEBSD解析結果を示す図である。 図3Bは、熱延鋼板の一例のEBSD解析結果を示す図である。 図4は、熱間圧延から巻き取りまでの間の温度履歴の概略を示す図である。
 以下、本発明の実施形態について説明する。
 先ず、本実施形態に係る熱延鋼板におけるミクロ組織及び結晶粒の特徴について説明する。本実施形態に係る熱延鋼板は、残留オーステナイト:2%~30%、フェライト:20%~85%、ベイナイト:10%~60%、パーライト:5%以下、マルテンサイト:10%以下、で表されるミクロ組織を有している。また、本実施形態に係る熱延鋼板においては、方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合が面積率で5%~50%である。以下の説明において、熱延鋼板に含まれる各相、組織の割合の単位である「%」は、特に断りがない限り「体積%」を意味する。熱延鋼板のミクロ組織は、当該熱延鋼板の表面から当該熱延鋼板の厚さの3/8から5/8までの領域のミクロ組織で代表することができる。この領域1を図1に示す。図1には、フェライト等を観察する対象である断面2も示す。
 以下に示すように、本実施形態によれば、高強度でありながら厳しい延性に関わる張り出し成形性と局部延性に関わる伸びフランジ性が要求される部材への適用が可能な熱延鋼板を得ることができる。例えば、590MPa以上の強度が得られ、コーナーの曲率半径Rを50mm~60mmとした鞍型伸びフランジ試験法でのフランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上の伸びフランジ性が得られる。
 伸びフランジ性は鞍型伸びフランジ試験法(コーナーの曲率半径R:50mm~60mm)でのフランジ高さH(mm)を用いて評価することができる。ここで、鞍型伸びフランジ試験法について説明する。鞍型伸びフランジ試験法は、図2A及び図2Bに示すように、直線部21及び円弧部22を含む伸びフランジ形状を模擬した鞍型形状の成型品23をプレス加工し、そのときの限界成形高さで伸びフランジ性を評価する手法である。本実施形態では、円弧部22の曲率半径Rを50mm~60mm、開き角θを120°、円弧部22を打ち抜く際のクリアランスを11%としたときに得られる限界成形高さを、フランジ高さH(mm)として用いる。限界成形高さの判定は、成形後に目視にて板厚の1/3以上の長さを有するクラックの存在の有無で行った。伸びフランジ成形性に対応した試験法として用いられている従来の穴広げ試験では、周方向のひずみがほとんど分布せずに破断に至るため、実際の伸びフランジ成形時とは破断部周辺のひずみや応力勾配が異なる板厚貫通の破断が発生した時点での評価が行われる。従って、穴広げ試験は、本来の伸びフランジ成形を反映した評価方法であるとはいえない。鞍型伸びフランジ試験法は、例えば文献(吉田ら、新日鉄技報(2012)No.393、p.18)にも記載されている。
 粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合は、以下の方法で測定することができる。先ず、圧延方向に平行な断面内の、鋼板表面から板厚tの1/4深さ位置(1/4t部)を中心とする、圧延方向(rolling direction:RD)の長さが200μm、圧延面法線方向(normal direction:ND)の長さが100μmの矩形領域の結晶方位を0.2μmの間隔で電子線後方散乱回折(electron back scattering diffraction:EBSD)法により解析し、この矩形領域の結晶方位情報を取得する。この解析は、例えば、サーマル電界放射型走査電子顕微鏡(日本電子株式会社(JEOL)製JSM-7001F)及びEBSD検出器(TSL社製HIKARI検出器)を備えたEBSD解析装置を用い、200点/秒~300点/秒の速度で実施する。次に、得られた結晶方位情報に対して、方位差が15°以上である粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義し、粒内方位差を計算し、この粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合を求める。このようにして求まる割合は面積分率であるが、体積分率とも等価である。「粒内方位差」は、結晶粒内の方位分散である「Grain Orientation Spread(GOS)」を意味する。粒内方位差は、文献「木村英彦,王いん,秋庭義明,田中啓介「EBSD法およびX線回折法によるステンレス鋼の塑性変形におけるミスオリエンテーションの解析」日本機械学会論文集(A 編),71 巻,712 号,2005年,p.1722-1728.」にも記載されているように、その結晶粒内における、基準となる結晶方位と全ての測定点における結晶方位との間のミスオリエンテーションの平均値として求められる。また、「基準となる結晶方位」として、その結晶粒内の全ての測定点における結晶方位を平均化した方位を用いる。粒内方位差は、例えば、EBSD解析装置に付属のソフトウェア「OIM AnalysisTM Version 7.0.1」を用いて算出することができる。
 図3A及び図3BにEBSD解析結果の例を示す。図3Aは引張強度が590MPa級のTRIP鋼板の解析結果を示し、図3Bは引張強度が780MPa級のTRIP鋼板の解析結果を示す。図3A及び図3B中の灰色の領域が、粒内方位差が5°~14°の結晶粒を示す。白色の領域は、粒内方位差が5°未満又は14°超の結晶粒を示す。黒色の領域は粒内方位差を解析できなかった領域を示す。EBSD解析により、図3A及び図3Bに示すような結果が得られるため、これに基づいて粒内方位差が5°~14°の結晶粒の割合を特定することができる。
 粒内の結晶方位は、その結晶粒に含まれる転位密度と相関があると考えられる。一般的に粒内の転位密度の増加は強度の向上をもたらす一方で加工性を低下させる。しかし、粒内方位差が5°~14°である結晶粒では加工性を低下させることなく強度を向上させることができる。そのため、本実施形態に係る熱延鋼板では、下記のように、粒内方位差が5°~14°の結晶粒の割合を5%~50%とする。粒内方位差が5°未満の結晶粒は、加工性に優れるが高強度化が困難である。粒内の平均方位差が14°超の結晶粒は、結晶粒内で変形能が異なるので、伸びフランジ性の向上に寄与しない。なお、ミクロ組織に含まれる残留オーステナイトの結晶構造は面心立法格子(fcc)構造であり、本発明における体心立法格子(bcc)構造でのGOSの測定からは除外される。ただし、本発明における「粒内方位差が5°~14°である結晶粒」の割合は、100%からまず残留オーステナイトの割合を差し引き、そこから「粒内方位差が5°~14°である結晶粒」以外の結晶粒の割合を差し引いた値と定義される。
 粒内方位差が5°~14°である結晶粒は、後述の方法により得ることができる。上述のように、粒内方位差が5°~14°の結晶粒が高強度の確保及び伸びフランジ性等の成形性の向上に極めて有効であることが本発明者らにより見出された。粒内方位差が5°~14°の結晶粒は炭化物を結晶粒内にほとんど含まない。つまり、粒内方位差が5°~14°の結晶粒は伸びフランジ成形時に亀裂の進展を助長するものをほとんど含まない。従って、粒内方位差が5°~14°の結晶粒は、高強度の確保、並びに延性及び伸びフランジ性の向上に寄与する。
 粒内方位差が5°~14°の結晶粒の割合が面積率で5%未満であると、十分な強度が得られない。従って、粒内方位差が5°~14°の結晶粒の割合は5%以上とする。一方、粒内方位差が5°~14°の結晶粒の割合が面積率で50%超であると、十分な延性が得られない。従って、粒内方位差が5°~14°の結晶粒の割合は50%以下とする。粒内方位差が5°~14°の結晶粒の割合が面積率で5%以上50%以下の場合、概ね、引張強度は590MPa以上、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)は19500(mm・MPa)以上となる。これらの特性は、自動車の足回り部品の加工に好適である。
 粒内方位差が5°~14°である結晶粒は強度と加工性とのバランスが優れる鋼板を得るために有効である。従って、このような結晶粒から構成された組織、すなわち新認識組織の割合を所定の範囲、本実施形態では面積率で5%~50%にすることで、所望の強度及び延性を維持しつつ、伸びフランジ性を大きく向上させることができる。
 (残留オーステナイト:2%~30%)
 残留オーステナイトは張り出し成形性に関わる延性に寄与する。残留オーステナイトが2%未満であると十分な延性が得られない。従って、残留オーステナイトの割合は2%以上とする。一方、残留オーステナイトの割合が30%超であると、伸びフランジ成形時にフェライト又はベイナイトとの界面において亀裂の進展が助長され、伸びフランジ性が低下する。従って、残留オーステナイトの割合は30%以下とする。残留オーステナイトの割合が30%以下であれば、概ね、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上となり、自動車の足回り部品の加工に好適である。
 (フェライト:20%~85%)
 フェライトは優れた変形能を呈し、均一延性を高める。フェライトの割合が20%未満であると、良好な均一延性が得られない。従って、フェライトの割合は20%以上とする。また、フェライトは、熱間圧延終了後の冷却時に生成し、残留オーステナイト中にCを濃化させるため、TRIP効果による延性の向上に必須である。しかしながら、フェライトの割合が85%超であると、伸びフランジ性が大幅に低下する。従って、フェライトの割合は85%以下とする。
 (ベイナイト:10%~60%)
 ベイナイトは、巻取り後に生成し、残留オーステナイト中にCを濃化させるため、TRIP効果による延性の向上に必須である。さらに、ベイナイトは、穴拡げ性の向上にも寄与する。開発の狙いの強度レベルにより、フェライトとベイナイトとの分率を変化させることが可能であるが、ベイナイトの割合が10%未満では、上記作用による効果が十分に得られない。従って、ベイナイトの割合は10%以上とする。一方、ベイナイトの割合が60%超であると、一様伸びが低下する。従って、ベイナイトの割合は60%以下とする。
 (パーライト:5%以下)
 パーライトは伸びフランジ成形時に、亀裂の起点となり、伸びフランジ性を低下させる。パーライトが5%超であると、このような伸びフランジ性の低下が顕著となる。パーライトが5%以下であれば、概ね、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上となり、自動車の足回り部品の加工に好適である。
 (マルテンサイト:10%以下)
 マルテンサイトは伸びフランジ成形時に、フェライト又はベイナイトとの界面において亀裂の進展を助長し、伸びフランジ性を低下させる。マルテンサイトが10%超であると、このような伸びフランジ性の低下が顕著となる。マルテンサイトが10%以下であれば、概ね、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上となり、自動車の足回り部品の加工に好適である。
 熱延鋼板におけるフェライト及びベイナイト等の光学顕微鏡組織で観察される組織の各体積率と、粒内方位差が5°~14°である結晶粒の割合とは直接関係するものではない。言い換えれば、例えば、同一のフェライト体積率、ベイナイト体積率及び残留オーステナイト体積率を有する熱延鋼板が複数あったとしても、これら複数の熱延鋼板の間で粒内方位差が5°~14°である結晶粒の割合が同一であるとは限らない。従って、フェライト体積率、ベイナイト体積率及び残留オーステナイト体積率を制御しただけでは、本実施形態に係る熱延鋼板に相当する特性を得ることはできない。
 当然のことであるが、上述の各相、組織の割合に関する条件は、熱延鋼板の表面から当該熱延鋼板の厚さの3/8から5/8までの領域のみならず、より広い範囲において満たされていることが好ましく、この条件を満たす範囲が広いほど、より優れた強度及び加工性を得ることができる。
 ここで、フェライト、ベイナイト、パーライト及びマルテンサイトの割合(体積分率)は、熱延鋼板の表面からその厚さの3/8から5/8までの領域内の圧延方向に平行な断面2における面積率と等価である。断面2における面積率は、鋼板の板幅の1/4W又は3/4W位置から試料を切り出し、この試料の圧延方向に平行な面を研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用いて200倍~500倍の倍率で観察することで測定することができる。
 残留オーステナイトはフェライトと結晶構造が違うため結晶学的に容易に識別できる。従って、オーステナイトとフェライトとの間の反射面強度が相違するという性質を用いて、残留オーステナイトの割合をX線回折法によっても実験的に求めることができる。すなわち、MoのKα線を用いたX線回折法により得られる像から、次式を用いて残留オーステナイトの割合Vγを求めることができる。
 Vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
 ここで、α(211)はフェライトの(211)面における反射面強度、γ(220)はオーステナイトの(220)面における反射面強度、γ(311)はオーステナイトの(311)面における反射面強度である。
 残留オーステナイトの割合は、特開平5-163590号公報に記載されている試薬を用いて、上記条件での光学顕微鏡観察でも測定することができる。光学顕微鏡観察、X線回折法のいずれの方法を用いてもほぼ一致した値が得られるため、いずれの方法で得られた値を用いても差し支えない。
 次に、本発明の実施形態に係る熱延鋼板及びその製造に用いる鋼塊又はスラブの化学組成について説明する。詳細は後述するが、本発明の実施形態に係る熱延鋼板は、鋼塊又はスラブの熱間圧延、その後の冷却、及びその後の巻き取り等を経て製造される。従って、熱延鋼板及びスラブの化学組成は、熱延鋼板の特性のみならず、これらの処理を考慮したものである。以下の説明において、熱延鋼板に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る熱延鋼板は、C:0.06%~0.22%、Si:1.0%~3.2%、Mn:0.8%~2.2%、P:0.05%以下、S:0.005%以下、Al:0.01%~1.00%、N:0.006%以下、Cr:0.00%~1.00%、Mo:0.000%~1.000%、Ni:0.000%~2.000%、Cu:0.000%~2.000%、B:0.0000%~0.0050%、Ti:0.000%~0.200%、Nb:0.000%~0.200%、V:0.000%~1.000%、W:0.000%~1.000%、Sn:0.0000%~0.2000%、Zr:0.0000%~0.2000%、As:0.0000%~0.5000%、Co:0.0000%~1.0000%、Ca:0.0000%~0.0100%、Mg:0.0000%~0.0100%、希土類金属(rare earth metal:REM):0.0000%~0.1000%、残部:Fe及び不純物で表される化学組成を有している。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
 (C:0.06%~0.22%)
 Cは、熱延鋼板中で種々の析出物を形成し、析出強化により強度の向上に寄与する。Cは、延性を向上する残留オーステナイトの確保にも寄与する。C含有量が0.06%未満であると、十分な残留オーステナイトを確保できず、十分な強度及び延性が得られない。従って、C含有量は0.06%以上とする。強度及び伸びの更なる向上の観点から、C含有量は好ましくは0.10%以上とする。一方、C含有量が0.22%超であると、十分な伸びフランジ性が得られなかったり、溶接性が損なわれたりする。従って、C含有量は0.22%以下とする。より溶接性を向上させるためには、C含有量は好ましくは0.20%以下とする。
 (Si:1.0%~3.2%)
 Siは、熱間圧延後の温度制御時にフェライトを安定化させ、かつ、巻き取り後(ベイナイト変態時)のセメンタイトの析出を抑制する。このようにして、SiはオーステナイトのC濃度を高め、残留オーステナイトの確保に寄与する。Si含有量が1.0%未満であると、その効果が十分に得られない。従って、Si含有量は1.0%以上とする。一方、Si含有量が3.2%超であると、表面性状、塗装性及び溶接性が劣化する。従って、Si含有量は3.2%以下とする。
 (Mn:0.8%~2.2%)
 Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。Mn含有量が0.8%未満であると、十分な焼入れ性を確保できない。従って、Mn含有量は0.8%以上とする。一方、Mn含有量が2.2%超であると、スラブ割れが生じる。従って、Mn含有量は2.2%以下とする。
 (P:0.05%以下)
 Pは、必須元素ではなく、例えば鋼中に不純物として含有される。加工性、溶接性及び疲労特性の観点から、P含有量は低ければ低いほどよい。特にP含有量が0.05%超で、加工性、溶接性及び疲労特性の低下が著しい。従って、P含有量は0.05%以下とする。
 (S:0.005%以下)
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。S含有量が高いほど伸びフランジ性の低下につながるA系介在物が生成されやすくなるため、S含有量は低ければ低いほどよい。特にS含有量が0.005%超で、伸びフランジ性の低下が著しい。従って、S含有量は0.005%以下とする。
 (Al:0.01%~1.00%)
 Alは脱酸剤であり、Al含有量が0.01%未満であると、現行の一般的な精錬(二次精錬を含む)において十分な脱酸を行うことができない。従って、Al含有量は0.01%以上とする。このようにして、Alは熱間圧延後の温度制御時にフェライトを安定化させ、かつ、ベイナイト変態時のセメンタイトの析出を抑制する。このようにして、AlはオーステナイトのC濃度を高め、残留オーステナイトの確保に寄与する。一方、Al含有量が1.00%超であると、表面性状、塗装性及び溶接性が劣化する。従って、Al含有量は1.00%以下とする。より安定した残留オーステナイトを得るためには、Al含有量は好ましくは0.02%以上とする。
 Siも脱酸剤として機能する。また、上記のように、Si及びAlは、オーステナイトのC濃度を高め、残留オーステナイトの確保に寄与する。しかしながら、Si含有量及びAl含有量の和が4.0%超であると、表面性状、塗装性及び溶接性が劣化しやすい。従って、Si含有量及びAl含有量の和は好ましくは4.0%以下とする。また、より良好な塗装性を得るためには、この和はより好ましくは3.5%以下とし、更に好ましくは3.0%以下とする。
 (N:0.006%以下)
 Nは、必須元素ではなく、例えば鋼中に不純物として含有される。加工性の観点から、N含有量は低ければ低いほどよい。特にN含有量が0.006%超で、加工性の低下が著しい。従って、N含有量は0.006%以下とする。
 (Cr:0.00%~1.00%)
 Crは、必須元素ではないが、パーライト変態を抑制し、残留オーステナイトを安定化するため、熱延鋼板に所定量を限度に適宜含有されていてもよい任意元素である。この効果を十分に得るために、Cr含有量は好ましくは0.05%以上とし、より好ましくは0.20%以上とし、更に好ましくは0.40%以上とする。一方、Cr含有量が1.00%超であると、上記作用による効果が飽和し、徒にコストが高くなるだけでなく、化成処理性の低下が著しくなる。従って、Cr含有量は1.00%以下とする。つまり、Cr:0.05%~1.00%が満たされることが好ましい。
 Mo、Ni、Cu、B、Ti、Nb、V、W、Sn、Zr、As及びCoは、必須元素ではなく、熱延鋼板に所定量を限度に適宜含有されていてもよい任意元素である。
 (Mo:0.000%~1.000%、Ni:0.000%~2.000%、Cu:0.000%~2.000%、B:0.0000%~0.0050%、Ti:0.000%~0.200%、Nb:0.000%~0.200%、V:0.000%~1.000%、W:0.000%~1.000%、Sn:0.0000%~0.2000%、Zr:0.0000%~0.2000%、As:0.0000%~0.5000%、Co:0.0000%~1.0000%)
 Mo、Ni、Cu、B、Ti、Nb、V、W、Sn、Zr、As及びCoは、析出硬化又は固溶強化により熱延鋼板の強度の更なる向上に寄与する。従って、Mo、Ni、Cu、B、Ti、Nb、V、W、Sn、Zr、As若しくはCo又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、好ましくは、Mo:0.001%以上、Ni:0.001%以上、Cu:0.001%以上、B:0.0001%以上下、Ti:0.001%以上、Nb:0.001%以上、V:0.001%以上、W:0.001%以上、Sn:0.0001%以上、Zr:0.0001%以上、As:0.0001%以上、若しくはCo:0.0001%以上、又はこれらの任意の組み合わせとする。しかし、Mo:1.000%超、Ni:2.000%超、Cu:2.000%超、B:0.0050%超、Ti:0.200%超、Nb:0.200%超、V:1.000%超、W:1.000%超、Sn:0.2000%超、Zr:0.2000%超、As:0.5000%超、若しくはCo:1.0000%超又はこれらの任意の組み合わせでは、上記作用による効果が飽和して徒にコストが高くなる。このため、Mo:1.000%以下、Ni:2.000%以下、Cu:2.000%以下、B:0.0050%以下、Ti:0.200%以下、Nb:0.200%以下、V:1.000%以下、W:1.000%以下、Sn:0.2000%以下、Zr:0.2000%以下、As:0.5000%以下、かつCo:1.0000%以下とする。つまり、Mo:0.000%~1.000%、Ni:0.001%~2.000%、Cu:0.001%~2.000%、B:0.0001%~0.0050%、Ti:0.001%~0.200%、Nb:0.001%~0.200%、V:0.001%~1.000%、W:0.001%~1.000%、Sn:0.0001%~0.2000%、Zr:0.0001%~0.2000%、As:0.0001%~0.5000%、若しくはCo:0.0001%~1.0000%、又はこれらの任意の組み合わせが満たされることが好ましい。
 (Ca:0.0000%~0.0100%、Mg:0.0000%~0.0100%、REM:0.0000%~0.1000%)
 Ca、Mg及びREMは、破壊の起点となったり加工性を劣化させたりする非金属介在物の形態を変化させて無害化する。従って、Ca、Mg若しくはREM又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、好ましくは、Ca:0.0001%以上、Mg:0.0001%以上、若しくはREM:0.0001%以上、又はこれらの任意の組み合わせとする。しかし、Ca:0.0100%超、Mg:0.0100%超、若しくはREM:0.1000%超、又はこれらの任意の組み合わせでは、上記作用による効果が飽和して徒にコストが高くなる。このため、Ca:0.0100%以下、Mg:0.0100%以下、かつREM:0.1000%以下とする。つまり、Ca:0.0001%~0.0100%、Mg:0.0001%~0.0100%、若しくはREM:0.0001%~0.1000%、又はこれらの任意の組み合わせが満たされることが好ましい。
 REM(希土類金属)はSc、Y及びランタノイドの合計17種類の元素を指し、「REM含有量」はこれら17種類の元素の合計の含有量を意味する。ランタノイドは、工業的には、例えばミッシュメタルの形で添加される。
 次に、実施形態に係る熱延鋼板を製造する方法の例について説明する。ここで説明する方法によれば実施形態に係る熱延鋼板を製造することができるが、実施形態に係る熱延鋼板を製造する方法は、これに限定されるものではない。すなわち、他の方法によって製造された熱延鋼板であっても、それが上記の条件を満たす結晶粒、ミクロ組織及び化学組成を有していれば、実施形態の範囲内にあるといえる。
 この方法では、以下の処理を順に行う。図4に熱間圧延から巻き取りまでの温度履歴の概略を示す。
 (1)上記の化学組成を有する鋼塊又はスラブを鋳造し、必要に応じて再加熱11を行う。
 (2)鋼塊又はスラブの粗圧延12を行う。粗圧延は熱間圧延に含まれる。
 (3)鋼塊又はスラブの仕上げ圧延13を行う。仕上げ圧延は熱間圧延に含まれる。仕上げ圧延では、最終3段の圧延を、0.6超0.7以下の累積ひずみで行い、終了温度をAr3点以上かつAr3点+30℃とする。
 (4)ランアウトテーブルで10℃/秒以上の平均冷却速度で650℃以上750℃以下の温度までの冷却(第1の冷却)14を行う。
 (5)3秒以上10秒以下の時間の空冷15を行う。この冷却中に二相域におけるフェライト変態が生じ、優れた延性が得られる。
 (6)30℃/秒以上の平均冷却速度で350℃以上450℃以下の温度までの冷却(第2の冷却)16を行う。
 (7)巻き取り17を行う。
 鋼塊又はスラブの鋳造では、化学組成が上記の範囲内にあるように成分を調整した溶鋼を鋳込む。そして、鋼塊又はスラブを熱間圧延機に送る。このとき、鋳込まれた鋼塊又はスラブを高温のまま熱間圧延機に直送してもよく、室温まで冷却した後に加熱炉で再加熱して熱間圧延機に送ってもよい。再加熱11の温度は特に限定されない。再加熱11の温度が1260℃以上であると、スケールオフの量が増加して歩留まりが低下することがあるため、再加熱11の温度は好ましくは1260℃未満とする。また、再加熱11の温度が1000℃未満であると、スケジュール上、操業効率が著しく損なわれることがあるため、再加熱11の温度は好ましくは1000℃以上とする。
 粗圧延12の最終段の圧延温度が1080℃未満であると、つまり粗圧延12中に圧延温度が1080℃未満まで低下すると、仕上げ圧延13後のオーステナイト粒が過度に小さくなり、オーステナイトからフェライトへの変態が過度に促進され、所望のベイナイトを得にくいことがある。従って、最終段の圧延は好ましくは1080℃以上で行う。粗圧延12の最終段の圧延温度が1150℃超であると、つまり粗圧延12中に圧延温度が1150℃を超えると、仕上げ圧延13後のオーステナイト粒が大きくなり、後の冷却において生じる二相域でのフェライト変態が十分には促進されず、所望のミクロ組織を得にくいことがある。従って、最終段の圧延は好ましくは1150℃以下で行う。
 粗圧延12の最終段及びその前段の累積圧下率が65%超であると、仕上げ圧延13後のオーステナイト粒が過度に小さくなり、オーステナイトからフェライトへの変態が過度に促進され、所望のベイナイトを得にくいことがある。従って、この累積圧下率は好ましくは65%以下とする。この累積圧下率が40%未満であると、仕上げ圧延13後のオーステナイト粒が大きくなり、後の冷却において生じる二相域でのフェライト変態が十分には促進されず、所望のミクロ組織を得にくいことがある。従って、この累積圧下率は好ましくは40%以上とする。
 仕上げ圧延13は、粒内方位差が5°~14°である結晶粒を生成させるために重要な工程である。粒内方位差が5°~14°の結晶粒は、加工を受けてひずみを含むオーステナイトがベイナイトに変態することにより得られる。従って、仕上げ圧延13は、仕上げ圧延13後のオーステナイト中にひずみが残留するような条件で行うことが重要である。
 仕上げ圧延13では、最終3段の圧延を、0.6超0.7以下の累積ひずみで行う。最終3段の圧延での累積ひずみが0.6以下では、仕上げ圧延13後のオーステナイト粒が大きくなり、後の冷却において生じる二相域でのフェライト変態が十分には促進されず、粒内方位差が5°~14°である結晶粒の割合を5%~50%にすることができない。最終3段の圧延での累積ひずみが0.7超では、仕上げ圧延13後のオーステナイト中に過剰にひずみが残留し、粒内方位差が5°~14°である結晶粒の割合を5%~50%にすることができず、加工性が劣化する。
 ここでいう仕上げ圧延13の最終3段の累積ひずみ(εeff)は、以下の式(1)によって求めることができる。
 εeff=Σε(t,T)・・・(1)
 ここで、
 ε(t,T)=εi0/exp{(t/τ)2/3}、
 τ=τ・exp(Q/RT)、
 τ=8.46×10-6
 Q=183200J、
 R=8.314J/K・mol、であり、
 εi0は圧下時の対数ひずみを示し、tは当該段での冷却開始までの累積時間を示し、Tは当該段での圧延温度を示す。
 仕上げ圧延13では、最終1段の圧延を、Ar3点以上かつAr3点+30℃の温度範囲内で、かつ6%以上15%以下の圧下率で行う。最終1段の圧延の温度(仕上げ圧延終了温度)がAr3点+30℃超であるか、又は圧下率が6%未満では、仕上げ圧延13後のオーステナイト中のひずみの残留量が不十分になり、所望のミクロ組織が得られない。仕上げ圧延終了温度がAr3点未満であるか、又は圧下率が15%超では、仕上げ圧延13後のオーステナイト中に過剰にひずみが残留し、加工性が劣化する。
 なお、Ar1変態点温度(冷却する際の、オーステナイトがフェライト、又はフェライト及びセメンタイトへの変態を完了する温度)、Ar3変態点温度(冷却する際の、オーステナイトのフェライト変態が始まる温度)、Ac1変態点温度(加熱する際の、オーステナイトが生成し始める温度)、Ac3変態点温度(加熱する際の、オーステナイトへの変態が完了する温度)は、例えば以下の計算式により鋼成分との関係で簡易的に示される。
 Ar1変態点温度(℃)=730-102×(%C)+29×(%Si)-40×(%Mn)-18×(%Ni)-28×(%Cu)-20×(%Cr)-18×(%Mo)
 Ar3変態点温度(℃)=900-326×(%C)+40×(%Si)-40×(%Mn)-36×(%Ni)-21×(%Cu)-25×(%Cr)-30×(%Mo)
 Ac1変態点温度(℃)=751-16×(%C)+11×(%Si)-28×(%Mn)-5.5×(%Cu)-16×(%Ni)+13×(%Cr)+3.4×(%Mo)
 Ac3変態点温度(℃)=910-203√(%C)+45×(%Si)-30×(%Mn)-20×(%Cu)-15×(%Ni)+11×(%Cr)+32×(%Mo)+104×(%V)+400×(%Ti)+200×(%Al)
 ここで、(%C)、(%Si)、(%Mn)、(%Ni)、(%Cu)、(%Cr)、(%Mo)、(%V)、(%Ti)、(%Al)は、それぞれ、C)、Si、Mn、Ni、Cu、Cr、Mo、V、Ti、Alの含有量(質量%)を示す。含有されていない元素については、0%として計算する。
 仕上げ圧延13後に、ランアウトテーブル(run out table:ROT)で650℃以上750℃以下の温度までの冷却(第1の冷却)14を行う。冷却14の到達温度が650℃未満では、二相域におけるフェライト変態が不十分となって、十分な延性が得られない。冷却14の到達温度が750℃超では、フェライト変態が過度に促進され、粒内方位差が5°~14°の結晶粒の割合を5%~50%にすることができない。冷却14での平均冷却速度は10℃/秒以上とする。粒内方位差が5°~14°の結晶粒の割合を安定して5%~50%にするためである。
 冷却14が終了次第、3秒以上10秒以下の空冷15を行う。空冷15の時間が3秒未満では、二相域におけるフェライト変態が不十分となって、十分な延性が得られない。空冷15の時間が10秒超では、二相域におけるフェライト変態が過度に促進され、所望のミクロ組織が得られない。
 空冷15が終了次第、30℃/秒以上の平均冷却速度で350℃以上450℃以下の温度までの冷却(第2の冷却)16を行う。この平均冷却速度が30℃/秒未満であると、例えばパーライトが多量に生成し、所望のミクロ組織が得られない。
 その後、好ましくは350℃以上450℃以下の温度での巻き取り16を行う。巻き取り16の温度が450℃超では、フェライトが生成して十分なベイナイトが得られず、所望のミクロ組織が得られない。巻き取り16の温度が350℃未満では、マルテンサイトが生成して十分なベイナイトが得られず、所望のミクロ組織が得られない。
 本実施形態に係る熱延鋼板に表面処理を行っても、強度、延性及び伸びフランジ性の向上という効果を得ることができる。例えば、電気めっき、溶融めっき、蒸着めっき、有機皮膜形成、フィルムラミネート、有機塩類処理、無機塩類処理、ノンクロム処理等を行ってもよい。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 この実験では、表1に示す化学組成を有する複数の鋼(鋼の記号A~Q)を用いて表2に示すミクロ組織及び結晶粒を有する熱延鋼板の試料を製造し、その機械的特性を調査した。表1中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。表1中又は表2中の下線は、その数値が本発明の範囲から外れていることを示す。表2中の「経過時間」は仕上げ圧延の完了から第1の冷却の開始までの時間である。
 粒内方位差が5°~14°である結晶粒の割合はEBSD解析装置を用いて上記の方法により測定した。残留オーステナイト、フェライト、ベイナイト、パーライト、マルテンサイトの面積率は光学顕微鏡を用いて上記の方法により測定した。
 そして、各熱延鋼板の引張試験及び鞍型伸びフランジ試験を行った。引張試験は、各熱延鋼板から作製した日本工業規格JIS Z 2201に記載の5号試験片を用いて、日本工業規格JIS Z 2241に記載の方法に従って行った。鞍型伸びフランジ試験は上記の方法により行った。表2中の「指標」は、伸びフランジ性の指標(H×TS)の値である。
 表2に示すように、本発明の範囲内にある試料のみにおいて、高い強度を得ながら、優れた延性及び伸びフランジ性を得ることができた。なお、試料No.15では、スラブ割れが生じてしまった。また、試料No.11及びNo.17では、鞍型伸びフランジ試験において成形することができなかった。
 各熱延鋼板は、表3に示す条件下で次のようにして製造した。転炉での溶製及び連続鋳造を行った後に、表3に示す加熱温度で加熱し、粗圧延及び仕上げ圧延を含む熱間圧延を行った。加熱温度、仕上げ圧延の最終3段の累積ひずみ及び終了温度を表3に示す。仕上げ圧延の後、表3に示す温度T1まで表3に示す冷却速度でランアウトテーブル(ROT)で冷却した。そして、温度が温度T1に到達次第、空冷を開始した。この空冷の時間を表3に示す。空冷の後、表3に示す平均冷却速度で表3に示す温度T2まで冷却し、巻き取りを行って熱延コイルを作製した。表3中の下線は、その数値が好ましい範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 本発明は、例えば、自動車の足回り部品等に用いられる熱延鋼板に関連する産業に利用することができる。

Claims (3)

  1.  質量%で、
     C :0.06%~0.22%、
     Si:1.0%~3.2%、
     Mn:0.8%~2.2%、
     P :0.05%以下、
     S :0.005%以下、
     Al:0.01%~1.00%、
     N :0.006%以下、
     Cr:0.00%~1.00%、
     Mo:0.000%~1.000%、
     Ni:0.000%~2.000%、
     Cu:0.000%~2.000%、
     B :0.0000%~0.0050%、
     Ti:0.000%~0.200%、
     Nb:0.000%~0.200%、
     V :0.000%~1.000%、
     W :0.000%~1.000%、
     Sn:0.0000%~0.2000%、
     Zr:0.0000%~0.2000%、
     As:0.0000%~0.5000%、
     Co:0.0000%~1.0000%、
     Ca:0.0000%~0.0100%、
     Mg:0.0000%~0.0100%、
     REM:0.0000%~0.1000%、
     残部:Fe及び不純物、
    で表される化学組成を有し、
     体積%で、
     残留オーステナイト:2%~30%、
     フェライト:20%~85%、
     ベイナイト:10%~60%、
     パーライト:5%以下、
     マルテンサイト:10%以下、
    で表されるミクロ組織を有し、
     方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合が面積率で5%~50%であることを特徴とする熱延鋼板。
  2.  前記化学組成において、
     Cr:0.05%~1.00%が成り立つことを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成において、
     Mo:0.001%~1.000%、
     Ni:0.001%~2.000%、
     Cu:0.001%~2.000%、
     B :0.0001%~0.0050%、
     Ti:0.001%~0.200%、
     Nb:0.001%~0.200%、
     V :0.001%~1.000%、
     W :0.001%~1.000%、
     Sn:0.0001%~0.2000%、
     Zr:0.0001%~0.2000%、
     As:0.0001%~0.5000%、
     Co:0.0001%~1.0000%、
     Ca:0.0001%~0.0100%、
     Mg:0.0001%~0.0100%、若しくは
     REM:0.0001%~0.1000%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項1又は2に記載の熱延鋼板。
PCT/JP2015/054846 2015-02-20 2015-02-20 熱延鋼板 WO2016132542A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES15882644T ES2743814T3 (es) 2015-02-20 2015-02-20 Chapa de acero laminada en caliente
PCT/JP2015/054846 WO2016132542A1 (ja) 2015-02-20 2015-02-20 熱延鋼板
US15/538,404 US11401571B2 (en) 2015-02-20 2015-02-20 Hot-rolled steel sheet
JP2017500251A JP6327395B2 (ja) 2015-02-20 2015-02-20 熱延鋼板
PL15882644T PL3260565T3 (pl) 2015-02-20 2015-02-20 Blacha stalowa cienka walcowana na gorąco
BR112017013229-0A BR112017013229A2 (ja) 2015-02-20 2015-02-20 Hot-rolled steel product
KR1020177018427A KR101957078B1 (ko) 2015-02-20 2015-02-20 열연 강판
MX2017008622A MX2017008622A (es) 2015-02-20 2015-02-20 Hoja de acero laminada en caliente.
CN201580075484.9A CN107208209B (zh) 2015-02-20 2015-02-20 热轧钢板
EP15882644.6A EP3260565B1 (en) 2015-02-20 2015-02-20 Hot-rolled steel sheet
TW105105139A TWI602933B (zh) 2015-02-20 2016-02-22 Hot-rolled steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054846 WO2016132542A1 (ja) 2015-02-20 2015-02-20 熱延鋼板

Publications (1)

Publication Number Publication Date
WO2016132542A1 true WO2016132542A1 (ja) 2016-08-25

Family

ID=56688801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054846 WO2016132542A1 (ja) 2015-02-20 2015-02-20 熱延鋼板

Country Status (11)

Country Link
US (1) US11401571B2 (ja)
EP (1) EP3260565B1 (ja)
JP (1) JP6327395B2 (ja)
KR (1) KR101957078B1 (ja)
CN (1) CN107208209B (ja)
BR (1) BR112017013229A2 (ja)
ES (1) ES2743814T3 (ja)
MX (1) MX2017008622A (ja)
PL (1) PL3260565T3 (ja)
TW (1) TWI602933B (ja)
WO (1) WO2016132542A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338038B1 (ja) * 2017-11-15 2018-06-06 新日鐵住金株式会社 高強度冷延鋼板
EP3561101A4 (en) * 2016-12-20 2019-11-13 Posco HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING EXCELLENT WELDABILITY AND DUCTILITY AND METHOD FOR MANUFACTURING THE SAME
EP3604585A4 (en) * 2017-03-31 2020-09-02 Nippon Steel Corporation HOT ROLLED STEEL SHEET
WO2024135365A1 (ja) * 2022-12-23 2024-06-27 日本製鉄株式会社 熱間圧延鋼板

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
KR101957078B1 (ko) 2015-02-20 2019-03-11 신닛테츠스미킨 카부시키카이샤 열연 강판
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
CN109563580A (zh) 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板
CN109563586B (zh) * 2016-08-05 2021-02-09 日本制铁株式会社 钢板及镀覆钢板
CN113637923B (zh) * 2016-08-05 2022-08-30 日本制铁株式会社 钢板及镀覆钢板
EP3584345A1 (en) * 2017-02-20 2019-12-25 Nippon Steel Corporation Hot stamp moulded body
CN110536973B (zh) * 2018-03-16 2020-08-18 日本制铁株式会社 煤/矿石运输船货舱用钢板
CN112513308A (zh) * 2018-07-31 2021-03-16 杰富意钢铁株式会社 高强度热轧镀覆钢板
KR102517187B1 (ko) * 2018-10-17 2023-04-03 제이에프이 스틸 가부시키가이샤 박강판 및 그의 제조 방법
EP3868908A4 (en) * 2018-10-19 2022-04-13 Nippon Steel Corporation HOT ROLLED STEEL SHEET
WO2020179295A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
CN114787405B (zh) * 2020-01-09 2023-05-12 日本制铁株式会社 热压成形体
WO2024057065A1 (en) * 2022-09-15 2024-03-21 Arcelormittal Hot rolling with residual elements
WO2024057064A1 (en) * 2022-09-15 2024-03-21 Arcelormittal Hot rolling with residual elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149646A (ja) * 1988-11-30 1990-06-08 Kobe Steel Ltd 加工性、溶接性に優れた高強度熱延鋼板とその製造方法
JPH03180445A (ja) * 1989-12-09 1991-08-06 Nippon Steel Corp 加工性とスポット溶接性に優れた熱延高強度鋼板とその製造方法
JP2001220648A (ja) * 2000-02-02 2001-08-14 Kawasaki Steel Corp 伸びフランジ性に優れた高延性熱延鋼板およびその製造方法
JP2008285748A (ja) * 2007-04-17 2008-11-27 Nakayama Steel Works Ltd 高強度熱延鋼板およびその製造方法
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP2010168651A (ja) * 2008-12-26 2010-08-05 Nakayama Steel Works Ltd 高強度熱延鋼板およびその製造方法

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501626A (en) 1980-10-17 1985-02-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel plate and method for manufacturing same
JPS5770257A (en) 1980-10-17 1982-04-30 Kobe Steel Ltd High strength steel plate
JPS5842726A (ja) 1981-09-04 1983-03-12 Kobe Steel Ltd 高強度熱延鋼板の製造方法
JPS61217529A (ja) 1985-03-22 1986-09-27 Nippon Steel Corp 延性のすぐれた高強度鋼板の製造方法
JP2840479B2 (ja) 1991-05-10 1998-12-24 株式会社神戸製鋼所 疲労強度と疲労亀裂伝播抵抗の優れた高強度熱延鋼板の製造方法
JP2601581B2 (ja) 1991-09-03 1997-04-16 新日本製鐵株式会社 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP2548654B2 (ja) 1991-12-13 1996-10-30 新日本製鐵株式会社 複合組織鋼材のエッチング液およびエッチング方法
JP3037855B2 (ja) 1993-09-13 2000-05-08 新日本製鐵株式会社 耐疲労亀裂進展特性の良好な鋼板およびその製造方法
JPH0949026A (ja) 1995-08-07 1997-02-18 Kobe Steel Ltd 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JP3333414B2 (ja) 1996-12-27 2002-10-15 株式会社神戸製鋼所 伸びフランジ性に優れる加熱硬化用高強度熱延鋼板及びその製造方法
TW454040B (en) 1997-12-19 2001-09-11 Exxon Production Research Co Ultra-high strength ausaged steels with excellent cryogenic temperature toughness
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
KR100430987B1 (ko) 1999-09-29 2004-05-12 제이에프이 엔지니어링 가부시키가이샤 박강판 및 박강판의 제조방법
FR2801061B1 (fr) * 1999-11-12 2001-12-14 Lorraine Laminage Procede de realisation d'une bande de tole laminere a chaud a tres haute resistance, utilisable pour la mise en forme et notamment pour l'emboutissage
JP4258934B2 (ja) 2000-01-17 2009-04-30 Jfeスチール株式会社 加工性と疲労特性に優れた高強度熱延鋼板およびその製造方法
JP4445095B2 (ja) 2000-04-21 2010-04-07 新日本製鐵株式会社 バーリング加工性に優れる複合組織鋼板およびその製造方法
DE60018940D1 (de) * 2000-04-21 2005-04-28 Nippon Steel Corp Stahlblech mit hervorragender gratbearbeitbarkeit bei gleichzeitiger hoher ermüdungsfestigeit und verfahren zu dessen herstellung
JP3790135B2 (ja) 2000-07-24 2006-06-28 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
EP1176217B1 (en) 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP3882577B2 (ja) 2000-10-31 2007-02-21 Jfeスチール株式会社 伸びおよび伸びフランジ性に優れた高張力熱延鋼板ならびにその製造方法および加工方法
JP3888128B2 (ja) 2000-10-31 2007-02-28 Jfeスチール株式会社 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
ES2690275T3 (es) 2000-10-31 2018-11-20 Jfe Steel Corporation Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma
JP4205853B2 (ja) 2000-11-24 2009-01-07 新日本製鐵株式会社 バーリング加工性と疲労特性に優れた熱延鋼板およびその製造方法
JP2002226943A (ja) 2001-02-01 2002-08-14 Kawasaki Steel Corp 加工性に優れた高降伏比型高張力熱延鋼板およびその製造方法
JP2002317246A (ja) 2001-04-19 2002-10-31 Nippon Steel Corp 切り欠き疲労強度とバーリング加工性に優れる自動車用薄鋼板およびその製造方法
JP4062118B2 (ja) * 2002-03-22 2008-03-19 Jfeスチール株式会社 伸び特性および伸びフランジ特性に優れた高張力熱延鋼板とその製造方法
JP4205893B2 (ja) 2002-05-23 2009-01-07 新日本製鐵株式会社 プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4288146B2 (ja) 2002-12-24 2009-07-01 新日本製鐵株式会社 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板の製造方法
AU2003284496A1 (en) * 2002-12-24 2004-07-22 Nippon Steel Corporation High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
JP4116901B2 (ja) 2003-02-20 2008-07-09 新日本製鐵株式会社 バーリング性高強度薄鋼板およびその製造方法
JP2004315857A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4580157B2 (ja) 2003-09-05 2010-11-10 新日本製鐵株式会社 Bh性と伸びフランジ性を兼ね備えた熱延鋼板およびその製造方法
JP4412727B2 (ja) 2004-01-09 2010-02-10 株式会社神戸製鋼所 耐水素脆化特性に優れた超高強度鋼板及びその製造方法
US20050150580A1 (en) 2004-01-09 2005-07-14 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
JP4333379B2 (ja) 2004-01-29 2009-09-16 Jfeスチール株式会社 加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法
JP4470701B2 (ja) 2004-01-29 2010-06-02 Jfeスチール株式会社 加工性および表面性状に優れた高強度薄鋼板およびその製造方法
JP2005256115A (ja) 2004-03-12 2005-09-22 Nippon Steel Corp 伸びフランジ性と疲労特性に優れた高強度熱延鋼板
JP4926406B2 (ja) 2004-04-08 2012-05-09 新日本製鐵株式会社 疲労き裂伝播特性に優れた鋼板
JP4460343B2 (ja) 2004-04-13 2010-05-12 新日本製鐵株式会社 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
WO2006103991A1 (ja) 2005-03-28 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP3889766B2 (ja) 2005-03-28 2007-03-07 株式会社神戸製鋼所 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP5070732B2 (ja) 2005-05-30 2012-11-14 Jfeスチール株式会社 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
DE102005051052A1 (de) * 2005-10-25 2007-04-26 Sms Demag Ag Verfahren zur Herstellung von Warmband mit Mehrphasengefüge
JP4840567B2 (ja) 2005-11-17 2011-12-21 Jfeスチール株式会社 高強度薄鋼板の製造方法
JP4854333B2 (ja) 2006-03-03 2012-01-18 株式会社中山製鋼所 高強度鋼板、未焼鈍高強度鋼板およびそれらの製造方法
JP4528275B2 (ja) 2006-03-20 2010-08-18 新日本製鐵株式会社 伸びフランジ性に優れた高強度熱延鋼板
JP4575893B2 (ja) 2006-03-20 2010-11-04 新日本製鐵株式会社 強度延性バランスに優れた高強度鋼板
KR20080110904A (ko) 2006-05-16 2008-12-19 제이에프이 스틸 가부시키가이샤 신장 특성, 신장 플랜지 특성 및 인장 피로 특성이 우수한 고강도 열연강판 및 그 제조 방법
JP4969915B2 (ja) 2006-05-24 2012-07-04 新日本製鐵株式会社 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
JP5228447B2 (ja) * 2006-11-07 2013-07-03 新日鐵住金株式会社 高ヤング率鋼板及びその製造方法
US8157933B2 (en) 2007-03-27 2012-04-17 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface properties and burring properties, and method for manufacturing the same
JP5087980B2 (ja) 2007-04-20 2012-12-05 新日本製鐵株式会社 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4980163B2 (ja) 2007-07-20 2012-07-18 新日本製鐵株式会社 成形性に優れる複合組織鋼板およびその製造方法
JP5359296B2 (ja) 2008-01-17 2013-12-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5194858B2 (ja) 2008-02-08 2013-05-08 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
KR101103203B1 (ko) * 2008-03-26 2012-01-05 신닛뽄세이테쯔 카부시키카이샤 피로 특성과 신장 플랜지성이 우수한 열연 강판 및 그 제조 방법
KR101130837B1 (ko) 2008-04-10 2012-03-28 신닛뽄세이테쯔 카부시키카이샤 구멍 확장성과 연성의 균형이 극히 양호하고, 피로 내구성도 우수한 고강도 강판과 아연 도금 강판 및 이 강판들의 제조 방법
JP5200653B2 (ja) 2008-05-09 2013-06-05 新日鐵住金株式会社 熱間圧延鋼板およびその製造方法
JP5042914B2 (ja) 2008-05-12 2012-10-03 新日本製鐵株式会社 高強度鋼およびその製造方法
JP5438302B2 (ja) 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP4853575B2 (ja) 2009-02-06 2012-01-11 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
CN102341518B (zh) 2009-04-03 2013-04-10 株式会社神户制钢所 冷轧钢板及其制造方法
JP4977184B2 (ja) 2009-04-03 2012-07-18 株式会社神戸製鋼所 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法
JP5240037B2 (ja) 2009-04-20 2013-07-17 新日鐵住金株式会社 鋼板およびその製造方法
CN102333899B (zh) 2009-05-11 2014-03-05 新日铁住金株式会社 冲裁加工性和疲劳特性优良的热轧钢板、热浸镀锌钢板及它们的制造方法
MX2011012371A (es) 2009-05-27 2011-12-08 Nippon Steel Corp Lamina de acero de alta resistencia, lamina de acero bañada en caliente, y lamina de acero bañada en caliente aleada que tienen excelentes caracteristicas a la fatiga, alargamiento y colision y metodo de fabricacion para tales laminas de acero.
JP5423191B2 (ja) 2009-07-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5482204B2 (ja) 2010-01-05 2014-05-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
ES2705232T3 (es) 2010-01-29 2019-03-22 Nippon Steel & Sumitomo Metal Corp Lámina de acero y método para fabricar la lámina de acero
EP2546377B9 (en) 2010-03-10 2019-12-04 Nippon Steel Corporation High-strength hot-rolled steel sheet and method of manufacturing the same
JP5510025B2 (ja) 2010-04-20 2014-06-04 新日鐵住金株式会社 伸びと局部延性に優れた高強度薄鋼板およびその製造方法
JP5765080B2 (ja) 2010-06-25 2015-08-19 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
CA2806626C (en) 2010-07-28 2016-04-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same
JP5719545B2 (ja) 2010-08-13 2015-05-20 新日鐵住金株式会社 伸びとプレス成形安定性に優れた高強度薄鋼板
JP5126326B2 (ja) 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
EP2439290B1 (de) * 2010-10-05 2013-11-27 ThyssenKrupp Steel Europe AG Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung
EP2631314B1 (en) 2010-10-18 2019-09-11 Nippon Steel Corporation Hot-rolled, cold-rolled, and plated steel sheet having improved uniform and local ductility at a high strain rate
JP5776398B2 (ja) 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5667471B2 (ja) 2011-03-02 2015-02-12 株式会社神戸製鋼所 温間での深絞り性に優れた高強度鋼板およびその温間加工方法
MX338997B (es) 2011-03-28 2016-05-09 Nippon Steel & Sumitomo Metal Corp Placa de acero laminada en frio y metodo de produccion de la misma.
US9587287B2 (en) * 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
US9752217B2 (en) 2011-04-13 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method of producing the same
CN103534379B (zh) * 2011-04-13 2016-01-20 新日铁住金株式会社 气体氮碳共渗用热轧钢板及其制造方法
US9567658B2 (en) 2011-05-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
JP5640898B2 (ja) 2011-06-02 2014-12-17 新日鐵住金株式会社 熱延鋼板
JP5780210B2 (ja) 2011-06-14 2015-09-16 新日鐵住金株式会社 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法
CN103732781B (zh) * 2011-07-29 2016-07-06 新日铁住金株式会社 合金化热浸镀锌层和具有该层的钢板以及其制造方法
WO2013047812A1 (ja) 2011-09-30 2013-04-04 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板
WO2013047739A1 (ja) 2011-09-30 2013-04-04 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP5610094B2 (ja) 2011-12-27 2014-10-22 Jfeスチール株式会社 熱延鋼板およびその製造方法
PL2816132T3 (pl) 2012-02-17 2017-06-30 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka, blacha stalowa cienka powlekana galwanicznie, sposób wytwarzania blachy stalowej cienkiej oraz sposób wytwarzania blachy stalowej cienkiej powlekanej galwanicznie
TWI463018B (zh) 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp 具優異裂縫阻滯性之高強度厚鋼板
KR101706441B1 (ko) 2012-04-26 2017-02-13 제이에프이 스틸 가부시키가이샤 양호한 연성, 신장 플랜지성, 재질 균일성을 갖는 고강도 열연 강판 및 그 제조 방법
KR101706478B1 (ko) 2012-06-26 2017-02-13 신닛테츠스미킨 카부시키카이샤 고강도 열연 강판 및 그 제조 방법
CA2878685C (en) 2012-07-20 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Steel material
ES2608036T3 (es) 2012-08-03 2017-04-05 Tata Steel Ijmuiden Bv Un proceso para producir tiras de acero laminado en caliente y una tira de acero producida con este
JP5825225B2 (ja) 2012-08-20 2015-12-02 新日鐵住金株式会社 熱延鋼板の製造方法
KR101658744B1 (ko) 2012-09-26 2016-09-21 신닛테츠스미킨 카부시키카이샤 복합 조직 강판 및 그 제조 방법
JP5574070B1 (ja) 2012-09-27 2014-08-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
MX2015007724A (es) * 2012-12-18 2015-09-07 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia con bajo limite de elasticidad y metodo para la fabricacion de la misma.
JP5821861B2 (ja) 2013-01-23 2015-11-24 新日鐵住金株式会社 外観に優れ、伸びと穴拡げ性のバランスに優れた高強度熱延鋼板及びその製造方法
KR101758003B1 (ko) 2013-04-15 2017-07-13 신닛테츠스미킨 카부시키카이샤 열연 강판
JP6241274B2 (ja) 2013-12-26 2017-12-06 新日鐵住金株式会社 熱延鋼板の製造方法
US10329637B2 (en) 2014-04-23 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Heat-rolled steel plate for tailored rolled blank, tailored rolled blank, and methods for producing these
JP6292022B2 (ja) 2014-05-15 2018-03-14 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
JP6390273B2 (ja) 2014-08-29 2018-09-19 新日鐵住金株式会社 熱延鋼板の製造方法
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
KR101957078B1 (ko) 2015-02-20 2019-03-11 신닛테츠스미킨 카부시키카이샤 열연 강판
MX2017010537A (es) * 2015-02-20 2017-12-14 Nippon Steel & Sumitomo Metal Corp Chapa de acero laminada en caliente.
WO2016135898A1 (ja) * 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
CN107406929B (zh) 2015-02-25 2019-01-04 新日铁住金株式会社 热轧钢板
CN109642279B (zh) 2016-08-05 2021-03-09 日本制铁株式会社 钢板及镀覆钢板
CN109563580A (zh) 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板
CN109563586B (zh) * 2016-08-05 2021-02-09 日本制铁株式会社 钢板及镀覆钢板
CN113637923B (zh) * 2016-08-05 2022-08-30 日本制铁株式会社 钢板及镀覆钢板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149646A (ja) * 1988-11-30 1990-06-08 Kobe Steel Ltd 加工性、溶接性に優れた高強度熱延鋼板とその製造方法
JPH03180445A (ja) * 1989-12-09 1991-08-06 Nippon Steel Corp 加工性とスポット溶接性に優れた熱延高強度鋼板とその製造方法
JP2001220648A (ja) * 2000-02-02 2001-08-14 Kawasaki Steel Corp 伸びフランジ性に優れた高延性熱延鋼板およびその製造方法
JP2008285748A (ja) * 2007-04-17 2008-11-27 Nakayama Steel Works Ltd 高強度熱延鋼板およびその製造方法
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP2010168651A (ja) * 2008-12-26 2010-08-05 Nakayama Steel Works Ltd 高強度熱延鋼板およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561101A4 (en) * 2016-12-20 2019-11-13 Posco HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING EXCELLENT WELDABILITY AND DUCTILITY AND METHOD FOR MANUFACTURING THE SAME
EP3604585A4 (en) * 2017-03-31 2020-09-02 Nippon Steel Corporation HOT ROLLED STEEL SHEET
JP6338038B1 (ja) * 2017-11-15 2018-06-06 新日鐵住金株式会社 高強度冷延鋼板
WO2019097600A1 (ja) * 2017-11-15 2019-05-23 日本製鉄株式会社 高強度冷延鋼板
US11208705B2 (en) 2017-11-15 2021-12-28 Nippon Steel Corporation High-strength cold-rolled steel sheet
WO2024135365A1 (ja) * 2022-12-23 2024-06-27 日本製鉄株式会社 熱間圧延鋼板

Also Published As

Publication number Publication date
PL3260565T3 (pl) 2019-12-31
CN107208209A (zh) 2017-09-26
CN107208209B (zh) 2019-04-16
TWI602933B (zh) 2017-10-21
JP6327395B2 (ja) 2018-05-23
ES2743814T3 (es) 2020-02-20
KR20170093886A (ko) 2017-08-16
US11401571B2 (en) 2022-08-02
JPWO2016132542A1 (ja) 2017-10-05
EP3260565B1 (en) 2019-07-31
BR112017013229A2 (ja) 2018-01-09
US20170349967A1 (en) 2017-12-07
EP3260565A4 (en) 2018-09-12
KR101957078B1 (ko) 2019-03-11
MX2017008622A (es) 2017-11-15
EP3260565A1 (en) 2017-12-27
TW201636441A (zh) 2016-10-16

Similar Documents

Publication Publication Date Title
JP6327395B2 (ja) 熱延鋼板
JP6566026B2 (ja) めっき鋼板
KR102186320B1 (ko) 강판 및 도금 강판
JP6108046B1 (ja) 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
JP6822488B2 (ja) 鋼板
KR101926244B1 (ko) 연성, 신장 플랜지성 및 용접성이 우수한 고강도 냉연 강판, 고강도 용융 아연도금 강판, 및 고강도 합금화 용융 아연도금 강판
US20220389554A1 (en) Hot-rolled steel sheet
KR102433938B1 (ko) 고강도 냉연강판, 고강도 도금강판 및 그것들의 제조방법
KR20140048331A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
KR101935184B1 (ko) 열연 강판
US20180037967A1 (en) Hot-rolled steel sheet
JP2015175061A (ja) 引張最大強度780MPaを有する衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法。
KR20160097348A (ko) 열간 성형 부재 및 그 제조 방법
KR20200067887A (ko) 고강도 냉연 강판
US20230295761A1 (en) Steel sheet and steel sheet manufacturing method
JPWO2019187031A1 (ja) 優れた延性と穴広げ性を有する高強度鋼板
JP6217455B2 (ja) 冷延鋼板
JP6179698B1 (ja) 鋼板およびめっき鋼板
CN109642278B (zh) 热轧钢板
JP7440804B2 (ja) 熱間圧延鋼板
JP6032173B2 (ja) 引張最大強度980MPaを有する耐遅れ破壊特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500251

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538404

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/008622

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177018427

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013229

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015882644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017013229

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170620