WO2016132542A1 - 熱延鋼板 - Google Patents
熱延鋼板 Download PDFInfo
- Publication number
- WO2016132542A1 WO2016132542A1 PCT/JP2015/054846 JP2015054846W WO2016132542A1 WO 2016132542 A1 WO2016132542 A1 WO 2016132542A1 JP 2015054846 W JP2015054846 W JP 2015054846W WO 2016132542 A1 WO2016132542 A1 WO 2016132542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- steel sheet
- rolled steel
- ferrite
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 92
- 239000010959 steel Substances 0.000 title claims abstract description 92
- 239000013078 crystal Substances 0.000 claims abstract description 74
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 59
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 47
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 31
- 230000000717 retained effect Effects 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 14
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims description 8
- 235000019362 perlite Nutrition 0.000 claims description 3
- 239000010451 perlite Substances 0.000 claims description 3
- 229910001562 pearlite Inorganic materials 0.000 abstract description 9
- 238000005096 rolling process Methods 0.000 description 56
- 238000001816 cooling Methods 0.000 description 45
- 230000009466 transformation Effects 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 239000011651 chromium Substances 0.000 description 16
- 238000005098 hot rolling Methods 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 14
- 229910052761 rare earth metal Inorganic materials 0.000 description 14
- 150000002910 rare earth metals Chemical class 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 238000004804 winding Methods 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 11
- 230000001186 cumulative effect Effects 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 229910052720 vanadium Inorganic materials 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 229910052785 arsenic Inorganic materials 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 229910052758 niobium Inorganic materials 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 238000010998 test method Methods 0.000 description 8
- 229910052718 tin Inorganic materials 0.000 description 8
- 229910052721 tungsten Inorganic materials 0.000 description 8
- 229910052726 zirconium Inorganic materials 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 229910000794 TRIP steel Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000003303 reheating Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910001567 cementite Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a hot-rolled steel sheet, and more particularly, to a hot-rolled steel sheet using a transformation-induced plasticity (TRIP) phenomenon.
- TRIP transformation-induced plasticity
- Patent Documents 1 to 11 describe high-strength steel sheets for the purpose of improving formability and the like. However, these conventional techniques cannot provide a hot-rolled steel sheet having sufficient strength and sufficient formability.
- Non-Patent Document 1 discloses a method for ensuring uniform elongation by allowing austenite to remain in a steel sheet.
- this Non-Patent Document 1 also discloses a method for controlling the metal structure of a steel sheet that improves the local ductility required for bending, hole expanding, and burring.
- Non-Patent Document 2 it is disclosed in Non-Patent Document 2 that if inclusions are controlled, the microstructure is controlled to a single structure, and the hardness difference between the microstructures is reduced, it is effective for bendability and hole expansion processing. ing.
- Non-Patent Document 3 the technology for obtaining an appropriate fraction of ferrite and bainite by controlling the metal structure by cooling control after hot rolling and controlling precipitates and transformation structure is also disclosed in Non-Patent Document 3. Is disclosed. However, since either method is a method for improving the local deformability depending on the structure control (control of the microstructure on the classification), the local deformability is greatly influenced by the base structure.
- Non-Patent Document 4 discloses a technique for improving the material of a hot-rolled steel sheet by increasing the amount of reduction in the continuous hot rolling process. Such a technique is a so-called crystal grain refining technique.
- the main phase of a product is obtained by transforming unrecrystallized austenite into ferrite by performing large pressure at the lowest possible temperature in the austenite region. A certain ferrite crystal grain is refined to enhance strength and toughness.
- no consideration is given to improvement of local deformability and ductility.
- the structure control mainly including inclusions has been performed.
- TRIP steel is excellent in strength and ductility, it has a characteristic point that it has low local deformability, typically represented by hole expandability related to stretch flangeability. Therefore, in order to use this TRIP steel as, for example, a high-strength steel plate for undercarriage parts, local deformability must be improved.
- An object of the present invention is to provide a hot-rolled steel sheet that has a high strength while ensuring excellent ductility by using the TRIP phenomenon and can also obtain excellent stretch flangeability.
- the present inventors With the general manufacturing method of a hot-rolled steel sheet being carried out on an industrial scale using a normal continuous hot rolling mill, the present inventors have obtained high strength, while maintaining the ductility of the hot-rolled steel sheet and Intensive research was conducted to improve moldability such as stretch flangeability. As a result, the present inventors have found a new structure that is extremely effective in securing high strength and improving moldability, and has not been formed by the prior art. This structure is not based on the structure recognized by optical microscope observation, but is recognized based on the orientation difference within each crystal grain.
- this region is defined as a crystal grain
- a region surrounded by grain boundaries having a misorientation of 15 ° or more and an equivalent circle diameter of 0.3 ⁇ m or more is defined as an average within the crystal grain. It is a structure composed of crystal grains having a misorientation of 5 ° to 14 °.
- this organization is sometimes referred to as a “new recognition organization”. The inventors have newly found that the stretch flangeability can be greatly improved while maintaining the excellent ductility of TRIP steel by controlling the ratio of the newly recognized structure within a certain range.
- a new recognition organization cannot be formed by a conventional method such as the method described in Patent Documents 1 to 13 above.
- the bainite contained in the conventional thin steel plate is composed of bainitic ferrite and iron carbide, or composed of bainitic ferrite and retained austenite.
- iron carbide and retained austenite promotes the progress of cracks during hole expansion. Accordingly, the newly recognized structure has a local ductility superior to that of bainite contained in conventional thin steel sheets.
- the newly recognized structure is a structure different from the ferrite contained in the conventional thin steel sheet.
- the formation temperature of the newly recognized structure is lower than the bainite transformation start temperature predicted from the steel components, and a grain boundary with a small inclination is formed inside one crystal grain surrounded by the large angle grain boundary of the newly recognized structure.
- the new recognition structure has characteristics different from ferrite at least in these points.
- FIG. 1 is a diagram showing a region representing the microstructure of a hot-rolled steel sheet.
- FIG. 2A is a perspective view showing a vertical stretch flange test method.
- FIG. 2B is a top view showing the vertical stretch flange test method.
- FIG. 3A is a diagram showing an EBSD analysis result of an example of a hot-rolled steel sheet.
- FIG. 3B is a diagram showing an EBSD analysis result of an example of a hot-rolled steel sheet.
- FIG. 4 is a diagram showing an outline of a temperature history from hot rolling to winding.
- the hot-rolled steel sheet according to the present embodiment is represented by residual austenite: 2% to 30%, ferrite: 20% to 85%, bainite: 10% to 60%, pearlite: 5% or less, martensite: 10% or less. It has a microstructure that can be Further, in the hot-rolled steel sheet according to the present embodiment, when a region surrounded by a grain boundary having an orientation difference of 15 ° or more and having an equivalent circle diameter of 0.3 ⁇ m or more is defined as a crystal grain, an intragranular orientation The proportion of crystal grains having a difference of 5 ° to 14 ° in the total crystal grains is 5% to 50% in terms of area ratio.
- % which is a unit of the ratio of each phase and structure contained in the hot-rolled steel sheet, means “volume%” unless otherwise specified.
- the microstructure of the hot-rolled steel sheet can be represented by a microstructure in a region from the surface of the hot-rolled steel sheet to 3/8 to 5/8 of the thickness of the hot-rolled steel sheet. This region 1 is shown in FIG. FIG. 1 also shows a cross section 2 that is an object for observing ferrite and the like.
- a hot-rolled steel sheet that can be applied to a member that requires high formability and stretch formability related to severe ductility and stretch flangeability related to local ductility is obtained.
- Stretch flangeability can be evaluated using the flange height H (mm) in the vertical stretch flange test method (corner radius of curvature R: 50 mm to 60 mm).
- the vertical stretch flange test method will be described.
- a vertical molded product 23 simulating an elongated flange shape including a straight portion 21 and an arc portion 22 is pressed, and limit molding at that time is performed. This is a technique for evaluating stretch flangeability by height.
- the limit molding height obtained when the radius of curvature R of the arc portion 22 is 50 mm to 60 mm, the opening angle ⁇ is 120 °, and the clearance when punching the arc portion 22 is 11% is the flange height. Used as H (mm).
- the determination of the limit molding height was made by the presence or absence of cracks having a length of 1/3 or more of the plate thickness visually after molding.
- the conventional hole expansion test which is used as a test method corresponding to stretch flange formability, the strain in the circumferential direction is almost not distributed, and breakage occurs. Evaluation is performed at the time when a through-thickness fracture with different stress gradients occurs. Therefore, it cannot be said that the hole expansion test is an evaluation method reflecting the original stretch flange molding.
- the vertical stretch flange test method is also described, for example, in the literature (Yoshida et al., Nippon Steel Technical Report (2012) No. 393, p. 18).
- the ratio of the crystal grains having an intra-grain orientation difference of 5 ° to 14 ° to the total crystal grains can be measured by the following method.
- the length in the rolling direction (RD) centering on the 1/4 depth position (1 / 4t portion) of the thickness t from the steel sheet surface is 200 ⁇ m
- the rolling The crystal orientation of a rectangular region having a normal direction (ND) length of 100 ⁇ m is analyzed by electron back scattering diffraction (EBSD) method at intervals of 0.2 ⁇ m. Obtain crystal orientation information.
- This analysis is performed using, for example, an EBSD analyzer equipped with a thermal field emission scanning electron microscope (JSMOL 7001F manufactured by JEOL Ltd.) and an EBSD detector (HIKARI detector manufactured by TSL) at 200 points / It is carried out at a speed of 2 to 300 points / second.
- a region surrounded by a grain boundary with an orientation difference of 15 ° or more and an equivalent circle diameter of 0.3 ⁇ m or more is defined as a crystal grain, and an intragranular orientation difference Is calculated, and the ratio of the crystal grains having an in-granular orientation difference of 5 ° to 14 ° to the total crystal grains is obtained.
- the ratio obtained in this way is the area fraction, but is equivalent to the volume fraction.
- “Intragranular orientation difference” means “Grain Orientation Spread (GOS)”, which is orientation dispersion within crystal grains. Intragranular orientation differences are described in the literature “Hidehiko Kimura, Inou, Yoshiaki Akiba, Keisuke Tanaka“ Analysis of misorientation in plastic deformation of stainless steel by EBSD method and X-ray diffraction method ”Transactions of the Japan Society of Mechanical Engineers (Part A), 71 Volume 712, 2005, p. 1722-1728. As the average value of misorientation between the reference crystal orientation and the crystal orientation at all measurement points in the crystal grain. As the “reference crystal orientation”, an orientation obtained by averaging crystal orientations at all measurement points in the crystal grain is used. The intragranular orientation difference can be calculated using, for example, software “OIM Analysis TM Version 7.0.1” attached to the EBSD analyzer.
- FIGS. 3A and 3B show examples of EBSD analysis results.
- FIG. 3A shows the analysis result of a TRIP steel sheet having a tensile strength of 590 MPa
- FIG. 3B shows the analysis result of a TRIP steel sheet having a tensile strength of 780 MPa.
- the gray regions in FIGS. 3A and 3B indicate crystal grains having an in-granular orientation difference of 5 ° to 14 °.
- region shows the crystal grain whose orientation difference within a grain is less than 5 degrees or more than 14 degrees.
- region shows the area
- the crystal orientation within the grain has a correlation with the dislocation density contained in the crystal grain.
- an increase in the dislocation density in the grains brings about an improvement in strength while lowering workability.
- the strength can be improved without degrading the workability. Therefore, in the hot-rolled steel sheet according to the present embodiment, the ratio of crystal grains having an in-grain direction difference of 5 ° to 14 ° is set to 5% to 50% as described below. Crystal grains having an in-granular orientation difference of less than 5 ° are excellent in workability but are difficult to increase in strength.
- a crystal grain having an average orientation difference in the grain of more than 14 ° does not contribute to improvement of stretch flangeability because the deformability is different in the crystal grain.
- the crystal structure of retained austenite contained in the microstructure is a face-centered cubic (fcc) structure and is excluded from the measurement of GOS in the body-centered cubic (bcc) structure in the present invention.
- the ratio of “crystalline grains having an intragranular orientation difference of 5 ° to 14 °” is obtained by first subtracting the ratio of retained austenite from 100%, and from there, “intragranular orientation difference is 5 ° to 14 °. It is defined as a value obtained by subtracting the proportion of crystal grains other than “certain crystal grains”.
- Crystal grains having an intragranular orientation difference of 5 ° to 14 ° can be obtained by the method described later. As described above, the present inventors have found that crystal grains having an in-granular orientation difference of 5 ° to 14 ° are extremely effective in securing high strength and improving formability such as stretch flangeability. Crystal grains having an in-grain orientation difference of 5 ° to 14 ° contain almost no carbide in the crystal grains. That is, the crystal grains having an in-granular orientation difference of 5 ° to 14 ° contain almost nothing that promotes the progress of cracks during stretch flange molding. Accordingly, the crystal grains having an in-granular orientation difference of 5 ° to 14 ° contribute to securing high strength and improving ductility and stretch flangeability.
- the proportion of crystal grains having an in-grain orientation difference of 5 ° to 14 ° is less than 5% in terms of area ratio, sufficient strength cannot be obtained. Therefore, the proportion of crystal grains having an intra-grain orientation difference of 5 ° to 14 ° is set to 5% or more. On the other hand, if the proportion of crystal grains having an in-granular orientation difference of 5 ° to 14 ° exceeds 50% in terms of area ratio, sufficient ductility cannot be obtained. Therefore, the proportion of crystal grains having an in-grain orientation difference of 5 ° to 14 ° is set to 50% or less.
- the tensile strength is generally 590 MPa or more, the flange height H (mm) and the tensile strength TS (MPa).
- H ⁇ TS is 19500 (mm ⁇ MPa) or more.
- Crystal grains having an in-granular orientation difference of 5 ° to 14 ° are effective for obtaining a steel sheet having an excellent balance between strength and workability. Therefore, by setting the ratio of the structure composed of such crystal grains, that is, the newly recognized structure to a predetermined range, in this embodiment, the area ratio is 5% to 50%, while maintaining the desired strength and ductility. The stretch flangeability can be greatly improved.
- the retained austenite contributes to the ductility related to the stretch formability. If the retained austenite is less than 2%, sufficient ductility cannot be obtained. Therefore, the ratio of retained austenite is 2% or more. On the other hand, if the proportion of retained austenite is more than 30%, the progress of cracks is promoted at the interface with ferrite or bainite during stretch flange molding, and stretch flangeability is deteriorated. Therefore, the proportion of retained austenite is 30% or less.
- the product (H ⁇ TS) of the flange height H (mm) and the tensile strength TS (MPa) is 19500 (mm ⁇ MPa) or more. Suitable for processing parts.
- Ferrite (Ferrite: 20% to 85%) Ferrite exhibits excellent deformability and enhances uniform ductility. When the proportion of ferrite is less than 20%, good uniform ductility cannot be obtained. Therefore, the ratio of ferrite is 20% or more. Moreover, since ferrite is produced at the time of cooling after completion of hot rolling and C is concentrated in retained austenite, it is essential for improving ductility by the TRIP effect. However, if the proportion of ferrite is more than 85%, stretch flangeability is significantly reduced. Therefore, the ratio of ferrite is 85% or less.
- bainite Since bainite is generated after winding and concentrates C in the retained austenite, it is essential for improving ductility by the TRIP effect. Furthermore, bainite contributes to the improvement of hole expansibility. The fraction of ferrite and bainite can be changed depending on the strength level targeted for development. However, if the ratio of bainite is less than 10%, the above-described effects cannot be sufficiently obtained. Therefore, the ratio of bainite is 10% or more. On the other hand, when the proportion of bainite is more than 60%, the uniform elongation is lowered. Therefore, the ratio of bainite is 60% or less.
- Martensite (Martensite: 10% or less) Martensite promotes the growth of cracks at the interface with ferrite or bainite during stretch flange molding, and reduces stretch flangeability. When the martensite exceeds 10%, such a decrease in stretch flangeability becomes remarkable. If the martensite is 10% or less, the product (H ⁇ TS) of the flange height H (mm) and the tensile strength TS (MPa) is 19500 (mm ⁇ MPa) or more. Suitable for processing.
- the volume fraction of the structure observed in an optical microscope structure such as ferrite and bainite in a hot-rolled steel sheet is not directly related to the proportion of crystal grains having an intra-grain orientation difference of 5 ° to 14 °.
- the difference in grain orientation between the plurality of hot-rolled steel sheets is 5 ° to 14 °.
- the ratio of the crystal grains is not necessarily the same. Therefore, the characteristics corresponding to the hot-rolled steel sheet according to this embodiment cannot be obtained only by controlling the ferrite volume fraction, the bainite volume fraction, and the retained austenite volume fraction.
- the conditions relating to the proportion of each phase and structure described above are not only the region from the surface of the hot rolled steel sheet to 3/8 to 5/8 of the thickness of the hot rolled steel sheet, but also a wider range. It is preferable that the above is satisfied, and as the range satisfying this condition is wider, more excellent strength and workability can be obtained.
- the ratio (volume fraction) of ferrite, bainite, pearlite, and martensite is in the section 2 parallel to the rolling direction in the region from 3/8 to 5/8 of the thickness from the surface of the hot-rolled steel sheet. It is equivalent to the area ratio.
- the area ratio in the cross section 2 is obtained by cutting a sample from a 1/4 W or 3/4 W position of the plate width of the steel plate, polishing a surface parallel to the rolling direction of this sample, etching using a Nital reagent, and using an optical microscope. Thus, it can be measured by observing at a magnification of 200 to 500 times.
- Residual austenite can be easily distinguished crystallographically because of its different crystal structure from ferrite. Therefore, the ratio of the retained austenite can be experimentally determined also by the X-ray diffraction method using the property that the reflection surface strength is different between austenite and ferrite. That is, from the image obtained by the X-ray diffraction method using Mo K ⁇ ray, the ratio V ⁇ of retained austenite can be obtained using the following equation.
- V ⁇ (2/3) ⁇ 100 / (0.7 ⁇ ⁇ (211) / ⁇ (220) +1) ⁇ + (1/3) ⁇ 100 / (0.78 ⁇ ⁇ (211) / ⁇ (311) +1) ⁇
- ⁇ (211) is the intensity of the reflecting surface on the (211) plane of ferrite
- ⁇ (220) is the intensity of the reflecting surface on the (220) plane of austenite
- ⁇ (311) is the intensity of the reflecting surface on the (311) plane of austenite. It is.
- the ratio of retained austenite can also be measured by optical microscope observation under the above conditions using the reagents described in JP-A-5-163590. Since almost the same value can be obtained by using any of the optical microscope observation and the X-ray diffraction method, the value obtained by any method can be used.
- the chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention and the steel ingot or slab used for manufacturing the hot-rolled steel sheet will be described. Although details will be described later, the hot-rolled steel sheet according to the embodiment of the present invention is manufactured through hot rolling of a steel ingot or slab, subsequent cooling, and subsequent winding. Therefore, the chemical composition of the hot-rolled steel sheet and the slab considers not only the properties of the hot-rolled steel sheet but also these treatments.
- “%”, which is a unit of content of each element contained in a hot-rolled steel sheet means “mass%” unless otherwise specified.
- the hot-rolled steel sheet according to the present embodiment has C: 0.06% to 0.22%, Si: 1.0% to 3.2%, Mn: 0.8% to 2.2%, P: 0.00. 05% or less, S: 0.005% or less, Al: 0.01% to 1.00%, N: 0.006% or less, Cr: 0.00% to 1.00%, Mo: 0.000% To 1.000%, Ni: 0.000% to 2.000%, Cu: 0.000% to 2.000%, B: 0.0000% to 0.0050%, Ti: 0.000% to 0 200%, Nb: 0.000% to 0.200%, V: 0.000% to 1.000%, W: 0.000% to 1.000%, Sn: 0.0000% to 0.2000 %, Zr: 0.0000% to 0.2000%, As: 0.0000% to 0.5000%, Co: 0.0000% to 1.000%, Ca: 0.0 00% to 0.0100%, Mg: 0.0000% to 0.0100%, rare earth metal (REM): 0.0000% to 0.1000%, balance:
- C forms various precipitates in the hot-rolled steel sheet and contributes to the improvement of strength by precipitation strengthening. C also contributes to securing retained austenite that improves ductility. If the C content is less than 0.06%, sufficient retained austenite cannot be secured, and sufficient strength and ductility cannot be obtained. Therefore, the C content is 0.06% or more. From the viewpoint of further improving strength and elongation, the C content is preferably 0.10% or more. On the other hand, if the C content is more than 0.22%, sufficient stretch flangeability cannot be obtained or weldability is impaired. Therefore, the C content is 0.22% or less. In order to further improve the weldability, the C content is preferably 0.20% or less.
- Si 1.0% to 3.2%
- Si stabilizes ferrite during temperature control after hot rolling, and suppresses precipitation of cementite after winding (during bainite transformation).
- Si increases the C concentration of austenite and contributes to securing retained austenite. If the Si content is less than 1.0%, the effect cannot be sufficiently obtained. Therefore, the Si content is 1.0% or more. On the other hand, if the Si content exceeds 3.2%, the surface properties, paintability and weldability deteriorate. Therefore, the Si content is 3.2% or less.
- Mn 0.8% to 2.2%) Mn is an element that stabilizes austenite and improves hardenability. If the Mn content is less than 0.8%, sufficient hardenability cannot be ensured. Therefore, the Mn content is 0.8% or more. On the other hand, if the Mn content exceeds 2.2%, slab cracking occurs. Therefore, the Mn content is 2.2% or less.
- P is not an essential element but is contained as an impurity in steel, for example. From the viewpoint of workability, weldability and fatigue properties, the lower the P content, the better. In particular, when the P content exceeds 0.05%, the workability, weldability, and fatigue characteristics are significantly reduced. Therefore, the P content is 0.05% or less.
- S is not an essential element but is contained as an impurity in steel, for example.
- the S content exceeds 0.005%, the stretch flangeability is significantly reduced. Therefore, the S content is 0.005% or less.
- Al 0.01% to 1.00%
- Al is a deoxidizer, and if the Al content is less than 0.01%, sufficient deoxidation cannot be performed in the current general refining (including secondary refining). Therefore, the Al content is 0.01% or more.
- Al stabilizes ferrite during temperature control after hot rolling, and suppresses precipitation of cementite during bainite transformation. In this way, Al increases the C concentration of austenite and contributes to securing retained austenite.
- the Al content exceeds 1.00%, the surface properties, paintability and weldability deteriorate. Therefore, the Al content is 1.00% or less. In order to obtain more stable retained austenite, the Al content is preferably 0.02% or more.
- Si also functions as a deoxidizer. Further, as described above, Si and Al increase the C concentration of austenite and contribute to securing retained austenite. However, if the sum of the Si content and the Al content exceeds 4.0%, the surface properties, paintability, and weldability tend to deteriorate. Therefore, the sum of the Si content and the Al content is preferably 4.0% or less. In order to obtain better paintability, this sum is more preferably 3.5% or less, and still more preferably 3.0% or less.
- N is not an essential element but is contained as an impurity in steel, for example. From the viewpoint of workability, the lower the N content, the better. Particularly, when the N content exceeds 0.006%, the workability is remarkably reduced. Therefore, the N content is 0.006% or less.
- Cr 0.00% to 1.00%
- Cr is not an essential element, but is an arbitrary element that may be appropriately contained in the hot-rolled steel sheet within a predetermined amount in order to suppress pearlite transformation and stabilize retained austenite.
- the Cr content is preferably 0.05% or more, more preferably 0.20% or more, and further preferably 0.40% or more.
- the Cr content is 1.00% or less. That is, it is preferable that Cr: 0.05% to 1.00% is satisfied.
- Mo, Ni, Cu, B, Ti, Nb, V, W, Sn, Zr, As, and Co are not essential elements, but are optional elements that may be appropriately contained within a predetermined amount in the hot-rolled steel sheet. .
- Mo 0.000% to 1.000%
- Ni 0.000% to 2.000%
- Cu 0.000% to 2.000%
- B 0.0000% to 0.0050%
- Ti 0.000% to 0.200%
- Nb 0.000% to 0.200%
- V 0.000% to 1.000%
- W 0.000% to 1.000%
- Sn 0 .0000% to 0.2000%
- Zr 0.0000% to 0.2000%
- Co 0.0000% to 1.000%)
- Mo Ni, Cu, B, Ti, Nb, V, W, Sn, Zr, As, and Co contribute to further improving the strength of the hot-rolled steel sheet by precipitation hardening or solid solution strengthening.
- Mo, Ni, Cu, B, Ti, Nb, V, W, Sn, Zr, As, Co, or any combination thereof may be contained.
- Mo more than 1.000%
- Ni more than 2.000%
- Cu more than 2.000%
- B more than 0.0050%
- Ti more than 0.200%
- Nb more than 0.200%
- V more than 1.000%
- W more than 1.000%
- Sn more than 0.2000%
- Zr more than 0.2000%
- Co more than 1.000% or these
- Mo 1.000% or less
- Ni 2.000% or less
- Cu 2.000% or less
- B 0.0050% or less
- Ti 0.200% or less
- Nb 0.200% or less
- V 1.000% or less
- W 1.000% or less
- Sn 0.2000% or less
- Zr 0.2000% or less
- Co 1.000% or less To do.
- Mo 0.000% to 1.000%
- Ni 0.001% to 2.000%
- Cu 0.001% to 2.000%
- B 0.0001% to 0.0050%
- Ti 0.001% to 0.200%
- Nb 0.001% to 0.200%
- V 0.001% to 1.000%
- W 0.001% to 1.000%
- Sn 0.0001% to 0.2000%
- Zr 0.0001% to 0.2000%
- Co 0.0001% to 1.000%, or these It is preferred that any combination is satisfied.
- Ca, Mg, and REM are detoxified by changing the form of non-metallic inclusions that become the starting point of fracture or deteriorate workability. Therefore, Ca, Mg, REM, or any combination thereof may be contained. In order to sufficiently obtain this effect, Ca: 0.0001% or more, Mg: 0.0001% or more, REM: 0.0001% or more, or any combination thereof is preferable. However, when Ca: more than 0.0100%, Mg: more than 0.0100%, or REM: more than 0.1000%, or any combination thereof, the effect of the above action is saturated and the cost is increased.
- Ca 0.0100% or less, Mg: 0.0100% or less, and REM: 0.1000% or less. That is, Ca: 0.0001% to 0.0100%, Mg: 0.0001% to 0.0100%, or REM: 0.0001% to 0.1000%, or any combination thereof may be satisfied. preferable.
- REM rare earth metal
- REM content means the total content of these 17 elements.
- Lanthanoids are added industrially, for example, in the form of misch metal.
- the hot-rolled steel sheet according to the embodiment can be manufactured according to the method described here, the method of manufacturing the hot-rolled steel sheet according to the embodiment is not limited to this. That is, even a hot-rolled steel sheet manufactured by another method can be said to be within the scope of the embodiment as long as it has crystal grains, microstructure and chemical composition satisfying the above conditions.
- FIG. 4 shows an outline of the temperature history from hot rolling to winding.
- a steel ingot or slab having the above chemical composition is cast, and reheating 11 is performed as necessary.
- Rough rolling 12 of the steel ingot or slab is performed. Rough rolling is included in hot rolling.
- Finish rolling 13 of the steel ingot or slab is included in hot rolling.
- the finish rolling the final three stages of rolling are performed with a cumulative strain of more than 0.6 and not more than 0.7, and the end temperatures are Ar3 point or higher and Ar3 point + 30 ° C.
- Cooling (first cooling) 14 to a temperature of 650 ° C. or higher and 750 ° C.
- Winding 17 is performed.
- molten steel whose components are adjusted so that the chemical composition is within the above range is cast.
- a steel ingot or a slab is sent to a hot rolling mill.
- the cast steel ingot or slab may be sent directly to the hot rolling mill at a high temperature, or after cooling to room temperature, it may be reheated in a heating furnace and sent to the hot rolling mill.
- the temperature of the reheating 11 is not particularly limited. If the temperature of the reheating 11 is 1260 ° C. or higher, the amount of scale-off may increase and the yield may decrease, so the temperature of the reheating 11 is preferably less than 1260 ° C. In addition, if the temperature of the reheating 11 is less than 1000 ° C., the operation efficiency may be significantly impaired due to the schedule. Therefore, the temperature of the reheating 11 is preferably 1000 ° C. or more.
- the final rolling is preferably performed at 1080 ° C. or higher.
- the rolling temperature of the final stage of the rough rolling 12 is higher than 1150 ° C., that is, when the rolling temperature exceeds 1150 ° C.
- the final rolling is preferably performed at 1150 ° C. or lower.
- this cumulative rolling reduction is preferably 65% or less.
- the cumulative rolling reduction is less than 40%, the austenite grains after finish rolling 13 become large, and the ferrite transformation in the two-phase region occurring in the subsequent cooling is not sufficiently promoted, and it is difficult to obtain a desired microstructure. Sometimes. Therefore, this cumulative rolling reduction is preferably 40% or more.
- the finish rolling 13 is an important process for generating crystal grains having an in-grain direction difference of 5 ° to 14 °. Crystal grains having an in-granular orientation difference of 5 ° to 14 ° are obtained by transformation of austenite containing strain into bainite. Therefore, it is important that the finish rolling 13 is performed under conditions such that strain remains in the austenite after the finish rolling 13.
- the final three stages of rolling are performed with a cumulative strain of more than 0.6 and less than 0.7.
- the cumulative strain in the final three-stage rolling is 0.6 or less, the austenite grains after the finish rolling 13 become large, and the ferrite transformation in the two-phase region that occurs in the subsequent cooling is not sufficiently promoted, and the intragranular orientation
- the proportion of crystal grains having a difference of 5 ° to 14 ° cannot be made 5% to 50%. If the cumulative strain in the final three-stage rolling exceeds 0.7, excessive strain remains in the austenite after finish rolling 13, and the proportion of crystal grains having an in-granular orientation difference of 5 ° to 14 ° is 5%. It cannot be reduced to ⁇ 50%, and workability deteriorates.
- the final stage of rolling is performed within a temperature range of Ar 3 point or higher and Ar 3 point + 30 ° C., and at a rolling reduction of 6% or higher and 15% or lower. If the final stage rolling temperature (finish rolling end temperature) is more than Ar3 point + 30 ° C. or the rolling reduction is less than 6%, the residual amount of strain in the austenite after finish rolling 13 becomes insufficient, A desired microstructure cannot be obtained. If the finish rolling end temperature is less than the Ar3 point or the rolling reduction is more than 15%, excessive strain remains in the austenite after the finish rolling 13, and workability deteriorates.
- Ar1 transformation point temperature (temperature at which austenite completes transformation to ferrite or ferrite and cementite upon cooling), Ar3 transformation point temperature (temperature at which austenite ferrite transformation begins upon cooling), Ac1 transformation
- the point temperature (temperature at which austenite begins to be generated during heating) and the Ac3 transformation point temperature (temperature at which transformation to austenite is completed at the time of heating) are simple in relation to steel components, for example, by the following formula Indicated.
- Ar1 transformation point temperature (° C.) 730 ⁇ 102 ⁇ (% C) + 29 ⁇ (% Si) ⁇ 40 ⁇ (% Mn) ⁇ 18 ⁇ (% Ni) ⁇ 28 ⁇ (% Cu) ⁇ 20 ⁇ (% Cr) -18 x (% Mo)
- Ar3 transformation point temperature (° C.) 900 ⁇ 326 ⁇ (% C) + 40 ⁇ (% Si) ⁇ 40 ⁇ (% Mn) ⁇ 36 ⁇ (% Ni) ⁇ 21 ⁇ (% Cu) ⁇ 25 ⁇ (% Cr) -30 x (% Mo)
- Ac1 transformation point temperature (° C.) 751-16 ⁇ (% C) + 11 ⁇ (% Si) ⁇ 28 ⁇ (% Mn) ⁇ 5.5 ⁇ (% Cu) ⁇ 16 ⁇ (% Ni) + 13 ⁇ (% Cr ) + 3.4 ⁇ (% Mo)
- Ac3 transformation temperature (° C.) 910 ⁇ 203 ⁇ (% C) + 45 ⁇ (% Si) ⁇
- cooling (first cooling) 14 is performed to a temperature of 650 ° C. or higher and 750 ° C. or lower on a run-out table (ROT). If the ultimate temperature of the cooling 14 is less than 650 ° C., the ferrite transformation in the two-phase region becomes insufficient and sufficient ductility cannot be obtained. If the reached temperature of the cooling 14 exceeds 750 ° C., the ferrite transformation is excessively promoted, and the ratio of crystal grains having an in-grain orientation difference of 5 ° to 14 ° cannot be made 5% to 50%.
- the average cooling rate in the cooling 14 is 10 ° C./second or more. This is because the proportion of crystal grains having an in-grain orientation difference of 5 ° to 14 ° is stably set to 5% to 50%.
- air cooling 15 is performed for 3 seconds to 10 seconds. If the time of air cooling 15 is less than 3 seconds, ferrite transformation in the two-phase region becomes insufficient and sufficient ductility cannot be obtained. If the time of air cooling 15 exceeds 10 seconds, ferrite transformation in the two-phase region is excessively promoted, and a desired microstructure cannot be obtained.
- cooling (second cooling) 16 is performed to an average cooling rate of 30 ° C./second or higher to a temperature of 350 ° C. or higher and 450 ° C. or lower.
- the average cooling rate is less than 30 ° C./second, for example, a large amount of pearlite is generated, and a desired microstructure cannot be obtained.
- winding 16 is preferably performed at a temperature of 350 ° C. or higher and 450 ° C. or lower.
- a temperature of the winding 16 exceeds 450 ° C., ferrite is generated and sufficient bainite cannot be obtained, and a desired microstructure cannot be obtained. If the temperature of the winding 16 is less than 350 ° C., martensite is generated and sufficient bainite cannot be obtained, and a desired microstructure cannot be obtained.
- the hot-rolled steel sheet according to the present embodiment is subjected to surface treatment, the effect of improving strength, ductility and stretch flangeability can be obtained.
- electroplating, hot dipping, vapor deposition plating, organic film formation, film lamination, organic salt treatment, inorganic salt treatment, non-chromium treatment, and the like may be performed.
- the proportion of crystal grains having an intra-grain orientation difference of 5 ° to 14 ° was measured by the above method using an EBSD analyzer.
- the area ratio of retained austenite, ferrite, bainite, pearlite, and martensite was measured by the above method using an optical microscope.
- Each hot-rolled steel sheet was manufactured as follows under the conditions shown in Table 3. After performing melting and continuous casting in the converter, it was heated at the heating temperature shown in Table 3, and hot rolling including rough rolling and finish rolling was performed. Table 3 shows the heating temperature, the cumulative strain of the final three stages of finish rolling, and the end temperature. After the finish rolling, it was cooled by a run-out table (ROT) at a cooling rate shown in Table 3 up to a temperature T1 shown in Table 3. And as soon as temperature reached temperature T1, air cooling was started. Table 3 shows the air cooling time. After air cooling, it was cooled to a temperature T2 shown in Table 3 at an average cooling rate shown in Table 3, and wound up to produce a hot rolled coil.
- ROT run-out table
- Table 3 shows the air cooling time. After air cooling, it was cooled to a temperature T2 shown in Table 3 at an average cooling rate shown in Table 3, and wound up to produce a hot rolled coil.
- the underline in Table 3 indicates that the numerical value is out of the preferred range.
- the present invention can be used, for example, in industries related to hot-rolled steel sheets used for automobile undercarriage parts and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
質量%で、
C :0.06%~0.22%、
Si:1.0%~3.2%、
Mn:0.8%~2.2%、
P :0.05%以下、
S :0.005%以下、
Al:0.01%~1.00%、
N :0.006%以下、
Cr:0.00%~1.00%、
Mo:0.000%~1.000%、
Ni:0.000%~2.000%、
Cu:0.000%~2.000%、
B :0.0000%~0.0050%、
Ti:0.000%~0.200%、
Nb:0.000%~0.200%、
V :0.000%~1.000%、
W :0.000%~1.000%、
Sn:0.0000%~0.2000%、
Zr:0.0000%~0.2000%、
As:0.0000%~0.5000%、
Co:0.0000%~1.0000%、
Ca:0.0000%~0.0100%、
Mg:0.0000%~0.0100%、
REM:0.0000%~0.1000%、
残部:Fe及び不純物、
で表される化学組成を有し、
体積%で、
残留オーステナイト:2%~30%、
フェライト:20%~85%、
ベイナイト:10%~60%、
パーライト:5%以下、
マルテンサイト:10%以下、
で表されるミクロ組織を有し、
方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合が面積率で5%~50%であることを特徴とする熱延鋼板。
前記化学組成において、
Cr:0.05%~1.00%が成り立つことを特徴とする(1)に記載の熱延鋼板。
前記化学組成において、
Mo:0.001%~1.000%、
Ni:0.001%~2.000%、
Cu:0.001%~2.000%、
B :0.0001%~0.0050%、
Ti:0.001%~0.200%、
Nb:0.001%~0.200%、
V :0.001%~1.000%、
W :0.001%~1.000%、
Sn:0.0001%~0.2000%、
Zr:0.0001%~0.2000%、
As:0.0001%~0.5000%、
Co:0.0001%~1.0000%、
Ca:0.0001%~0.0100%、
Mg:0.0001%~0.0100%、若しくは
REM:0.0001%~0.1000%、
又はこれらの任意の組み合わせが満たされることを特徴とする(1)又は(2)に記載の熱延鋼板。
残留オーステナイトは張り出し成形性に関わる延性に寄与する。残留オーステナイトが2%未満であると十分な延性が得られない。従って、残留オーステナイトの割合は2%以上とする。一方、残留オーステナイトの割合が30%超であると、伸びフランジ成形時にフェライト又はベイナイトとの界面において亀裂の進展が助長され、伸びフランジ性が低下する。従って、残留オーステナイトの割合は30%以下とする。残留オーステナイトの割合が30%以下であれば、概ね、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上となり、自動車の足回り部品の加工に好適である。
フェライトは優れた変形能を呈し、均一延性を高める。フェライトの割合が20%未満であると、良好な均一延性が得られない。従って、フェライトの割合は20%以上とする。また、フェライトは、熱間圧延終了後の冷却時に生成し、残留オーステナイト中にCを濃化させるため、TRIP効果による延性の向上に必須である。しかしながら、フェライトの割合が85%超であると、伸びフランジ性が大幅に低下する。従って、フェライトの割合は85%以下とする。
ベイナイトは、巻取り後に生成し、残留オーステナイト中にCを濃化させるため、TRIP効果による延性の向上に必須である。さらに、ベイナイトは、穴拡げ性の向上にも寄与する。開発の狙いの強度レベルにより、フェライトとベイナイトとの分率を変化させることが可能であるが、ベイナイトの割合が10%未満では、上記作用による効果が十分に得られない。従って、ベイナイトの割合は10%以上とする。一方、ベイナイトの割合が60%超であると、一様伸びが低下する。従って、ベイナイトの割合は60%以下とする。
パーライトは伸びフランジ成形時に、亀裂の起点となり、伸びフランジ性を低下させる。パーライトが5%超であると、このような伸びフランジ性の低下が顕著となる。パーライトが5%以下であれば、概ね、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上となり、自動車の足回り部品の加工に好適である。
マルテンサイトは伸びフランジ成形時に、フェライト又はベイナイトとの界面において亀裂の進展を助長し、伸びフランジ性を低下させる。マルテンサイトが10%超であると、このような伸びフランジ性の低下が顕著となる。マルテンサイトが10%以下であれば、概ね、フランジ高さH(mm)と引張強度TS(MPa)との積(H×TS)が19500(mm・MPa)以上となり、自動車の足回り部品の加工に好適である。
Vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
ここで、α(211)はフェライトの(211)面における反射面強度、γ(220)はオーステナイトの(220)面における反射面強度、γ(311)はオーステナイトの(311)面における反射面強度である。
Cは、熱延鋼板中で種々の析出物を形成し、析出強化により強度の向上に寄与する。Cは、延性を向上する残留オーステナイトの確保にも寄与する。C含有量が0.06%未満であると、十分な残留オーステナイトを確保できず、十分な強度及び延性が得られない。従って、C含有量は0.06%以上とする。強度及び伸びの更なる向上の観点から、C含有量は好ましくは0.10%以上とする。一方、C含有量が0.22%超であると、十分な伸びフランジ性が得られなかったり、溶接性が損なわれたりする。従って、C含有量は0.22%以下とする。より溶接性を向上させるためには、C含有量は好ましくは0.20%以下とする。
Siは、熱間圧延後の温度制御時にフェライトを安定化させ、かつ、巻き取り後(ベイナイト変態時)のセメンタイトの析出を抑制する。このようにして、SiはオーステナイトのC濃度を高め、残留オーステナイトの確保に寄与する。Si含有量が1.0%未満であると、その効果が十分に得られない。従って、Si含有量は1.0%以上とする。一方、Si含有量が3.2%超であると、表面性状、塗装性及び溶接性が劣化する。従って、Si含有量は3.2%以下とする。
Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。Mn含有量が0.8%未満であると、十分な焼入れ性を確保できない。従って、Mn含有量は0.8%以上とする。一方、Mn含有量が2.2%超であると、スラブ割れが生じる。従って、Mn含有量は2.2%以下とする。
Pは、必須元素ではなく、例えば鋼中に不純物として含有される。加工性、溶接性及び疲労特性の観点から、P含有量は低ければ低いほどよい。特にP含有量が0.05%超で、加工性、溶接性及び疲労特性の低下が著しい。従って、P含有量は0.05%以下とする。
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。S含有量が高いほど伸びフランジ性の低下につながるA系介在物が生成されやすくなるため、S含有量は低ければ低いほどよい。特にS含有量が0.005%超で、伸びフランジ性の低下が著しい。従って、S含有量は0.005%以下とする。
Alは脱酸剤であり、Al含有量が0.01%未満であると、現行の一般的な精錬(二次精錬を含む)において十分な脱酸を行うことができない。従って、Al含有量は0.01%以上とする。このようにして、Alは熱間圧延後の温度制御時にフェライトを安定化させ、かつ、ベイナイト変態時のセメンタイトの析出を抑制する。このようにして、AlはオーステナイトのC濃度を高め、残留オーステナイトの確保に寄与する。一方、Al含有量が1.00%超であると、表面性状、塗装性及び溶接性が劣化する。従って、Al含有量は1.00%以下とする。より安定した残留オーステナイトを得るためには、Al含有量は好ましくは0.02%以上とする。
Nは、必須元素ではなく、例えば鋼中に不純物として含有される。加工性の観点から、N含有量は低ければ低いほどよい。特にN含有量が0.006%超で、加工性の低下が著しい。従って、N含有量は0.006%以下とする。
Crは、必須元素ではないが、パーライト変態を抑制し、残留オーステナイトを安定化するため、熱延鋼板に所定量を限度に適宜含有されていてもよい任意元素である。この効果を十分に得るために、Cr含有量は好ましくは0.05%以上とし、より好ましくは0.20%以上とし、更に好ましくは0.40%以上とする。一方、Cr含有量が1.00%超であると、上記作用による効果が飽和し、徒にコストが高くなるだけでなく、化成処理性の低下が著しくなる。従って、Cr含有量は1.00%以下とする。つまり、Cr:0.05%~1.00%が満たされることが好ましい。
Mo、Ni、Cu、B、Ti、Nb、V、W、Sn、Zr、As及びCoは、析出硬化又は固溶強化により熱延鋼板の強度の更なる向上に寄与する。従って、Mo、Ni、Cu、B、Ti、Nb、V、W、Sn、Zr、As若しくはCo又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、好ましくは、Mo:0.001%以上、Ni:0.001%以上、Cu:0.001%以上、B:0.0001%以上下、Ti:0.001%以上、Nb:0.001%以上、V:0.001%以上、W:0.001%以上、Sn:0.0001%以上、Zr:0.0001%以上、As:0.0001%以上、若しくはCo:0.0001%以上、又はこれらの任意の組み合わせとする。しかし、Mo:1.000%超、Ni:2.000%超、Cu:2.000%超、B:0.0050%超、Ti:0.200%超、Nb:0.200%超、V:1.000%超、W:1.000%超、Sn:0.2000%超、Zr:0.2000%超、As:0.5000%超、若しくはCo:1.0000%超又はこれらの任意の組み合わせでは、上記作用による効果が飽和して徒にコストが高くなる。このため、Mo:1.000%以下、Ni:2.000%以下、Cu:2.000%以下、B:0.0050%以下、Ti:0.200%以下、Nb:0.200%以下、V:1.000%以下、W:1.000%以下、Sn:0.2000%以下、Zr:0.2000%以下、As:0.5000%以下、かつCo:1.0000%以下とする。つまり、Mo:0.000%~1.000%、Ni:0.001%~2.000%、Cu:0.001%~2.000%、B:0.0001%~0.0050%、Ti:0.001%~0.200%、Nb:0.001%~0.200%、V:0.001%~1.000%、W:0.001%~1.000%、Sn:0.0001%~0.2000%、Zr:0.0001%~0.2000%、As:0.0001%~0.5000%、若しくはCo:0.0001%~1.0000%、又はこれらの任意の組み合わせが満たされることが好ましい。
Ca、Mg及びREMは、破壊の起点となったり加工性を劣化させたりする非金属介在物の形態を変化させて無害化する。従って、Ca、Mg若しくはREM又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、好ましくは、Ca:0.0001%以上、Mg:0.0001%以上、若しくはREM:0.0001%以上、又はこれらの任意の組み合わせとする。しかし、Ca:0.0100%超、Mg:0.0100%超、若しくはREM:0.1000%超、又はこれらの任意の組み合わせでは、上記作用による効果が飽和して徒にコストが高くなる。このため、Ca:0.0100%以下、Mg:0.0100%以下、かつREM:0.1000%以下とする。つまり、Ca:0.0001%~0.0100%、Mg:0.0001%~0.0100%、若しくはREM:0.0001%~0.1000%、又はこれらの任意の組み合わせが満たされることが好ましい。
(1)上記の化学組成を有する鋼塊又はスラブを鋳造し、必要に応じて再加熱11を行う。
(2)鋼塊又はスラブの粗圧延12を行う。粗圧延は熱間圧延に含まれる。
(3)鋼塊又はスラブの仕上げ圧延13を行う。仕上げ圧延は熱間圧延に含まれる。仕上げ圧延では、最終3段の圧延を、0.6超0.7以下の累積ひずみで行い、終了温度をAr3点以上かつAr3点+30℃とする。
(4)ランアウトテーブルで10℃/秒以上の平均冷却速度で650℃以上750℃以下の温度までの冷却(第1の冷却)14を行う。
(5)3秒以上10秒以下の時間の空冷15を行う。この冷却中に二相域におけるフェライト変態が生じ、優れた延性が得られる。
(6)30℃/秒以上の平均冷却速度で350℃以上450℃以下の温度までの冷却(第2の冷却)16を行う。
(7)巻き取り17を行う。
εeff=Σεi(t,T)・・・(1)
ここで、
εi(t,T)=εi0/exp{(t/τR)2/3}、
τR=τ0・exp(Q/RT)、
τ0=8.46×10-6、
Q=183200J、
R=8.314J/K・mol、であり、
εi0は圧下時の対数ひずみを示し、tは当該段での冷却開始までの累積時間を示し、Tは当該段での圧延温度を示す。
Ar1変態点温度(℃)=730-102×(%C)+29×(%Si)-40×(%Mn)-18×(%Ni)-28×(%Cu)-20×(%Cr)-18×(%Mo)
Ar3変態点温度(℃)=900-326×(%C)+40×(%Si)-40×(%Mn)-36×(%Ni)-21×(%Cu)-25×(%Cr)-30×(%Mo)
Ac1変態点温度(℃)=751-16×(%C)+11×(%Si)-28×(%Mn)-5.5×(%Cu)-16×(%Ni)+13×(%Cr)+3.4×(%Mo)
Ac3変態点温度(℃)=910-203√(%C)+45×(%Si)-30×(%Mn)-20×(%Cu)-15×(%Ni)+11×(%Cr)+32×(%Mo)+104×(%V)+400×(%Ti)+200×(%Al)
ここで、(%C)、(%Si)、(%Mn)、(%Ni)、(%Cu)、(%Cr)、(%Mo)、(%V)、(%Ti)、(%Al)は、それぞれ、C)、Si、Mn、Ni、Cu、Cr、Mo、V、Ti、Alの含有量(質量%)を示す。含有されていない元素については、0%として計算する。
Claims (3)
- 質量%で、
C :0.06%~0.22%、
Si:1.0%~3.2%、
Mn:0.8%~2.2%、
P :0.05%以下、
S :0.005%以下、
Al:0.01%~1.00%、
N :0.006%以下、
Cr:0.00%~1.00%、
Mo:0.000%~1.000%、
Ni:0.000%~2.000%、
Cu:0.000%~2.000%、
B :0.0000%~0.0050%、
Ti:0.000%~0.200%、
Nb:0.000%~0.200%、
V :0.000%~1.000%、
W :0.000%~1.000%、
Sn:0.0000%~0.2000%、
Zr:0.0000%~0.2000%、
As:0.0000%~0.5000%、
Co:0.0000%~1.0000%、
Ca:0.0000%~0.0100%、
Mg:0.0000%~0.0100%、
REM:0.0000%~0.1000%、
残部:Fe及び不純物、
で表される化学組成を有し、
体積%で、
残留オーステナイト:2%~30%、
フェライト:20%~85%、
ベイナイト:10%~60%、
パーライト:5%以下、
マルテンサイト:10%以下、
で表されるミクロ組織を有し、
方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5°~14°である結晶粒の全結晶粒に占める割合が面積率で5%~50%であることを特徴とする熱延鋼板。 - 前記化学組成において、
Cr:0.05%~1.00%が成り立つことを特徴とする請求項1に記載の熱延鋼板。 - 前記化学組成において、
Mo:0.001%~1.000%、
Ni:0.001%~2.000%、
Cu:0.001%~2.000%、
B :0.0001%~0.0050%、
Ti:0.001%~0.200%、
Nb:0.001%~0.200%、
V :0.001%~1.000%、
W :0.001%~1.000%、
Sn:0.0001%~0.2000%、
Zr:0.0001%~0.2000%、
As:0.0001%~0.5000%、
Co:0.0001%~1.0000%、
Ca:0.0001%~0.0100%、
Mg:0.0001%~0.0100%、若しくは
REM:0.0001%~0.1000%、
又はこれらの任意の組み合わせが満たされることを特徴とする請求項1又は2に記載の熱延鋼板。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES15882644T ES2743814T3 (es) | 2015-02-20 | 2015-02-20 | Chapa de acero laminada en caliente |
PCT/JP2015/054846 WO2016132542A1 (ja) | 2015-02-20 | 2015-02-20 | 熱延鋼板 |
US15/538,404 US11401571B2 (en) | 2015-02-20 | 2015-02-20 | Hot-rolled steel sheet |
JP2017500251A JP6327395B2 (ja) | 2015-02-20 | 2015-02-20 | 熱延鋼板 |
PL15882644T PL3260565T3 (pl) | 2015-02-20 | 2015-02-20 | Blacha stalowa cienka walcowana na gorąco |
BR112017013229-0A BR112017013229A2 (ja) | 2015-02-20 | 2015-02-20 | Hot-rolled steel product |
KR1020177018427A KR101957078B1 (ko) | 2015-02-20 | 2015-02-20 | 열연 강판 |
MX2017008622A MX2017008622A (es) | 2015-02-20 | 2015-02-20 | Hoja de acero laminada en caliente. |
CN201580075484.9A CN107208209B (zh) | 2015-02-20 | 2015-02-20 | 热轧钢板 |
EP15882644.6A EP3260565B1 (en) | 2015-02-20 | 2015-02-20 | Hot-rolled steel sheet |
TW105105139A TWI602933B (zh) | 2015-02-20 | 2016-02-22 | Hot-rolled steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054846 WO2016132542A1 (ja) | 2015-02-20 | 2015-02-20 | 熱延鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132542A1 true WO2016132542A1 (ja) | 2016-08-25 |
Family
ID=56688801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054846 WO2016132542A1 (ja) | 2015-02-20 | 2015-02-20 | 熱延鋼板 |
Country Status (11)
Country | Link |
---|---|
US (1) | US11401571B2 (ja) |
EP (1) | EP3260565B1 (ja) |
JP (1) | JP6327395B2 (ja) |
KR (1) | KR101957078B1 (ja) |
CN (1) | CN107208209B (ja) |
BR (1) | BR112017013229A2 (ja) |
ES (1) | ES2743814T3 (ja) |
MX (1) | MX2017008622A (ja) |
PL (1) | PL3260565T3 (ja) |
TW (1) | TWI602933B (ja) |
WO (1) | WO2016132542A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6338038B1 (ja) * | 2017-11-15 | 2018-06-06 | 新日鐵住金株式会社 | 高強度冷延鋼板 |
EP3561101A4 (en) * | 2016-12-20 | 2019-11-13 | Posco | HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING EXCELLENT WELDABILITY AND DUCTILITY AND METHOD FOR MANUFACTURING THE SAME |
EP3604585A4 (en) * | 2017-03-31 | 2020-09-02 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
WO2024135365A1 (ja) * | 2022-12-23 | 2024-06-27 | 日本製鉄株式会社 | 熱間圧延鋼板 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016132549A1 (ja) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
KR101957078B1 (ko) | 2015-02-20 | 2019-03-11 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 |
WO2016135898A1 (ja) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | 熱延鋼板 |
CN109563580A (zh) | 2016-08-05 | 2019-04-02 | 新日铁住金株式会社 | 钢板及镀覆钢板 |
CN109563586B (zh) * | 2016-08-05 | 2021-02-09 | 日本制铁株式会社 | 钢板及镀覆钢板 |
CN113637923B (zh) * | 2016-08-05 | 2022-08-30 | 日本制铁株式会社 | 钢板及镀覆钢板 |
EP3584345A1 (en) * | 2017-02-20 | 2019-12-25 | Nippon Steel Corporation | Hot stamp moulded body |
CN110536973B (zh) * | 2018-03-16 | 2020-08-18 | 日本制铁株式会社 | 煤/矿石运输船货舱用钢板 |
CN112513308A (zh) * | 2018-07-31 | 2021-03-16 | 杰富意钢铁株式会社 | 高强度热轧镀覆钢板 |
KR102517187B1 (ko) * | 2018-10-17 | 2023-04-03 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 그의 제조 방법 |
EP3868908A4 (en) * | 2018-10-19 | 2022-04-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
WO2020179295A1 (ja) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | 熱延鋼板 |
CN114787405B (zh) * | 2020-01-09 | 2023-05-12 | 日本制铁株式会社 | 热压成形体 |
WO2024057065A1 (en) * | 2022-09-15 | 2024-03-21 | Arcelormittal | Hot rolling with residual elements |
WO2024057064A1 (en) * | 2022-09-15 | 2024-03-21 | Arcelormittal | Hot rolling with residual elements |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02149646A (ja) * | 1988-11-30 | 1990-06-08 | Kobe Steel Ltd | 加工性、溶接性に優れた高強度熱延鋼板とその製造方法 |
JPH03180445A (ja) * | 1989-12-09 | 1991-08-06 | Nippon Steel Corp | 加工性とスポット溶接性に優れた熱延高強度鋼板とその製造方法 |
JP2001220648A (ja) * | 2000-02-02 | 2001-08-14 | Kawasaki Steel Corp | 伸びフランジ性に優れた高延性熱延鋼板およびその製造方法 |
JP2008285748A (ja) * | 2007-04-17 | 2008-11-27 | Nakayama Steel Works Ltd | 高強度熱延鋼板およびその製造方法 |
JP2009019265A (ja) * | 2007-06-12 | 2009-01-29 | Nippon Steel Corp | 穴広げ性に優れた高ヤング率鋼板及びその製造方法 |
JP2010168651A (ja) * | 2008-12-26 | 2010-08-05 | Nakayama Steel Works Ltd | 高強度熱延鋼板およびその製造方法 |
Family Cites Families (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4501626A (en) | 1980-10-17 | 1985-02-26 | Kabushiki Kaisha Kobe Seiko Sho | High strength steel plate and method for manufacturing same |
JPS5770257A (en) | 1980-10-17 | 1982-04-30 | Kobe Steel Ltd | High strength steel plate |
JPS5842726A (ja) | 1981-09-04 | 1983-03-12 | Kobe Steel Ltd | 高強度熱延鋼板の製造方法 |
JPS61217529A (ja) | 1985-03-22 | 1986-09-27 | Nippon Steel Corp | 延性のすぐれた高強度鋼板の製造方法 |
JP2840479B2 (ja) | 1991-05-10 | 1998-12-24 | 株式会社神戸製鋼所 | 疲労強度と疲労亀裂伝播抵抗の優れた高強度熱延鋼板の製造方法 |
JP2601581B2 (ja) | 1991-09-03 | 1997-04-16 | 新日本製鐵株式会社 | 加工性に優れた高強度複合組織冷延鋼板の製造方法 |
JP2548654B2 (ja) | 1991-12-13 | 1996-10-30 | 新日本製鐵株式会社 | 複合組織鋼材のエッチング液およびエッチング方法 |
JP3037855B2 (ja) | 1993-09-13 | 2000-05-08 | 新日本製鐵株式会社 | 耐疲労亀裂進展特性の良好な鋼板およびその製造方法 |
JPH0949026A (ja) | 1995-08-07 | 1997-02-18 | Kobe Steel Ltd | 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法 |
JP3333414B2 (ja) | 1996-12-27 | 2002-10-15 | 株式会社神戸製鋼所 | 伸びフランジ性に優れる加熱硬化用高強度熱延鋼板及びその製造方法 |
TW454040B (en) | 1997-12-19 | 2001-09-11 | Exxon Production Research Co | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness |
US6254698B1 (en) | 1997-12-19 | 2001-07-03 | Exxonmobile Upstream Research Company | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof |
KR100430987B1 (ko) | 1999-09-29 | 2004-05-12 | 제이에프이 엔지니어링 가부시키가이샤 | 박강판 및 박강판의 제조방법 |
FR2801061B1 (fr) * | 1999-11-12 | 2001-12-14 | Lorraine Laminage | Procede de realisation d'une bande de tole laminere a chaud a tres haute resistance, utilisable pour la mise en forme et notamment pour l'emboutissage |
JP4258934B2 (ja) | 2000-01-17 | 2009-04-30 | Jfeスチール株式会社 | 加工性と疲労特性に優れた高強度熱延鋼板およびその製造方法 |
JP4445095B2 (ja) | 2000-04-21 | 2010-04-07 | 新日本製鐵株式会社 | バーリング加工性に優れる複合組織鋼板およびその製造方法 |
DE60018940D1 (de) * | 2000-04-21 | 2005-04-28 | Nippon Steel Corp | Stahlblech mit hervorragender gratbearbeitbarkeit bei gleichzeitiger hoher ermüdungsfestigeit und verfahren zu dessen herstellung |
JP3790135B2 (ja) | 2000-07-24 | 2006-06-28 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
EP1176217B1 (en) | 2000-07-24 | 2011-12-21 | KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. | High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof |
JP3882577B2 (ja) | 2000-10-31 | 2007-02-21 | Jfeスチール株式会社 | 伸びおよび伸びフランジ性に優れた高張力熱延鋼板ならびにその製造方法および加工方法 |
JP3888128B2 (ja) | 2000-10-31 | 2007-02-28 | Jfeスチール株式会社 | 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法 |
ES2690275T3 (es) | 2000-10-31 | 2018-11-20 | Jfe Steel Corporation | Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma |
JP4205853B2 (ja) | 2000-11-24 | 2009-01-07 | 新日本製鐵株式会社 | バーリング加工性と疲労特性に優れた熱延鋼板およびその製造方法 |
JP2002226943A (ja) | 2001-02-01 | 2002-08-14 | Kawasaki Steel Corp | 加工性に優れた高降伏比型高張力熱延鋼板およびその製造方法 |
JP2002317246A (ja) | 2001-04-19 | 2002-10-31 | Nippon Steel Corp | 切り欠き疲労強度とバーリング加工性に優れる自動車用薄鋼板およびその製造方法 |
JP4062118B2 (ja) * | 2002-03-22 | 2008-03-19 | Jfeスチール株式会社 | 伸び特性および伸びフランジ特性に優れた高張力熱延鋼板とその製造方法 |
JP4205893B2 (ja) | 2002-05-23 | 2009-01-07 | 新日本製鐵株式会社 | プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法 |
JP4288146B2 (ja) | 2002-12-24 | 2009-07-01 | 新日本製鐵株式会社 | 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板の製造方法 |
AU2003284496A1 (en) * | 2002-12-24 | 2004-07-22 | Nippon Steel Corporation | High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof |
JP4116901B2 (ja) | 2003-02-20 | 2008-07-09 | 新日本製鐵株式会社 | バーリング性高強度薄鋼板およびその製造方法 |
JP2004315857A (ja) | 2003-04-14 | 2004-11-11 | Nippon Steel Corp | 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法 |
JP4580157B2 (ja) | 2003-09-05 | 2010-11-10 | 新日本製鐵株式会社 | Bh性と伸びフランジ性を兼ね備えた熱延鋼板およびその製造方法 |
JP4412727B2 (ja) | 2004-01-09 | 2010-02-10 | 株式会社神戸製鋼所 | 耐水素脆化特性に優れた超高強度鋼板及びその製造方法 |
US20050150580A1 (en) | 2004-01-09 | 2005-07-14 | Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) | Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same |
JP4333379B2 (ja) | 2004-01-29 | 2009-09-16 | Jfeスチール株式会社 | 加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法 |
JP4470701B2 (ja) | 2004-01-29 | 2010-06-02 | Jfeスチール株式会社 | 加工性および表面性状に優れた高強度薄鋼板およびその製造方法 |
JP2005256115A (ja) | 2004-03-12 | 2005-09-22 | Nippon Steel Corp | 伸びフランジ性と疲労特性に優れた高強度熱延鋼板 |
JP4926406B2 (ja) | 2004-04-08 | 2012-05-09 | 新日本製鐵株式会社 | 疲労き裂伝播特性に優れた鋼板 |
JP4460343B2 (ja) | 2004-04-13 | 2010-05-12 | 新日本製鐵株式会社 | 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法 |
WO2006103991A1 (ja) | 2005-03-28 | 2006-10-05 | Kabushiki Kaisha Kobe Seiko Sho | 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法 |
JP3889766B2 (ja) | 2005-03-28 | 2007-03-07 | 株式会社神戸製鋼所 | 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法 |
JP5070732B2 (ja) | 2005-05-30 | 2012-11-14 | Jfeスチール株式会社 | 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法 |
DE102005051052A1 (de) * | 2005-10-25 | 2007-04-26 | Sms Demag Ag | Verfahren zur Herstellung von Warmband mit Mehrphasengefüge |
JP4840567B2 (ja) | 2005-11-17 | 2011-12-21 | Jfeスチール株式会社 | 高強度薄鋼板の製造方法 |
JP4854333B2 (ja) | 2006-03-03 | 2012-01-18 | 株式会社中山製鋼所 | 高強度鋼板、未焼鈍高強度鋼板およびそれらの製造方法 |
JP4528275B2 (ja) | 2006-03-20 | 2010-08-18 | 新日本製鐵株式会社 | 伸びフランジ性に優れた高強度熱延鋼板 |
JP4575893B2 (ja) | 2006-03-20 | 2010-11-04 | 新日本製鐵株式会社 | 強度延性バランスに優れた高強度鋼板 |
KR20080110904A (ko) | 2006-05-16 | 2008-12-19 | 제이에프이 스틸 가부시키가이샤 | 신장 특성, 신장 플랜지 특성 및 인장 피로 특성이 우수한 고강도 열연강판 및 그 제조 방법 |
JP4969915B2 (ja) | 2006-05-24 | 2012-07-04 | 新日本製鐵株式会社 | 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法 |
JP5228447B2 (ja) * | 2006-11-07 | 2013-07-03 | 新日鐵住金株式会社 | 高ヤング率鋼板及びその製造方法 |
US8157933B2 (en) | 2007-03-27 | 2012-04-17 | Nippon Steel Corporation | High-strength hot rolled steel sheet being free from peeling and excellent in surface properties and burring properties, and method for manufacturing the same |
JP5087980B2 (ja) | 2007-04-20 | 2012-12-05 | 新日本製鐵株式会社 | 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法 |
JP4980163B2 (ja) | 2007-07-20 | 2012-07-18 | 新日本製鐵株式会社 | 成形性に優れる複合組織鋼板およびその製造方法 |
JP5359296B2 (ja) | 2008-01-17 | 2013-12-04 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5194858B2 (ja) | 2008-02-08 | 2013-05-08 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
KR101103203B1 (ko) * | 2008-03-26 | 2012-01-05 | 신닛뽄세이테쯔 카부시키카이샤 | 피로 특성과 신장 플랜지성이 우수한 열연 강판 및 그 제조 방법 |
KR101130837B1 (ko) | 2008-04-10 | 2012-03-28 | 신닛뽄세이테쯔 카부시키카이샤 | 구멍 확장성과 연성의 균형이 극히 양호하고, 피로 내구성도 우수한 고강도 강판과 아연 도금 강판 및 이 강판들의 제조 방법 |
JP5200653B2 (ja) | 2008-05-09 | 2013-06-05 | 新日鐵住金株式会社 | 熱間圧延鋼板およびその製造方法 |
JP5042914B2 (ja) | 2008-05-12 | 2012-10-03 | 新日本製鐵株式会社 | 高強度鋼およびその製造方法 |
JP5438302B2 (ja) | 2008-10-30 | 2014-03-12 | 株式会社神戸製鋼所 | 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法 |
JP4853575B2 (ja) | 2009-02-06 | 2012-01-11 | Jfeスチール株式会社 | 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法 |
CN102341518B (zh) | 2009-04-03 | 2013-04-10 | 株式会社神户制钢所 | 冷轧钢板及其制造方法 |
JP4977184B2 (ja) | 2009-04-03 | 2012-07-18 | 株式会社神戸製鋼所 | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法 |
JP5240037B2 (ja) | 2009-04-20 | 2013-07-17 | 新日鐵住金株式会社 | 鋼板およびその製造方法 |
CN102333899B (zh) | 2009-05-11 | 2014-03-05 | 新日铁住金株式会社 | 冲裁加工性和疲劳特性优良的热轧钢板、热浸镀锌钢板及它们的制造方法 |
MX2011012371A (es) | 2009-05-27 | 2011-12-08 | Nippon Steel Corp | Lamina de acero de alta resistencia, lamina de acero bañada en caliente, y lamina de acero bañada en caliente aleada que tienen excelentes caracteristicas a la fatiga, alargamiento y colision y metodo de fabricacion para tales laminas de acero. |
JP5423191B2 (ja) | 2009-07-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5482204B2 (ja) | 2010-01-05 | 2014-05-07 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
ES2705232T3 (es) | 2010-01-29 | 2019-03-22 | Nippon Steel & Sumitomo Metal Corp | Lámina de acero y método para fabricar la lámina de acero |
EP2546377B9 (en) | 2010-03-10 | 2019-12-04 | Nippon Steel Corporation | High-strength hot-rolled steel sheet and method of manufacturing the same |
JP5510025B2 (ja) | 2010-04-20 | 2014-06-04 | 新日鐵住金株式会社 | 伸びと局部延性に優れた高強度薄鋼板およびその製造方法 |
JP5765080B2 (ja) | 2010-06-25 | 2015-08-19 | Jfeスチール株式会社 | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
CA2806626C (en) | 2010-07-28 | 2016-04-05 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same |
JP5719545B2 (ja) | 2010-08-13 | 2015-05-20 | 新日鐵住金株式会社 | 伸びとプレス成形安定性に優れた高強度薄鋼板 |
JP5126326B2 (ja) | 2010-09-17 | 2013-01-23 | Jfeスチール株式会社 | 耐疲労特性に優れた高強度熱延鋼板およびその製造方法 |
EP2439290B1 (de) * | 2010-10-05 | 2013-11-27 | ThyssenKrupp Steel Europe AG | Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung |
EP2631314B1 (en) | 2010-10-18 | 2019-09-11 | Nippon Steel Corporation | Hot-rolled, cold-rolled, and plated steel sheet having improved uniform and local ductility at a high strain rate |
JP5776398B2 (ja) | 2011-02-24 | 2015-09-09 | Jfeスチール株式会社 | 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法 |
JP5667471B2 (ja) | 2011-03-02 | 2015-02-12 | 株式会社神戸製鋼所 | 温間での深絞り性に優れた高強度鋼板およびその温間加工方法 |
MX338997B (es) | 2011-03-28 | 2016-05-09 | Nippon Steel & Sumitomo Metal Corp | Placa de acero laminada en frio y metodo de produccion de la misma. |
US9587287B2 (en) * | 2011-03-31 | 2017-03-07 | Nippon Steel and Sumitomo Metal Corporation | Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof |
US9752217B2 (en) | 2011-04-13 | 2017-09-05 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and method of producing the same |
CN103534379B (zh) * | 2011-04-13 | 2016-01-20 | 新日铁住金株式会社 | 气体氮碳共渗用热轧钢板及其制造方法 |
US9567658B2 (en) | 2011-05-25 | 2017-02-14 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet |
JP5640898B2 (ja) | 2011-06-02 | 2014-12-17 | 新日鐵住金株式会社 | 熱延鋼板 |
JP5780210B2 (ja) | 2011-06-14 | 2015-09-16 | 新日鐵住金株式会社 | 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法 |
CN103732781B (zh) * | 2011-07-29 | 2016-07-06 | 新日铁住金株式会社 | 合金化热浸镀锌层和具有该层的钢板以及其制造方法 |
WO2013047812A1 (ja) | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 高強度溶融亜鉛めっき鋼板 |
WO2013047739A1 (ja) | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 |
JP5610094B2 (ja) | 2011-12-27 | 2014-10-22 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
PL2816132T3 (pl) | 2012-02-17 | 2017-06-30 | Nippon Steel & Sumitomo Metal Corporation | Blacha stalowa cienka, blacha stalowa cienka powlekana galwanicznie, sposób wytwarzania blachy stalowej cienkiej oraz sposób wytwarzania blachy stalowej cienkiej powlekanej galwanicznie |
TWI463018B (zh) | 2012-04-06 | 2014-12-01 | Nippon Steel & Sumitomo Metal Corp | 具優異裂縫阻滯性之高強度厚鋼板 |
KR101706441B1 (ko) | 2012-04-26 | 2017-02-13 | 제이에프이 스틸 가부시키가이샤 | 양호한 연성, 신장 플랜지성, 재질 균일성을 갖는 고강도 열연 강판 및 그 제조 방법 |
KR101706478B1 (ko) | 2012-06-26 | 2017-02-13 | 신닛테츠스미킨 카부시키카이샤 | 고강도 열연 강판 및 그 제조 방법 |
CA2878685C (en) | 2012-07-20 | 2017-06-06 | Nippon Steel & Sumitomo Metal Corporation | Steel material |
ES2608036T3 (es) | 2012-08-03 | 2017-04-05 | Tata Steel Ijmuiden Bv | Un proceso para producir tiras de acero laminado en caliente y una tira de acero producida con este |
JP5825225B2 (ja) | 2012-08-20 | 2015-12-02 | 新日鐵住金株式会社 | 熱延鋼板の製造方法 |
KR101658744B1 (ko) | 2012-09-26 | 2016-09-21 | 신닛테츠스미킨 카부시키카이샤 | 복합 조직 강판 및 그 제조 방법 |
JP5574070B1 (ja) | 2012-09-27 | 2014-08-20 | 新日鐵住金株式会社 | 熱延鋼板およびその製造方法 |
MX2015007724A (es) * | 2012-12-18 | 2015-09-07 | Jfe Steel Corp | Lamina de acero laminada en frio de alta resistencia con bajo limite de elasticidad y metodo para la fabricacion de la misma. |
JP5821861B2 (ja) | 2013-01-23 | 2015-11-24 | 新日鐵住金株式会社 | 外観に優れ、伸びと穴拡げ性のバランスに優れた高強度熱延鋼板及びその製造方法 |
KR101758003B1 (ko) | 2013-04-15 | 2017-07-13 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 |
JP6241274B2 (ja) | 2013-12-26 | 2017-12-06 | 新日鐵住金株式会社 | 熱延鋼板の製造方法 |
US10329637B2 (en) | 2014-04-23 | 2019-06-25 | Nippon Steel & Sumitomo Metal Corporation | Heat-rolled steel plate for tailored rolled blank, tailored rolled blank, and methods for producing these |
JP6292022B2 (ja) | 2014-05-15 | 2018-03-14 | 新日鐵住金株式会社 | 高強度熱延鋼板及びその製造方法 |
JP6390273B2 (ja) | 2014-08-29 | 2018-09-19 | 新日鐵住金株式会社 | 熱延鋼板の製造方法 |
WO2016132549A1 (ja) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
KR101957078B1 (ko) | 2015-02-20 | 2019-03-11 | 신닛테츠스미킨 카부시키카이샤 | 열연 강판 |
MX2017010537A (es) * | 2015-02-20 | 2017-12-14 | Nippon Steel & Sumitomo Metal Corp | Chapa de acero laminada en caliente. |
WO2016135898A1 (ja) * | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | 熱延鋼板 |
CN107406929B (zh) | 2015-02-25 | 2019-01-04 | 新日铁住金株式会社 | 热轧钢板 |
CN109642279B (zh) | 2016-08-05 | 2021-03-09 | 日本制铁株式会社 | 钢板及镀覆钢板 |
CN109563580A (zh) | 2016-08-05 | 2019-04-02 | 新日铁住金株式会社 | 钢板及镀覆钢板 |
CN109563586B (zh) * | 2016-08-05 | 2021-02-09 | 日本制铁株式会社 | 钢板及镀覆钢板 |
CN113637923B (zh) * | 2016-08-05 | 2022-08-30 | 日本制铁株式会社 | 钢板及镀覆钢板 |
-
2015
- 2015-02-20 KR KR1020177018427A patent/KR101957078B1/ko active IP Right Grant
- 2015-02-20 BR BR112017013229-0A patent/BR112017013229A2/ja active Search and Examination
- 2015-02-20 ES ES15882644T patent/ES2743814T3/es active Active
- 2015-02-20 MX MX2017008622A patent/MX2017008622A/es unknown
- 2015-02-20 US US15/538,404 patent/US11401571B2/en active Active
- 2015-02-20 WO PCT/JP2015/054846 patent/WO2016132542A1/ja active Application Filing
- 2015-02-20 JP JP2017500251A patent/JP6327395B2/ja active Active
- 2015-02-20 CN CN201580075484.9A patent/CN107208209B/zh active Active
- 2015-02-20 PL PL15882644T patent/PL3260565T3/pl unknown
- 2015-02-20 EP EP15882644.6A patent/EP3260565B1/en active Active
-
2016
- 2016-02-22 TW TW105105139A patent/TWI602933B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02149646A (ja) * | 1988-11-30 | 1990-06-08 | Kobe Steel Ltd | 加工性、溶接性に優れた高強度熱延鋼板とその製造方法 |
JPH03180445A (ja) * | 1989-12-09 | 1991-08-06 | Nippon Steel Corp | 加工性とスポット溶接性に優れた熱延高強度鋼板とその製造方法 |
JP2001220648A (ja) * | 2000-02-02 | 2001-08-14 | Kawasaki Steel Corp | 伸びフランジ性に優れた高延性熱延鋼板およびその製造方法 |
JP2008285748A (ja) * | 2007-04-17 | 2008-11-27 | Nakayama Steel Works Ltd | 高強度熱延鋼板およびその製造方法 |
JP2009019265A (ja) * | 2007-06-12 | 2009-01-29 | Nippon Steel Corp | 穴広げ性に優れた高ヤング率鋼板及びその製造方法 |
JP2010168651A (ja) * | 2008-12-26 | 2010-08-05 | Nakayama Steel Works Ltd | 高強度熱延鋼板およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561101A4 (en) * | 2016-12-20 | 2019-11-13 | Posco | HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING EXCELLENT WELDABILITY AND DUCTILITY AND METHOD FOR MANUFACTURING THE SAME |
EP3604585A4 (en) * | 2017-03-31 | 2020-09-02 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
JP6338038B1 (ja) * | 2017-11-15 | 2018-06-06 | 新日鐵住金株式会社 | 高強度冷延鋼板 |
WO2019097600A1 (ja) * | 2017-11-15 | 2019-05-23 | 日本製鉄株式会社 | 高強度冷延鋼板 |
US11208705B2 (en) | 2017-11-15 | 2021-12-28 | Nippon Steel Corporation | High-strength cold-rolled steel sheet |
WO2024135365A1 (ja) * | 2022-12-23 | 2024-06-27 | 日本製鉄株式会社 | 熱間圧延鋼板 |
Also Published As
Publication number | Publication date |
---|---|
PL3260565T3 (pl) | 2019-12-31 |
CN107208209A (zh) | 2017-09-26 |
CN107208209B (zh) | 2019-04-16 |
TWI602933B (zh) | 2017-10-21 |
JP6327395B2 (ja) | 2018-05-23 |
ES2743814T3 (es) | 2020-02-20 |
KR20170093886A (ko) | 2017-08-16 |
US11401571B2 (en) | 2022-08-02 |
JPWO2016132542A1 (ja) | 2017-10-05 |
EP3260565B1 (en) | 2019-07-31 |
BR112017013229A2 (ja) | 2018-01-09 |
US20170349967A1 (en) | 2017-12-07 |
EP3260565A4 (en) | 2018-09-12 |
KR101957078B1 (ko) | 2019-03-11 |
MX2017008622A (es) | 2017-11-15 |
EP3260565A1 (en) | 2017-12-27 |
TW201636441A (zh) | 2016-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6327395B2 (ja) | 熱延鋼板 | |
JP6566026B2 (ja) | めっき鋼板 | |
KR102186320B1 (ko) | 강판 및 도금 강판 | |
JP6108046B1 (ja) | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板 | |
JP6822488B2 (ja) | 鋼板 | |
KR101926244B1 (ko) | 연성, 신장 플랜지성 및 용접성이 우수한 고강도 냉연 강판, 고강도 용융 아연도금 강판, 및 고강도 합금화 용융 아연도금 강판 | |
US20220389554A1 (en) | Hot-rolled steel sheet | |
KR102433938B1 (ko) | 고강도 냉연강판, 고강도 도금강판 및 그것들의 제조방법 | |
KR20140048331A (ko) | 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
KR101935184B1 (ko) | 열연 강판 | |
US20180037967A1 (en) | Hot-rolled steel sheet | |
JP2015175061A (ja) | 引張最大強度780MPaを有する衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法。 | |
KR20160097348A (ko) | 열간 성형 부재 및 그 제조 방법 | |
KR20200067887A (ko) | 고강도 냉연 강판 | |
US20230295761A1 (en) | Steel sheet and steel sheet manufacturing method | |
JPWO2019187031A1 (ja) | 優れた延性と穴広げ性を有する高強度鋼板 | |
JP6217455B2 (ja) | 冷延鋼板 | |
JP6179698B1 (ja) | 鋼板およびめっき鋼板 | |
CN109642278B (zh) | 热轧钢板 | |
JP7440804B2 (ja) | 熱間圧延鋼板 | |
JP6032173B2 (ja) | 引張最大強度980MPaを有する耐遅れ破壊特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882644 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500251 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538404 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/008622 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20177018427 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017013229 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2015882644 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112017013229 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170620 |