WO2016132514A1 - 蓄電システム、蓄電制御方法、および蓄電制御プログラム - Google Patents

蓄電システム、蓄電制御方法、および蓄電制御プログラム Download PDF

Info

Publication number
WO2016132514A1
WO2016132514A1 PCT/JP2015/054650 JP2015054650W WO2016132514A1 WO 2016132514 A1 WO2016132514 A1 WO 2016132514A1 JP 2015054650 W JP2015054650 W JP 2015054650W WO 2016132514 A1 WO2016132514 A1 WO 2016132514A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
storage battery
derived
unit
Prior art date
Application number
PCT/JP2015/054650
Other languages
English (en)
French (fr)
Inventor
井出 誠
麻美 水谷
門田 行生
小林 武則
勉 丹野
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2017500226A priority Critical patent/JP6546261B2/ja
Priority to EP15882616.4A priority patent/EP3264119A4/en
Priority to PCT/JP2015/054650 priority patent/WO2016132514A1/ja
Priority to KR1020177022779A priority patent/KR101897555B1/ko
Priority to US15/551,666 priority patent/US20180067167A1/en
Publication of WO2016132514A1 publication Critical patent/WO2016132514A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments described herein relate generally to a power storage system, a power storage control method, and a power storage control program.
  • SOC State Of Charge
  • the problem to be solved by the present invention is to provide a power storage system, a power storage control method, and a power storage control program capable of accurately estimating the SOC of a storage battery.
  • the power storage system of the embodiment includes a storage battery, a first derivation unit, a second derivation unit, and a correction unit.
  • the storage battery charges and discharges.
  • the first deriving unit derives the first SOC based on the voltage of the storage battery when no current flows through the storage battery.
  • the second deriving unit derives the second SOC based on the battery capacity of the storage battery and the integrated value of the current flowing through the storage battery.
  • the correction unit performs the second derivation based on the difference between the second SOC derived by the second derivation unit and the first SOC derived by the first derivation unit after the second SOC is derived.
  • the battery capacity of the storage battery used by the unit is corrected.
  • amendment part changes the correction amount of correction
  • FIG. 1 shows the structural example of the electrical storage system 1 of 1st Embodiment.
  • SOC 2 # which is derived using the battery capacity C # corrected, were compared and SOC 2 derived by using the battery capacity C before correction
  • FIG. 1 The flowchart which shows an example of the process performed by the electrical storage system 1 of 1st Embodiment.
  • 10 is a flowchart illustrating an example of processing performed by a comparison / correction unit according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a power storage system 1 according to the first embodiment.
  • the power storage system 1 includes an assembled battery unit 10 having a plurality of battery modules 12 (1) to 12 (k), a plurality of CMUs (Cell Monitoring Units) 20 (1) to 20 (k), a BMU (Battery Managing Unit) 30. These components are connected by a CAN (Controller Area Network) cable or the like (not shown).
  • CAN Controller Area Network
  • Each battery module 12 (1) to 12 (k) includes, for example, a secondary battery such as a lithium ion battery, a lead storage battery, a sodium sulfur battery, a redox flow battery, or a nickel metal hydride battery.
  • the characteristics of the secondary battery are expressed by parameters including, for example, battery capacity C [Ah] and current rate R [C].
  • battery capacity C [Ah] for example, battery capacity of 20 [Ah]
  • current rate R [C For example, in a battery having a rated battery capacity of 20 [Ah], when the SOC is 100% (full charge) without deterioration such as immediately after shipment, a current of 1 [C] (20 [A]) is applied for 1 hour. Discharge is possible. In other words, when the SOC is 0% in a state where there is no deterioration such as immediately after shipment, the current at a current rate of 1 [C] (20 [A]) can be charged for 1 hour.
  • each CMU 20 has the same configuration and is provided according to the number k of the battery modules 12.
  • the power storage system 1 switches the assembled battery unit 10 to be operated among the plurality of assembled battery units 10 based on the charge / discharge power command transmitted from the host device 40.
  • the power storage system 1 charges and discharges the selected assembled battery unit 10 based on the charge / discharge power command.
  • it is suitable when charging / discharging of the battery module 12 is performed by a constant current.
  • the charging / discharging in this embodiment is demonstrated as what is performed by a constant current.
  • the BMU 30 derives SOC (State Of Charge) as one of the indicators of the charging rate of each battery module 12 according to the operating status of the assembled battery unit 10.
  • SOC State Of Charge
  • the SOC derivation method performed by the BMU 30 will be described later.
  • the derivation of the SOC may be performed in the host apparatus 40 or the CMU 20, or an arithmetic process for deriving the SOC using two or more processors included in the host apparatus 40, the BMU 30, and the CMU 20.
  • the form to share may be sufficient.
  • FIG. 2 is a diagram illustrating an application example of the power storage system 1 according to the first embodiment.
  • a solid line indicates a power line
  • a broken line indicates a communication line.
  • the power storage system 1 preferably includes a plurality of assembled battery units 10 (1) to 10 (k).
  • FIG. 2 only one assembled battery unit 10 (1) among the plurality of assembled battery units 10 is displayed.
  • the configuration of one assembled battery unit 10 (1) will be mainly described.
  • the power storage system 1 is connected to, for example, a power system 60, a host device 40, a PCS (Power Conditioning System) 50, and the like.
  • the host device 40 transmits a charge / discharge power command to the assembled battery unit 10 to be controlled by the PCS 50 to the PCS 50.
  • the PCS 50 includes a processor such as a CPU, a communication interface for bidirectional communication with the host device 40, and the like.
  • the PCS 50 performs the following operation based on the control signal transmitted from the host device 40.
  • the PCS 50 converts DC power discharged from the battery module 12 into AC power and boosts the voltage to a voltage (for example, 3.3 to 6.6 [kV]) used in the power system.
  • the PCS 50 converts, for example, AC power supplied from the power system into DC power, and steps down to a voltage (for example, 100 [V]) that allows the battery module 12 to be charged.
  • a series circuit in which a plurality of battery modules 12, a BMU 30, a switch circuit 70, and a switch 72 are connected in series is configured.
  • the assembled battery unit 10 (1) is connected to the PCS 50 via one terminal of the series circuit and the switch circuit 70.
  • the switch circuit 70 for example, a switch S1 having no resistance (a resistance value of, for example, 1/10 or less of that of the resistance R) and a switch S2 in which the resistance R is connected in series are connected in parallel.
  • a switch 72 may be provided between the battery modules 12.
  • the switch 72 is used, for example, to turn off the series circuit when any battery module 12 is removed for inspection.
  • the switch 72 may be used also as a disconnector (service disconnect) and may function as a fuse. In this case, wiring for notifying the BMU 30 of the insertion / extraction state and the fuse state may be provided.
  • the BMU 30 includes, for example, a processor such as a CPU (Central Processing Unit) and a storage unit such as a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and an HDD (Hard Disk Drive).
  • the BMU 30 appropriately controls the switch circuit 70 and the switch 72 based on the charge / discharge power command.
  • the BMU 30 controls the switch circuit 70 so as to adjust the number of battery modules 12 to be charged / discharged and the number of assembled battery units 10 in order to satisfy the charge / discharge amount included in the charge / discharge power command.
  • Each of the CMUs 20 (1) to 20 (k) includes, for example, voltage measuring units 22 (1) to 22 (k) and first SOC deriving units 24 (1) to 24 (k).
  • voltage measuring units 22 (1) to 22 (k) when the plurality of voltage measuring units 22 (1) to 22 (k) are not distinguished, they are simply referred to as the voltage measuring unit 22, and when the plurality of first SOC deriving units 24 (1) to 24 (k) are not distinguished, This is simply referred to as the first SOC deriving unit 24.
  • the voltage measurement unit 22 measures the voltage between the positive electrode and the negative electrode terminal of each battery module 12.
  • the first SOC deriving unit 24 acquires information indicating the voltage of each battery module 12 from the voltage measuring unit 22 at the timing when the voltage is settled, and derives the first SOC.
  • the settled timing is a state where the voltage between the terminals of the battery module 12 is sufficiently stable and an open circuit voltage described later can be measured.
  • the first SOC deriving unit 24 calculates the first SOC at both the static timing before charging / discharging and the static timing after charging / discharging.
  • the first SOC deriving unit 24 is an example of a “first deriving unit”.
  • the first SOC deriving units 24 (1) to 24 (k) may be functional units of the BMU 30.
  • the first SOC deriving unit 24 determines that the voltage has settled when a predetermined time ⁇ t (for example, 10 minutes) has elapsed from the timing at which charging / discharging ends, and determines the voltage of each battery module 12 from the voltage measuring unit 22. Get the information shown.
  • leading-out part 24 does not acquire a voltage in the meantime, when the next charging / discharging is started before predetermined time (DELTA) t passes from the timing which charging / discharging was complete
  • a predetermined time ⁇ t for example, 10 minutes
  • the first SOC deriving unit 24 determines that charging / discharging is performed when the current measured by the current measuring unit 32 exceeds a threshold value Iref (for example, 0.1 [mA]), and is equal to or less than the threshold value Iref. It is determined that charging / discharging has stopped.
  • a threshold value Iref for example, 0.1 [mA]
  • the timing for acquiring the static voltage may be performed at any timing as long as it is within the period up to the time when charging / discharging is scheduled for the next time. Further, the static voltage may be acquired a plurality of times within this period and derived as an average value thereof.
  • the first SOC deriving unit 24 acquires OCV-SOC characteristic data from a storage unit (not shown) in order to derive the SOC.
  • the OCV-SOC characteristic data is data indicating a correlation between the OCV (Open Circuit Voltage) of the storage battery included in the battery module 12 and the SOC.
  • the first SOC deriving unit 24 derives the SOC (first SOC) of the battery module 12 by applying the acquired static voltage to the OCV-SOC characteristic data.
  • SOC 1b the first SOC derived based on the static voltage obtained before charging / discharging performed at a certain timing
  • SOC 1a the first SOC derived based on the static voltage obtained after the same charge / discharge
  • the first SOC deriving unit 24 transmits the first SOC to the BMU 30.
  • the BMU 30 includes, for example, a current measurement unit 32, a second SOC derivation unit 34, and a comparison / correction unit 36.
  • the current measuring unit 32 measures the current flowing through the battery module 12 for each battery module 12.
  • the second SOC deriving unit 34 includes an integrated value of the current flowing through the battery module 12 being charged / discharged (hereinafter referred to as “current integrated value ⁇ I”), the battery capacity C of the battery module 12, and the first SOC deriving unit 24. Based on the derived SOC 1b , the SOC (second SOC) of the battery module 12 is derived.
  • the SOC derived by the second SOC deriving unit 34 is denoted as “SOC 2 ”.
  • the second SOC deriving unit 34 is an example of a “second deriving unit”.
  • the second SOC deriving unit 34 starts from the integration start time when the current flowing through the battery module 12 changes from a state below the threshold value Iref to a state exceeding the threshold value Iref, and from the state where the current flowing through the battery module 12 exceeds the threshold value Iref to the threshold value Iref.
  • the current integrated value ⁇ I (for example, the unit is [Ah]) is calculated with the integration period until the integration end time changed to the following state.
  • the second SOC deriving unit 34 divides the calculated current integrated value ⁇ I by the battery capacity C of the battery module 12 and adds the SOC 1b derived by the first SOC deriving unit 24 to the value expressed as a percentage. , SOC 2 is derived.
  • the second SOC deriving unit 34 outputs the calculated integrated current value ⁇ I to the comparison / correction unit 36.
  • the first SOC deriving unit 24 derives the SOC 1a based on a static voltage acquired at a timing when a predetermined time ⁇ t has elapsed from the integration end time.
  • the comparison / correction unit 36 derives a difference ⁇ SOC between the SOC 2 derived by the second SOC deriving unit 34 and the SOC 1a derived by the first SOC deriving unit 24.
  • the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the value of ⁇ SOC is zero when the derived ⁇ SOC is not zero.
  • the comparison / correction unit 36 is an example of a “correction unit”.
  • Comparing and correcting unit 36 is, for example, if the ⁇ SOC is not zero, the SOC 1a as a true value, as SOC 2 is derived next match to the SOC 1a, the battery capacity of the battery module 12 in the derivation of the SOC 2 C parameter is corrected. That is, the power storage system 1 derives the SOC 2 using the corrected battery capacity C (hereinafter referred to as “battery capacity C #”) at the time of charge / discharge performed after the charge / discharge. Thereby, the power storage system 1 can improve the estimation accuracy of the SOC of the battery module 12.
  • the comparison / correction unit 36 does not determine whether or not to perform correction based on whether or not ⁇ SOC is zero, for example, whether or not the absolute value of ⁇ SOC exceeds a threshold value (for example, 5%). It may be determined whether or not to perform correction. The same applies to the following description.
  • FIG. 3 is a diagram showing a change in SOC calculated before and after charging and discharging.
  • LN1 shown in the drawing indicates a change in the SOC derived by the first SOC deriving unit 24 or the second SOC deriving unit 34.
  • LN2 indicates a current measured by the current measuring unit 32.
  • the left vertical axis represents SOC [%]
  • the right vertical axis represents current [A]
  • the horizontal axis represents charge / discharge time t [s].
  • the second SOC deriving unit 34 determines the first SOC based on the integrated current value ⁇ I during the period from time t 0 to time t 1 , the battery capacity C of the battery module 12, and the static voltage before time t 0 . Based on the SOC 1b derived by the deriving unit 24, the SOC 2 is derived.
  • the second SOC deriving unit 34 obtains the static voltage of the battery module 12 at a time t 2 when a predetermined time ⁇ t or more has elapsed from the time t 1 when the charging / discharging is completed.
  • the first SOC deriving unit 24 derives the SOC 1a of the battery module 12 after charging and discharging based on the acquired static voltage and OCV-SOC characteristic data.
  • the comparison / correction unit 36 derives a difference ⁇ SOC between the SOC 2 derived by the second SOC deriving unit 34 and the SOC 1a derived by the first SOC deriving unit 24.
  • ⁇ SOC is not zero
  • the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 and changes the parameter to the corrected battery capacity C #.
  • the corrected battery capacity C # is derived from the following equation (2).
  • Figure 4 is a diagram comparing the SOC 2 #, which is derived using the battery capacity C # corrected, and SOC 2 derived by using the battery capacity C before correction.
  • LN1 # shown in the figure indicates SOC 2 # derived using the corrected battery capacity C #.
  • LN1 indicates SOC 2 and SOC 1a derived using the battery capacity C before correction.
  • SOC 2 # is corrected to coincide with SOC 1a at time t2.
  • LN2 the left vertical axis, the right vertical axis, and the horizontal axis shown in the figure are the same as those in FIG.
  • FIG. 5 is a flowchart illustrating an example of processing performed by the power storage system 1 according to the first embodiment. The process of this flowchart is repeatedly performed for every period, for example, with a period from operation to stop of the battery module 12 as one period.
  • the first SOC deriving unit 24 acquires the static voltage of each battery module 12 from the voltage measuring unit 22 at the static timing before charging / discharging, and based on the acquired static voltage and OCV-SOC characteristic data.
  • SOC 1b is derived (step S100).
  • the power storage system 1 charges and discharges each battery module 12 based on the charge / discharge power command (step S102).
  • the second SOC deriving unit 34 calculates a current integrated value ⁇ I of the battery module 12 during charging / discharging based on the measurement result of the current measuring unit 32 (step S104).
  • the second SOC deriving unit 34 derives the SOC 2 based on the calculated current integrated value ⁇ I, the battery capacity C of the battery module 12, and the SOC 1b derived by the first SOC deriving unit 24 (step) S106).
  • the first SOC deriving unit 24 acquires the static voltage of each battery module 12 from the voltage measurement unit 22 at the static timing after charging and discharging, and uses the acquired static voltage and the OCV-SOC characteristic data. Based on this, the SOC 1a is derived (step S108).
  • the comparison / correction unit 36 derives a difference ⁇ SOC between the SOC 2 derived by the second SOC deriving unit 34 and the SOC 1a derived by the first SOC deriving unit 24 (step S110).
  • the comparison / correction unit 36 determines whether the derived ⁇ SOC is not zero (step S112). If the derived ⁇ SOC is zero (step S112: No), the power storage system 1 ends the process of this flowchart. When the derived ⁇ SOC is not zero (step S112: Yes), the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the value of ⁇ SOC is zero (step S114). Thereby, the electrical storage system 1 complete
  • the SOC 1b is derived based on the static voltage of the battery module 12 and the OCV-SOC characteristic data acquired at the static timing before charging and discharging.
  • the battery module obtained at the time when the SOC 2 is derived based on the current integrated value ⁇ I of the battery module 12 during charging / discharging, the battery capacity C of the battery module 12 and the derived SOC 1b, and settled after charging / discharging.
  • the SOC 1a is derived based on the 12 static voltage and the OCV-SOC characteristic data, and the parameter of the battery capacity C of the battery module 12 is corrected based on the difference ⁇ SOC between the SOC 2 and the SOC 1a .
  • the power storage system 1 can accurately estimate the SOC of the battery module 12.
  • the power storage system 1 of the second embodiment will be described.
  • the function of the comparison / correction unit 36 is different from that of the first embodiment. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate
  • the processing of the comparison / correction unit 36 will be described as a difference from the first embodiment.
  • the correction amount to be corrected is appropriately changed based on the usage state of the battery module 12.
  • the usage state includes, for example, (1) current rate R during charging / discharging, (2) derived ⁇ SOC, and any one or more of the others.
  • the use state in which charging / discharging is performed at a current rate R of 1C and at a constant current is set as a reference state.
  • Various parameters are used as reference values.
  • the correction amount changing process will be described with reference to the drawings.
  • FIG. 6 is a diagram illustrating an example of a correspondence relationship between the current rate R and the reduction rate of ⁇ SOC.
  • the comparison / correction unit 36 reduces the correction amount by evaluating ⁇ SOC as the current rate R deviates from the reference value.
  • the reduction rate of ⁇ SOC is a ratio for reducing the difference ⁇ SOC between SOC 1a and SOC 2, and is expressed as a coefficient multiplied by ⁇ SOC, for example.
  • the reduction rate of ⁇ SOC is set to 1, for example. That is, the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the derived ⁇ SOC becomes zero when the current rate R is the reference value.
  • the reduction rate of ⁇ SOC is set to 1/2, for example. That is, when the current rate R is 1 / 2C or 2C, the comparison / correction unit 36 causes the battery module 12 battery to have a contribution rate related to the correction amount of ⁇ SOC that is 1/2 that of the current rate R of 1C. The parameter of the capacity C is corrected.
  • the correspondence relationship between the current rate R and the reduction rate of ⁇ SOC may be the relationship represented by the graphs of FIGS.
  • the correspondence relationship is expressed by, for example, an exponential function or a polynomial function in which the current rate R is a logarithmic axis and the reference value is axisymmetric.
  • the vertical axis indicates the reduction rate of ⁇ SOC
  • the horizontal axis indicates the current rate R expressed in logarithm.
  • FIG. 7 is a diagram illustrating another example of the correspondence relationship between the current rate R and the reduction rate of ⁇ SOC.
  • LN3 shown in the figure is a function in which, for example, the reference value is axisymmetric, and the reduction rate increases exponentially as the reference value is approached.
  • FIG. 8 is a diagram showing another example of the correspondence relationship between the current rate R and the reduction rate of ⁇ SOC.
  • LN4 shown in the figure is a function in which the reduction rate is constant in a predetermined range ⁇ C centered on the reference value and the reference value is axisymmetric.
  • the reduction rate is set to 1 in a predetermined range ⁇ C (for example, the current rate R is 0.8 to 1.2), and the reduction rate is an exponential function as the reference value is approached in other sections. Is set so as to increase.
  • FIG. 9 is a diagram illustrating another example of the correspondence relationship between the current rate R and the reduction rate of ⁇ SOC.
  • LN5 shown in the figure is a function in which the reduction rate is constant in a threshold value Th1 or less and a threshold value Th2 or more and a predetermined range ⁇ C centered on the reference value.
  • the reduction rate of LN5 is set to 1 in a predetermined range ⁇ C (for example, the current rate R is 0.8 to 1.2), and the reduction rate is set to 0 in a section below the threshold Th1 and above the threshold Th2. Is set.
  • LN5 is set so that the reduction rate increases exponentially as it approaches the reference value in the other sections.
  • FIG. 10 is a diagram showing another example of the correspondence relationship between the current rate R and the reduction rate of ⁇ SOC.
  • LN6 shown in the figure is a function in which, for example, the reduction rate is constant in the section below the reference value, and the reduction rate decreases in the section above the reference value as the current rate R increases.
  • LN6 is set such that the reduction rate is set to 1 in a section equal to or less than the reference value, and the reduction rate decreases exponentially as the current rate R increases in a section greater than or equal to the reference value.
  • FIG. 11 is a diagram showing another example of the correspondence relationship between the current rate R and the reduction rate of ⁇ SOC.
  • LN7 shown in the figure is a function in which the reduction rate in the section below the reference value gradually increases or decreases compared to the reduction rate in the section where the current rate R is the reference value or more. For example, when the slope (for example, an index) indicating increase / decrease in a section equal to or greater than the reference value is 2, LN7 is set such that the slope (for example, index) indicating increase / decrease is 0.5 in a section equal to or less than the reference value. .
  • the comparison / correction unit 36 in addition to the correction process for changing the reduction rate of ⁇ SOC according to the current rate R, for example, the comparison / correction unit 36 may change the battery according to the derived ⁇ SOC.
  • the parameter of the battery capacity C of the module 12 may be corrected.
  • FIG. 12 is a diagram illustrating an example of a correspondence relationship between ⁇ SOC 1a-1b derived by the comparison / correction unit 36 and a reduction rate of ⁇ SOC 2-1a .
  • ⁇ SOC 1a-1b represents a difference between SOC 1a and SOC 1b . That is, ⁇ SOC 1a-1b is a difference between the SOC value after charging / discharging calculated by the first SOC deriving unit 24 and the SOC value before charging / discharging calculated by the first SOC deriving unit 24.
  • ⁇ SOC 2-1a represents the difference between SOC 2 and SOC 1a . That is, ⁇ SOC 2-1a is the difference between the SOC value after charging / discharging calculated by the second SOC deriving unit 34 and the SOC value after charging / discharging calculated by the first SOC deriving unit 24.
  • the reduction rate of ⁇ SOC 2-1a is set to 1. That is, when the derived ⁇ SOC 1a-1b is 100%, the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that ⁇ SOC 2-1a becomes zero. When ⁇ SOC 1a-1b is 20%, the reduction rate of ⁇ SOC 2-1a is set to 0.2, for example. That is, when ⁇ SOC 1a-1b is 20%, the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the derived ⁇ SOC 2-1a becomes 4/5. Note that the data, functions, and the like indicating the various correspondence relationships described above are stored in advance in any storage unit (storage device) such as the BMU 30, the CMU 20, or the higher-level device 40.
  • the comparison / correction unit 36 of the present embodiment may determine the reduction rate of ⁇ SOC based on the current rate R and the derived ⁇ SOC. In this case, the comparison / correction unit 36 multiplies the reduction rate of ⁇ SOC associated with each parameter of the current rate R and ⁇ SOC, and derives the multiplied value as the reduction rate of ⁇ SOC. The comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that ⁇ SOC multiplied by the reduction rate is obtained.
  • the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the derived ⁇ SOC becomes 4/5.
  • FIG. 13 is a flowchart illustrating an example of processing performed by the comparison / correction unit 36 of the second embodiment. Note that the processing in the flowchart corresponds to the processing in step S114 in FIG. 5 described above.
  • the comparison / correction unit 36 determines whether or not various parameters including the derived ⁇ SOC and the current rate R are reference values (step S200). When the various parameters are reference values (step S200: Yes), the comparison / correction unit 36 determines 1 as the reduction rate by which the derived ⁇ SOC is multiplied (step S202). When the various parameters are not reference values (step S200: No), the comparison / correction unit 36 determines and changes the reduction rate by which the derived ⁇ SOC is multiplied based on any parameter that is not the reference value (step S204). ).
  • the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so as to reduce the value of ⁇ SOC to zero or small based on the determined ⁇ SOC reduction rate (step S206). As a result, the comparison / correction unit 36 ends the process of this flowchart.
  • the SOC of the battery module 12 can be estimated with higher accuracy by changing the correction amount of the battery capacity C based on the usage state of the battery module 12. it can.
  • the power storage system 1 includes a temperature measurement unit 26 in addition to the components included in the first or second embodiment.
  • description of functions and the like common to the first or second embodiment described above will be omitted.
  • FIG. 14 is a diagram illustrating a configuration example of the power storage system 1 according to the third embodiment.
  • Each CMU 20 includes a temperature measurement unit 26.
  • the temperature measurement unit 26 measures the temperature T [° C.] of each battery module 12.
  • the temperature T includes, for example, the temperature near the outer surface of the casing (not shown) of the battery module 12, the temperature inside the battery module 12 estimated from the temperature near the outer surface, and the like.
  • the comparison / correction unit 36 acquires the temperature T of each battery module 12 from the temperature measurement unit 26 and determines the reduction rate of ⁇ SOC based on the acquired temperature T.
  • the significance of reducing ⁇ SOC is the same as in the second embodiment.
  • FIG. 15 is a diagram illustrating an example of a correspondence relationship between the temperature T and the reduction rate of ⁇ SOC.
  • the reference temperature T reference range ⁇ T
  • the comparison / correction unit 36 determines that the reduction rate of ⁇ SOC is 1 when the temperature T measured by the temperature measurement unit 26 is within the reference range ⁇ T. For example, when the temperature T measured by the temperature measurement unit 26 is 10 to 20 ° C. or 30 to 40 ° C., the comparison / correction unit 36 determines the reduction rate of ⁇ SOC to be 1/2. The comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 based on the determined reduction rate.
  • the correspondence relationship between the temperature T and the reduction rate of ⁇ SOC is determined in consideration of the type of battery of the battery module 12 to be used, individual differences, and the like.
  • the reduction rate is determined based on the temperature characteristics of the lithium ion battery.
  • the reduction rate at a temperature of 0 ° C. or lower is made smaller than the reduction rate at a temperature of 0 ° C. or higher.
  • the SOC for each battery module 12 to be used can be estimated with higher accuracy. It is assumed that the data indicating the correspondence described above is stored in any storage unit (storage device) such as the BMU 30, the CMU 20, or the host device 40.
  • the comparison / correction unit 36 of the present embodiment may determine the reduction rate of ⁇ SOC based on the current rate R, ⁇ SOC, and temperature T. In this case, the comparison / correction unit 36 multiplies the reduction rate of ⁇ SOC associated with each parameter of the current rate R, ⁇ SOC, and temperature T, and derives the multiplied value as the reduction rate of ⁇ SOC. The comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the value obtained by multiplying ⁇ SOC by the reduction rate is corrected to zero.
  • ⁇ SOC is 40%
  • T is 10 to 20 ° C. in the numerical examples of FIGS.
  • the comparison / correction unit 36 corrects the parameter of the battery capacity C of the battery module 12 so that the derived ⁇ SOC becomes 9/10.
  • the SOC of the battery module 12 is changed by changing the correction amount of the battery capacity C based on the use state of the battery module 12 as in the second embodiment. Can be estimated with higher accuracy.
  • the voltage measuring unit 22, the first SOC deriving unit 24, the current measuring unit 32, and the second SOC deriving unit 34 perform various measurements and SOC derivations on each battery module 12. Not limited to. For example, the voltage and current between terminals for each assembled battery unit 10 may be measured, and various SOCs for each assembled battery unit 10 may be derived based on the measured voltage and current.
  • the SOC 1b is derived based on the static voltage of the battery module 12 and the OCV-SOC characteristic data acquired at the static timing before charging / discharging, and during charging / discharging.
  • SOC 2 is derived on the basis of the current integrated value ⁇ I of the battery module 12 and the battery capacity C of the battery module 12 and the derived SOC 1b, and the static value of the battery module 12 obtained at the static time after charging and discharging is obtained.
  • the SOC 1a is derived based on the voltage and the OCV-SOC characteristic data, and the parameter of the battery capacity C of the battery module 12 is corrected based on the difference ⁇ SOC between the SOC 2 and the SOC 1a .
  • the power storage system 1 can accurately estimate the SOC of the battery module 12.
  • SYMBOLS 1 Power storage system 10, 10 (1) -10 (k) ... Battery unit, 12, 12 (1) -12 (k) ... Battery module, 20, 20 (1) -20 (k) ... CMU, 22, 22 (1) to 22 (k)... Voltage measuring unit, 24, 24 (1) to 24 (k).... First SOC deriving unit, 26, 26 (1) to 26 (k). ... BMU, 32 ... Current measurement unit, 34 ... Second SOC derivation unit, 36 ... Comparison / correction unit, 40 ... Host device, 50 ... PCS, 60 ... Power system, 70 ... Switch circuit, 72 ... Switch

Abstract

実施形態の蓄電システムは、蓄電池と、第1の導出部と、第2の導出部と、補正部とを持つ。蓄電池は、充放電を行う。第1の導出部は、蓄電池に電流が流れていないときの前記蓄電池の電圧に基づいて、第1のSOCを導出する。第2の導出部は、蓄電池の電池容量と、蓄電池に流れる電流の積算値とに基づいて、第2のSOCを導出する。補正部は、第2の導出部により導出された第2のSOCと、第2のSOCの導出後に第1の導出部により導出された第1のSOCとの差分に基づいて、第2の導出部が使用する蓄電池の電池容量を補正する。また、補正部は、蓄電池の状態に応じて補正の補正量を変更する。

Description

蓄電システム、蓄電制御方法、および蓄電制御プログラム
 本発明の実施形態は、蓄電システム、蓄電制御方法、および蓄電制御プログラムに関する。
 蓄電池の充電率を把握する技術として、蓄電池の電池容量と、蓄電池に充電されているエネルギー量の割合とに基づいて、充電率の指標の一つであるSOC(State Of Charge)を推定する技術が知られている。しかしながら、蓄電池の電池容量は、蓄電池の使用状況や経年劣化等に応じて変化するため、従来の推定技術では、SOCの推定精度が低下する場合があった。
特開2000-306613号公報 特開2014-174050号公報
 本発明が解決しようとする課題は、蓄電池のSOCを精度良く推定することができる蓄電システム、蓄電制御方法、および蓄電制御プログラムを提供することである。
 実施形態の蓄電システムは、蓄電池と、第1の導出部と、第2の導出部と、補正部とを持つ。蓄電池は、充放電を行う。第1の導出部は、蓄電池に電流が流れていないときの前記蓄電池の電圧に基づいて、第1のSOCを導出する。第2の導出部は、蓄電池の電池容量と、蓄電池に流れる電流の積算値とに基づいて、第2のSOCを導出する。補正部は、第2の導出部により導出された第2のSOCと、第2のSOCの導出後に第1の導出部により導出された第1のSOCとの差分に基づいて、第2の導出部が使用する蓄電池の電池容量を補正する。また、補正部は、蓄電池の状態に応じて補正の補正量を変更する。
第1の実施形態の蓄電システム1の構成例を示す図。 第1の実施形態の蓄電システム1の適用例を示す図。 充放電の前後において算出されるSOCの変化を示す図。 補正後の電池容量C#を用いて導出されたSOC#と、補正前の電池容量Cを用いて導出されたSOCとを比較した図。 第1の実施形態の蓄電システム1により行われる処理の一例を示すフローチャート。 電流レートRとΔSOCの低減率との対応関係の一例を示す図。 電流レートRとΔSOCの低減率との対応関係の他の例を示す図。 電流レートRとΔSOCの低減率との対応関係の他の例を示す図。 電流レートRとΔSOCの低減率との対応関係の他の例を示す図。 電流レートRとΔSOCの低減率との対応関係の他の例を示す図。 電流レートRとΔSOCの低減率との対応関係の他の例を示す図。 比較・補正部36が導出したΔSOCと、ΔSOCの低減率との対応関係の一例を示す図。 第2の実施形態の比較・補正部36により行われる処理の一例を示すフローチャート。 第3の実施形態の蓄電システム1の構成例を示す図。 温度TとΔSOCの低減率との対応関係の一例を示す図。
 以下、実施形態の蓄電システム、蓄電制御方法、および蓄電制御プログラムを、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態の蓄電システム1の構成例を示す図である。蓄電システム1は、複数の電池モジュール12(1)~12(k)を有する組電池ユニット10と、複数のCMU(Cell Monitoring Unit;電池監視ユニット)20(1)~20(k)と、BMU(Battery Managing Unit;電池管理ユニット)30とを備える。これらの構成要素は、図示しないCAN(Controller Area Network)ケーブル等によって接続されている。
 各電池モジュール12(1)~12(k)には、例えば、リチウムイオン電池、鉛蓄電池、ナトリウム硫黄電池、レドックスフロー電池、ニッケル水素電池等の二次電池が含まれる。この二次電池の特性は、例えば、電池容量C[Ah]と電流レートR[C]とを含むパラメータによって表される。例えば、定格電池容量20[Ah]を有する電池では、出荷直後など劣化がない状態でSOC100%(満充電)の場合、電流レート1[C](20[A])の電流を、1時間にわたり放電可能である。言い換えれば、出荷直後など劣化がない状態でSOC0%の場合、電流レート1[C](20[A])の電流を、1時間にわたり充電可能である。
 以下、複数の電池モジュール12(1)~12(k)を区別しない場合、単に電池モジュール12と記載する。また、複数のCMU20(1)~20(k)を区別しない場合、単にCMU20と記載する。また、各CMU20は、同じ構成を有し、電池モジュール12の個数kに応じてそれぞれ設けられている。
 蓄電システム1は、上位装置40から送信される充放電電力指令に基づき、複数の組電池ユニット10のうち、稼働させるべき組電池ユニット10を切替える。蓄電システム1は、選択された組電池ユニット10を、充放電電力指令に基づいて充放電させる。なお、電池モジュール12の充放電は、定電流により行われると好適である。以下、本実施形態における充放電は、定電流により行われるものとして説明する。
 BMU30は、組電池ユニット10の稼働状況に応じて、各電池モジュール12の充電率の指標の一つとして、SOC(State Of Charge)を導出する。BMU30により行われるSOCの導出手法については、後述する。
 なお、BMU30におけるSOCの導出に代えて上位装置40またはCMU20においてSOCの導出が行われてもよいし、上位装置40、BMU30、CMU20が備える2つ以上プロセッサを用いてSOCを導出する演算処理を分担する形態であってもよい。
 図2は、第1の実施形態の蓄電システム1の適用例を示す図である。図中、実線は電力線を、破線は通信線を、それぞれ示している。多様な充放電電力指令に対応するため、蓄電システム1は、複数の組電池ユニット10(1)~10(k)を備えていると好適である。図2では、複数の組電池ユニット10のうち、一つの組電池ユニット10(1)についてのみ内部を表示している。以下、一つの組電池ユニット10(1)の構成を中心に説明する。
 蓄電システム1は、例えば、電力系統60や上位装置40、PCS(Power Conditioning System)50等と接続されている。上位装置40は、PCS50に対して、PCS50が制御対象とする組電池ユニット10への充放電電力指令を送信する。
 PCS50は、CPU等のプロセッサ、上位装置40と双方向に通信するための通信インターフェース等を備えている。PCS50は、上位装置40から送信された制御信号に基づき、以下の動作を行う。PCS50は、例えば、電池モジュール12から放電される直流電力を交流電力に変換するとともに、電力系統で使用される電圧(例えば3.3~6.6[kV])に昇圧する。また、PCS50は、例えば、電力系統から供給される交流電力を直流電力に変換するとともに、電池モジュール12が充電可能な電圧(例えば100[V])に降圧する。
 組電池ユニット10(1)内部では、複数の電池モジュール12と、BMU30と、スイッチ回路70、スイッチ72とが直列接続された直列回路を構成している。組電池ユニット10(1)は、直列回路の一方の端子と、スイッチ回路70を介してPCS50と接続される。スイッチ回路70は、例えば、抵抗を持たない(抵抗Rに比して、例えば1/10以下の抵抗値)スイッチS1と、抵抗Rを直列に接続したスイッチS2とが並列接続されている。
 また、各電池モジュール12間には、スイッチ72が設けられてよい。スイッチ72は、例えば、いずれかの電池モジュール12が点検のために取り離されるときに、直列回路をオフするために利用される。また、スイッチ72は、断路器(サービスディスコネクト)と兼用される場合があり、ヒューズとして機能する場合もある。この場合、挿抜状態やヒューズの状態を、BMU30に通知するための配線が設けられてよい。
 BMU30は、例えば、CPU(Central Processing Unit)などのプロセッサと、ROM(Read Only memory)やRAM(Random Access Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの記憶部とを備える。BMU30は、充放電電力指令に基づき、スイッチ回路70、スイッチ72を適宜制御する。BMU30は、例えば、充放電電力指令に含まれる充放電量を満たすために、充放電させる電池モジュール12の数や、組電池ユニット10の数を調節するようにスイッチ回路70を制御する。
 以下、図1の説明に戻り、各構成について具体的に説明する。
 各CMU20(1)~20(k)は、例えば、それぞれが電圧測定部22(1)~22(k)および第1SOC導出部24(1)~24(k)を備える。以下、複数の電圧測定部22(1)~22(k)を区別しない場合、単に電圧測定部22と記載し、複数の第1SOC導出部24(1)~24(k)を区別しない場合、単に第1SOC導出部24と記載する。電圧測定部22は、各電池モジュール12の正極および負極端子間の電圧を測定する。
 第1SOC導出部24は、電圧が静定したタイミングにおいて、電圧測定部22から各電池モジュール12の電圧を示す情報を取得し、第1のSOCを導出する。静定したタイミングとは、電池モジュール12の端子間の電圧が十分に安定し、後述する開回路電圧を測定可能な状態である。第1SOC導出部24は、充放電前の静定したタイミングと、充放電後の静定したタイミングの双方で第1のSOCを算出する。第1SOC導出部24は、「第1の導出部」の一例である。なお、第1SOC導出部24(1)~24(k)は、BMU30の機能部であってもよい。
 第1SOC導出部24は、例えば、充放電が終了したタイミングから所定時間Δt(例えば10分)経過したときに、電圧が静定したと判断し、電圧測定部22から各電池モジュール12の電圧を示す情報を取得する。なお、第1SOC導出部24は、充放電が終了したタイミングから所定時間Δt経過する前に次の充放電が開始された場合、その間において電圧取得を行わない。
 第1SOC導出部24は、電流測定部32により測定される電流が閾値Iref(例えば0.1[mA])を超える場合に、充放電が行われていると判定し、閾値Iref以下である場合に、充放電が停止していると判定する。以下、静定したタイミングで取得される電圧を、「静定電圧」と称する。
 静定電圧の取得するタイミングは、当該充放電の次回に充放電が予定される時刻までの期間内であれば、いずれのタイミングで行われてもよい。また、静定電圧は、この期間内に複数回取得されて、それらの平均値として導出されてもよい。
 また、第1SOC導出部24は、SOCを導出するために、記憶部(不図示)からOCV-SOC特性データを取得する。OCV-SOC特性データとは、電池モジュール12が有する蓄電池のOCV(Open Circuit Voltage;開回路電圧)とSOCとの相関関係を示したデータである。
 第1SOC導出部24は、取得した静定電圧をOCV-SOC特性データに適用することで、電池モジュール12のSOC(第1のSOC)を導出する。以下、あるタイミングにおいてなされた充放電の前に取得された静定電圧に基づいて導出される第1のSOCを、便宜上、「SOC1b」と表記する。また、同じ充放電の後に取得された静定電圧に基づいて導出される第1のSOCを、便宜上、「SOC1a」と表記する。第1SOC導出部24は、これらの第1のSOCを導出すると、これをBMU30に送信する。
 BMU30は、例えば、電流測定部32と、第2SOC導出部34と、比較・補正部36とを備える。電流測定部32は、電池モジュール12に流れる電流を、それぞれの電池モジュール12ごとに測定する。
 第2SOC導出部34は、充放電中の電池モジュール12に流れる電流の積算値(以下、「電流積算値∫I」と称する)と、電池モジュール12の電池容量Cと、第1SOC導出部24により導出されたSOC1bとに基づき、電池モジュール12のSOC(第2のSOC)を導出する。以下、第2SOC導出部34により導出されるSOCを、「SOC」と表記する。なお、第2SOC導出部34は、「第2の導出部」の一例である。
 第2SOC導出部34は、例えば、電池モジュール12に流れる電流が閾値Iref以下の状態から閾値Irefを超える状態に変化した積算開始時刻から、電池モジュール12に流れる電流が閾値Irefを超える状態から閾値Iref以下の状態に変化した積算終了時刻までを積算期間として、電流積算値∫I(例えば単位は[Ah])を算出する。第2SOC導出部34は、算出した電流積算値∫Iを電池モジュール12の電池容量Cで除算し、百分率で表した値に対し、第1SOC導出部24により導出されたSOC1bを加算することで、SOCを導出する。第2SOC導出部34は、算出した電流積算値∫Iを比較・補正部36に出力する。
Figure JPOXMLDOC01-appb-M000001
 第1SOC導出部24は、例えば、積算終了時刻から所定時間Δt経過したタイミングで取得した静定電圧に基づいて、SOC1aを導出する。
 比較・補正部36は、第2SOC導出部34により導出されたSOCと、第1SOC導出部24により導出されたSOC1aとの差分ΔSOCを導出する。比較・補正部36は、導出したΔSOCがゼロでない場合、ΔSOCの値をゼロにするように、電池モジュール12の電池容量Cのパラメータを補正する。なお、比較・補正部36は、「補正部」の一例である。
 比較・補正部36は、例えば、ΔSOCがゼロでない場合、SOC1aを真値として、次回導出されるSOCが当該SOC1aに一致するように、SOCの導出式における電池モジュール12の電池容量Cのパラメータを補正する。すなわち、蓄電システム1は、当該充放電以降に行われる充放電の際に、補正された電池容量C(以下、「電池容量C#」と称する)を用いてSOCを導出する。これによって、蓄電システム1は、電池モジュール12のSOCの推定精度を向上させることができる。なお、比較・補正部36は、ΔSOCがゼロであるか否かによって補正を行うか否かを決定するのではなく、例えば、ΔSOCの絶対値が閾値(例えば5%)を超えたか否か等によって補正を行うか否かを決定してもよい。以下の説明においても同様である。
 以下、図3、4を参照し、電池容量Cのパラメータを補正する処理について説明する。図3は、充放電の前後において算出されるSOCの変化を示す図である。図中に示すLN1は、第1SOC導出部24または第2SOC導出部34により導出されるSOCの変化を示す。また、LN2は、電流測定部32により測定される電流を示す。図中の左縦軸は、SOC[%]を示し、右縦軸は、電流[A]を示し、横軸は、充放電時間t[s]を示す。
 以下、時刻tにおいて充放電が開始され、時刻tにおいて充放電が終了したものとする。この場合、第2SOC導出部34は、時刻tから時刻tまでの期間の電流積算値∫Iと、電池モジュール12の電池容量Cと、時刻t以前の静定電圧に基づいて第1SOC導出部24により導出されたSOC1bとに基づき、SOCを導出する。
 第2SOC導出部34は、充放電が終了した時刻tから所定時間Δt以上経過した時刻tにおいて、電池モジュール12の静定電圧を取得する。第1SOC導出部24は、取得した静定電圧とOCV-SOC特性データとに基づき、充放電後の電池モジュール12のSOC1aを導出する。
 比較・補正部36は、第2SOC導出部34により導出されたSOCと、第1SOC導出部24により導出されたSOC1aとの差分ΔSOCを導出する。図示の例において、ΔSOCはゼロでないため、比較・補正部36は、電池モジュール12の電池容量Cのパラメータを補正し、補正後の電池容量C#にパラメータを変更するように第2SOC導出部34に通知する。補正後の電池容量C#は、以下の式(2)により導出される。
Figure JPOXMLDOC01-appb-M000002
 図4は、補正後の電池容量C#を用いて導出されたSOC#と、補正前の電池容量Cを用いて導出されたSOCとを比較した図である。図中に示すLN1#は、補正後の電池容量C#を用いて導出されたSOC#を示す。また、LN1は、補正前の電池容量Cを用いて導出されたSOCおよびSOC1aを示す。図示するように、SOC#は時刻t2の時点でSOC1aと一致するように補正がなされている。なお、図中に示すLN2、左縦軸、右縦軸、横軸は、図3と同様である。
 図5は、第1の実施形態の蓄電システム1により行われる処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、電池モジュール12の稼働から停止までの期間を一周期として、この周期ごとに繰り返し実行される。
 まず、第1SOC導出部24は、充放電前の静定したタイミングにおいて、電圧測定部22から各電池モジュール12の静定電圧を取得し、取得した静定電圧とOCV-SOC特性データとに基づいてSOC1bを導出する(ステップS100)。次に、蓄電システム1は、充放電電力指令に基づき、各電池モジュール12を充放電させる(ステップS102)。
 次に、第2SOC導出部34は、電流測定部32の測定結果に基づいて、充放電中における電池モジュール12の電流積算値∫Iを算出する(ステップS104)。次に、第2SOC導出部34は、算出した電流積算値∫Iと、電池モジュール12の電池容量Cと、第1SOC導出部24により導出されたSOC1bとに基づいてSOCを導出する(ステップS106)。
 次に、第1SOC導出部24は、充放電後の静定したタイミングにおいて、電圧測定部22から各電池モジュール12の静定電圧を取得し、取得した静定電圧とOCV-SOC特性データとに基づいてSOC1aを導出する(ステップS108)。
 次に、比較・補正部36は、第2SOC導出部34により導出されたSOCと、第1SOC導出部24により導出されたSOC1aとの差分ΔSOCを導出する(ステップS110)。
 次に、比較・補正部36は、導出したΔSOCがゼロでないか否か判定する(ステップS112)。蓄電システム1は、導出したΔSOCがゼロの場合(ステップS112:No)、本フローチャートの処理を終了する。比較・補正部36は、導出したΔSOCがゼロでない場合(ステップS112:Yes)、ΔSOCの値をゼロにするように、電池モジュール12の電池容量Cのパラメータを補正する(ステップS114)。これによって、蓄電システム1は、本フローチャートの処理を終了する。
 以上説明した第1の実施形態の蓄電システム1によれば、充放電前の静定したタイミングにおいて取得された電池モジュール12の静定電圧とOCV-SOC特性データとに基づいてSOC1bを導出し、充放電中における電池モジュール12の電流積算値∫Iと電池モジュール12の電池容量Cと導出SOC1bとに基づいてSOCを導出し、充放電後の静定したタイミングにおいて取得された電池モジュール12の静定電圧とOCV-SOC特性データとに基づいてSOC1aを導出し、SOCとSOC1aとの差分ΔSOCに基づいて、電池モジュール12の電池容量Cのパラメータを補正する。この結果、蓄電システム1は、電池モジュール12のSOCを精度良く推定することができる。
 (第2の実施形態)
 以下、第2の実施形態の蓄電システム1について説明する。第2の実施形態の蓄電システム1では、比較・補正部36の機能が第1の実施形態と相違する。従って、係る相違点を中心に説明し、共通する部分についての説明は省略する。ここでは、第1の実施形態との相違点として、比較・補正部36の処理について説明する。
 本実施形態の蓄電システム1において、比較・補正部36により導出されたΔSOCに基づき電池容量Cを補正する際、電池モジュール12の使用状態に基づいて、補正する補正量を適宜変更する。使用状態とは、例えば、(1)充放電時の電流レートR、(2)導出されるΔSOC、その他のいずれか一つまたは複数を含む。本実施形態では、例えば、電池モジュール12のSOCが100%から0%になるまでの間、1Cの電流レートRで、且つ定電流で充放電を行う使用状態を基準の状態とし、このときの各種パラメータを基準値とする。以下、補正量の変更処理について図を参照して説明する。
 図6は、電流レートRとΔSOCの低減率との対応関係の一例を示す図である。比較・補正部36は、電流レートRが基準値から乖離する程、ΔSOCを低く評価することで、補正量を低減させる。図中、ΔSOCの低減率とは、SOC1aとSOCとの差分ΔSOCを低減する割合であり、例えば、ΔSOCに乗算される係数として表される。
 図示の例において、1C(基準値)の電流レートRの場合、ΔSOCの低減率は、例えば1に設定される。すなわち、比較・補正部36は、基準値の電流レートRの場合、導出するΔSOCがゼロになるように電池モジュール12の電池容量Cのパラメータを補正する。
 また、電流レートRが1/2Cまたは2Cの場合、ΔSOCの低減率は、例えば1/2に設定される。すなわち、比較・補正部36は、電流レートRが1/2Cまたは2Cの場合、ΔSOCの補正量に関する寄与率が、電流レートRが1Cの場合の1/2になるように電池モジュール12の電池容量Cのパラメータを補正する。
 また、電流レートRとΔSOCの低減率との対応関係は、図7~11のグラフで表される関係であってもよい。この場合、対応関係は、例えば、電流レートRを対数軸とし、基準値を軸対称とする指数関数や多項式関数等によって表される。以下、個々の図について説明する。いずれの図において、縦軸は、ΔSOCの低減率を示し、横軸は、対数表記した電流レートRを示す。
 図7は、電流レートRとΔSOCの低減率との対応関係の他の例を示す図である。図中に示すLN3は、例えば、基準値を軸対称とし、基準値に近づくにつれて、低減率が指数関数的に増加する関数である。
 図8は、電流レートRとΔSOCの低減率との対応関係の他の例を示す図である。図中に示すLN4は、基準値を中心とした所定の範囲ΔCにおいて低減率が一定で、且つ基準値を軸対称とした関数である。LN4は、例えば、所定の範囲ΔC(例えば、電流レートRが0.8~1.2)において、低減率が1に設定され、その他の区間において、基準値に近づくにつれて、低減率が指数関数的に増加するように設定される。
 図9は、電流レートRとΔSOCの低減率との対応関係の他の例を示す図である。図中に示すLN5は、閾値Th1以下および閾値Th2以上と、基準値を中心とした所定の範囲ΔCとにおいて低減率が一定となる関数である。LN5は、例えば、所定の範囲ΔC(例えば、電流レートRが0.8~1.2)において、低減率が1に設定され、閾値Th1以下および閾値Th2以上の区間において、低減率が0に設定される。また、LN5は、その他の区間において、基準値に近づくにつれて、低減率が指数関数的に増加するように設定される。
 図10は、電流レートRとΔSOCの低減率との対応関係の他の例を示す図である。図中に示すLN6は、例えば、基準値以下の区間において低減率が一定で、且つ基準値以上の区間において、電流レートRの増大に伴い、低減率が減少する関数である。LN6は、例えば、基準値以下の区間において低減率が1に設定され、基準値以上の区間において、電流レートRの増大に伴い、低減率が指数関数的に減少するように設定される。
 図11は、電流レートRとΔSOCの低減率との対応関係の他の例を示す図である。図中に示すLN7は、基準値以下の区間における低減率が、電流レートRが基準値以上の区間における低減率に比して緩やかに増減する関数である。LN7は、例えば、基準値以上の区間の増減を示す傾き(例えば指数)が2である場合、基準値以下の区間では、増減を示す傾き(例えば指数)が0.5のように設定される。
 また、本実施形態の比較・補正部36は、上記電流レートRに応じてΔSOCの低減率を変更する補正処理の他に、例えば、比較・補正部36は、導出したΔSOCに応じて、電池モジュール12の電池容量Cのパラメータを補正してもよい。以下、図を参照して説明する。
 図12は、比較・補正部36が導出したΔSOC1a-1bと、ΔSOC2-1aの低減率との対応関係の一例を示す図である。なお、ここでは、前述したΔSOCをΔSOC2-1aと表記して説明する。ΔSOC1a-1bとは、SOC1aとSOC1bとの差分を表す。すなわち、ΔSOC1a-1bは、第1SOC導出部24で算出される充放電後のSOC値と、第1SOC導出部24で算出される充放電前のSOC値との差分である。また、ΔSOC2-1aとは、SOCとSOC1aとの差分を表す。すなわち、ΔSOC2-1aは、第2SOC導出部34で算出される充放電後のSOC値と、第1SOC導出部24で算出される充放電後のSOC値との差分である。
 図示の例において、100%(基準値)のΔSOC1a-1bの場合、ΔSOC2-1aの低減率は1に設定される。すなわち、比較・補正部36は、導出したΔSOC1a-1bが100%の場合、ΔSOC2-1aがゼロになるように電池モジュール12の電池容量Cのパラメータを補正する。また、ΔSOC1a-1bが20%の場合、ΔSOC2-1aの低減率は、例えば0.2に設定される。すなわち、比較・補正部36は、ΔSOC1a-1bが20%の場合、導出するΔSOC2-1aが4/5になるように電池モジュール12の電池容量Cのパラメータを補正する。なお、上述した各種対応関係を示すデータや関数等は、BMU30やCMU20、上位装置40等のいずれかの記憶部(記憶装置)に予め記憶されているものとする。
 また、本実施形態の比較・補正部36は、電流レートRと、導出したΔSOCとに基づき、ΔSOCの低減率を決定してもよい。この場合、比較・補正部36は、電流レートRとΔSOCとのそれぞれのパラメータに対応付けられたΔSOCの低減率を乗算し、乗算した値をΔSOCの低減率として導出する。比較・補正部36は、低減率が乗算されたΔSOCになるように電池モジュール12の電池容量Cのパラメータを補正する。
 比較・補正部36は、例えば、上述した図6、12の数値例において、電流レートRが4Cであり、且つΔSOCが80%の場合、1/4と0.8とを乗算した値(=1/5)を、ΔSOCの低減率として導出する。比較・補正部36は、導出したΔSOCが4/5になるように電池モジュール12の電池容量Cのパラメータを補正する。
 図13は、第2の実施形態の比較・補正部36により行われる処理の一例を示すフローチャートである。なお、フローチャートの処理は、上述した図5中のステップS114の処理に相当する。
 まず、比較・補正部36は、導出したΔSOCと電流レートRとを含む各種パラメータが基準値か否か判定する(ステップS200)。比較・補正部36は、各種パラメータが基準値である場合(ステップS200:Yes)、導出したΔSOCに対して乗算する低減率を1に決定する(ステップS202)。比較・補正部36は、各種パラメータが基準値でない場合(ステップS200:No)、導出したΔSOCに対して乗算する低減率を、基準値でない何れかのパラメータに基づいて決定し変更する(ステップS204)。
 次に、比較・補正部36は、決定したΔSOCの低減率に基づき、ΔSOCの値をゼロ、または小さくするように、電池モジュール12の電池容量Cのパラメータを補正する(ステップS206)。これによって、比較・補正部36は、本フローチャートの処理を終了する。
 以上説明した第2の実施形態の蓄電システム1によれば、電池モジュール12の使用状態に基づいて電池容量Cの補正量を変更することにより、電池モジュール12のSOCを更に精度良く推定することができる。
 (第3の実施形態)
 以下、第3の実施形態の蓄電システム1について説明する。第3の実施形態の蓄電システム1は、第1または第2の実施形態が備える構成要素に加えて、温度測定部26を備える。以下、上述した第1または第2の実施形態と共通する機能等についての説明は省略する。
 図14は、第3の実施形態の蓄電システム1の構成例を示す図である。各CMU20は、それぞれ温度測定部26を備える。温度測定部26は、各電池モジュール12の温度T[℃]を測定する。温度Tは、例えば、電池モジュール12の筐体(不図示)の外表面近傍の温度や、この外表面近傍の温度から推定される電池モジュール12内部の温度等を含む。
 比較・補正部36は、温度測定部26から各電池モジュール12の温度Tを取得し、取得した温度Tに基づき、ΔSOCの低減率を決定する。ΔSOCを低減することの意義については、第2の実施形態と同様である。
 図15は、温度TとΔSOCの低減率との対応関係の一例を示す図である。第3の実施形態において、電池モジュール12の使用状態における基準の温度T(基準範囲ΔT)を、例えば、20~30℃とする。比較・補正部36は、温度測定部26により測定された温度Tが、この基準範囲ΔT内であった場合、ΔSOCの低減率を1に決定する。また、比較・補正部36は、例えば、温度測定部26により測定された温度Tが、10~20℃、または30~40℃であった場合、ΔSOCの低減率を1/2に決定する。比較・補正部36は、決定した低減率に基づき、電池モジュール12の電池容量Cのパラメータを補正する。
 また、温度TとΔSOCの低減率との対応関係は、使用する電池モジュール12の電池の種類や個体差等を考慮して決められると好適である。例えば、使用する電池がリチウムイオン電池の場合、当該リチウムイオン電池の温度特性に基づいて低減率を決める。リチウムイオン電池の場合、例えば、0℃以上の温度における低減率に比して、0℃以下の温度における低減率をより小さくする。これによって、使用する電池モジュール12ごとのSOCをより精度良く推定することができる。なお、上述した対応関係を示すデータは、BMU30やCMU20、上位装置40等のいずれかの記憶部(記憶装置)に記憶されているものとする。
 また、本実施形態の比較・補正部36は、電流レートRと、ΔSOCと、温度Tとに基づき、ΔSOCの低減率を決定してもよい。この場合、比較・補正部36は、電流レートR、ΔSOCおよび温度Tのそれぞれのパラメータに対応付けられたΔSOCの低減率を乗算し、乗算した値をΔSOCの低減率として導出する。比較・補正部36は、ΔSOCに低減率を乗算した値をゼロに補正するように電池モジュール12の電池容量Cのパラメータを補正する。
 比較・補正部36は、例えば、上述した図6、12、15の数値例において、電流レートRが1/2C、ΔSOCが40%、温度Tが10~20℃であった場合、1/2と0.4と1/2とを乗算した値(=1/10)を、ΔSOCの低減率として導出する。比較・補正部36は、導出したΔSOCが9/10になるように電池モジュール12の電池容量Cのパラメータを補正する。
 以上説明した第3の実施形態の蓄電システム1によれば、第2の実施形態と同様、電池モジュール12の使用状態に基づいて電池容量Cの補正量を変更することにより、電池モジュール12のSOCを更に精度良く推定することができる。
 以下に、その他の実施例(変形例)について記載する。
 上述した実施形態において、電圧測定部22、第1SOC導出部24、電流測定部32、第2SOC導出部34は、各電池モジュール12に対して種々の測定やSOCの導出を行うと説明したがこれに限られない。例えば、組電池ユニット10ごとの端子間における電圧と電流とを測定するようにしてもよく、これら測定した電圧および電流に基づき各組電池ユニット10ごとの各種SOCを導出してもよい。
 以上説明した少なくともひとつの実施形態によれば、充放電前の静定したタイミングにおいて取得された電池モジュール12の静定電圧とOCV-SOC特性データとに基づいてSOC1bを導出し、充放電中における電池モジュール12の電流積算値∫Iと電池モジュール12の電池容量Cと導出SOC1bとに基づいてSOCを導出し、充放電後の静定したタイミングにおいて取得された電池モジュール12の静定電圧とOCV-SOC特性データとに基づいてSOC1aを導出し、SOCとSOC1aとの差分ΔSOCに基づいて、電池モジュール12の電池容量Cのパラメータを補正する。この結果、蓄電システム1は、電池モジュール12のSOCを精度良く推定することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…蓄電システム、10、10(1)~10(k)…組電池ユニット、12、12(1)~12(k)…電池モジュール、20、20(1)~20(k)…CMU、22、22(1)~22(k)…電圧測定部、24、24(1)~24(k)…第1SOC導出部、26、26(1)~26(k)…温度測定部、30…BMU、32…電流測定部、34…第2SOC導出部、36…比較・補正部、40…上位装置、50…PCS、60…電力系統、70…スイッチ回路、72…スイッチ

Claims (5)

  1.  充放電を行う蓄電池と、
     前記蓄電池に電流が流れていないときの前記蓄電池の電圧に基づいて、第1のSOCを導出する第1の導出部と、
     前記蓄電池の電池容量と、前記蓄電池に流れる電流の積算値とに基づいて、第2のSOCを導出する第2の導出部と、
     前記第2の導出部により導出された前記第2のSOCと、前記第2のSOCの導出後に前記第1の導出部により導出された前記第1のSOCとの差分に基づいて、前記第2の導出部が使用する前記蓄電池の電池容量を補正する補正部であって、前記蓄電池の状態に応じて前記補正の補正量を変更する補正部と、
     を備える蓄電システム。
  2.  前記蓄電池の状態は、前記第1のSOCと前記第2のSOCとの差分、前記蓄電池の電流レート、前記蓄電池の温度のうち、いずれか一つ以上を含む、
     請求項1記載の蓄電システム。
  3.  前記補正部は、前記蓄電池の状態に応じた低減率を、前記第1のSOCと前記第2のSOCとの差分に乗算することで、前記蓄電池の電池容量を補正する、
     請求項1または2記載の蓄電システム。
  4.  蓄電池を制御するコンピュータが、
     前記蓄電池に電流が流れていないときの前記蓄電池の電圧に基づいて、第1のSOCを導出し、
     前記蓄電池の電池容量と、前記蓄電池に流れる電流の積算値とに基づいて、第2のSOCを導出し、
     導出した前記第2のSOCと、前記第2のSOCの導出後に導出した前記第1のSOCとの差分に基づいて、使用する前記蓄電池の電池容量を補正し、前記蓄電池の状態に応じて前記補正の補正量を変更する、
     蓄電制御方法。
  5.  蓄電池を制御するコンピュータに、
     前記蓄電池に電流が流れていないときの前記蓄電池の電圧に基づいて、第1のSOCを導出させ、
     前記蓄電池の電池容量と、前記蓄電池に流れる電流の積算値とに基づいて、第2のSOCを導出させ、
     導出させた前記第2のSOCと、前記第2のSOCの導出後に導出させた前記第1のSOCとの差分に基づいて、使用する前記蓄電池の電池容量を補正させ、前記蓄電池の状態に応じて前記補正の補正量を変更させる、
     蓄電制御プログラム。
PCT/JP2015/054650 2015-02-19 2015-02-19 蓄電システム、蓄電制御方法、および蓄電制御プログラム WO2016132514A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017500226A JP6546261B2 (ja) 2015-02-19 2015-02-19 蓄電システム、蓄電制御方法、および蓄電制御プログラム
EP15882616.4A EP3264119A4 (en) 2015-02-19 2015-02-19 Electricity storage system, electricity storage control method, and electricity storage control program
PCT/JP2015/054650 WO2016132514A1 (ja) 2015-02-19 2015-02-19 蓄電システム、蓄電制御方法、および蓄電制御プログラム
KR1020177022779A KR101897555B1 (ko) 2015-02-19 2015-02-19 축전 시스템, 축전 제어 방법 및 축전 제어 프로그램을 기억한 기억매체
US15/551,666 US20180067167A1 (en) 2015-02-19 2015-02-19 Storage system, storage control method, and storage control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054650 WO2016132514A1 (ja) 2015-02-19 2015-02-19 蓄電システム、蓄電制御方法、および蓄電制御プログラム

Publications (1)

Publication Number Publication Date
WO2016132514A1 true WO2016132514A1 (ja) 2016-08-25

Family

ID=56692157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054650 WO2016132514A1 (ja) 2015-02-19 2015-02-19 蓄電システム、蓄電制御方法、および蓄電制御プログラム

Country Status (5)

Country Link
US (1) US20180067167A1 (ja)
EP (1) EP3264119A4 (ja)
JP (1) JP6546261B2 (ja)
KR (1) KR101897555B1 (ja)
WO (1) WO2016132514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134438A (ja) * 2019-02-25 2020-08-31 ニチコン株式会社 パワーコンディショナおよび蓄電システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204493B (zh) * 2017-04-28 2020-09-29 宁德时代新能源科技股份有限公司 电池充电方法、装置和设备
TWI662766B (zh) * 2018-05-23 2019-06-11 車王電子股份有限公司 Electric bus power system
CN110626172A (zh) * 2018-06-01 2019-12-31 车王电子股份有限公司 电动巴士的电力系统
EP3663121B1 (en) 2018-12-03 2023-09-27 Volvo Car Corporation Method and system for reconnecting a power source to an electrical system including two voltage levels, especially after a crash
CN112415410A (zh) * 2019-08-23 2021-02-26 比亚迪股份有限公司 估算电池soc的方法和装置、存储介质和车辆
CN112415411A (zh) * 2019-08-23 2021-02-26 比亚迪股份有限公司 估算电池soc的方法和装置及车辆、存储介质
KR102549374B1 (ko) * 2022-11-21 2023-06-29 주식회사 피엠그로우 SOC(State Of Charge)의 정확도를 보완하기 위한 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019595A (ja) * 2008-07-08 2010-01-28 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
JP2013108919A (ja) * 2011-11-24 2013-06-06 Toyota Industries Corp Soc推定装置
JP2014169937A (ja) * 2013-03-04 2014-09-18 Denso Corp 充電状態算出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669202B2 (ja) 1999-04-20 2005-07-06 日産自動車株式会社 バッテリ状態監視装置
JP4075762B2 (ja) * 2003-10-10 2008-04-16 トヨタ自動車株式会社 二次電池における残存容量の算出装置および算出方法
KR100669475B1 (ko) * 2005-12-21 2007-01-16 삼성에스디아이 주식회사 배터리의 soc 보정 방법 및 이를 이용한 배터리 관리시스템
WO2008026477A1 (fr) * 2006-08-29 2008-03-06 Nec Corporation Procédé et dispositif pour estimer une valeur d'état de charge d'une batterie secondaire et procédé et dispositif de jugement de dégradation
US8129946B2 (en) * 2008-01-31 2012-03-06 Dell Products L.P. Method and system for regulating current discharge during battery discharge conditioning cycle
WO2011090020A1 (ja) * 2010-01-19 2011-07-28 株式会社Gsユアサ 二次電池の充電状態測定装置及び二次電池の充電状態測定方法
JP5732766B2 (ja) * 2010-07-23 2015-06-10 トヨタ自動車株式会社 車両の制御装置および制御方法
JP5641215B2 (ja) * 2010-10-19 2014-12-17 三菱自動車工業株式会社 二次電池の制御装置
JP2012247339A (ja) * 2011-05-30 2012-12-13 Renesas Electronics Corp 半導体集積回路およびその動作方法
WO2012169061A1 (ja) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 電池制御装置、電池システム
EP2765436A1 (en) * 2011-10-07 2014-08-13 Calsonic Kansei Corporation Battery state-of-charge estimation device and state-of-charge estimation method
JPWO2014083856A1 (ja) * 2012-11-30 2017-01-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
JP2014174050A (ja) 2013-03-11 2014-09-22 Kayaba Ind Co Ltd 電池容量推定装置
JP5812032B2 (ja) * 2013-03-22 2015-11-11 トヨタ自動車株式会社 蓄電システム及び蓄電装置の満充電容量推定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019595A (ja) * 2008-07-08 2010-01-28 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
JP2013108919A (ja) * 2011-11-24 2013-06-06 Toyota Industries Corp Soc推定装置
JP2014169937A (ja) * 2013-03-04 2014-09-18 Denso Corp 充電状態算出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264119A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134438A (ja) * 2019-02-25 2020-08-31 ニチコン株式会社 パワーコンディショナおよび蓄電システム
JP7166956B2 (ja) 2019-02-25 2022-11-08 ニチコン株式会社 パワーコンディショナおよび蓄電システム

Also Published As

Publication number Publication date
KR101897555B1 (ko) 2018-09-12
KR20170105078A (ko) 2017-09-18
JPWO2016132514A1 (ja) 2017-10-19
EP3264119A1 (en) 2018-01-03
JP6546261B2 (ja) 2019-07-17
EP3264119A4 (en) 2019-01-02
US20180067167A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2016132514A1 (ja) 蓄電システム、蓄電制御方法、および蓄電制御プログラム
JP6471179B2 (ja) 迅速な絶縁抵抗の測定が可能な絶縁抵抗測定装置及び方法
US9985444B2 (en) Electric storage device management apparatus and method of equalizing capacities of electric storage devices
JP6310553B2 (ja) ハイブリッド車両内のバッテリーの健全状態を予測するための方法
JP6217996B2 (ja) 蓄電素子の充放電システム
US10553913B2 (en) Battery apparatus, charging control apparatus, and charging control method
JP6032473B2 (ja) 状態管理装置、蓄電素子の均等化方法
US20210184278A1 (en) Battery monitoring device, computer program, and battery monitoring method
JP2008253129A (ja) リチウム系二次電池の急速充電方法およびそれを用いる電子機器
KR101854557B1 (ko) 배터리 셀의 방전 전력 한계값 및 충전 전력 한계값을 결정하기 위한 시스템
US20160190831A1 (en) Voltage control method for secondary battery
JP2008039515A (ja) 電池の残存容量検出装置
JP2008204800A (ja) 非水系電解質二次電池の急速充電方法およびそれを用いる電子機器
TWI613454B (zh) 滿充電容量校準方法
JP6541412B2 (ja) 充電率算出方法及び充電率算出装置
JP2018048910A (ja) 蓄電装置
JP2019013109A (ja) 蓄電システム
JP6459914B2 (ja) 電池特性学習装置
JP7174327B2 (ja) 二次電池の状態判定方法
JP2018146343A (ja) バッテリ管理装置及びバッテリ管理方法
CN115267566A (zh) 半导体装置及监视电池剩余容量的方法
JP2018063186A (ja) バッテリのパラメータ推定装置及びパラメータ推定方法
WO2023176028A1 (ja) 電池状態推定装置、電池システム、電池状態推定方法
KR20230111135A (ko) 반도체 장치 및 배터리의 충전 제어 방법
CN111025156A (zh) 电池的状态预测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500226

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15551666

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015882616

Country of ref document: EP