WO2016129621A1 - スパッタリングターゲット及びその製造方法 - Google Patents

スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2016129621A1
WO2016129621A1 PCT/JP2016/053896 JP2016053896W WO2016129621A1 WO 2016129621 A1 WO2016129621 A1 WO 2016129621A1 JP 2016053896 W JP2016053896 W JP 2016053896W WO 2016129621 A1 WO2016129621 A1 WO 2016129621A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
base material
target members
sputtering target
surface roughness
Prior art date
Application number
PCT/JP2016/053896
Other languages
English (en)
French (fr)
Inventor
幸三 長田
純 梶山
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201680004228.5A priority Critical patent/CN107532285B/zh
Priority to KR1020177018706A priority patent/KR101980465B1/ko
Publication of WO2016129621A1 publication Critical patent/WO2016129621A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Definitions

  • the present invention relates to a sputtering target and a manufacturing method thereof.
  • it relates to the surface roughness of the sintered body constituting the target member.
  • the cylindrical sputtering target refers to a sputtering target obtained by processing a sintered body made of a target material into a hollow cylindrical shape and joining it to a substrate called a backing plate or a backing tube.
  • Such a cylindrical sputtering target has advantages in that the use efficiency of the target is high, the generation of erosion is small, and the generation of particles due to the separation of the deposit is small compared to the flat plate type sputtering target.
  • the advantage of low generation of particles is very advantageous in reducing the occurrence of arcing due to redeposition of particles on the target.
  • a sintered body (ceramics) obtained by mixing and sintering indium oxide powder and tin oxide powder is hollow. It is processed into a cylindrical shape and bonded to a cylindrical substrate (backing tube).
  • Patent Document 1 A technique for realizing a type sputtering target has been developed.
  • the target members When a plurality of target members are arranged with no gap with respect to the base material, the target members may expand and contract due to heat during sputtering, and the target members may collide with each other, which may cause cracking or chipping. Therefore, in general, when joining a plurality of target members to a base material, it is carried out with a certain interval between the target members.
  • An object of the present invention is to provide a sputtering target capable of suppressing the occurrence of arcing during sputtering and improving the yield of a device manufacturing process using a sputtering process.
  • a sputtering target includes a plurality of target members made of ceramics bonded to a base material made of metal via a bonding material made of a low melting point metal having a melting point of 300 ° C. or lower.
  • the surface roughness (Ra) on the surface of the base material that contacts the bonding material is 1.8 ⁇ m or more (preferably 1.8 ⁇ m or more and 3.0 ⁇ m or less, more preferably 1.8 ⁇ m or more and 2.5 ⁇ m or less).
  • the plurality of target members have a hollow cylindrical shape, and face each other with a predetermined interval between adjacent target members when joined to the base material so as to surround the outer peripheral surface of the base material. It has a circular surface, and the surface roughness (Ra) in the circular surface is 2.0 ⁇ m or more and 8.0 ⁇ m or less.
  • a manufacturing method of a sputtering target includes a hollow cylinder made of ceramics bonded to a base made of metal via a bonding material made of a low melting point metal having a melting point of 300 ° C. or lower.
  • the circular surfaces of the plurality of target members having a shape are polished so that the surface roughness (Ra) is 2.0 ⁇ m or more and 8.0 ⁇ m or less, and the surface of the substrate that is in contact with the bonding material is surface roughness (Ra ) Is 1.8 ⁇ m or more (preferably 1.8 ⁇ m or more and 3.0 ⁇ m or less, more preferably 1.8 ⁇ m or more and 2.5 ⁇ m or less), with a predetermined interval between each adjacent target member.
  • the plurality of target members are bonded to the base material via the bonding material so that the circular surfaces face each other and surround an outer peripheral surface of the base material.
  • the target member may be made of ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), or IGZO (Indium-Gallium-Tin-Oxide).
  • the surface roughness (Ra) is measured according to ANSI standards using a non-contact type surface roughness measuring machine. The surface roughness is measured at each of the end surfaces of the target member at six locations at 60 ° intervals (12 locations per target member), and the weighted average value of all measured values is defined as the surface roughness of the target member.
  • FIG. 1 is a perspective view showing a configuration of a sputtering target according to an embodiment of the present invention.
  • FIG. 2 is sectional drawing which shows the structure of the sputtering target which concerns on one Embodiment of this invention.
  • a cylindrical sputtering target is exemplified.
  • the cylindrical sputtering target 100 includes a base material 101 and a plurality of target members 102a and 102b.
  • the target members 102a and 102b are bonded to the base material 101 via the bonding material 103, respectively.
  • the bonding material 103 is provided so as to fill a gap provided between the base material 101 and the target members 102a and 102b.
  • the sputtering target 100 is characterized by a sintered body constituting a plurality of target members 102a and 102b. Specifically, each of the target members 102a and 102b has a circular surface 104 facing the adjacent target member at a predetermined interval, and the surface roughness Ra of the circular surface 104 is 2.0 ⁇ m or more. This point will be described later.
  • the plurality of target members 102 a and 102 b are provided so as to surround the outer peripheral surface of the base material 101.
  • the plurality of target members 102 a and 102 b are preferably provided coaxially or substantially coaxially with the central axis of the substrate 101.
  • the target members 102a and 102b are arranged at predetermined intervals.
  • the gap may be 1 mm or less, for example, 0.1 to 0.5 mm.
  • the cylindrical sputtering target 100 of the present embodiment can be formed into a long sputtering target having a length of 100 mm or more by bonding a plurality of target members 102 to the base material 101 by the bonding material 103.
  • the base material 101 has an outer surface shape along the inner surface of the target members 102a and 102b having a hollow cylindrical shape. As described above, the outer diameter of the base material 101 is slightly smaller than the inner diameters of the target members 102a and 102b, and is adjusted so that a gap is formed when the two are stacked coaxially. A bonding material 103 is provided in the gap.
  • Each target member 102a, 102b is heated by ion irradiation during film formation by sputtering, and the temperature rises.
  • the base material 101 function as a coolant (heat sink) for each target member 102a, 102b.
  • the base material 101 it is possible to configure the base material 101 to have a hollow structure so that the coolant flows through the base material 101. Therefore, it is preferable to use a material having good conductivity and thermal conductivity as the substrate 101.
  • the base material 101 is preferably a metal that has good wettability with the bonding material 103 and can provide high bonding strength. From the above, it is preferable to use, for example, copper (Cu) or titanium (Ti), or a copper alloy, titanium alloy, or stainless steel (SUS) as a material constituting the substrate 101.
  • copper alloy an alloy mainly composed of copper (Cu) such as chromium copper can be applied.
  • Ti titanium
  • a light and rigid base material can be obtained.
  • the substrate 101 is not only formed of a single metal or a metal alloy, but may also be one in which a coating of other metal is provided on the surface of the metal substrate.
  • a metal film containing titanium (Ti), copper (Cu), silver (Ag), nickel (Ni), or the like may be formed.
  • the cylindrical sputtering target 100 does not irradiate ions on the entire surface of the target members 102a and 102b at the time of sputtering, but rotates while irradiating ions only on a part of the surfaces. There will be a temperature difference between the irradiated surface and its back surface. However, since the base material 101 has a cooling function, an increase in the temperature of the target members 102a and 102b can be suppressed, and the influence of thermal distortion due to the above-described temperature difference can also be suppressed.
  • the molten bonding material 103 is injected into the space between the base material 101 and the target members 102a and 102b, and then solidified through a cooling process to bond them together. Therefore, since it becomes the structure which inserts the base material 101 in the hollow part in the hollow cylindrical target members 102a and 102b, the space
  • the base material 101 has an anchor effect with respect to the bonding material 103 because there is a possibility that the adhesiveness between the bonding surfaces of the base material 101 and the bonding material 103 may be impaired due to volume shrinkage accompanying solidification of the bonding material 103.
  • the base material 101 is preferably roughened on the surface side in contact with the bonding material 103.
  • the surface area in contact with the bonding material 103 can be increased, and the adhesion between the base material 101 and the bonding material 103 can be increased.
  • the surface of the substrate 101 can be roughened by sandblasting or the like.
  • the surface roughness (Ra) of the surface of the base material 101 is larger, the surface area is larger and the adhesion is increased, but in the gap between the target members 102a and 102b, the surface roughness of the base material 101 is increased. It is desirable not to roughen the surface excessively.
  • the surface of the base material 101 is roughened in the gap, there is an advantage that the particles generated in the gap are firmly attached to prevent re-peeling.
  • the surface is excessively roughened, The material 101 itself is sputtered, and the components of the base material 101 may become impurities in the film or become particles and cause abnormal discharge.
  • the surface roughness (Ra) on the surface of the base material 101 that contacts the bonding material 103 is 1.8 ⁇ m or more (preferably 1.8 ⁇ m or more and 3.0 ⁇ m or less, more preferably 1.8 ⁇ m or more and 2. 5 ⁇ m or less).
  • the surface roughness (Ra) on the surface of the base material 101 in contact with the bonding material 103 is preferably set to 1.8 ⁇ m or more.
  • the upper limit is preferably set to 3.0 ⁇ m (more preferably 2.5 ⁇ m).
  • the bonding material 103 is provided between the base material 101 and the target members 102a and 102b.
  • the bonding material 103 preferably bonds the base material 101 and the target members 102a and 102b and has good heat resistance and thermal conductivity. Further, since it is placed under vacuum during sputtering, it is preferable that it has a characteristic that gas emission is small in vacuum.
  • the bonding material 103 has fluidity when the base material 101 and the target members 102a and 102b are bonded.
  • a low melting point metal material having a melting point of 300 ° C. or lower can be used as the bonding material 103.
  • a metal such as indium or tin, or a metal alloy material containing any one of these elements may be used.
  • indium or tin alone, an alloy of indium and tin, a solder alloy containing tin as a main component, or the like may be used.
  • each target member 102a, 102b is formed into a hollow cylindrical shape.
  • Each target member 102a, 102b has a thickness of at least several millimeters to several tens of millimeters, and the entire thickness portion can be used as a target member.
  • the base material 101 is inserted into the hollow portions of the target members 102 a and 102 b, and then both are joined by the joining material 103. That is, the outer diameter of the base material 101 is smaller than the inner diameter (the diameter of the hollow portion) of each of the target members 102a and 102b, both are arranged at a predetermined interval, and the bonding material 103 is filled so as to fill this gap. Is provided. In order to stably hold the target members 102a and 102b and the base material 101, the bonding material 103 is provided with no gap in the gap.
  • Each of the target members 102a and 102b has a cylindrical outer surface as a target surface, and a cylindrical inner surface that faces the base material 101 and comes into contact with the bonding material 103. For this reason, at the time of manufacture, the outer surface of each target member 102a, 102b may be formed into a smooth surface, and the inner surface of the cylinder may be roughened to enhance the adhesion.
  • the target members 102a and 102b are formed using various materials that can be formed by sputtering.
  • the target members 102a and 102b may be ceramics.
  • a metal oxide, a metal nitride, a sintered body of metal oxynitride, or the like can be used.
  • the metal oxide an oxide of a metal belonging to a typical element such as indium oxide, tin oxide, zinc oxide, or gallium oxide can be used.
  • a compound of tin oxide and indium oxide Indium Tin Oxide: ITO
  • zinc oxide Zinc Oxide: ZnO
  • a compound of indium oxide and zinc oxide Indium Zinc Oxide: IZO
  • indium oxide, zinc oxide and
  • a sintered body of a compound selected from a compound of gallium oxide Indium Gallium Zinc Oxide: IGZO
  • IGZO Indium Gallium Zinc Oxide
  • said specific example is an example and the sputtering target which concerns on this embodiment can use various sputtering materials as a target member.
  • a gap having a predetermined interval (preferably 1 mm or less, for example, 0.1 to 0.5 mm) is provided between the target member 102a and the target member 102b.
  • This gap is a safety measure for preventing the target members from colliding with each other, and as described above, the present inventors have found that the thin film re-deposited in this gap leads to the occurrence of arcing. .
  • the present inventors have determined that the surface roughness of the surface where the target member 102a and the target member 102b face each other (that is, the circular surface 104 shown in FIGS. 1 and 2) is 2.0 ⁇ m or more. It has been found that the occurrence of arcing can be suppressed by adjusting the thickness to 8.0 ⁇ m or less (preferably 2.5 ⁇ m to 8.0 ⁇ m, more preferably 3.0 ⁇ m to 8.0 ⁇ m). That is, in the sputtering target 100 according to the present embodiment, the surface roughness of the surface where the target member 102a and the target member 102b face each other is set to 2.0 ⁇ m or more and 8.0 ⁇ m or less.
  • FIG. 3 is a cross-sectional view showing the vicinity of a gap between adjacent target members.
  • a schematic diagram in which the inside of the frame indicated by reference numeral 105 is enlarged is shown.
  • a gap of 0.2 to 0.5 mm is provided between the target member 102a and the target member 102b, and the surface 104 on which each target member faces is intentionally rough. It is processed to become. That is, each of the target members 102a and 102b has a circular surface 104 facing the adjacent target member at a predetermined interval when bonded to the base material 101, and the surface roughness (Ra ) Is 2.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the occurrence of arcing was confirmed when the surface roughness (Ra) of the circular surface 104 of each target member 102a, 102b was less than 2.0 ⁇ m, but when it became 2.0 ⁇ m or more. It was not confirmed. Further, when the surface roughness (Ra) exceeded 8.0 ⁇ m, the occurrence of arcing was confirmed again, and cracks in the target member were also confirmed.
  • the surface roughness (Ra) is 2.0 ⁇ m or more (more preferably 3.0 ⁇ m or more) from the viewpoint of enhancing the adhesion of the redeposited film.
  • the reason for the occurrence of arcing and cracking is that the damage that occurs during grinding to make the surface roughness 8.0 ⁇ m or more is affected. It is thought that there is. In other words, in order to achieve a surface roughness of 8.0 ⁇ m or more, it is necessary to intentionally roughen the surface by grinding with a coarse count stone or by applying abrasive blasting (bead blasting) with a strong pressure. As a result, it is considered that processing damage (fine cracks or the like) remains at the end of the target member, and that damage extends and leads to cracking.
  • the surface roughness (Ra) of the circular surface 104 in each of the target members 102a and 102b is 2.0 ⁇ m or more and 8.0 ⁇ m or less (preferably 2.5 ⁇ m or more and 8.
  • the occurrence of arcing during sputtering can be suppressed by setting the thickness to 0 ⁇ m or less, and more preferably 3.0 ⁇ m to 8.0 ⁇ m. As a result, it is possible to improve the yield of the device manufacturing process using the sputtering process.
  • FIG. 4 is a process flow diagram showing a method for manufacturing the sputtering target 100 according to an embodiment of the present invention.
  • ITO indium tin oxide
  • raw materials constituting the target members 102a and 102b are prepared.
  • an indium oxide powder and a tin oxide powder are prepared (S401, S402).
  • the purity of these raw materials is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, more preferably 4N (99.99% by mass) or more. If the purity is lower than 2N, the target members 102a and 102b contain a large amount of impurities, so that desired physical properties cannot be obtained (for example, the transmittance of the formed thin film is increased, the resistance value is increased, the particle size associated with arcing is reduced). Problem).
  • these raw material powders are pulverized and mixed (S403).
  • the raw material powder is pulverized and mixed using a dry method using balls and beads (so-called media) of zirconia, alumina, nylon resin, etc., media agitating mills using the balls and beads, and medialess containers
  • Wet methods such as a rotary mill, a mechanical stirring mill, and an airflow mill can be used.
  • the wet method is generally superior in pulverization and mixing ability compared to the dry method, it is preferable to perform the mixing using the wet method.
  • the raw material powders may be pulverized before mixing, or may be simultaneously pulverized by the powder processing during mixing.
  • the densification of the sintered compact used as the target members 102a and 102b can be achieved.
  • the amount of media (zirconia, etc.) used during pulverization also increases, and the impurity concentration in the target members 102a and 102b may increase. is there.
  • it is necessary to optimize the pulverization conditions while observing the balance between the high density of the sintered body and the impurity concentration in the target members 102a and 102b.
  • the raw material powder slurry is dried and granulated (S404).
  • the slurry may be rapidly dried using rapid drying granulation.
  • the rapid drying granulation may be performed by using a spray dryer and adjusting the temperature and air volume of hot air.
  • the mixture obtained by mixing and granulating as described above is pressure-molded to form a cylindrical shaped body (S405).
  • the target member 102a or 102b is formed into a suitable shape.
  • the molding process include mold molding, cast molding, injection molding, and the like.
  • CIP cold isostatic pressing
  • a rubber mold is filled with raw materials weighed to a predetermined weight. At this time, by filling the rubber mold while swinging or tapping, filling irregularities and voids of the raw material in the rubber mold can be eliminated. What is necessary is just to set suitably the pressure of shaping
  • the cylindrical molded body obtained in the molding process is sintered (S406).
  • An electric furnace is used for sintering.
  • the sintering conditions can be appropriately selected depending on the composition of the sintered body.
  • SnO 2 is 10 wt. % ITO can be sintered by placing it in an oxygen gas atmosphere at a temperature of 1500 to 1600 ° C. for 10 to 26 hours.
  • the sintering temperature is less than 1500 ° C., the density of the target members 102a and 102b is reduced.
  • the temperature exceeds 1600 ° C. the electric furnace and the furnace material are greatly damaged and frequent maintenance is required, so that the work efficiency is remarkably lowered.
  • the pressure during sintering may be atmospheric pressure, or a reduced pressure or pressurized atmosphere.
  • the temperature rising rate of the electric furnace during sintering is preferably 300 ° C./hour or less, more preferably 180 ° C./hour or less.
  • the temperature lowering rate of the electric furnace during sintering is preferably 5 ° C./hour or less. Note that the rate of temperature increase or the rate of temperature decrease may be adjusted to change stepwise.
  • the formed cylindrical sintered body is machined into a desired cylindrical shape using a machining machine such as a surface grinding machine, a cylindrical grinding machine, a lathe, a cutting machine, or a machining center (S407).
  • a machining machine such as a surface grinding machine, a cylindrical grinding machine, a lathe, a cutting machine, or a machining center (S407).
  • the machining performed here is a step of processing a cylindrical sintered body to have a desired shape and surface roughness, and finally, the target members 102a and 102b are formed through this step.
  • the surface roughness (Ra) is preferably 0.5 ⁇ m or less.
  • the circular surface 104 of the target members 102a and 102b is subjected to grinding using a grindstone or processing using bead blasting, so that the surface roughness (Ra ) Between 2.0 ⁇ m and 8.0 ⁇ m.
  • the surface roughness between 2.0 ⁇ m and 8.0 ⁇ m.
  • the machined cylindrical sintered body (that is, the target members 102a and 102b) is bonded to the substrate 101 (S408).
  • the target members 102a and 102b are bonded to a cylindrical base material 101 called a backing tube using the bonding material 103 as an adhesive, as shown in FIGS.
  • the base material 101 is inserted into the hollow portions of the hollow cylindrical target members 102a and 102b, and the molten bonding material 103 is injected into the space between the base material 101 and the target members 102a and 102b. Then, the two are joined by solidifying through a cooling process.
  • the cylindrical sputtering target 100 according to this embodiment can be obtained through the above steps.
  • Example 3 The inventors prepared target members using three different materials (ITO, IZO, and IGZO), and investigated the relationship between the surface roughness and the occurrence of arcing and cracking for each. The results are shown in Tables 1 to 3. Each experimental condition was as follows: target thickness: 9 mm, sputtering pressure: 0.6 Pa, Ar (argon) flow rate: 300 sccm, input power: 4 kW / m, sputtering time: 24 hours. Moreover, since it was target durability evaluation at the time of performing continuous discharge, discharge was performed without setting the substrate or the like.
  • the surface roughness (Ra) was measured according to ANSI standards using a small surface roughness measuring machine (Surf Test SJ-301: manufactured by Mitutoyo Corporation). The surface roughness was measured at six locations on the end surface of the target member at 60 ° intervals (12 locations per target member), and the weighted average value of all measured values was the surface roughness of the target member.
  • the surface roughness (Ra) of the circular surface of each target member in the plurality of target members constituting the cylindrical sputtering target is 2.0 ⁇ m or more and 8.0 ⁇ m or less ( It was found that the cracking of the target can be suppressed while reducing the occurrence of arcing during sputtering, preferably by 2.5 ⁇ m or more and 8.0 ⁇ m or less, more preferably 3.0 ⁇ m or more and 8.0 ⁇ m or less.
  • SYMBOLS 100 Cylindrical type sputtering target 101: Base material 102a, 102b: Target member 103: Joining material 104: Circular surface 105: Frame line
  • S401 The process of preparing an indium oxide powder
  • S402 The process of preparing a tin oxide powder
  • S403 Raw material Step of crushing and mixing powder
  • S404 Step of drying and granulating raw material powder slurry
  • S405 Step of forming cylindrical shaped body
  • S406 Step of sintering cylindrical shaped body
  • S407 Desired cylindrical shape
  • Step S408 Step of bonding cylindrical sintered body to base material

Abstract

 製造プロセス中のアーキングの発生を低減させ、製造プロセスの歩留りを向上させることを目的とする。スパッタリングターゲットは、融点が300℃以下の低融点金属で構成される接合材を介して金属で構成される基材に接合された、セラミックスで構成される複数のターゲット部材を含み、前記基材の前記接合材が接する面における表面粗さ(Ra)が1.8μm以上であり、前記複数のターゲット部材は、中空の円筒形状であり、かつ前記基材に当該基材の外周面を囲むように接合された際にそれぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面を有し、前記円形面における表面粗さ(Ra)が2.0μm以上8.0μm以下であることを特徴とする。

Description

スパッタリングターゲット及びその製造方法
 本発明は、スパッタリングターゲット及びその製造方法に関する。特に、ターゲット部材を構成する焼結体の表面粗さに関する。
 近年、大型のガラス基板に金属薄膜や酸化金属薄膜を形成するためのスパッタリング装置として、円筒型スパッタリングターゲットを用いたスパッタリング装置の開発が進んでいる。円筒型スパッタリングターゲットとは、ターゲット部材料で構成される焼結体を中空の円筒形状に加工し、バッキングプレート又はバッキングチューブと呼ばれる基材に接合して得たスパッタリング用のターゲットをいう。
 このような円筒型スパッタリングターゲットは、平板型スパッタリングターゲットに比べて、ターゲットの使用効率が高い、エロージョンの発生が少ない、堆積物の剥離によるパーティクルの発生が少ないという利点がある。特に、パーティクルの発生が少ないという利点は、パーティクルのターゲット上への再堆積によるアーキングの発生を低減する上で非常に有利である。
 例えばITO(酸化インジウム・スズ)を成膜するための円筒型スパッタリングターゲットを製造する場合、酸化インジウムの粉末と酸化スズの粉末とを混合して焼結させた焼結体(セラミックス)を中空の円筒形状に加工し、円筒形状の基材(バッキングチューブ)に対して接合する。
 しかしながら、セラミックスで構成されるターゲット部材を長尺状に製造することは困難である。そのため、円筒型スパッタリングターゲットの長尺化(大面積化)を図るために、円筒形状の焼結体を複数形成し、それらを連続的に基材に並べて接合することにより、長尺状の円筒型スパッタリングターゲットを実現する技術が開発されている(特許文献1)。
 複数のターゲット部材を基材に対して隙間なく配置した場合、スパッタ中の熱によりターゲット部材が伸縮し、ターゲット部材同士がぶつかるなどして割れや欠けが生じてしまうおそれがある。そこで、一般的には、複数のターゲット部材を基材に接合させる際に、ターゲット部材同士の間に一定の間隔をあけて配置することが行われている。
特開平7-228967号公報
 しかしながら、本発明者らが鋭意研究した結果、ターゲット部材同士の間に隙間を設けた場合、その隙間にスパッタリングによる薄膜の再堆積(スパッタされたターゲット成分が基板に到達せずにターゲット部材に再付着する現象)が発生し、それが一定量に達すると、安定な状態で放電が行われているプラズマ中に入り込む場合があることが分かった。そして、その結果、プラズマ中の電位バランスが崩れ、局所的な電荷集中が起きて偶発的なアーキングの発生につながることが分かった。
 本発明の課題は、上述したスパッタリング中のアーキングの発生を抑制し、スパッタリングプロセスを用いたデバイス製造プロセスの歩留りを向上させることが可能なスパッタリングターゲットを提供することにある。
 本発明の一実施形態によるスパッタリングターゲットは、融点が300℃以下の低融点金属で構成される接合材を介して金属で構成される基材に接合された、セラミックスで構成される複数のターゲット部材を含み、前記基材の前記接合材が接する面における表面粗さ(Ra)が1.8μm以上(好ましくは1.8μm以上3.0μm以下、さらに好ましくは1.8μm以上2.5μm以下)であり、前記複数のターゲット部材は、中空の円筒形状であり、かつ前記基材に当該基材の外周面を囲むように接合された際にそれぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面を有し、前記円形面における表面粗さ(Ra)が2.0μm以上8.0μm以下であることを特徴とする。
 本発明の一実施形態によるスパッタリングターゲットの製造方法は、融点が300℃以下の低融点金属からなる接合材を介して金属で構成される基材に接合された、セラミックスで構成される中空の円筒形状の複数のターゲット部材の円形面を、表面粗さ(Ra)が2.0μm以上8.0μm以下となるように研磨し、前記基材の前記接合材が接する面を、表面粗さ(Ra)が1.8μm以上(好ましくは1.8μm以上3.0μm以下、さらに好ましくは1.8μm以上2.5μm以下)となるように粗面化し、それぞれ隣接するターゲット部材と所定の間隔を置いて前記円形面が対向し、かつ前記基材の外周面を囲むように、前記複数のターゲット部材を前記基材に前記接合材を介して接合することを特徴とする。
 前記ターゲット部材は、ITO(Indium-Tin-Oxide)、IZO(Indium-Zinc-Oxide)又はIGZO(Indium-Gallium-Tin-Oxide)で構成してもよい。
 なお、表面粗さ(Ra)の測定は、非接触式の表面粗さ測定機を用いてANSI規格に準じて行うこととする。表面粗さの測定箇所は、ターゲット部材の各端面を60°間隔で6か所ずつ行い(1ターゲット部材につき12か所)、全測定値の加重平均値をターゲット部材の表面粗さとする。
本発明の一実施形態に係るスパッタリングターゲットの構成を示す斜視図である。 本発明の一実施形態に係るスパッタリングターゲットの構成を示す断面図である。 本発明の一実施形態に係るスパッタリングターゲットにおけるターゲット部材間の間隙付近を示す断面図である。 本発明の一実施形態に係るスパッタリングターゲットの製造方法を示すプロセスフロー図である。
 以下、本発明の実施の形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。
 また、図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
<スパッタリングターゲットの構成>
 図1は、本発明の一実施形態に係るスパッタリングターゲットの構成を示す斜視図である。また、図2は、本発明の一実施形態に係るスパッタリングターゲットの構成を示す断面図である。
 本実施形態では、円筒型スパッタリングターゲットを例示する。本実施形態に係る円筒型スパッタリングターゲット100は、基材101と、複数のターゲット部材102a、102bとを含んで構成される。各ターゲット部材102a、102bは、それぞれ基材101に対して接合材103を介して接合される。このとき、接合材103は、基材101とターゲット部材102a、102bとの間に設けられた間隙を充填するように設けられている。
 本実施形態に係るスパッタリングターゲット100は、複数のターゲット部材102a、102bを構成する焼結体に特長がある。具体的には、ターゲット部材102a、102bが、それぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面104を有し、その円形面104における表面粗さRaは2.0μm以上である。この点については、後述する。
 複数のターゲット部材102a、102bは、基材101の外周面を囲むように設けられている。複数のターゲット部材102a、102bは、基材101の中心軸に対して同軸または略同軸に設けられていることが好ましい。このような構成により、円筒型スパッタリングターゲット100をスパッタリング装置に装着して、基材101を中心に回転させたとき、各ターゲット部材102a、102bと被成膜面(試料基板)との間隔を一定に保つことができる。
 円筒型スパッタリングターゲット100は、基材101に対して複数の円筒型スパッタリングターゲット部材102a、102bを装着する際に、各ターゲット部材102a、102bはそれぞれ所定の間隔において配置されている。間隙は1mm以下であればよく、例えば、0.1~0.5mmであればよい。このように複数のターゲット部材102a、102bを所定の間隔をおいて配置することにより、ターゲット部材同士がぶつかることによる破損を防止することができる。
 本実施形態の円筒型スパッタリングターゲット100は、複数のターゲット部材102を接合材103によって基材101に接合させることにより、長さ100mm以上の長尺状のスパッタリングターゲットとすることができる。
<基材>
 基材101は、中空の円筒形状を有するターゲット部材102a、102bの内側表面に沿うような外面形状を有していることが好ましい。前述のように、基材101の外径は、各ターゲット部材102a、102bの内径よりも僅かに小さく、両者を同軸に重ねたときに間隙ができるように調整されている。この間隙には、接合材103が設けられる。
 各ターゲット部材102a、102bは、スパッタリングによる成膜時のイオン照射により加熱されて温度が上昇する。スパッタリングによる成膜時に各ターゲット部材102a、102bの温度上昇を抑制するためには、基材101を各ターゲット部材102a、102bの冷却材(ヒートシンク)として機能させることが好ましい。例えば、基材101を中空構造として、その内部に冷媒が流れるように構成することが可能である。したがって、基材101としては、良好な導電性と熱伝導性を有している材料を用いることが好ましい。
 また、同時に、基材101は、接合材103とぬれ性がよく、高い接合強度が得られる金属が好ましい。以上のことから、基材101を構成する材料としては、例えば、銅(Cu)又はチタン(Ti)、もしくは銅合金又はチタン合金又はステンレス(SUS)を用いることが好ましい。銅合金としては、クロム銅などの銅(Cu)を主成分とする合金を適用することができる。また、基材101としてチタン(Ti)を用いれば、軽量で剛性のある基材とすることができる。
 基材101は単体金属又は金属合金で形成されるのみならず、金属基材の表面に他の金属による被膜が設けられたものであってもよい。例えば、チタン(Ti)、銅(Cu)、銀(Ag)、ニッケル(Ni)などを含む金属被膜が形成されていてもよい。
 円筒型スパッタリングターゲット100は、スパッタリング時にターゲット部材102a、102bの全面にイオンが照射されるのではなく、一部の面にのみイオンが照射されつつ回転するので、同じターゲット部材であってもイオンの照射面とその裏側面では温度差が生じることとなる。しかし、基材101が冷却機能を有していることにより、ターゲット部材102a、102bの温度上昇を抑制できるとともに、上述した温度差による熱歪みの影響をも抑制することができる。
 ところで、円筒型スパッタリングターゲットの場合、溶融した接合材103を基材101とターゲット部材102a、102bとの間の空間に注入し、その後冷却過程を経て固化することにより、両者の接合を行う。そのため、中空の円筒形状のターゲット部材102a、102bにおける中空部分に基材101を挿入する構成となるため、基材101とターゲット部材102a、102bとの間の空間の間隔は、接合過程において調整することができない。したがって、接合材103の固化に伴う体積収縮により基材101と接合材103の接合面の密着性を損なう恐れがあるため、基材101に、接合材103に対するアンカー効果を持たせることが望ましい。
 そのために、基材101は、接合材103と接する表面側が粗面化されていることが好ましい。基材101の表面が粗面化されることで、接合材103と接する表面積を大きくすることができ、基材101と接合材103の密着性を高めることができる。例えば、基材101の表面をサンドブラスト処理などにより粗面化することができる。
 なお、基材101の表面の表面粗さ(Ra)の値は、大きいほど表面積が大きくなるため密着性は高まると言えるが、ターゲット部材102a、102bの間の間隙内においては、基材101の表面を過剰に粗面化しないことが望ましい。間隙内において基材101の表面が粗面化されている場合、間隙内で発生したパーティクルを強固に付着させ、再剥離を防ぐという利点がある反面、過剰に粗面化されていると、基材101自体がスパッタリングされてしまい、基材101の成分が膜中の不純物となってしまったりパーティクルとなって異常放電を招いたりするおそれがある。
 そのため、本実施形態では、基材101の接合材103が接する面における表面粗さ(Ra)を1.8μm以上(好ましくは1.8μm以上3.0μm以下、さらに好ましくは1.8μm以上2.5μm以下)としている。基材101と接合材103の密着性を高めるためには、基材101の接合材103が接する面における表面粗さ(Ra)を1.8μm以上とすることが好ましく、基材101のスパッタリングを抑制するためには、その上限を3.0μm(さらに好ましくは2.5μm)とすることが好ましい。
<接合材>
 接合材103は、基材101と各ターゲット部材102a、102bとの間に設けられている。接合材103は、基材101と各ターゲット部材102a、102bとを接合するとともに、耐熱性と熱伝導性が良好であることが好ましい。また、スパッタリング中は真空下に置かれるため、真空中でガス放出が少ない特性を有していることが好ましい。
 さらに、製造上の観点から、接合材103は、基材101と各ターゲット部材102a、102bとを接合するときに流動性を有していることが好ましい。これらの特性を満足するために、接合材103としては、融点が300℃以下の低融点金属材料を用いることができる。例えば、接合材103として、インジウム、スズなどの金属、またはこれらのうちいずれか一種の元素を含む金属合金材料を用いてもよい。具体的には、インジウム又はスズの単体、インジウムとスズの合金、スズを主成分とするはんだ合金などを用いてもよい。
<ターゲット部材>
 図1及び図2で示すように、各ターゲット部材102a、102bは中空の円筒形状に成形されている。各ターゲット部材102a、102bは、少なくとも数ミリメートルから数十ミリメートルの厚みを有し、この厚み部分全体をターゲット部材として利用することが可能である。
 基材101に対してターゲット部材102a、102bを装着する際、ターゲット部材102a、102bの中空部分に基材101が挿入され、その後、接合材103によって両者は接合される。すなわち、各ターゲット部材102a、102bの内径(中空部分の径)よりも基材101の外径の方が小さく、両者は所定の間隔をおいて配置され、この間隙を充填するように接合材103が設けられている。各ターゲット部材102a、102bと基材101とを安定的に保持するために、その間隙において接合材103に隙間がないように設けられている。
 各ターゲット部材102a、102bは、円筒形状の外側表面がターゲット表面となり、円筒形状の内側表面が基材101に面して接合材103に接する面となる。このため製造時においては、各ターゲット部材102a、102bの外側表面が平滑に成形加工され、円筒の内側表面は接着性を高めるために粗面化されていてもよい。
 各ターゲット部材102a、102bは、スパッタリング成膜が可能な各種材料を用いて形成される。例えば、ターゲット部材102a、102bは、セラミックスであってもよい。セラミックスとしては、金属酸化物、金属窒化物、金属酸窒化物の焼結体などを用いることができる。金属酸化物としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化ガリウムなど典型元素に属する金属の酸化物を用いることができる。
 具体的には、酸化スズと酸化インジウムの化合物(Indium Tin Oxide:ITO)、酸化亜鉛(Zinc Oxide:ZnO)、酸化インジウムと酸化亜鉛の化合物(Indium Zinc Oxide:IZO)、酸化インジウム、酸化亜鉛及び酸化ガリウムの化合物(Indium Gallium Zinc Oxide:IGZO)から選ばれた化合物の焼結体などをターゲット部材102a、102bとして用いることができる。
 なお、上記の具体例は一例であり、本実施形態に係るスパッタリングターゲットは、ターゲット部材として各種スパッタリング材料を用いることができる。
 ここで、ターゲット部材102aとターゲット部材102bとの間には、所定の間隔(好ましくは1mm以下、例えば0.1~0.5mm)の間隙が設けられている。この間隙は、ターゲット部材同士がぶつかって破損しないようにするための安全措置であるが、前述のとおり、本発明者らは、この間隙に再堆積した薄膜がアーキングの発生につながることを突き止めた。
 そこで、本発明者らは、鋭意研究を重ねた結果、ターゲット部材102aとターゲット部材102bとが対向する面(つまり、図1及び図2に示す円形面104)の表面粗さを2.0μm以上8.0μm以下(好ましくは2.5μm以上8.0μm以下、さらに好ましくは3.0μm以上8.0μm以下)とすることにより、アーキングの発生を抑制できることを見出した。つまり、本実施形態に係るスパッタリングターゲット100では、ターゲット部材102aとターゲット部材102bとが対向する面の表面粗さを2.0μm以上8.0μm以下としている。
 図3は、隣接するターゲット部材間の間隙付近を示す断面図である。具体的には、図2において、符号105で示される枠線内を拡大した模式的な図を示している。図3に示されるように、ターゲット部材102aとターゲット部材102bとの間には、0.2~0.5mmの間隙が設けられ、各ターゲット部材が対向する面104は、意図的に表面が粗くなるように加工されている。すなわち、各ターゲット部材102a、102bは、基材101に接合された際にそれぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面104を有し、その円形面104における表面粗さ(Ra)が2.0μm以上8.0μm以下となっている。
 本発明者らの研究によれば、各ターゲット部材102a、102bの円形面104の表面粗さ(Ra)が2.0μm未満の範囲ではアーキングの発生が確認されたが、2.0μm以上になると確認されなかった。また、表面粗さ(Ra)が8.0μmを超えると、再びアーキングの発生が確認され、さらにターゲット部材の割れも確認されるようになった。
 表面粗さ(Ra)が2.0μm以上の場合にアーキングの発生が抑制される理由としては、表面が粗くなることで円形面104の表面積が増し、再堆積膜の密着力が強まるため、再堆積膜の剥離に起因するプラズマの異常放電が低減されることによると考えられる。したがって、再堆積膜の密着力を強めるという観点からは、表面粗さ(Ra)を2.5μm以上(さらに好ましくは3.0μm以上)とすることが好ましいと言える。
 逆に、表面粗さ(Ra)が8.0μmを超えた場合にアーキングや割れの発生が生じる理由としては、表面粗さを8.0μm以上とするための研削加工時に入るダメージが影響していると考えられる。つまり、表面粗さを8.0μm以上とするには、粗い番手の砥石で研削加工を施したり、強い圧力で砥粒を吹き付ける加工(ビーズブラスト)を施したりして意図的に粗くする必要があり、その結果、加工ダメージ(微細なクラック等)がターゲット部材の端部に残り、そのダメージが伸展して割れにつながると考えられる。
 以上のように、本実施形態に係るスパッタリングターゲット100は、各ターゲット部材102a、102bにおける円形面104の表面粗さ(Ra)を2.0μm以上8.0μm以下(好ましくは2.5μm以上8.0μm以下、さらに好ましくは3.0μm以上8.0μm以下)とすることにより、スパッタリング中のアーキングの発生を抑制することができる。その結果、スパッタリングプロセスを用いたデバイス製造プロセスの歩留りを向上させることが可能である。
<スパッタリングターゲットの製造方法>
 次に、本実施形態に係るスパッタリングターゲット100の製造方法について詳細に説明する。図4は、本発明の一実施形態に係るスパッタリングターゲット100の製造方法を示すプロセスフロー図である。
 本実施形態では、酸化インジウムスズ(ITO)焼結体をターゲット部材102a、102bとした例を示すが、焼結体の材料はITOに限定されず、IZO、IGZOその他の酸化金属化合物を用いることもできる。
 まず、ターゲット部材102a、102bを構成する原材料を準備する。本実施形態では、酸化インジウムの粉末と酸化スズの粉末を準備する(S401、S402)。これらの原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、さらに好ましくは4N(99.99質量%)以上であるとよい。純度が2Nより低いとターゲット部材102a、102bに不純物が多く含まれてしまうため、所望の物性を得られなくなる(例えば、形成した薄膜の透過率の減少、抵抗値の増加、アーキングに伴うパーティクルの発生)という問題が生じ得る。
 次に、これら原材料の粉末を粉砕し混合する(S403)。原材料の粉末の粉砕混合処理は、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズ(いわゆるメディア)を用いた乾式法を使用したり、前記ボールやビーズを用いたメディア撹拌式ミル、メディアレスの容器回転式ミル、機械撹拌式ミル、気流式ミルなどの湿式法を使用したりすることができる。ここで、一般的に湿式法は、乾式法に比べて粉砕及び混合能力に優れているため、湿式法を用いて混合を行うことが好ましい。
 原材料の組成については特に制限はないが、目的とするターゲット部材102a、102bの組成比に応じて適宜調整することが望ましい。原材料の粉末の結晶粒径をより小さくしたい場合、各原材料の粉末を混合する前に予め粉砕処理してもよく、また、混合時の粉末処理で同時に粉砕してもよい。
 なお、細かい粒子径の粉末を使用するとターゲット部材102a、102bとなる焼結体の高密度化を図ることができる。粉砕条件を強化して細かい粉末を得ることは可能であるが、そうすると粉砕時に使用するメディア(ジルコニアなど)の混入量も増加し、ターゲット部材102a、102b内の不純物濃度が上昇してしまう虞がある。このように焼結体の高密度化とターゲット部材102a、102b内の不純物濃度のバランスを見ながら、粉砕条件の適正化が必要である。
 次に、原材料の粉末のスラリーを乾燥、造粒する(S404)。このとき、急速乾燥造粒を用いてスラリーを急速乾燥してもよい。急速乾燥造粒は、スプレードライヤを使用し、熱風の温度や風量を調整して行えばよい。急速乾燥造粒を用いることにより、原材料の粉末の比重差による沈降速度の違いによって酸化インジウム粉末と酸化スズ粉末とが分離することを抑制することができる。このように造粒することで、配合成分の比率が均一化され、原材料の粉末のハンドリング性が向上する。また、造粒する前後に仮焼成を行ってもよい。
 次に、上述した混合及び造粒して得られた混合物(仮焼成を設けた場合には仮焼成されたもの)を加圧成形して円筒型の成形体を形成する(S405)。この工程によって、目的とするターゲット部材102a、102bに好適な形状に成形する。成形処理としては、例えば、金型成形、鋳込み成形、射出成形等が挙げられるが、円筒型のように複雑な形状を得るためには、冷間等方圧加工法(Cold Isostatic Pressing:CIP)等で成形することが好ましい。
 CIPによる成形は、まず所定の重量に秤量した原料をゴム型に充填する。この際、ゴム型を揺動もしくはタッピングしながら充填することにより、ゴム型内の原料の充填ムラや空隙を無くすことができる。CIPによる成形の圧力は、ターゲット部材102a、102bに必要な密度により適宜設定すればよい。
 次に、成形工程で得られた円筒型の成形体を焼結する(S406)。焼結には電気炉を使用する。焼結条件は焼結体の組成によって適宜選択することができる。例えばSnOを10wt.%含有するITOであれば、酸素ガス雰囲気中において、1500~1600℃の温度下に10~26時間置くことにより焼結することができる。焼結温度が1500℃未満の場合、ターゲット部材102a、102bの密度が低下してしまう。一方、1600℃を超えると電気炉や炉材へのダメージが大きく頻繁にメンテナンスが必要となるため、作業効率が著しく低下する。また、焼結時間が10時間未満であるとターゲットの密度が低下してしまい、26時間より長いとタクトタイムが長くなり、製造コストが高くなってしまう。また、焼結時の圧力は大気圧であってもよく、減圧又は加圧雰囲気であってもよい。
 ここで、電気炉で焼結する場合、焼結の昇温速度及び降温速度を調整することでクラックの発生を抑制することができる。具体的には、焼結時の電気炉の昇温速度は300℃/時間以下、より好ましくは180℃/時間以下であることが望ましい。また、焼結時の電気炉の降温速度は、5℃/時間以下が好ましい。なお、昇温速度又は降温速度は段階的に変化するように調整されてもよい。
 焼結によって円筒型の成形体は収縮するが、全ての材料に共通して熱収縮の始まる温度域に入る前に、炉内の温度を均一にするため、昇温の途中で温度保持を行う。これにより、炉内の温度ムラが解消され、炉内に設置したすべての焼結体が均一に収縮する。また到達温度や保持時間は、材料ごとに適正な条件を設定することにより、均質な焼結体を得ることができる。
 次に、形成された円筒型の焼結体を、平面研削盤、円筒研削盤、旋盤、切断機、マシニングセンタ等の機械加工機を用いて、円筒型の所望の形状に機械加工する(S407)。ここで行う機械加工は、円筒型の焼結体を所望の形状、表面粗さとなるように加工する工程であり、最終的にこの工程を経てターゲット部材102a、102bが形成される。
 ターゲット部材102a、102bの外側表面(スパッタリングされる面)に関しては、表面粗さ(Ra)を0.5μm以下とすることが好ましい。これにより、スパッタリング中に突起部に対して電界が集中し、異常放電が発生するリスクを低減することができる。
また、本実施形態では、ターゲット部材102a、102bの円形面104に対し、砥石を用いた研削加工を施したり、ビーズブラストを用いた加工を施したりして、円形面104の表面粗さ(Ra)を2.0μm以上8.0μm以下とする。例えば、#40番手や#20番手といった粗い番手の砥石で研削したり、ビーズブラストで処理したりすることにより、表面粗さを2.0μm以上8.0μmの範囲内に収めることが可能である。
 次に、機械加工された円筒型の焼結体(すなわち、ターゲット部材102a、102b)を基材101にボンディングする(S408)。特に、円筒型スパッタリングターゲット100の場合、ターゲット部材102a、102bは、図1及び2に示したように、バッキングチューブと呼ばれる円筒型の基材101に接合材103を接着剤としてボンディングされる。具体的には、中空の円筒形状のターゲット部材102a、102bにおける中空部分に基材101を挿入し、溶融した接合材103を基材101とターゲット部材102a、102bとの間の空間に注入し、その後冷却過程を経て固化することにより、両者の接合を行う。以上の工程によって、本実施形態に係る円筒型スパッタリングターゲット100を得ることができる。
[実施例]
 本発明者らは、3種類の異なる材料(ITO、IZO、及びIGZO)を用いたターゲット部材を作製し、それぞれについて表面粗さとアーキング及び割れの発生との関係を調べた。その結果を表1~3に示す。なお、各実験条件は、ターゲット厚み:9mm、スパッタ圧:0.6Pa、Ar(アルゴン)流量:300sccm、投入電力:4kW/m、スパッタ時間:24時間とした。また、連続放電を行った際のターゲット耐久性評価であるため、基板等はセットせずに放電を行った。なお、表面粗さ(Ra)の測定は、小型表面粗さ測定機(サーフテスト SJ-301:ミツトヨ製)を用いてANSI規格に準じて行っ
た。表面粗さの測定箇所はターゲット部材の各端面を60°間隔で6か所ずつ行い(1ターゲット部材につき12か所)、全測定値の加重平均値をターゲット部材の表面粗さとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上のように、本発明らによる実験によれば、円筒型スパッタリングターゲットを構成する複数のターゲット部材において、各ターゲット部材の円形面の表面粗さ(Ra)を2.0μm以上8.0μm以下(好ましくは2.5μm以上8.0μm以下、さらに好ましくは3.0μm以上8.0μm以下)とすることにより、スパッタリング中のアーキングの発生を低減させつつ、ターゲットの割れも抑制できることが分かった。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 100:円筒型スパッタリングターゲット
 101:基材
 102a、102b:ターゲット部材
 103:接合材
 104:円形面
 105:枠線
 S401:酸化インジウム粉末を準備する工程
 S402:酸化スズ粉末を準備する工程
 S403:原材料の粉末を粉砕し混合する工程
 S404:原材料の粉末のスラリーを乾燥、造粒する工程
 S405:円筒型の成形体を形成する工程
 S406:円筒型の成形体を焼結する工程
 S407:円筒型の所望の形状に機械加工する工程
 S408:円筒型の焼結体を基材にボンディングする工程

Claims (10)

  1.  融点が300℃以下の低融点金属で構成される接合材を介して金属で構成される基材に接合された、セラミックスで構成される複数のターゲット部材を含み、
     前記基材の前記接合材が接する面における表面粗さ(Ra)が1.8μm以上であり、
     前記複数のターゲット部材は、中空の円筒形状であり、かつ前記基材に当該基材の外周面を囲むように接合された際にそれぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面を有し、
     前記円形面における表面粗さ(Ra)が2.0μm以上8.0μm以下であることを特徴とするスパッタリングターゲット。
  2.  前記基材の前記接合材が接する面における表面粗さ(Ra)は、1.8μm以上3.0μm以下であることを特徴とする請求項1に記載のスパッタリングターゲット。
  3.  前記複数のターゲット部材は、ITO(Indium-Tin-Oxide)で構成されることを特徴とする請求項1又は2に記載のスパッタリングターゲット。
  4.  前記複数のターゲット部材は、IZO(Indium-Zinc-Oxide)で構成されることを特徴とする請求項1又は2に記載のスパッタリングターゲット。
  5.  前記複数のターゲット部材は、IGZO(Indium-Gallium-Tin-Oxide)で構成されることを特徴とする請求項1又は2に記載のスパッタリングターゲット。
  6.  融点が300℃以下の低融点金属からなる接合材を介して金属で構成される基材に接合された、セラミックスで構成される中空の円筒形状の複数のターゲット部材の円形面を、表面粗さ(Ra)が2.0μm以上8.0μm以下となるように研磨し、
     前記基材の前記接合材が接する面を、表面粗さ(Ra)が1.8μm以上となるように粗面化し、
     それぞれ隣接するターゲット部材と所定の間隔を置いて前記円形面が対向し、かつ前記基材の外周面を囲むように、前記複数のターゲット部材を前記基材に前記接合材を介して接合することを特徴とするスパッタリングターゲットの製造方法。
  7.  前記基材の前記接合材が接する面を、表面粗さ(Ra)が1.8μm以上3.0μm以下となるように粗面化することを特徴とする請求項6に記載のスパッタリングターゲットの製造方法。
  8.  前記複数のターゲット部材は、ITO(Indium-Tin-Oxide)で構成されることを特徴とする請求項6又は7に記載のスパッタリングターゲットの製造方法。
  9.  前記複数のターゲット部材は、IZO(Indium-Zinc-Oxide)で構成されることを特徴とする請求項6又は7に記載のスパッタリングターゲットの製造方法。
  10.  前記複数のターゲット部材は、IGZO(Indium-Gallium-Tin-Oxide)で構成されることを特徴とする請求項6又は7に記載のスパッタリングターゲットの製造方法。
PCT/JP2016/053896 2015-02-13 2016-02-10 スパッタリングターゲット及びその製造方法 WO2016129621A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680004228.5A CN107532285B (zh) 2015-02-13 2016-02-10 溅射靶及其制造方法
KR1020177018706A KR101980465B1 (ko) 2015-02-13 2016-02-10 스퍼터링 타겟 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026533A JP5947413B1 (ja) 2015-02-13 2015-02-13 スパッタリングターゲット及びその製造方法
JP2015-026533 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129621A1 true WO2016129621A1 (ja) 2016-08-18

Family

ID=56329521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053896 WO2016129621A1 (ja) 2015-02-13 2016-02-10 スパッタリングターゲット及びその製造方法

Country Status (5)

Country Link
JP (1) JP5947413B1 (ja)
KR (1) KR101980465B1 (ja)
CN (1) CN107532285B (ja)
TW (1) TWI703228B (ja)
WO (1) WO2016129621A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402982B1 (ko) * 2017-03-31 2022-05-27 미쓰이금속광업주식회사 분할 스퍼터링 타깃

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236664A (ja) * 1998-02-24 1999-08-31 Mitsui Chem Inc スパッタリング用ターゲットのバッキングプレート
JP2000239838A (ja) * 1999-02-15 2000-09-05 Sony Corp 固相拡散接合されたスパッタリングターゲット組立体およびその製造方法
JP2001040471A (ja) * 1999-07-30 2001-02-13 Nikko Materials Co Ltd スパッタリング用ターゲット及びスパッタリング方法
JP2010100930A (ja) * 2008-09-25 2010-05-06 Tosoh Corp 円筒形スパッタリングターゲット及びその製造方法
JP2014105383A (ja) * 2012-11-29 2014-06-09 Tosoh Corp 円筒型スパッタリングターゲットおよびその製造方法
WO2014131458A1 (en) * 2013-02-28 2014-09-04 Applied Materials, Inc. Gapless rotary target and method of manufacturing thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5836506A (en) * 1995-04-21 1998-11-17 Sony Corporation Sputter target/backing plate assembly and method of making same
JP4470029B2 (ja) * 1999-06-01 2010-06-02 東ソー株式会社 分割itoスパッタリングターゲット
JP2002004038A (ja) * 2000-06-23 2002-01-09 Nikko Materials Co Ltd パーティクル発生の少ないスパッタリングターゲット
JP4153650B2 (ja) * 2000-07-13 2008-09-24 新日本製鐵株式会社 高溶接性レールの製造方法
JP4694104B2 (ja) * 2003-04-18 2011-06-08 大日本印刷株式会社 スパッタリングターゲット
DE102004060423B4 (de) * 2004-12-14 2016-10-27 Heraeus Deutschland GmbH & Co. KG Rohrtarget und dessen Verwendung
JP4851777B2 (ja) * 2005-11-09 2012-01-11 三井金属鉱業株式会社 SnO2系スパッタリングターゲットおよびその製造方法
JP5103911B2 (ja) * 2007-01-29 2012-12-19 東ソー株式会社 円筒形スパッタリングターゲット及びその製造方法
US20080236738A1 (en) * 2007-03-30 2008-10-02 Chi-Fung Lo Bonded sputtering target and methods of manufacture
JP5830663B2 (ja) * 2012-05-21 2015-12-09 パナソニックIpマネジメント株式会社 スパッタリングターゲットとこれを使用したスパッタリング装置
US20150279636A1 (en) * 2012-10-09 2015-10-01 Applied Materials, Inc. Particle free rotary target and method of manufacturing thereof
JP6273735B2 (ja) * 2013-09-20 2018-02-07 東ソー株式会社 円筒形スパッタリングターゲットとその製造方法
JP6273734B2 (ja) * 2013-09-20 2018-02-07 東ソー株式会社 平板形スパッタリングターゲットとその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236664A (ja) * 1998-02-24 1999-08-31 Mitsui Chem Inc スパッタリング用ターゲットのバッキングプレート
JP2000239838A (ja) * 1999-02-15 2000-09-05 Sony Corp 固相拡散接合されたスパッタリングターゲット組立体およびその製造方法
JP2001040471A (ja) * 1999-07-30 2001-02-13 Nikko Materials Co Ltd スパッタリング用ターゲット及びスパッタリング方法
JP2010100930A (ja) * 2008-09-25 2010-05-06 Tosoh Corp 円筒形スパッタリングターゲット及びその製造方法
JP2014105383A (ja) * 2012-11-29 2014-06-09 Tosoh Corp 円筒型スパッタリングターゲットおよびその製造方法
WO2014131458A1 (en) * 2013-02-28 2014-09-04 Applied Materials, Inc. Gapless rotary target and method of manufacturing thereof

Also Published As

Publication number Publication date
CN107532285B (zh) 2019-11-15
KR101980465B1 (ko) 2019-05-20
TW201629250A (zh) 2016-08-16
KR20170094310A (ko) 2017-08-17
JP5947413B1 (ja) 2016-07-06
TWI703228B (zh) 2020-09-01
JP2016148093A (ja) 2016-08-18
CN107532285A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
KR101552028B1 (ko) 소결체의 제조 방법, 소결체, 당해 소결체로 이루어지는 스퍼터링 타겟 및 스퍼터링 타겟-백킹 플레이트 조립체
KR102336966B1 (ko) 원통형 스퍼터링 타겟, 원통형 성형체, 및 원통형 스퍼터링 타겟, 원통형 소결체, 및 원통형 성형체의 제조 방법
JP7101717B2 (ja) スパッタリングターゲット及びその製造方法
JP6273735B2 (ja) 円筒形スパッタリングターゲットとその製造方法
JP5299415B2 (ja) 円筒形スパッタリングターゲット用酸化物焼結体およびその製造方法
JP5969493B2 (ja) スパッタリングターゲットおよびその製造方法
TWI635194B (zh) Cylindrical sputtering target and manufacturing method thereof
WO2016129621A1 (ja) スパッタリングターゲット及びその製造方法
JP6297620B2 (ja) スパッタリングターゲット及びその製造方法
JP2017150089A (ja) スパッタリングターゲット及びその製造方法
JP6520523B2 (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット
JP4000813B2 (ja) スパッタリングターゲット
TWI564420B (zh) 濺射靶件及濺射靶件之製造方法
WO2016140021A1 (ja) セラミックス円筒形ターゲット材および円筒形スパッタリングターゲット
JP4843883B2 (ja) スパッタリングターゲット
JP6273734B2 (ja) 平板形スパッタリングターゲットとその製造方法
JP2016188425A (ja) 円筒型スパッタリングターゲットの製造方法及び円筒型成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177018706

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749264

Country of ref document: EP

Kind code of ref document: A1