WO2016129561A1 - N,n-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法 - Google Patents
N,n-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法 Download PDFInfo
- Publication number
- WO2016129561A1 WO2016129561A1 PCT/JP2016/053698 JP2016053698W WO2016129561A1 WO 2016129561 A1 WO2016129561 A1 WO 2016129561A1 JP 2016053698 W JP2016053698 W JP 2016053698W WO 2016129561 A1 WO2016129561 A1 WO 2016129561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- compound
- solution
- chloropropyl
- hydroxy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/27—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/02—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/04—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reaction of ammonia or amines with olefin oxides or halohydrins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/78—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
- C07C217/80—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
- C07C217/82—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
- C07C217/90—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. amino-diphenylethers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/02—Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/36—Compounds containing oxirane rings with hydrocarbon radicals, substituted by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Definitions
- the present invention relates to a method for producing a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group that is industrially useful, that is, has high production efficiency and high safety.
- a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group is useful as an intermediate of a polyfunctional glycidylamine epoxy compound.
- a polyfunctional glycidylamine epoxy compound derived from a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group is a compound widely used in the field of organic chemistry and polymer chemistry. These compounds are useful in a wide range of industrial applications, such as fine chemicals, raw materials for medical and agricultural chemicals and resin materials, as well as electronic information materials and optical materials.
- polyfunctional glycidylamine type epoxy compounds are generally cured by curing with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance and electrical properties. It is used in a wide range of fields such as laminates and composite materials.
- a general method for producing a polyfunctional glycidylamine type epoxy compound is a batch type reaction method in which an N, N-bis (2-hydroxy-3-chloropropyl) amino group is formed by an addition reaction between an amine compound and epichlorohydrin. This is carried out by a cyclization reaction in which a compound having the following structure is produced and dehydrochlorinated with an alkali.
- Patent Document 1 using a batch reactor equipped with a cooling serpentine tube inside a reaction vessel, epichlorohydrin and water are charged into the reactor, and then an amine compound is gradually added dropwise while removing heat. A method for maintaining an appropriate reaction temperature has been proposed.
- Patent Document 2 proposes a method of slowly dropping a reaction accelerator such as an organic acid into a system in which an amine compound is dissolved in epichlorohydrin.
- Patent Document 3 discloses a method for producing chlorohydrin ether, which is an intermediate of glycidyl ether, in a fixed bed flow system using a solid acid catalyst in glycidyl ether production.
- An object of the present invention is to provide a method for producing a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group efficiently and safely on an industrial scale.
- the present inventors have found that in the method for producing a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group, (1) an amine compound or The solution, (2) epichlorohydrin or solution thereof, and (3) acidic compound or solution thereof are continuously fed to the flow reactor, the reaction temperature is 40 to 130 ° C., the liquid space velocity is 0.2 to 10 h.
- the present inventors have found a method for producing a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group that is reacted at -1 .
- the reaction is controlled by adjusting the feed rate of (1) amine compound or solution thereof, (2) epichlorohydrin or solution thereof, and (3) acidic compound or solution thereof.
- the reaction liquid by circulating the reaction liquid, heat and material diffusion occur quickly, so the heat storage of the reaction heat is reduced, and industrial production can be safely performed to avoid the runaway risk that occurs from chain reactions. It becomes possible.
- FIG. 1 is a flowchart showing an example of an apparatus used in the manufacturing method of the present invention.
- the “compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group” means that the N, N-bis (2-hydroxy-3-chloropropyl) amino group is 1 Amine compounds having two or more, for example, N, N-bis (2-hydroxy-3-chloropropyl) amine compounds, N, N, N ′, N′-tetra (2-hydroxy-3-chloropropyl) diamine compounds Etc.
- the method for producing a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group of the present invention comprises (1) an amine compound or a solution thereof, (2) epichlorohydrin or a solution thereof, and 3) An addition reaction method in which an acidic compound or a solution thereof is continuously supplied as a reaction accelerator to a flow reactor to obtain a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group. is there.
- the production method of the present invention is characterized in that an amine compound and epichlorohydrin are continuously subjected to addition reaction using a flow reactor in the presence of an acidic compound.
- a monoamine compound or a diamine compound can be used as the amine compound.
- monoamine compounds include aniline, o-toluidine, m-toluidine, p-toluidine, 2-phenoxyaniline, 3-phenoxyaniline, 4-phenoxyaniline, 2-aminophenol, 3-aminophenol, 4-aminophenol and the like. Illustrated.
- An N, N-bis (2-hydroxy-3-chloropropyl) amine compound can be obtained by addition reaction of monochloro with epichlorohydrin.
- aniline, toluidine, phenoxyaniline and aminophenol are preferable, and aniline, o-toluidine, m-toluidine, 4-phenoxyaniline, 3-aminophenol and 4-aminophenol are particularly preferable.
- a diamine compound is used as the amine compound and epichlorohydrin is subjected to an addition reaction, an N, N, N ′, N′-tetra (2-hydroxy-3-chloropropyl) diamine compound is obtained.
- the diamine compound include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, and 3,4 ′.
- diamine compound diaminodiphenyl ether, diaminodiphenylmethane, and diaminodiphenylsulfone are preferable, and 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and 4,4′-diaminodiphenyl are particularly preferable.
- Sulphone, 3,3′-diaminodiphenyl sulfone is preferred.
- the amine compound when it is liquid, it may be used as it is, or may be diluted with epichlorohydrin or a solvent. In the case of a solid, it may be dissolved in epichlorohydrin or a solvent to form a solution, or may be used as a slurry liquid. In either case, it is preferable to supply the flow reactor with a solution or a slurry solution.
- epichlorohydrin to be reacted with an amine compound may be supplied as it is, but may be diluted with a solvent.
- the supply amount of epichlorohydrin is 1 to 20 moles, more preferably 2 to 10 moles, with respect to the amine compound fed to the flow reactor.
- an acidic compound is used as a reaction accelerator.
- acidic compounds include Lewis acids and organic acids.
- Specific examples of the Lewis acid are substances that can accept an electron pair, specifically, boron trifluoride, boron trifluoride-diethyl ether complex, boron trichloride, boron tribromide, magnesium chloride, Magnesium bromide, aluminum trichloride, aluminum bromide, zinc chloride, tin (IV) chloride, iron (III) chloride, antimony fluoride (V), antimony chloride (V), phosphorus trichloride, phosphorus pentachloride, oxychloride Phosphorus, titanium tetrachloride, titanium trichloride, vanadyl chloride [VOCl 2 ], zirconium chloride, hafnium chloride, tetraisopropoxytitanium, scandium (III) trifluoromethanesulfonate, niobi
- the solid Lewis acid is dissolved in epichlorohydrin or a solvent and supplied as a Lewis acid-containing solution.
- the liquid Lewis acid may be supplied as it is, or may be diluted with epichlorohydrin or a solvent.
- the supply amount of Lewis acid is 0.001 to 0.5 mol times, more preferably 0.01 to 0.1 mol times with respect to the amine compound supplied to the flow reactor.
- organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, valeric acid, isovaleric acid, caproic acid, 2-ethylbutyric acid, caprylic acid, 2-ethylhexanoic acid, oleic acid , Acetic anhydride, propionic anhydride, butyric anhydride, citric acid, lactic acid, oxalic acid, octylic acid, naphthenic acid, neodecanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid , Ligrinoselic acid, cerotic acid, montanic acid, mellic acid, succinic acid, lindelic acid, tuzuic acid, mascotic acid, myristoleic acid, zomarinic acid, petroceric acid, vaccenic acid, gadole
- acetic acid propionic acid
- butyric acid and isobutyric acid
- acetic acid and propionic acid are more preferable.
- the organic acid when the organic acid is a solid, it may be dissolved in epichlorohydrin or a solvent and supplied as an organic acid-containing solution.
- the organic acid when the organic acid is a liquid, it may be supplied as it is, or may be supplied after being diluted with epichlorohydrin or a solvent.
- the supply amount of the organic acid is 0.01 to 20 times by weight, more preferably 0.05 to 10 times by weight with respect to the amine compound to be supplied to the flow reactor.
- a solvent may be used as long as the reaction between the amine compound and epichlorohydrin is not inhibited.
- a solvent may be used to make it into a solution.
- alcohol solvents include primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, isopropanol, 2-butanol, 2-pentanol, 3 -Secondary alcohols such as pentanol, 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tert-butanol, tert-pentanol, ethylene glycol and propylene glycol.
- primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, isopropanol, 2-butanol, 2-pentanol, 3 -Secondary alcohols such as pentanol, 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tert-butan
- hydrocarbon solvents hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, benzene, toluene, xylene, ethylbenzene , Cumene, mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane and ethylcyclohexane.
- examples of the ether solvent include diisopropyl ether, dibutyl ether, dihexyl ether, anisole, phenetole, diphenyl ether, tetrahydrofuran, tetrahydropyran, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol dibutyl ether.
- ester solvents include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, and isobutyl acetate.
- preferred solvents are methanol, ethanol, 1-propanol, 1-butanol, isopropanol, 2-butanol, tert-butanol, cyclohexane, toluene, xylene, ethylbenzene, cumene, mesitylene and diethylbenzene.
- the supply amount of the solvent is preferably 0.1 to 20 times by weight, more preferably 1 to 10 times by weight, with respect to the amine compound supplied to the flow reactor.
- an amine compound or a solution thereof, (2) epichlorohydrin or a solution thereof, and (3) an acidic compound or a solution thereof are continuously supplied to a flow reactor using a liquid feed pump or the like. It is carried out by supplying automatically. If there is no problem in safety, (1) amine compound or solution thereof, (2) epichlorohydrin or solution thereof, and (3) acidic compound or solution thereof are mixed together as one solution, It may be supplied to the flow reactor.
- FIG. 1 is a flowchart showing an example of the configuration of a reaction apparatus used in the production method of the present invention.
- a reaction raw material liquid 1 is a reaction raw material liquid consisting of (1) an amine compound solution and (2) an epichlorohydrin solution
- reaction accelerator 2 is (3) an acidic compound solution.
- the tubular reactor 6 is installed in the thermostat 5 and the temperature is adjusted.
- the reaction raw material liquid 1 and the reaction accelerator 2 are continuously supplied to the tubular reactor 6 at a predetermined flow rate by the reaction raw material supply pump 3 and the reaction accelerator supply pump 4. At this time, the supply rate is adjusted so that the liquid space velocity of the reaction raw material liquid 1 and the reaction accelerator 2 in the tubular reactor 6 is 0.2 to 10 h ⁇ 1 .
- the feed rate of the reaction raw material liquid 1 and the reaction accelerator 2 and the temperature of the thermostat are adjusted so that the temperature of the addition reaction is 40 to 130 ° C.
- the compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group is continuously and stably produced in the tubular reactor 6.
- the obtained compound having N, N-bis (2-hydroxy-3-chloropropyl) amino group is continuously transferred to the reaction solution receiver 7.
- the reaction conditions of the present invention are such that the starting amino compound contained in the reaction solution that has passed through the flow reactor is completely consumed, and when the amine compound is a monoamine, N- (2-hydroxy), which is an intermediate adduct.
- the conditions under which the residual amount of N, N, N′-tri (2-hydroxy-3-chloropropyl) diamine compound as an intermediate triadduct is minimized It is preferable to set to.
- the addition reaction solution in which a large amount of the intermediate N- (2-hydroxy-3-chloropropyl) amine compound or N, N, N'-tri (2-hydroxy-3-chloropropyl) diamine compound remains is removed with an alkali.
- the polyfunctional glycidylamine type epoxy compound obtained by hydrogen chloride has low purity. For example, when a cured product is produced using a low-purity polyfunctional glycidylamine type epoxy compound, the physical properties thereof are low. Also obtained from the addition reaction solution in which a large amount of the intermediate N- (2-hydroxy-3-chloropropyl) amine compound or N, N, N′-tri (2-hydroxy-3-chloropropyl) diamine compound remained. When it is going to refine
- the reaction temperature of the present invention is usually 40 to 130 ° C, preferably 50 to 120 ° C, more preferably 60 to 115 ° C. 40 degreeC or more is preferable from a viewpoint of reaction rate, and 130 degrees C or less is preferable from a viewpoint of suppressing a side reaction.
- the liquid space velocity of the reaction liquid in the reactor is 0.2 to 10 h ⁇ 1 , preferably 0.5 to 5 h ⁇ 1 .
- the liquid space velocity is less than 0.2 h ⁇ 1 , the compound having N, N-bis (2-hydroxy-3-chloropropyl) amino group is impure, and the purity of the obtained polyfunctional glycidyl aniline type epoxy compound Will fall. Furthermore, the viscosity of the epoxy compound may increase.
- a liquid space velocity is calculated
- feed rate to the reactor (ml / min) is the sum of (1) amine compound or solution thereof, (2) epichlorohydrin or solution thereof, and (3) acidic compound or solution thereof.
- the feed rate (ml / min) is the volume (ml) of water when the inside of the reactor is filled with water.
- an inlet for introducing (1) an amine compound or a solution thereof, (2) epichlorohydrin or a solution thereof, and (3) an acidic compound or a solution thereof is provided on one side of the reactor.
- An example is provided of an outlet having a reaction solution staying in the reactor for a certain period of time and then exiting from the side opposite to the reactor inlet.
- a preferable reactor shape is a tubular reaction tube.
- the tubular reaction tube refers to a reaction tube having a length (L) to diameter (D) ratio (L / D) of 2 or more.
- the reactor it is preferable to charge the reactor with a packing that does not participate in the reaction in order to accelerate the mass transfer and heat transfer in the reaction solution, that is, to increase the stirring effect.
- the actual space volume of the reactor can be calculated from the volume of water required to fill the reactor with water. The same calculation can be performed when the reactor is filled with packing material.
- packing include beads, Raschig rings, pole rings, Berle saddles, interlock saddles, terrarettes, hedgehogs, Hilex, cascade mini rings, impulse packing, sulzer packing, helipacks and the like.
- materials include magnetism, metal, and plastic, and are appropriately selected. From the viewpoint of heat conduction, metal fillers are preferably used.
- the compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group thus obtained is dehydrochlorinated with an alkali to cause a cyclization reaction, whereby a polyfunctional glycidylamine is obtained.
- the process for producing a compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group according to the present invention is an “addition reaction process”, and the obtained N, N-bis (2-hydroxy-3-chloro) is obtained.
- the step of producing a polyfunctional glycidylamine type epoxy compound from a compound having a propyl) amino group is sometimes referred to as a “cyclization reaction step”.
- Examples of the alkali used in the cyclization reaction step include lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, magnesium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, barium carbonate, magnesium carbonate.
- the alkali itself may be added to the solution obtained by the addition reaction, or may be dissolved in water or an organic solvent and dropped as a solution.
- the amount of alkali used is preferably 1 to 15 mol times the amine compound.
- the cyclization reaction is preferably performed in the presence of a quaternary ammonium salt and / or a quaternary phosphonium salt. By adding and coexisting these salts, the reaction is promoted and the yield of the polyfunctional glycidylamine epoxy compound is improved.
- Quaternary ammonium salts include tetramethylammonium, trimethyl-ethylammonium, dimethyldiethylammonium, triethyl-methylammonium, tripropyl-methylammonium, tributyl-methylammonium, trioctyl-methylammonium, tetraethylammonium, trimethyl-propylammonium, Trimethylphenylammonium, benzyltrimethylammonium, benzyltriethylammonium, diallyldimethylammonium, n-octyltrimethylammonium, stearyltrimethylammonium, cetyldimethylethylammonium, tetrapropylammonium, tetran-butylammonium, ⁇ -methylcholine, phenyltrimethylammonium, etc.
- Bromide, salt Salt, iodine Casio may be mentioned hydrogen sulfate and hydroxide, and the like. Particularly preferred are trioctyl-methylammonium, tetraethylammonium, benzyltrimethylammonium, benzyltriethylammonium, tetra-n-butylammonium bromide, chloride, hydrogensulfate and hydroxide.
- the quaternary phosphonium salts include tetramethylphosphonium, trimethyl-ethylphosphonium, dimethyldiethylphosphonium, triethyl-methylphosphonium, tripropyl-methylphosphonium, tributyl-methylphosphonium, trioctyl-methylphosphonium, tetraethylphosphonium, trimethyl-propylphosphonium.
- the amount of quaternary ammonium salt and / or quaternary phosphonium salt added may be a catalytic amount, and is preferably 0.001 to 0.5 molar times the amine compound.
- the reaction temperature is preferably 0 to 90 ° C, more preferably 10 to 70 ° C.
- the reaction time is preferably 0.5 to 10 hours after the addition of the alkali compound is completed.
- alkali, quaternary ammonium salt and / or quaternary phosphonium salt may be added to the solution obtained in the addition reaction step, or a new solvent may be added.
- a new solvent may be added.
- solvent added in the cyclization reaction step alcohol solvents, hydrocarbon solvents, ether solvents and ester solvents are preferably used.
- alcohol solvents include primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, isopropanol, 2-butanol, 2-pentanol, 3-pentanol, Secondary alcohols such as 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tert-butanol, tert-pentanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n- Propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monophenyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene Glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol, triethylene glycol mono
- hydrocarbon solvent examples include hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, benzene, toluene, xylene, Examples include ethylbenzene, cumene, mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
- ether solvent examples include diisopropyl ether, dibutyl ether, dihexyl ether, anisole, phenetole, diphenyl ether, tetrahydrofuran, tetrahydropyran, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol dibutyl ether.
- ester solvents include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, and isobutyl acetate.
- preferred solvents are methanol, ethanol, 1-propanol, 1-butanol, isopropanol, 2-butanol, tert-butanol, cyclohexane, toluene, xylene, ethylbenzene, cumene, mesitylene and diethylbenzene.
- the amount of the solvent used in the cyclization reaction step is preferably 0.1 to 20 times by weight, more preferably 1 to 10 times by weight with respect to the amine compound.
- the polyfunctional glycidylamine type epoxy compound which is the target product is isolated by (1) removing unreacted raw materials, (2) distilling off the reaction solvent, (3) extraction with a hydrophobic solvent, (4) extraction. This can be achieved by a combination of general unit operations such as solvent distillation, (5) distillation and (6) crystallization.
- an organic solvent such as toluene is added to the liquid after the cyclization reaction, the polyfunctional glycidylamine type epoxy compound is extracted into the oil layer, and the aqueous layer is separated and removed. Furthermore, it is preferable to completely remove the salt dissolved in the oil layer by washing the obtained oil layer with water.
- the amount of the organic solvent used is preferably 0.2 to 50 times by weight, more preferably 1 to 20 times by weight with respect to the object of the present invention.
- a polyfunctional glycidylamine type epoxy compound can be obtained by distilling low boiling components such as extraction solvent and unreacted epichlorohydrin from the obtained oil layer.
- low boiling components such as extraction solvent and unreacted epichlorohydrin
- a thin film distillation apparatus may be used. Examples of the thin film distillation apparatus include a centrifugal molecular distillation apparatus and a falling film molecular distillation apparatus. The extracted solvent, unreacted epichlorohydrin and the like may be reused.
- the polyfunctional glycidylamine type epoxy compound produced using the compound having an N, N-bis (2-hydroxy-3-chloropropyl) amino group obtained by the production method of the present invention has a chemical purity of 80%. Or more, preferably 90 or more.
- the chemical purity of the polyfunctional glycidylamine type epoxy compound is less than 80%, the storage stability is lowered, and the cured resin cured by the curing agent may not have the desired physical properties.
- the chemical purity of the polyfunctional glycidylamine type epoxy compound is determined by the fraction of the peak area of the polyfunctional glycidylamine type epoxy compound as measured by the method described later using high performance liquid chromatography (HPLC area% ).
- XX weight times / amine compound means that the amount added is XX weight times the weight of the amine compound.
- XX mole times / amine compound means that the amount added is XX mole times the mole amount of the amine compound.
- the liquid space velocity in the reaction tube of the reaction liquid at this time was 3.0 h ⁇ 1 ).
- the supply amount of iron (III) chloride is 0.06 mol times the amine compound supplied to the tubular reactor.
- the addition reaction liquid 150g which came out from the reactor exit was acquired.
- a purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted. As a result, the purity was 96.0% (HPLC area%). .
- Cyclization reaction To the reaction solution obtained above, 1.8 g of tetra n-butylammonium hydrogen sulfate (0.03 mole times / 4-phenoxyaniline), 97.6 g of 22% aqueous sodium hydroxide solution (3.0 mole times / 4-phenoxy) Aniline) was added, and the mixture was stirred at a reaction temperature of 30 ° C. for 2 hours for cyclization.
- Example 2 Addition reaction: In Example 1, as an acidic compound solution, 0.13 g / min. Of acetic acid was used instead of 11 wt% (iron (III) chloride) / isopropanol solution. In addition, the solution was sent to a 5/8 inch SUS304 tube reactor (inner diameter: 13.4 mm, length: 600 mm, space volume: 33 ml (filled with an alumina ball of ⁇ 3 mm)) set at 80 ° C. in a thermostatic chamber. Were carried out in the same manner as in Example 1. The liquid space velocity in the reaction tube of the reaction liquid at this time was 2.0 h ⁇ 1 .
- the supply amount of acetic acid is 1.5 mol times with respect to the amine compound supplied to a tubular reactor.
- a purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted, and the purity was 95.5% (HPLC area%). .
- Cyclization reaction The cyclization reaction was carried out in the same manner as in Example 1 except that 164 g of a 22% aqueous sodium hydroxide solution (5.0 mole times / 4-phenoxyaniline) was added to the reaction solution obtained by the above addition reaction.
- Example 3 Addition reaction: In Example 2, a 5/8 inch SUS304 tubular reactor (inner diameter: 13.4 mm, length: 400 mm, space volume 48 ml (manufactured by Shibata Chemical Co., Ltd., SUS316L Helipack No. 1 filling)) was used. The addition reaction was carried out in the same manner as in Example 2 except that. The liquid space velocity in the reaction tube of the reaction liquid at this time was 1.4 h ⁇ 1 . When purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was performed, the purity was 96.5% (HPLC area%). .
- Example 4 Addition reaction: In Example 2, a 5/8 inch SUS304 tubular reactor (inner diameter: 13.4 mm, length: 1000 mm, space volume: 120 ml (manufactured by Shibata Chemical Co., Ltd., SUS316L made by Helipack No. 1)) was used. The addition reaction was carried out in the same manner as in Example 2 except that. The liquid space velocity in the reaction tube of the reaction liquid at this time was 0.5 h ⁇ 1 . A purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted, and the purity was 92.6% (HPLC area%). .
- the liquid space velocity in the reaction tube of the reaction liquid at this time was 1.4 h ⁇ 1 .
- a purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted, and the purity was 95.9% (HPLC area%). .
- the liquid space velocity in the reaction tube of the reaction liquid was 20 h ⁇ 1 .
- the supply amount of acetic acid is 1.5 mol times with respect to the amine compound supplied to a flow reactor.
- the liquid space velocity in the reaction tube of the reaction liquid at this time was 0.1 h ⁇ 1 .
- the supply amount of acetic acid is 1.5 mol times with respect to the amine compound supplied to a flow reactor.
- a purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted. As a result, the purity was 78.3% (HPLC area%).
- Example 3 (Comparative Example 3) Addition reaction: In Example 2, an addition reaction was performed in the same manner as in Example 2 except that the acidic compound was not supplied. The liquid space velocity in the reaction tube of the reaction liquid at this time was 2.0 h ⁇ 1 . When purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted, the purity was 30.2% (HPLC area%).
- Example 4 Addition reaction: In Example 2, 0.04 g / min. Of water was used instead of the acidic compound. The addition reaction was carried out in the same manner as in Example 2 except that the reaction was carried out. The liquid space velocity in the reaction tube of the reaction liquid at this time was 1.4 h ⁇ 1 . In addition, the supply amount of water is 1.5 mol times with respect to the amine compound supplied to the tubular reactor. When purity analysis of 4-phenoxy-N, N-bis (2-hydroxy-3-chloropropyl) aniline in the obtained reaction solution was conducted, the purity was 23.0% (HPLC area%).
- Cyclization reaction To the reaction solution obtained above, 1.45 g of tetra n-butylammonium hydrogen sulfate (0.03 mol times / 3,4′-diaminodiphenyl ether), 181.7 g of 22% aqueous sodium hydroxide solution (7.0 mol times / 3,4′-diaminodiphenyl ether) was added and the mixture was stirred at a reaction temperature of 30 ° C. for 2 hours for cyclization.
- Example 7 Addition reaction: In Example 6, lactic acid as an acidic compound was 0.12 g / min. The addition reaction was carried out in the same manner as in Example 6 except that the reaction was carried out. In addition, the supply amount of lactic acid is 1.5 mol times with respect to the amine compound supplied to the tubular reactor. The liquid space velocity in the reaction tube of the reaction liquid at this time was 0.7 h ⁇ 1 . A purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 3,4′-diaminodiphenyl ether in the obtained reaction solution was conducted, and the purity was 93.0% ( HPLC area%).
- Cyclization reaction A cyclization reaction was performed in the same manner as in Example 6 using the reaction solution obtained by the above addition reaction.
- the liquid space velocity in the reaction tube of the reaction liquid at this time was 20.0 h ⁇ 1 .
- a purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 3,4′-diaminodiphenyl ether in the obtained reaction solution was conducted. As a result, the purity was 30.3% ( HPLC area%).
- Cyclization reaction A cyclization reaction was performed in the same manner as in Example 6 using the reaction solution obtained by the above addition reaction.
- Cyclization reaction A cyclization reaction was performed in the same manner as in Example 6 using the reaction solution obtained by the above addition reaction.
- Example 6 (Comparative Example 7) Addition reaction: In Example 6, the addition reaction was performed in the same manner as in Example 6 except that the reaction temperature was 30 ° C. A purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 3,4′-diaminodiphenyl ether in the obtained reaction solution was conducted and the purity was 7.0% ( HPLC area%).
- Cyclization reaction A cyclization reaction was performed in the same manner as in Example 6 using the reaction solution obtained by the above addition reaction.
- Example 6 (Comparative Example 8) Addition reaction: In Example 6, an addition reaction was performed in the same manner as in Example 6 except that the acidic compound was not used. When the purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 3,4′-diaminodiphenyl ether in the obtained reaction solution was performed, N, N, N ′, Formation of N′-tetrakis (2-hydroxy-3-chloropropyl) 3,4′-diaminodiphenyl ether could not be confirmed. For this reason, the cyclization reaction was not performed.
- the supply amount of acetic acid is 1.5 mol times with respect to the amine compound supplied to a tubular reactor. 200 g of addition reaction liquid that came out from the reactor outlet was obtained. A purity analysis of N, N-bis (2-hydroxy-3-chloropropyl) -m-aminophenol in the obtained reaction solution was conducted, and the purity was 98.1% (HPLC area%). .
- Cyclization reaction To the reaction solution obtained above, 52.9 g of isopropyl alcohol (4.5 mol times / m-aminophenol) and 186.8 g of a 22% aqueous sodium hydroxide solution (5.3 mol times / m-aminophenol) were added. The mixture was stirred at a reaction temperature of 40 ° C. for 2 hours to cause a cyclization reaction.
- Cyclization reaction The reaction solution obtained by the above addition reaction was used except that the reaction temperature was 30 ° C. and 1.97 g of tetra n-butylammonium hydrogen sulfate (0.03 mol / m-aminophenol) was used as a phase transfer catalyst. The cyclization reaction was carried out in the same manner as in Example 8.
- Example 8 Addition reaction: In Example 8, the addition reaction was performed in the same manner as in Example 8 except that the reaction temperature was 30 ° C. A purity analysis of N, N-bis (2-hydroxy-3-chloropropyl) -m-aminophenol in the obtained reaction solution was conducted. As a result, the purity was 87.1% (HPLC area%).
- Example 12 Addition reaction: In Example 8, an addition reaction was performed in the same manner as in Example 8 except that the acidic compound was not supplied. The liquid space velocity in the reaction tube of the reaction liquid at this time was 1.4 h ⁇ 1 . A purity analysis of N, N-bis (2-hydroxy-3-chloropropyl) -m-aminophenol in the obtained reaction solution was conducted. As a result, the purity was 74.8% (HPLC area%).
- Cyclization reaction To the reaction solution obtained above, 1.46 g of tetra n-butylammonium hydrogensulfate (0.03 mole times / 4,4′-diaminodiphenylmethane), 182.0 g of 22% aqueous sodium hydroxide solution (7.0 mole times / 4,4′-diaminodiphenylmethane) was added, and the mixture was stirred at a reaction temperature of 30 ° C. for 2 hours for cyclization.
- the liquid space velocity in the reaction tube of the reaction liquid at this time was 20.0 h ⁇ 1 .
- a purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 4,4′-diaminodiphenylmethane in the obtained reaction solution was conducted. As a result, the purity was 16.8% ( HPLC area%).
- Example 14 Addition reaction: In Example 9, acetic acid was added to a 5/8 inch SUS304 tube reactor (inner diameter: 13.4 mm, length: 800 mm, space volume: 96 ml (manufactured by Shibata Chemical Co., Ltd., SUS316L Helipack No. 1)). 0.012 g / min.
- the liquid space velocity in the reaction tube of the reaction liquid at this time was 0.1 h ⁇ 1 .
- the purity was 51.7% ( HPLC area%).
- Example 9 Addition reaction: In Example 9, the addition reaction was performed in the same manner as in Example 9 except that the reaction temperature was 30 ° C. A purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 4,4′-diaminodiphenylmethane in the obtained reaction solution was conducted, and the purity was 18.6% ( HPLC area%).
- Example 9 Addition reaction: In Example 9, an addition reaction was performed in the same manner as in Example 9 except that no acidic compound was used. When the purity analysis of N, N, N ′, N′-tetrakis (2-hydroxy-3-chloropropyl) 4,4′-diaminodiphenylmethane in the obtained reaction solution was performed, N, N, N ′, Formation of N′-tetrakis (2-hydroxy-3-chloropropyl) 4,4′-diaminodiphenyl ether could not be confirmed. For this reason, the cyclization reaction was not performed.
- the supply amount of acetic acid is 1.5 mol times with respect to the amine compound supplied to a tubular reactor. 200 g of addition reaction liquid that came out from the reactor outlet was obtained. A purity analysis of N, N-bis (2-hydroxy-3-chloropropyl) -aniline in the obtained reaction solution was conducted. As a result, the purity was 98.6% (HPLC area%).
- Cyclization reaction To the reaction solution obtained above, 2.76 g of tetra n-butylammonium hydrogen sulfate (0.03 mol / aniline) and 226.3% aqueous sodium hydroxide solution 246.3 (5.0 mol / aniline) were added, The mixture was stirred at a reaction temperature of 30 ° C. for 2 hours for cyclization.
- Example 10 Addition reaction: In Example 10, an addition reaction was performed in the same manner as in Example 10 except that the reaction temperature was 30 ° C. A purity analysis of N, N-bis (2-hydroxy-3-chloropropyl) -aniline in the obtained reaction solution was conducted, and the purity was 80.7% (HPLC area%).
- Example 10 Addition reaction: In Example 10, an addition reaction was performed in the same manner as in Example 10 except that no acidic compound was used. The purity of N, N-bis (2-hydroxy-3-chloropropyl) -aniline in the obtained reaction solution was analyzed. As a result, N, N-bis (2-hydroxy-3-chloropropyl) -aniline was analyzed. Generation could not be confirmed. For this reason, the cyclization reaction was not performed.
- Reaction conditions and evaluation results of Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1
- reaction conditions and evaluation results of Examples 6 to 7 and Comparative Examples 5 to 8 are shown in Table 2
- Example 8 and Comparative Example The reaction conditions and evaluation results of 9 to 12 are shown in Table 3
- the reaction conditions and evaluation results of Example 9 and Comparative Examples 13 to 16 are shown in Table 4
- the reaction conditions and evaluation results of Example 10 and Comparative Examples 17 to 20 are shown in Table 4.
- Table 5 summarizes each.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epoxy Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
なお、本明細書において液空間速度は、下記式で求められる。
以下の条件の液体クロマトグラフィー(島津製作所製CLASS-VP)により、N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミン化合物および多官能グリシジルアミン型エポキシ化合物のピーク面積の分率(HPLC area%)を測定し、化学純度とした。
・カラム: YMC―Pack ODS-AM303 4.6φ×250mm
・カラム温度: 40℃
・移動相: 0.1%(v/v)リン酸水溶液を組成(A)、メタノールを組成(B)と し、体積比(A):(B)=40:60の混合液を移動相とした。
・流量: 1ml/min
・注入量: 3μl
・検出: UV 254nm
・分析時間: 80分
・分析サンプル調製:サンプル0.02gを秤量し、メタノール約50mlに希釈
ただし、上記の分析条件に基づく分析結果と同じ結果が得られる限り、この分析条件に限定されるものではない。
付加反応:
図1に示す装置を用いて、反応原料液として、25重量%(4-フェノキシアニリン)/エピクロロヒドリン溶液(4-フェノキシアニリン:エピクロロヒドリン=1:6(モル比))、および酸性化合物溶液として11重量%(塩化鉄(III))/イソプロパノール溶液を送液ポンプにより、それぞれ供給速度1.10g/min.、0.14g/min.で恒温槽内60℃に設置されている5/8インチSUS304製管型反応器(内径:13.4mm、長さ:400mm、空間体積:22ml(φ3mmのアルミナボール充填))へ送液した(この際の反応液の反応管内液空間速度は、3.0h-1であった)。なお、塩化鉄(III)の供給量は、管型反応器に供給するアミン化合物に対し、0.06モル倍である。反応器出口から出てきた付加反応液150gを取得した。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は、96.0%(HPLC area%)であった。
上記で得られた反応液に硫酸水素テトラn-ブチルアンモニウム1.8g(0.03モル倍/4-フェノキシアニリン)、22%水酸化ナトリウム水溶液97.6g(3.0モル倍/4-フェノキシアニリン)を添加し、反応温度30℃で2時間撹拌し、環化反応させた。
付加反応:
実施例1において、酸性化合物溶液として、11重量%(塩化鉄(III))/イソプロパノール溶液の代わりに酢酸を0.13g/min.で恒温槽内80℃に設定されている5/8インチSUS304製管型反応器(内径:13.4mm、長さ:600mm、空間体積:33ml(φ3mmのアルミナボール充填))へ送液した以外は、実施例1と同様にして付加反応を実施した。この際の反応液の反応管内液空間速度は、2.0h-1であった。なお、酢酸の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は、95.5%(HPLC area%)であった。
上記付加反応で得られた反応液に、22%水酸化ナトリウム水溶液164g(5.0モル倍/4-フェノキシアニリン)を添加したこと以外、実施例1と同様にして環化反応を実施した。
付加反応:
実施例2において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:400mm、空間体積が48ml(柴田化学社製、SUS316L製Helipack No.1充填))を使用したこと以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、1.4h-1であった。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は、96.5%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
実施例2において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:1000mm、空間体積が120ml(柴田化学社製、SUS316L製Helipack No.1充填))を使用したこと以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、0.5h-1であった。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は、92.6%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
実施例2において、反応原料液として、16.6重量%(4-フェノキシアニリン)/(エピクロロヒドリン+トルエン)溶液(4-フェノキシアニリン:エピクロロヒドリン=1:6(モル比))を供給速度1.65g/min.で送液し、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:600mm、空間体積が72ml(柴田化学社製、SUS316L製Helipack No.1充填))を用いたこと以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、1.4h-1であった。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は、95.9%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
実施例2において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:200mm、空間体積が24ml(柴田化学社製、SUS316L製Helipack No.1充填))を使用し、反応原料液として、25重量%(4-フェノキシアニリン)/エピクロロヒドリン溶液(4-フェノキシアニリン:エピクロロヒドリン=1:6(モル比))を供給速度8.0g/min.、酢酸を0.95g/min.で供給した以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、20h-1であった。なお、酢酸の供給量は、流通反応器に供給するアミン化合物に対し、1.5モル倍である。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は41.6%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
実施例2において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:1000mm、空間体積が120ml(柴田化学社製、SUS316L製Helipack No.1充填))を使用し、反応原料液として、25重量%(4-フェノキシアニリン)/エピクロロヒドリン溶液(4-フェノキシアニリン:エピクロロヒドリン=1:6(モル比))を供給速度0.22g/min.、酢酸を0.026g/min.で供給した以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、0.1h-1であった。なお、酢酸の供給量は、流通反応器に供給するアミン化合物に対し、1.5モル倍である。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は78.3%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
実施例2において、酸性化合物を供給しなかった以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、2.0h-1であった。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は30.2%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
実施例2において、酸性化合物の代わりに水を0.04g/min.で供給した以外は実施例2と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、1.4h-1であった。なお、水の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。得られた反応液中の4-フェノキシ-N,N-ビス(2-ヒドロキシ-3-クロロプロピル)アニリンの純度分析を行ったところ、純度は23.0%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例2と同様にして環化反応を実施した。
付加反応:
図1に示す装置を用いて、反応原料液として、15.3重量%(3,4’-ジアミノジフェニルエーテル)/エピクロロヒドリン溶液(3,4’-ジアミノジフェニルエーテル:エピクロロヒドリン=1:12(モル比))、および酸性化合物溶液として酢酸を送液ポンプにより、それぞれ供給速度1.16g/min.、0.08g/min.で恒温槽内80℃に設置されている5/8インチSUS304製管型反応器(内径:13.4mm、長さ:800mm、空間体積:96ml(柴田化学社製、SUS316L製Helipack No.1充填))へ送液した(この際の反応液の反応管内液空間速度は、0.7h-1であった)。なお、酢酸の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。反応器出口から出てきた付加反応液200gを取得した。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの純度分析を行ったところ、純度は、93.5%(HPLC area%)であった。
上記で得られた反応液に硫酸水素テトラn-ブチルアンモニウム1.45g(0.03モル倍/3,4’-ジアミノジフェニルエーテル)、22%水酸化ナトリウム水溶液181.7g(7.0モル倍/3,4’-ジアミノジフェニルエーテル)を添加し、反応温度30℃で2時間撹拌し、環化反応させた。
付加反応:
実施例6において、酸性化合物として乳酸を0.12g/min.で供給した以外は実施例6と同様にして付加反応を行った。なお、乳酸の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。この際の反応液の反応管内液空間速度は、0.7h-1であった。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの純度分析を行ったところ、純度は93.0%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例6と同様にして環化反応を実施した。
付加反応:
実施例6において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:200mm、空間体積:24ml(柴田化学社製、SUS316L製Helipack No.1充填))へ酢酸の供給速度を0.57g/min.、3,4’-ジアミノジフェニルエーテル/エピクロロヒドリン溶液(3,4’-ジアミノジフェニルエーテル:エピクロロヒドリン=1:12(モル比))を8.32g/minで供給した以外は実施例6と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、20.0h-1であった。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの純度分析を行ったところ、純度は30.3%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例6と同様にして環化反応を実施した。
付加反応:
実施例6において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:800mm、空間体積:96ml(柴田化学社製、SUS316L製Helipack No.1充填))へ、酢酸を0.012g/min.、3,4’-ジアミノジフェニルエーテル/エピクロロヒドリン溶液(3,4’-ジアミノジフェニルエーテル:エピクロロヒドリン=1:12(モル比))を0.174g/minで供給した以外は実施例6と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、0.1h-1であった。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの純度分析を行ったところ、純度は52.3%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例6と同様にして環化反応を実施した。
付加反応:
実施例6において、反応温度を30℃とした以外は実施例6と同様にして付加反応を行った。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの純度分析を行ったところ、純度は7.0%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例6と同様にして環化反応を実施した。
付加反応:
実施例6において、酸性化合物を用いなかった以外は実施例6と同様にして付加反応を行った。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの純度分析を行ったところ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)3,4’-ジアミノジフェニルエーテルの生成は確認できなかった。このため環化反応を行わなかった。
付加反応:
図1に示す装置を用いて、反応原料液として、11.6重量%(m-アミノフェノール)/エピクロロヒドリン溶液(m-アミノフェノール:エピクロロヒドリン=1:9(モル比))、および酸性化合物溶液として酢酸を送液ポンプにより、それぞれ供給速度1.13g/min.、0.11g/min.で恒温槽内70℃に設置されている5/8インチSUS304製管型反応器(内径:13.4mm、長さ:400mm、空間体積:48ml(柴田化学社製、SUS316L製Helipack No.1充填))へ送液した(この際の反応液の反応管内液空間速度は、1.4h-1であった)。なお、酢酸の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。反応器出口から出てきた付加反応液200gを取得した。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-m-アミノフェノールの純度分析を行ったところ、純度は、98.1%(HPLC area%)であった。
上記で得られた反応液にイソプロピルアルコールを52.9g(4.5モル倍/m-アミノフェノール)、22%水酸化ナトリウム水溶液186.8g(5.3モル倍/m-アミノフェノール)を添加し、反応温度40℃で2時間撹拌し、環化反応させた。
付加反応:
実施例8において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:200mm、空間体積:24ml(柴田化学社製、SUS316L製Helipack No.1充填))へ酢酸の供給速度を0.78g/min.、m-アミノフェノール/エピクロロヒドリン溶液(m-アミノフェノール:エピクロロヒドリン=1:9(モル比))を8.11g/minで供給した以外は実施例8と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、20.0h-1であった。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-m-アミノフェノールの純度分析を行ったところ、純度は59.4%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、反応温度30℃、相関移動触媒として硫酸水素テトラn-ブチルアンモニウム1.97g(0.03モル倍/m-アミノフェノール)を用いた以外は実施例8と同様にして環化反応を実施した。
付加反応:
実施例8において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:800mm、空間体積:96ml(柴田化学社製、SUS316L製Helipack No.1充填))へ、酢酸を0.016g/min.、m-アミノフェノール/エピクロロヒドリン溶液(m-アミノフェノール:エピクロロヒドリン=1:9(モル比))を0.170g/minで供給した以外は実施例6と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、0.1h-1であった。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-m-アミノフェノールの純度分析を行ったところ、純度は77.7%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、比較例9と同様にして環化反応を実施した。
付加反応:
実施例8において、反応温度を30℃とした以外は実施例8と同様にして付加反応を行った。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-m-アミノフェノールの純度分析を行ったところ、純度は87.1%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、比較例9と同様にして環化反応を実施した。
付加反応:
実施例8において、酸性化合物を供給しなかった以外は実施例8と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、1.4h-1であった。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-m-アミノフェノールの純度分析を行ったところ、純度は74.8%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、比較例9と同様にして環化反応を実施した。
付加反応:
図1に示す装置を用いて、反応原料液として、15.2重量%(4,4’-ジアミノジフェニルメタン)/エピクロロヒドリン溶液(4,4’-ジアミノジフェニルメタン:エピクロロヒドリン=1:12(モル比))、および酸性化合物溶液として酢酸を送液ポンプにより、それぞれ供給速度1.16g/min.、0.08g/min.で恒温槽内80℃に設置されている5/8インチSUS304製管型反応器(内径:13.4mm、長さ:400mm、空間体積:48ml(柴田化学社製、SUS316L製Helipack No.1充填))へ送液した(この際の反応液の反応管内液空間速度は、1.4h-1であった)。なお、酢酸の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。反応器出口から出てきた付加反応液200gを取得した。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)4,4’-ジアミノジフェニルメタンの純度分析を行ったところ、純度は、93.9%(HPLC area%)であった。
上記で得られた反応液に硫酸水素テトラn-ブチルアンモニウム1.46g(0.03モル倍/4,4’-ジアミノジフェニルメタン)、22%水酸化ナトリウム水溶液182.0g(7.0モル倍/4,4’-ジアミノジフェニルメタン)を添加し、反応温度30℃で2時間撹拌し、環化反応させた。
付加反応:
実施例9において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:200mm、空間体積:24ml(柴田化学社製、SUS316L製Helipack No.1充填))へ酢酸の供給速度を0.57g/min.、4,4’-ジアミノジフェニルメタン/エピクロロヒドリン溶液(4,4’-ジアミノジフェニルメタン:エピクロロヒドリン=1:12(モル比))を8.32g/minで供給した以外は実施例9と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、20.0h-1であった。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)4,4’-ジアミノジフェニルメタンの純度分析を行ったところ、純度は16.8%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例9と同様にして環化反応を実施した。
付加反応:
実施例9において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:800mm、空間体積:96ml(柴田化学社製、SUS316L製Helipack No.1充填))へ、酢酸を0.012g/min.、4,4’-ジアミノジフェニルメタン/エピクロロヒドリン溶液(4,4’-ジアミノジフェニルメタン:エピクロロヒドリン=1:12(モル比))を0.174g/minで供給した以外は実施例9と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、0.1h-1であった。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)4,4’-ジアミノジフェニルメタンの純度分析を行ったところ、純度は51.7%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例9と同様にして環化反応を実施した。
付加反応:
実施例9において、反応温度を30℃とした以外は実施例9と同様にして付加反応を行った。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)4,4’-ジアミノジフェニルメタンの純度分析を行ったところ、純度は18.6%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例9と同様にして環化反応を実施した。
付加反応:
実施例9において、酸性化合物を用いなかった以外は実施例9と同様にして付加反応を行った。得られた反応液中のN,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)4,4’-ジアミノジフェニルメタンの純度分析を行ったところ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)4,4’-ジアミノジフェニルエーテルの生成は確認できなかった。このため環化反応を行わなかった。
付加反応:
図1に示す装置を用いて、反応原料液として、14.4重量%(アニリン)/エピクロロヒドリン溶液(アニリン:エピクロロヒドリン=1:6(モル比))、および酸性化合物溶液として酢酸を送液ポンプにより、それぞれ供給速度1.09g/min.、0.15g/min.で恒温槽内70℃に設置されている5/8インチSUS304製管型反応器(内径:13.4mm、長さ:400mm、空間体積:48ml(柴田化学社製、SUS316L製Helipack No.1充填))へ送液した(この際の反応液の反応管内液空間速度は、1.4h-1であった)。なお、酢酸の供給量は、管型反応器に供給するアミン化合物に対し、1.5モル倍である。反応器出口から出てきた付加反応液200gを取得した。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-アニリンの純度分析を行ったところ、純度は、98.6%(HPLC area%)であった。
上記で得られた反応液に硫酸水素テトラn-ブチルアンモニウム2.76g(0.03モル倍/アニリン)、22%水酸化ナトリウム水溶液246.3(5.0モル倍/アニリン)を添加し、反応温度30℃で2時間撹拌し、環化反応させた。
付加反応:
実施例10において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:200mm、空間体積:24ml(柴田化学社製、SUS316L製Helipack No.1充填))へ酢酸の供給速度を1.08g/min.、アニリン/エピクロロヒドリン溶液(アニリン:エピクロロヒドリン=1:6(モル比))を7.8g/minで供給した以外は実施例10と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、20.0h-1であった。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-アニリンの純度分析を行ったところ、純度は74.1(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例10と同様にして環化反応を実施した。
付加反応:
実施例10において、5/8インチSUS304製管型反応器(内径:13.4mm、長さ:800mm、空間体積:96ml(柴田化学社製、SUS316L製Helipack No.1充填))へ、酢酸を0.023g/min.、アニリン/エピクロロヒドリン溶液(アニリン:エピクロロヒドリン=1:6(モル比))を0.163g/minで供給した以外は実施例10と同様にして付加反応を行った。この際の反応液の反応管内液空間速度は、0.1h-1であった。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-アニリンの純度分析を行ったところ、純度は86.8%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例10と同様にして環化反応を実施した。
付加反応:
実施例10において、反応温度を30℃とした以外は実施例10と同様にして付加反応を行った。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-アニリンの純度分析を行ったところ、純度は80.7%(HPLC area%)であった。
上記付加反応で得られた反応液を使用し、実施例10と同様にして環化反応を実施した。
付加反応:
実施例10において、酸性化合物を用いなかった以外は実施例10と同様にして付加反応を行った。得られた反応液中のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)-アニリンの純度分析を行ったところ、N,N-ビス(2-ヒドロキシ-3-クロロプロピル)-アニリンの生成は確認できなかった。このため環化反応を行わなかった。
2 反応促進剤
3 反応原料送液ポンプ
4 反応促進剤送液ポンプ
5 恒温槽
6 管型反応器
7 反応液受器
Claims (6)
- (1)アミン化合物またはその溶液、(2)エピクロロヒドリンまたはその溶液、および(3)酸性化合物またはその溶液、を流通反応器に連続的に供給し、反応温度40~130℃、液空間速度0.2~10h-1で反応させるN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法。
- 前記流通反応器として管型反応器を使用する請求項1記載のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法。
- 前記管型反応器に充填物が充填されている請求項2記載のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法。
- 前記酸性化合物が、ルイス酸または有機酸である請求項1~3のいずれかに記載のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法。
- 前記アミン化合物として、アニリン、トルイジン、フェノキシアニリン、アミノフェノール、ジアミノジフェニルエーテル、ジアミノジフェニルメタン、ジアミノジフェニルスルフォンから選ばれる一つを用いる請求項1~4のいずれかに記載のN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法。
- 請求項1~5のいずれかに記載の製造方法によりN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物を製造し、得られたN,N-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物をアルカリで脱塩化水素させて、多官能グリシジルアミン型エポキシ化合物を生成する多官能グリシジルアミン型エポキシ化合物の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/549,217 US10017485B2 (en) | 2015-02-13 | 2016-02-08 | Manufacturing method for compound having N,N-bis(2-hydroxy-3-chloropropyl)amino group |
JP2016520697A JP6147422B2 (ja) | 2015-02-13 | 2016-02-08 | N,n−ビス(2−ヒドロキシ−3−クロロプロピル)アミノ基を有する化合物の製造方法 |
EP16749205.7A EP3257840B1 (en) | 2015-02-13 | 2016-02-08 | Method for producing compound having n,n-bis(2-hydroxy-3-chloropropyl)amino group |
CN201680008518.7A CN107207408B (zh) | 2015-02-13 | 2016-02-08 | 具有n,n-双(2-羟基-3-氯丙基)氨基的化合物的制造方法 |
KR1020177019168A KR20170117025A (ko) | 2015-02-13 | 2016-02-08 | N,n-비스(2-히드록시-3-클로로프로필)아미노기를 갖는 화합물의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015026548 | 2015-02-13 | ||
JP2015-026548 | 2015-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129561A1 true WO2016129561A1 (ja) | 2016-08-18 |
Family
ID=56615271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053698 WO2016129561A1 (ja) | 2015-02-13 | 2016-02-08 | N,n-ビス(2-ヒドロキシ-3-クロロプロピル)アミノ基を有する化合物の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10017485B2 (ja) |
EP (1) | EP3257840B1 (ja) |
JP (1) | JP6147422B2 (ja) |
KR (1) | KR20170117025A (ja) |
CN (1) | CN107207408B (ja) |
WO (1) | WO2016129561A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018159053A (ja) * | 2017-03-21 | 2018-10-11 | 東レ・ファインケミカル株式会社 | 多官能グリシジルアミン型エポキシ化合物の製造方法 |
CN111233693A (zh) * | 2020-01-22 | 2020-06-05 | 浙江迪邦化工有限公司 | 一种3-n,n-二羟乙基氨基乙酰苯胺的生产方法和系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109516965A (zh) * | 2018-11-22 | 2019-03-26 | 西安元创化工科技股份有限公司 | 一种tgddm环氧树脂的合成方法 |
CN112724106A (zh) * | 2020-12-30 | 2021-04-30 | 西安元创化工科技股份有限公司 | 一种高纯度tgddm环氧树脂的合成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04145054A (ja) * | 1990-10-03 | 1992-05-19 | Daiso Co Ltd | 3―ハロ―2―ヒドロキシプロピルトリアルキルアンモニウムハライド水溶液の製造法 |
JP2012219081A (ja) * | 2011-04-12 | 2012-11-12 | Toray Fine Chemicals Co Ltd | 高純度ジグリシジルアミン系エポキシ化合物およびその製造方法 |
WO2013089006A1 (ja) * | 2011-12-15 | 2013-06-20 | 東レ・ファインケミカル株式会社 | グリシジルアミン系エポキシ化合物の製造方法 |
JP2013193980A (ja) * | 2012-03-19 | 2013-09-30 | Toray Fine Chemicals Co Ltd | 低粘度エポキシ化合物およびその製造方法 |
WO2014162947A1 (ja) * | 2013-04-01 | 2014-10-09 | 東レ・ファインケミカル株式会社 | ジグリシジルアミン系エポキシ化合物の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53124226A (en) * | 1977-04-07 | 1978-10-30 | Mitsubishi Gas Chem Co Inc | Preparation of polyglycidyl compounds |
JP5101341B2 (ja) | 2008-02-29 | 2012-12-19 | 三洋化成工業株式会社 | グリシジルエーテルの製造方法 |
WO2013021851A1 (ja) * | 2011-08-11 | 2013-02-14 | 東レ・ファインケミカル株式会社 | 高純度エポキシ化合物およびその製造方法 |
CN102329243B (zh) * | 2011-10-12 | 2013-11-20 | 浙江工业大学 | L-(-)-3-氯-2-羟基丙基三甲铵氯化物的管式反应方法 |
GB2507487A (en) * | 2012-10-30 | 2014-05-07 | Ashe Morris Ltd | Rotating flow reactor |
-
2016
- 2016-02-08 JP JP2016520697A patent/JP6147422B2/ja active Active
- 2016-02-08 KR KR1020177019168A patent/KR20170117025A/ko not_active Application Discontinuation
- 2016-02-08 CN CN201680008518.7A patent/CN107207408B/zh not_active Expired - Fee Related
- 2016-02-08 WO PCT/JP2016/053698 patent/WO2016129561A1/ja active Application Filing
- 2016-02-08 EP EP16749205.7A patent/EP3257840B1/en active Active
- 2016-02-08 US US15/549,217 patent/US10017485B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04145054A (ja) * | 1990-10-03 | 1992-05-19 | Daiso Co Ltd | 3―ハロ―2―ヒドロキシプロピルトリアルキルアンモニウムハライド水溶液の製造法 |
JP2012219081A (ja) * | 2011-04-12 | 2012-11-12 | Toray Fine Chemicals Co Ltd | 高純度ジグリシジルアミン系エポキシ化合物およびその製造方法 |
WO2013089006A1 (ja) * | 2011-12-15 | 2013-06-20 | 東レ・ファインケミカル株式会社 | グリシジルアミン系エポキシ化合物の製造方法 |
JP2013193980A (ja) * | 2012-03-19 | 2013-09-30 | Toray Fine Chemicals Co Ltd | 低粘度エポキシ化合物およびその製造方法 |
WO2014162947A1 (ja) * | 2013-04-01 | 2014-10-09 | 東レ・ファインケミカル株式会社 | ジグリシジルアミン系エポキシ化合物の製造方法 |
Non-Patent Citations (1)
Title |
---|
GETAUTIS, V ET AL.: "STUDY OF THE PRODUCTS FROM REACTION OF 1(2)-AMINOANTHRAQUINONES WITH 1- CHLORO-2,3-EPOXYPROPANE", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 41, no. 4, 2005, pages 426 - 436, XP019276312, ISSN: 0009-3122 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018159053A (ja) * | 2017-03-21 | 2018-10-11 | 東レ・ファインケミカル株式会社 | 多官能グリシジルアミン型エポキシ化合物の製造方法 |
CN111233693A (zh) * | 2020-01-22 | 2020-06-05 | 浙江迪邦化工有限公司 | 一种3-n,n-二羟乙基氨基乙酰苯胺的生产方法和系统 |
CN111233693B (zh) * | 2020-01-22 | 2023-03-03 | 浙江迪邦化工有限公司 | 一种3-n,n-二羟乙基氨基乙酰苯胺的生产方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016129561A1 (ja) | 2017-04-27 |
EP3257840A4 (en) | 2018-09-19 |
EP3257840A1 (en) | 2017-12-20 |
KR20170117025A (ko) | 2017-10-20 |
CN107207408A (zh) | 2017-09-26 |
EP3257840B1 (en) | 2019-07-10 |
US10017485B2 (en) | 2018-07-10 |
US20180030013A1 (en) | 2018-02-01 |
CN107207408B (zh) | 2019-06-07 |
JP6147422B2 (ja) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6147422B2 (ja) | N,n−ビス(2−ヒドロキシ−3−クロロプロピル)アミノ基を有する化合物の製造方法 | |
US8415490B2 (en) | Epoxy compound and manufacturing method thereof | |
WO2013021851A1 (ja) | 高純度エポキシ化合物およびその製造方法 | |
JP5843584B2 (ja) | 多価グリシジル化合物の製造方法 | |
JP2022087349A (ja) | 多価グリシジル化合物の製造方法 | |
JP2013193980A (ja) | 低粘度エポキシ化合物およびその製造方法 | |
KR101451695B1 (ko) | 에폭시 화합물의 제조방법 | |
WO2014162947A1 (ja) | ジグリシジルアミン系エポキシ化合物の製造方法 | |
WO2011118349A1 (ja) | 高純度エポキシ化合物およびその製造方法 | |
WO2013089006A1 (ja) | グリシジルアミン系エポキシ化合物の製造方法 | |
JP2018159053A (ja) | 多官能グリシジルアミン型エポキシ化合物の製造方法 | |
US8030531B2 (en) | Process for production of 2,3-dichlorobutadiene-1,3 | |
JP4666139B2 (ja) | メタクリル酸グリシジルの精製方法 | |
JP2015232093A (ja) | 多官能グリシジルアニリン系エポキシ化合物の製造方法 | |
TWI565695B (zh) | (Meth) acrylic acid glycidyl ester | |
EP3143010B1 (en) | Energy efficient manufacturing process for preparing n,o-triglycidyl aminophenols | |
JP2005187453A (ja) | 2−ヒドロキシイソ酪酸グリシジルの製造方法 | |
WO2013076968A1 (ja) | β-メルカプトカルボン酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016520697 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16749205 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177019168 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15549217 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016749205 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |