WO2016129486A1 - 光学積層体及びその製造方法 - Google Patents

光学積層体及びその製造方法 Download PDF

Info

Publication number
WO2016129486A1
WO2016129486A1 PCT/JP2016/053251 JP2016053251W WO2016129486A1 WO 2016129486 A1 WO2016129486 A1 WO 2016129486A1 JP 2016053251 W JP2016053251 W JP 2016053251W WO 2016129486 A1 WO2016129486 A1 WO 2016129486A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
weight
light scattering
scattering particles
acrylic
Prior art date
Application number
PCT/JP2016/053251
Other languages
English (en)
French (fr)
Inventor
井上 弘康
泰規 井伊
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020177021444A priority Critical patent/KR20170116017A/ko
Priority to JP2016574761A priority patent/JP6627783B2/ja
Priority to US15/547,086 priority patent/US20180016477A1/en
Priority to EP16749130.7A priority patent/EP3258298A4/en
Publication of WO2016129486A1 publication Critical patent/WO2016129486A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an optical laminate including a substrate and an adhesive layer and a method for producing the same.
  • organic electroluminescent element that provides light emission by providing a light emitting layer between a plurality of electrodes has excellent characteristics such as high light emission efficiency, low voltage driving, light weight, and low cost.
  • organic electroluminescence element may be appropriately referred to as “organic EL element”.
  • a light source device such as a flat illumination or a backlight device for a liquid crystal display device using the organic EL element.
  • an organic EL element When using an organic EL element for a light source device, it may be required to provide an optical film on the light exit surface of the organic EL element.
  • the light emitting layer itself of the organic EL element has high light emission efficiency, depending on conditions such as a difference in refractive index between layers included in the light emitting device, there is a loss of light until light passes through the layer and exits. Can be big. Therefore, in order to reduce such light loss, it is sometimes required to provide an optical film having an appropriate uneven structure on the light exit surface of the organic EL element (see Patent Document 1).
  • the optical film as described above is usually provided on the light emitting surface of the organic EL element using an appropriate adhesive.
  • an optical layer is prepared by providing an adhesive layer made of an adhesive on one side of an optical film, and the surface of the optical layer on the side of the adhesive layer is bonded to the light emitting surface of the organic EL element to obtain a desired light source device. Can be manufactured. In such a light source device, light generated in the light emitting layer of the organic EL element exits through the adhesive layer and the optical film.
  • an optical film having a concavo-convex structure As described above, if an optical film having a concavo-convex structure is used, it is possible to suppress light loss in the light source device and improve light extraction efficiency.
  • an optical film having no concavo-convex structure is required due to restrictions on the design of the light source device, it is difficult to improve the light extraction efficiency with the conventional technology. Under such circumstances, development of an optical laminate capable of obtaining a light source device excellent in light extraction efficiency is required without necessarily using an optical film having a concavo-convex structure for improving light extraction efficiency.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a new optical layered body capable of obtaining a light source device excellent in light extraction efficiency and a method for manufacturing the same.
  • the present invention is as follows.
  • the adhesive layer includes an acrylic adhesive composition containing an acrylic polymer, and light scattering particles
  • the acrylic polymer is a copolymer of the copolymer component [I] containing 40% by weight to 93% by weight of the aromatic ring-containing monomer (a1) and 7% by weight to 60% by weight of the hydroxyl group-containing monomer (a2).
  • the acrylic polymer has a weight average molecular weight of 200,000 or less
  • the volume concentration V of the light scattering particles with respect to the adhesive layer is 3% to 35%
  • the acrylic adhesive composition has a refractive index of 1.52 to 1.67
  • An optical laminate in which the light scattering particles have a refractive index of 1.4 to 1.49.
  • the optical laminate according to [1], wherein the light scattering particles are silicone particles or acrylic particles.
  • the light scattering particles have an average particle diameter of 0.1 ⁇ m to 1 ⁇ m,
  • the substrate has a single layer structure, The optical laminate according to [5], wherein 0.05 ⁇ Ry / D2 ⁇ 0.25, where Ry is the maximum height of the uneven structure and D2 is the thickness of the base material.
  • a method for producing an optical laminate comprising a substrate and an adhesive layer, Forming a coating liquid film containing an acrylic polymer and light scattering particles on the substrate; Curing the coating solution film to obtain the adhesive layer,
  • the acrylic polymer is a copolymer of the copolymer component [I] containing 40% by weight to 93% by weight of the aromatic ring-containing monomer (a1) and 7% by weight to 60% by weight of the hydroxyl group-containing monomer (a2).
  • the acrylic polymer has a weight average molecular weight of 200,000 or less, The volume concentration V of the light scattering particles with respect to the adhesive layer is 3% to 35%, The light scattering particles have a refractive index of 1.4 to 1.49,
  • a method for producing an optical laminate comprising a substrate and an adhesive layer, Forming a coating liquid film containing an acrylic polymer and light scattering particles; Curing the coating solution film to obtain the adhesive layer; Bonding the adhesive layer and the base material together,
  • the acrylic polymer is a copolymer of copolymer component [I] containing 40% to 93% by weight of the aromatic ring-containing monomer (a1) and 7% to 60% by weight of the hydroxyl group-containing monomer (a2).
  • the acrylic polymer has a weight average molecular weight of 200,000 or less, The volume concentration V of the light scattering particles with respect to the adhesive layer is 3% to 35%, The light scattering particles have a refractive index of 1.4 to 1.49,
  • an optical layered body capable of obtaining a light source device excellent in light extraction efficiency and a method for manufacturing the same.
  • FIG. 1 is a cross-sectional view schematically showing a cross section of an optical laminate according to an embodiment of the present invention cut by a plane parallel to the thickness direction.
  • FIG. 2 is a graph showing the relationship between the mean free path of the pressure-sensitive adhesive layer according to an example and the particle size of the light scattering particles contained in the pressure-sensitive adhesive layer.
  • FIG. 3 is a cross-sectional view schematically showing a cross section taken along a plane parallel to the thickness direction of an example of a light source device including the optical laminate according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the concentration of the light scattering particles obtained in Reference Example 1 and the ratio D1 / L1.
  • the “solvent” is not only a medium in which a solute is dissolved, but also a suspension (slurry) in which a dispersion is dispersed, as well as a medium constituting the solution. It is also used as a term that includes a medium that constitutes (including).
  • the average particle diameter of the particles refers to the volume average particle diameter unless otherwise specified.
  • the volume average particle diameter is a particle diameter at which the cumulative volume calculated from the small diameter side in the particle diameter distribution measured by the laser diffraction method is 50%.
  • a dynamic light scattering particle size distribution analyzer (Nanotrac Wave-EX150 manufactured by Nikkiso Co., Ltd.) can be used.
  • (meth) acryl is a term including acryl and methacryl
  • (meth) acryloyl is a term including acryloyl and methacryloyl
  • (meth) acrylate is acrylate and It is a term that includes methacrylate.
  • the acrylic polymer means a polymer obtained by polymerizing a monomer component containing at least one (meth) acrylic monomer, and the (meth) acrylic monomer is (meth ) Terms including acrylic acid and (meth) acrylate.
  • FIG. 1 is a cross-sectional view schematically showing a cross section of an optical laminate according to an embodiment of the present invention cut by a plane parallel to the thickness direction.
  • the optical laminate 100 according to this embodiment includes a base material 110 and an adhesive layer 120 formed on the base material 110.
  • the adhesive layer 120 includes an acrylic adhesive composition 121 and light scattering particles 122.
  • such an optical laminated body 100 can adhere to an arbitrary member on the surface 120D of the adhesive layer 120 on the side opposite to the base 110.
  • the surface 110U of the base 110 opposite to the adhesive layer 120 may have a concavo-convex structure.
  • an example is shown in which the surface 110U of the substrate 110 has a concavo-convex structure by having a plurality of depressions 111 formed by embossing.
  • a transparent resin is usually used as a material constituting the base material. That the resin is “transparent” means that the resin has a light transmittance suitable for use as an optical member.
  • the members that is, the base material, the adhesive layer, and the optional layer
  • the optical laminate are provided so as to have a total light transmittance of 80% or more as the whole optical laminate.
  • thermoplastic resin A base material made of a thermoplastic resin can easily form a concavo-convex structure by embossing treatment.
  • thermoplastic resin a resin containing a polymer having thermoplasticity can be used.
  • thermoplastic polymers include polyethylene naphthalate, polyethylene terephthalate, boribylene terephthalate, polyethylene terephthalate / isophthalate copolymer, etc .; polyolefins such as polyethylene, polypropylene, polymethylpentene; norbornene polymers, monocyclic Cyclic olefin polymers, cyclic conjugated diene polymers, and polycycloolefins such as hydrogenated products thereof; polyfluorinated ethylenes such as polyvinyl fluoride, polyvinylidene fluoride, and polyfluorinated ethylene; nylon 6, nylon 6, Polyamides such as 6; vinyl polymers such as polyvinyl chloride, polyvinyl chloride / vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyvinyl alcohol, vinylon; Acid, cellulose-based polymers cellophane; polymethyl meth
  • polyester and polycycloolefin are preferable, and polycycloolefin is particularly preferable.
  • a substrate containing polycycloolefin for example, “ZEONOR FILM” manufactured by Nippon Zeon Co., Ltd. can be used.
  • these polymers may be used individually by 1 type, and may use 2 or more types by arbitrary ratios.
  • the weight average molecular weight (Mw) of the polymer can be appropriately selected according to the purpose of use of the optical laminate, and is preferably 10,000 or more, more preferably 15,000 or more, and particularly preferably 20,000 or more. , Preferably 100,000 or less, more preferably 80,000 or less, particularly preferably 50,000 or less. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the substrate are highly balanced.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the polymer is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, preferably Is 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
  • productivity of a polymer can be improved and manufacturing cost can be suppressed.
  • amount of the low molecular component is reduced by setting the molecular weight distribution to the upper limit value or less, relaxation during high-temperature exposure can be suppressed and the stability of the optical laminate can be improved.
  • the weight average molecular weight and the number average molecular weight can be measured as values in terms of polyisoprene or polystyrene by gel permeation chromatography using cyclohexane as a solvent.
  • toluene may be used as a solvent.
  • the proportion of the polymer in the resin is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, still more preferably 80% to 100% by weight, and particularly preferably 90% to 100% by weight. % By weight.
  • the resin may contain an optional component other than the polymer as long as the effects of the present invention are not significantly impaired.
  • the optional components include colorants such as pigments and dyes; plasticizers; fluorescent brighteners; dispersants; thermal stabilizers; light stabilizers; ultraviolet absorbers; antistatic agents; An additive such as a surfactant. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the glass transition temperature of the resin can be appropriately selected according to the purpose of use of the optical laminate, but is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 150 ° C. or lower. is there.
  • the glass transition temperature is not less than the lower limit of the above range, the durability of the optical laminate at high temperatures can be improved, and when it is not more than the upper limit, the uneven structure can be easily formed.
  • the refractive index of the resin as the base material is preferably 1.53 or more, more preferably 1.60 or more. Moreover, it is preferable that the refractive index of the said resin is more than the refractive index of the acrylic adhesive composition contained in an adhesion layer. Furthermore, the difference between the refractive index of the resin and the refractive index of the acrylic pressure-sensitive adhesive composition is preferably 0.05 or less, more preferably 0.02 or less.
  • the substrate As the substrate, a film is usually used.
  • the substrate may be a single-layer film consisting of one layer or a multilayer film having two or more layers.
  • the base material thickness D2 (see FIG. 1) can be set according to the use of the optical laminate.
  • the thickness D2 of the substrate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, particularly preferably 75 ⁇ m. It is as follows.
  • the surface of the substrate opposite to the adhesive layer may have a concavo-convex structure.
  • the concavo-convex structure may include a concave portion that is recessed from the surroundings, such as a dent 111 illustrated in FIG. 1, may include a convex portion that protrudes from the surroundings, or includes a combination of the concave and convex portions. You may go out.
  • the glossiness of the surface of the base material on the opposite side to an adhesion layer can be suppressed. Therefore, it is possible to adjust the visual texture (mat feeling or the like) of the optical laminate.
  • the matte feeling means an apparent texture with reduced gloss.
  • the design of the surface of the substrate can be freely set by the concavo-convex structure, the appearance of the optical laminate can be improved. Furthermore, when the uneven structure is appropriately formed, it is possible to further improve the light extraction efficiency through the surface having the uneven structure.
  • the shape of the concave portion or the convex portion included in the concavo-convex structure can be set to an arbitrary shape such as a dot shape, a linear shape, or a planar shape.
  • the shape of the dot-shaped concave portion or convex portion may be, for example, a pyramid shape, a conical shape, a partial spherical shape, or the like.
  • the shape of the linear concave portion or convex portion may be, for example, a linear shape or a curved shape.
  • the concavo-convex structure usually includes a plurality of concave portions or convex portions.
  • the shapes of the plurality of concave portions and convex portions may be the same or different. Among these, a point-like thing is preferable as a recessed part or a convex part contained in a concavo-convex structure.
  • the maximum height Ry (see FIG. 1) of the concavo-convex structure preferably satisfies a predetermined relationship with the thickness D2 of the base material.
  • Ry / D2 is preferably more than 0.05, more preferably 0.07 or more, particularly preferably 0.1 or more, preferably less than 0.25, more preferably 0.23 or less. Especially preferably, it is 0.2 or less.
  • the maximum height Ry of the concavo-convex structure refers to the maximum value among the depth of the concave portion and the height of the convex portion included in the concavo-convex structure.
  • the gloss of the surface having the concavo-convex structure can be suppressed and the aesthetic appearance of the optical laminate can be improved.
  • the concavo-convex structure can be easily formed by an embossing process.
  • the base material may have a multilayer structure including two or more layers.
  • the shape of the concavo-convex structure for improving the light extraction efficiency is precisely It is advantageous in that it is easy to form.
  • the light extraction efficiency can be sufficiently improved by light scattering by the adhesive layer. Therefore, from the viewpoint of utilizing the effect of improving the light extraction efficiency by the adhesive layer, the substrate 110 preferably has a single-layer structure consisting of only one layer as shown in FIG.
  • Such an optical laminated body having a single layer structure can suppress an increase in the number of layers and increase the thickness of the base material, and can suppress an increase in labor for forming the concavo-convex structure. Furthermore, when the substrate has a single-layer structure, it is particularly preferable to keep Ry / D2 within the above range. Thereby, an uneven structure can be easily formed on the substrate by embossing treatment while reducing the thickness of the substrate.
  • the pitch P (see FIG. 1) of the recesses or protrusions included in the concavo-convex structure is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, particularly preferably 200 ⁇ m or more, preferably 3 mm or less, more preferably 1.5 mm or less. Particularly preferably, it is 1 mm or less.
  • the width W (see FIG. 1) of the concave portion or convex portion included in the concavo-convex structure is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more, particularly preferably 50 ⁇ m or more, preferably 1.5 mm or less, more preferably 0. It is 75 mm or less, particularly preferably 0.5 mm or less.
  • the concavo-convex structure includes a plurality of recesses and protrusions
  • the dimensions of the plurality of recesses and protrusions may be the same or different.
  • the manufacturing method of the base material is arbitrary.
  • a base material when manufacturing a base material from a thermoplastic resin, a base material can be manufactured by shape
  • the manufacturing method of a base material may include the process of performing an extending
  • a stretched film can be obtained as a base material, various optical physical properties and mechanical physical properties can be expressed in the base material.
  • a stretching method for example, when stretching a long film, a method of uniaxially stretching the film in the longitudinal direction using a difference in peripheral speed of the roll, a method of uniaxially stretching the film in the width direction using a tenter stretching machine Uniaxial stretching method, etc .; simultaneous biaxial stretching method in which a film is simultaneously stretched in the longitudinal direction and the width direction, sequential biaxial stretching method in which the film is stretched in one direction in the longitudinal direction and the width direction, and then stretched in the other direction, etc.
  • a biaxial stretching method a method of stretching in an oblique direction using a tenter stretching machine; and the like.
  • the oblique direction represents a direction that is neither parallel nor perpendicular to the width direction of the film.
  • the long film means a film having a length of usually 5 times or more, preferably a film having a length of 10 times or more with respect to the width.
  • the film is wound in a roll shape. It refers to a film having a length that can be stored or transported.
  • the method for manufacturing a base material may include a step of forming an uneven structure on the surface of the base material.
  • the method for forming the concavo-convex structure is arbitrary.
  • an uneven structure layer may be formed using an ultraviolet curable resin and a mold, or an uneven structure may be formed by laser light irradiation.
  • the concavo-convex structure is preferably formed by an embossing process.
  • a mold is pressed against the surface of the base material while the base material is heated to form an uneven structure on the surface.
  • a member provided with a surface having a concavo-convex shape corresponding to the concavo-convex structure to be formed on the surface of the substrate opposite to the adhesive layer can be used. If the specific example of a type
  • the uneven shape of the mold is transferred to the surface of the substrate, and a desired uneven structure can be formed on the surface of the substrate.
  • the substrate When pressing the substrate with the mold, the substrate is placed between the mold that can press the surface of the substrate opposite to the adhesive layer and the support that can press the surface of the substrate on the adhesive layer side. You may press between.
  • the support a member having a surface corresponding to the shape of the surface of the substrate on the adhesive layer side can be used.
  • the shape of the surface of the support is set to a flat surface or a smooth curved surface.
  • a method for heating the substrate is arbitrary.
  • the mold or support may be heated and the substrate heated by the heated mold or support.
  • the substrate may be heated by a heater prepared separately from the mold or the support.
  • a base material is pressed with a type
  • the manufacturing method is simple and the cost can be suppressed.
  • even if it is a thin base material an uneven structure can be formed easily.
  • it is difficult to form a deep recess by embossing on a thin substrate but if the “Ry / D2” is a recess that is within the above range, formation by embossing is easy. is there. Therefore, since it is possible to employ a thin base material, it can be expected that the entire thickness of the optical laminate is reduced to, for example, 50 ⁇ m or less.
  • the ultraviolet curable resin described in Patent Document 1 has a tendency to have low flexibility after curing, it is difficult to obtain a flexible base material. It is possible to realize a substrate.
  • the surface of the base material on the adhesive layer side is usually formed as a flat surface.
  • a small undulation is formed on the surface of the substrate on the adhesive layer side, and the smoothness may be lowered.
  • this undulation is presumed to be caused by the shrinkage of the base material that occurs when the base material is cooled after the embossing treatment.
  • the adhesive layer becomes hard because it contains a large amount of inorganic oxide particles such as zirconia in order to increase the refractive index. It was difficult to make optical contact.
  • the pressure-sensitive adhesive layer according to the present invention does not contain inorganic oxide particles or can achieve a high refractive index even if the amount of inorganic oxide particles is small, so the pressure-sensitive adhesive layer does not become too hard, and the substrate and the pressure-sensitive adhesive layer It is possible to easily realize optical close contact.
  • the adhesive layer is a layer containing an acrylic adhesive composition and light scattering particles.
  • an adhesion layer consists only of an acrylic adhesive composition and light-scattering particles. Therefore, the composition as a component other than the light scattering particles among the components contained in the adhesive layer is usually an acrylic adhesive composition.
  • the light scattering particles are dispersed in the acrylic adhesive composition, and light transmitted through the adhesive layer is reflected at the interface between the acrylic adhesive composition and the light scattering particles. Since light is scattered in the adhesive layer by this reflection, the light extraction efficiency can be improved when the optical layered body of the present invention is provided in an organic EL element.
  • the adhesive layer has adhesiveness, the optical laminate can be bonded to an arbitrary member by bonding the surface of the adhesive layer on the side opposite to the substrate to an arbitrary member.
  • the acrylic pressure-sensitive adhesive composition contains an acrylic polymer and may contain optional components as necessary.
  • the acrylic pressure-sensitive adhesive composition can usually function as a binder in the pressure-sensitive adhesive layer. Therefore, the pressure-sensitive adhesive layer can exhibit adhesiveness by the action of the acrylic pressure-sensitive adhesive composition. Further, the light scattering particles can be held in the adhesive layer by the action of the acrylic adhesive composition.
  • the acrylic polymer is a copolymer of the copolymer component [I] including the aromatic ring-containing monomer (a1) and the hydroxyl group-containing monomer (a2). Moreover, the said copolymerization component [I] can contain the (meth) acrylic-acid alkylester type
  • This acrylic polymer can have a high refractive index. Therefore, the refractive index of the acrylic pressure-sensitive adhesive composition containing the acrylic polymer can be easily increased.
  • the aromatic ring-containing monomer (a1) is a compound having one or more aromatic rings and one or more ethylenically unsaturated groups in one molecule.
  • the functional group containing an ethylenically unsaturated group include a (meth) acryloyl group, a crotonoyl group, a vinyl group, an allyl group, and the like.
  • a (meth) acryloyl group is preferable in terms of excellent reactivity.
  • the aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a biphenyl ring, and a fluorene ring.
  • the number of aromatic rings per molecule of the aromatic ring-containing monomer (a1) may be one or plural.
  • the aromatic ring-containing monomer (a1) is preferably a compound containing one aromatic ring per molecule in terms of achieving a balance of adhesive properties, and can efficiently control the refractive index and birefringence of the adhesive layer. Then, it is preferable that it is a compound containing two aromatic rings per molecule.
  • Such an aromatic ring-containing monomer (a1) is preferably a (meth) acrylic monomer.
  • aromatic ring-containing monomer (a1) examples include benzyl (meth) acrylate, benzyloxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, and ethylene oxide modified (meth).
  • examples include cresol acrylate, ethylene oxide-modified (meth) acrylate nonylphenol, (meth) acrylic acid biphenyloxyethyl ester, and styrene. Of these, benzyl (meth) acrylate and phenoxyethyl (meth) acrylate are particularly preferred.
  • the aromatic ring-containing monomer (a1) one type may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the aromatic ring-containing monomer (a1) in the copolymerization component [I] is usually 40% by weight or more, preferably 50% by weight or more, more preferably 55% by weight, based on 100% by weight of the entire copolymerization component [I]. Above, particularly preferably 60% by weight or more, usually 93% by weight or less, preferably 90% by weight or less, more preferably 85% by weight or less.
  • the refractive index of the acrylic pressure-sensitive adhesive composition can be made sufficiently high by setting the amount of the aromatic ring-containing monomer (a1) to be equal to or higher than the lower limit value of the above range. Adhesiveness can be improved.
  • the hydroxyl group-containing monomer (a2) is a monomer containing a hydroxyl group, and a (meth) acrylic monomer containing a hydroxyl group is particularly preferred.
  • the hydroxyl group-containing monomer (a2) include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxy Hydroxyalkyl esters of acrylic acid such as octyl (meth) acrylate; caprolactone-modified monomers such as caprolactone-modified 2-hydroxyethyl (meth) acrylate; oxyalkylene-modified monomers such as diethylene glycol (meth) acrylate and polyethylene glycol (meth) acrylate; Primary hydroxyl group-containing monomers such as acryloyloxyethyl 2-hydroxyethylphthalic acid, N-methylol (meth
  • hydroxyl group-containing monomers (a2) a primary hydroxyl group-containing monomer is preferable in terms of excellent reactivity with the crosslinking agent. Furthermore, a monomer having a hydroxyl group at the end of the molecular chain is preferred because it tends to exhibit better antistatic performance. Furthermore, it is particularly preferable to use 2-hydroxyethyl (meth) acrylate because it has few impurities such as di (meth) acrylate and is easy to produce.
  • the content rate of di (meth) acrylate which is an impurity is small.
  • the content ratio of the di (meth) acrylate of the hydroxyl group-containing monomer (a2) is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, and further preferably 0.1% by weight or less. It is.
  • Particularly preferred hydroxyl group-containing monomers (a2) include 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate.
  • the amount of the hydroxyl group-containing monomer (a2) in the copolymerization component [I] is usually 7% by weight or more, preferably 10% by weight or more, and usually 60% by weight or less, based on 100% by weight of the entire copolymerization component [I].
  • the amount is preferably 50% by weight or less, more preferably 40% by weight or less, and particularly preferably 35% by weight or less.
  • the amount of the hydroxyl group-containing monomer (a2) below the upper limit of the above range, the amount of the aromatic ring-containing monomer (a1) is relatively increased, and the refractive index of the acrylic pressure-sensitive adhesive composition is increased. it can.
  • the weight ratio (a1) :( a2) of the aromatic ring-containing monomer (a1) and the hydroxyl group-containing monomer (a2) is preferably 93: 7 to 40:60, more preferably 90:10 to 50:50, More preferably, it is 85:15 to 60:40.
  • the compatibility between the acrylic polymer and the particles is improved. Therefore, the dispersibility of the particles in the adhesive layer can be improved.
  • the (meth) acrylic acid alkyl ester monomer (a3) is preferably one in which the number of carbon atoms of the alkyl group of the (meth) acrylic acid alkyl ester monomer (a3) falls within a predetermined range.
  • the number of carbon atoms of the alkyl group is preferably 1 or more, more preferably 4 or more, preferably 20 or less, more preferably 12 or less, and particularly preferably 8 or less.
  • Examples of the (meth) acrylic acid alkyl ester monomer (a3) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) ) Acrylate, n-propyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) ) Acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and the like.
  • the (meth) acrylic acid alkyl ester monomer (a3) one type may be
  • n-butyl (meth) acrylate and 2-ethylhexyl (meth) in terms of copolymerizability, adhesive properties, handleability, and availability of raw materials Acrylate is preferred. Furthermore, n-butyl (meth) acrylate is particularly preferable from the viewpoint of excellent durability.
  • the amount of the (meth) acrylic acid alkyl ester monomer (a3) in the copolymer component [I] is preferably 0 to 40% by weight, more preferably 0 to 35%, based on 100% by weight of the entire copolymer component [I]. % By weight, more preferably 0 to 30% by weight.
  • Examples of the optional copolymerizable monomer (a4) include monomers other than the above-mentioned monomers (a1) to (a3).
  • Examples thereof include functional group-containing monomers such as monomers and glycidyl group-containing monomers.
  • carboxyl group-containing monomer examples include (meth) acrylic acid, acrylic acid dimer, crotonic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, glutaconic acid, itaconic acid, acrylamide N-glycolic acid, and cinnamic acid.
  • (meth) acrylic acid is preferable.
  • amino group-containing monomer examples include t-butylaminoethyl (meth) acrylate, ethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and the like.
  • acetoacetyl group-containing monomer examples include 2- (acetoacetoxy) ethyl (meth) acrylate and allyl acetoacetate.
  • isocyanate group-containing monomer examples include 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, and alkylene oxide adducts thereof.
  • Examples of the glycidyl group-containing monomer include glycidyl (meth) acrylate and allyl glycidyl (meth) acrylate.
  • a compound having two or more ethylenically unsaturated groups may be used as the optional copolymerizable monomer (a4).
  • the compound having two or more ethylenically unsaturated groups include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and propylene glycol. Examples include di (meth) acrylate and divinylbenzene.
  • an acidic group-containing monomer such as a carboxyl group-containing monomer may be used.
  • an acidic group-containing monomer it is preferable not to use an acidic group-containing monomer as the arbitrary copolymerizable monomer (a4).
  • Examples of the optional copolymerizable monomer (a4) further include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-butoxyethyl (meth) Acrylate, 2-butoxydiethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate , Octoxy polyethylene glycol-polypropylene glycol-mono (meth) acrylate, lauroxy polyethylene glycol mono (meth) acrylate, Monomers containing alkoxy groups and oxyalkylene groups such as alloxypolyethylene glycol mono (meth) acrylate; meth
  • the amount of the optional copolymerizable monomer (a4) in the copolymerization component [I] is preferably 0 to 40% by weight, more preferably 0 to 30% by weight, based on 100% by weight of the entire copolymerization component [I]. More preferably, it is 0 to 20% by weight.
  • any copolymerizable monomer (a4) within such a range the amount of the aromatic ring-containing monomer (a1) can be relatively increased, and the refractive index of the acrylic pressure-sensitive adhesive composition can be effectively increased.
  • the weight average molecular weight of the acrylic polymer is usually 200,000 or less, preferably 180,000 or less, more preferably 160,000 or less, and particularly preferably 150,000 or less.
  • the weight average molecular weight of the acrylic polymer is arbitrary as long as the effect of the present invention is not significantly impaired, and is usually 10,000 or more.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the acrylic polymer is preferably 10 or less, more preferably 8 or less, still more preferably 6 or less, and particularly preferably 5 or less.
  • the lower limit of the molecular weight distribution of the acrylic polymer is arbitrary, but it is usually 1.1 or more from the viewpoint of production limit.
  • the weight average molecular weight and number average molecular weight of the acrylic polymer were measured using high performance liquid chromatography (“Waters 2695 (main body)” and “Waters 2414 (detector)” manufactured by Waters, Japan), column: Shodex GPC KF-806L ( Exclusion limit molecular weight: 2 ⁇ 10 7 , separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 10 ⁇ m) 3 It can be measured by using this series. Moreover, the said weight average molecular weight and number average molecular weight can be calculated
  • the glass transition temperature of the acrylic polymer is preferably ⁇ 70 ° C. or higher, more preferably ⁇ 50 ° C. or higher, particularly preferably ⁇ 40 ° C. or higher, preferably 10 ° C. or lower, more preferably 5 ° C. or lower, particularly preferably. Is 0 ° C. or lower.
  • the heat resistance of the adhesive layer can be increased by setting the glass transition temperature of the acrylic polymer above the lower limit of the above range, and the adhesive strength of the adhesive layer becomes too high by setting it below the upper limit of the above range. This can be suppressed.
  • the glass transition temperature of the acrylic polymer which is a copolymer can be calculated from the Fox equation shown in the following (1).
  • 1 / Tg Wa / Tga + Wb / Tgb +... Wn / Tgn
  • Tg Glass transition temperature of copolymer (K)
  • Tga Glass transition temperature (K) of homopolymer of monomer A
  • Wa weight fraction of monomer A
  • Tgb glass transition temperature (K) of homopolymer of monomer B
  • Wb weight fraction of monomer B
  • Tgn glass transition temperature (K) of homopolymer of monomer N
  • the acrylic polymer comprises an aromatic ring-containing monomer (a1) and a hydroxyl group-containing monomer (a2), and a (meth) acrylic acid alkyl ester monomer (a3) and any copolymerizable monomer that can be used as necessary. It can be produced by polymerizing monomer components such as (a4).
  • a polymerization method such as solution radical polymerization, suspension polymerization, bulk polymerization, or emulsion polymerization may be employed. Among these, solution radical polymerization is preferable.
  • Appropriate conditions for allowing the polymerization reaction to proceed can be adopted as the polymerization conditions.
  • a polymerization monomer containing an aromatic ring-containing monomer (a1), a hydroxyl group-containing monomer (a2), a (meth) acrylic acid alkyl ester monomer (a3) and an optional copolymerizable monomer (a4) in an organic solvent and
  • An acrylic polymer can be produced by mixing or dropping a polymerization initiator and performing radical polymerization.
  • the polymerization can be carried out under reflux conditions or at 50 ° C. to 90 ° C.
  • the polymerization time for the above polymerization is usually 2 to 20 hours.
  • organic solvent used for the polymerization examples include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; aliphatic alcohol solvents such as n-propyl alcohol and isopropyl alcohol; Examples include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • polymerization initiator used in such polymerization examples include azo polymerization initiators such as azobisisobutyronitrile and azobisdimethylvaleronitrile; benzoyl peroxide, lauroyl peroxide, di-t-butyl peroxide, cumene And peroxide polymerization initiators such as hydroperoxide; One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the acrylic polymer in the acrylic pressure-sensitive adhesive composition is preferably 65% by weight to 100% by weight, more preferably 80% by weight to 100% by weight, particularly preferably 100% by weight based on the whole acrylic pressure-sensitive adhesive composition. 85% by weight to 100% by weight.
  • the acrylic pressure-sensitive adhesive composition may further contain an optional component in combination with the above-mentioned acrylic polymer.
  • the acrylic pressure-sensitive adhesive composition can include inorganic oxide particles.
  • Inorganic oxide particles have a relatively high refractive index. Therefore, the refractive index of an acrylic adhesive composition can be further increased by using inorganic oxide particles.
  • the inorganic oxide particles are particles containing an inorganic oxide.
  • inorganic oxides include metal oxides and non-metal oxides, and metal oxides are particularly preferable.
  • the inorganic oxide particles are preferably particles containing a metal oxide and an organic substance having a reactive functional group that modifies the surface, and more specifically, the metal oxide particles and the surface of the particles.
  • coated particles containing an organic substance having a reactive functional group hereinafter sometimes referred to as “reactive modified metal oxide particles” as appropriate).
  • the reactive functional group may be in a state having an interaction such as a hydrogen bond with the metal oxide, or may be in a state capable of interacting with another substance without being in such a state.
  • the metal oxide a metal oxide that can be generally used as a filler in a resin is preferable.
  • the metal oxide include zirconium oxide (ZrO 2 : zirconia), titanium oxide (TiO 2 : titania), aluminum oxide (Al 2 O 3 : alumina), iron oxide (Fe 2 O 3 , Fe 3 O 4).
  • non-metal oxide a non-metal oxide that can be generally used as a filler in a resin is preferable.
  • specific examples of the non-metal oxide include silicon oxide (SiO 2 : silica), boron oxide (B 2 O 3 ), and the like.
  • inorganic oxides such as metal oxides and non-metal oxides may be used alone or in combination of two or more at any ratio.
  • the inorganic oxides those having a high refractive index are preferred, and specifically those having a refractive index of 1.5 or more are preferred.
  • the amount of inorganic oxide particles in the acrylic pressure-sensitive adhesive composition can be reduced. Therefore, the adhesiveness of the acrylic pressure-sensitive adhesive composition can be increased, or the acrylic pressure-sensitive adhesive composition can be made flexible.
  • the high refractive index inorganic oxide include titanium oxide (refractive index: 2.3 to 2.7), potassium titanate (refractive index: 2.68), and zirconium oxide (refractive index: 2.05 to 2). .4) and zinc oxide (refractive index: 2.01 to 2.03).
  • zirconium oxide and titanium oxide are preferable because an acrylic adhesive composition having a high refractive index is easily obtained.
  • Examples of the reactive functional group in the organic substance having a reactive functional group include a hydroxyl group, a phosphate group, a carboxyl group, an amino group, an alkoxy group, an isocyanate group, an acid halide, an acid anhydride, a glycidyl group, a chlorosilane group, and an alkoxy group.
  • a silane group is mentioned. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • an organic substance having an isocyanate group is preferable because stability of the metal oxide and the surrounding substance can be improved.
  • the organic substance having an isocyanate group include acryloxymethyl isocyanate, methacryloxymethyl isocyanate, acryloxyethyl isocyanate, methacryloxyethyl isocyanate, acryloxypropyl isocyanate, methacryloxypropyl isocyanate, 1,1-bis (acryloxymethyl) Ethyl isocyanate is mentioned. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the proportion of the organic substance having a reactive functional group is preferably 1 to 40 parts by weight with respect to 100 parts by weight of the metal oxide.
  • the volume average particle diameter of the inorganic oxide particles is preferably 5 nm or more, more preferably 10 nm or more, particularly preferably 20 nm or more, preferably 50 nm or less, more preferably 40 nm or less, and particularly preferably 30 nm or less.
  • the inorganic oxide particles include fine particle powder, paste, or sol.
  • the inorganic oxide particles are preferably in the form of a sol.
  • the method for producing the inorganic oxide particles is arbitrary.
  • the reactive modified metal oxide particles are mixed with metal oxide particles, an organic substance having a reactive functional group, an organic solvent, and any additive that can be used as necessary, and the resulting mixed composition.
  • a treatment such as ultrasonic treatment as necessary, it can be obtained as a suspension in which particles are dispersed in an organic solvent.
  • organic solvents examples include ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, acetone, and cyclohexanone; aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; methanol, ethanol, isopropyl alcohol, n-butanol, and iso-butanol.
  • ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, acetone, and cyclohexanone
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene
  • methanol, ethanol, isopropyl alcohol, n-butanol, and iso-butanol examples include ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, acetone
  • Alcohol solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, etc .; ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl Ester solvents such as ether acetate, propylene glycol monoethyl ether acetate; Gandolfo formamide, N, N- dimethyl acetoacetamide, amides solvents such as N- methylpyrrolidone.
  • An organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • optional additives include metal chelating agents.
  • Arbitrary additives may be used alone or in combination of two or more at any ratio.
  • the reactive modified metal oxide particles are obtained as a suspension in which the particles are dispersed in an organic solvent, conditions such as the amount of the solvent are adjusted, and the reactive modified metal oxide particles are 1 in the suspension. It is preferable to adjust so that it is contained in an amount of from 50% to 50% by weight. Since the suspension thus obtained can be directly used for the production of the acrylic pressure-sensitive adhesive composition, the acrylic pressure-sensitive adhesive composition can be easily produced.
  • the mixed composition it is preferable to mix the components using a mixing device such as a bead mill.
  • a mixing device such as a bead mill.
  • secondary particles or higher order particles can be pulverized to the primary particle level, and the surface can be treated in the state of primary particles.
  • uniform surface treatment can be applied to the metal oxide particles.
  • the mixed composition may be further subjected to ultrasonic treatment as necessary.
  • the ultrasonic treatment can be performed using an ultrasonic treatment device such as an ultrasonic cleaner, an ultrasonic homogenizer, an ultrasonic disperser or the like. By such treatment, a good suspension can be obtained.
  • grain may be provided as a slurry containing components, such as a solvent and an additive, it can be used as a material of an acrylic adhesive composition in the state of the slurry containing this component as it is.
  • a slurry of reactive modified metal oxide particles containing ZrO 2 as a metal oxide a trade name “NANON5 ZR-010” (manufactured by Solar Co., Ltd., solvent: methyl ethyl ketone, particle content 30%, surface modified An organic substance having a reactive functional group: an isocyanate having a polymerizable functional group, and a volume average particle diameter of 15 nm).
  • a trade name “NOD-742GTF” manufactured by Nagase ChemteX Corporation, solvent: polyethylene glycol monomethyl ether, particle content 30%, Volume average particle diameter of 48 nm.
  • the ratio of the inorganic oxide particles in the acrylic pressure-sensitive adhesive composition is preferably 30 parts by weight or more, more preferably 40 parts by weight or more, particularly preferably 50 parts by weight or more with respect to 100 parts by weight of the acrylic polymer.
  • the amount is preferably 130 parts by weight or less, more preferably 120 parts by weight or less, and particularly preferably 110 parts by weight or less.
  • the refractive index of the acrylic pressure-sensitive adhesive composition can be effectively increased by setting the amount of the inorganic oxide particles to be equal to or higher than the lower limit value of the range, and the acrylic pressure-sensitive adhesive composition can be reduced to the upper limit value or less of the range. It is possible to effectively increase the tackiness and flexibility of the.
  • the inorganic oxide particles in the acrylic adhesive composition The amount of is preferably small, and the acrylic pressure-sensitive adhesive composition particularly preferably does not contain inorganic oxide particles.
  • the acrylic pressure-sensitive adhesive composition can contain a crosslinking agent.
  • a cross-linking agent By using a cross-linking agent, it is possible to cross-link between the acrylic polymers and to impart durability to the adhesive layer as a certain degree of hardness.
  • crosslinking agent examples include chemical crosslinking such as isocyanate crosslinking agent, epoxy crosslinking agent, aziridine crosslinking agent, melamine crosslinking agent, aldehyde crosslinking agent, amine crosslinking agent, and metal chelate crosslinking agent.
  • a crosslinking agent capable of forming physical crosslinking such as a polyfunctional acrylate-based crosslinking agent.
  • a crosslinking agent that can react with a hydroxyl group is preferable, and an isocyanate-based crosslinking agent and a metal chelate-based crosslinking agent are more preferable.
  • an isocyanate-based crosslinking agent is particularly preferable in terms of improving the adhesion between the base material and the adhesive layer and the reactivity with the acrylic polymer.
  • isocyanate crosslinking agent examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hydrogenated tolylene diisocyanate, 1,3-xylene diisocyanate, 1,4-xylylene diisocyanate, hexamethylene diisocyanate, Diphenylmethane-4,4-diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, tetramethylxylylene diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate; these polyisocyanate compounds and trimethylol Adducts with polyol compounds such as propane; Burettes of these polyisocyanate compounds; Isocyanurates of these polyisocyanate compounds Door body; and the like.
  • metal chelate-based crosslinking agent examples include acetylacetone or acetoacetyl ester coordination compounds of polyvalent metals such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, panadium, chromium, and zirconium. Can be mentioned.
  • crosslinking agent may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the crosslinking agent is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, particularly preferably 0.03 parts by weight or more, preferably 100 parts by weight or more based on the acrylic polymer. It is 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less.
  • the acrylic pressure-sensitive adhesive composition can include a plasticizer.
  • a plasticizer By using a plasticizer, the viscosity of the acrylic pressure-sensitive adhesive composition can be lowered, so that the adhesiveness of the pressure-sensitive adhesive layer can be maintained well.
  • an acrylic pressure-sensitive adhesive composition has a high viscosity when it contains the above-mentioned inorganic oxide particles, and as a result, there is a tendency for the adhesiveness to decrease.
  • the acrylic pressure-sensitive adhesive composition contains a plasticizer in combination with the inorganic oxide particles, the pressure-sensitive adhesive layer can be well maintained in adhesiveness, so that both high refractive index and high pressure-sensitive adhesiveness can be achieved. Is possible.
  • the melting point of the plasticizer is preferably ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • the melting point of the plasticizer is within this range, the compatibility of each component contained in the acrylic pressure-sensitive adhesive composition can be improved.
  • the adhesiveness of the adhesive layer can be kept within an appropriate range while suppressing adhesive residue.
  • the adhesive residue refers to a phenomenon in which the acrylic pressure-sensitive adhesive composition remains on an arbitrary member when the optical layered body is peeled off from an arbitrary member after being bonded to the arbitrary member.
  • plasticizer examples include polybutene, vinyl ethers, polyether (including polyalkylene oxide and functionalized polyalkylene oxide), esters, polyol (for example, glycerin), petroleum resin, hydrogenated petroleum resin, and styrene Examples thereof include compounds (for example, ⁇ -methylstyrene).
  • esters are preferable because of their good miscibility with acrylic polymers and their refractive index is relatively high, and aromatic ring-containing esters such as benzoic acid and phthalic acid are particularly preferable.
  • benzoic acid ester examples include diethylene glycol dibenzoate, dipropylene glycol dibenzoate, benzyl benzoate, and 1,4-cyclohexanedimethanol dibenzoate.
  • Particularly preferred benzoate plasticizers include, for example, dipropylene glycol dibenzoate and benzyl benzoate.
  • the phthalic acid ester examples include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and ethyl phthalyl ethyl glycolate.
  • commercially available plasticizers examples include trade name “BENZOFLEX 9-88SG” (Eastman) and trade name “ ⁇ -methylstyrene” (Mitsubishi Chemical Corporation).
  • plasticizer one kind may be used alone, or two or more kinds may be used in combination at any ratio.
  • the amount of the plasticizer is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 20 parts by weight or less, more preferably 15 parts by weight or less with respect to 100 parts by weight of the acrylic polymer. .
  • the acrylic pressure-sensitive adhesive composition can contain a silane coupling agent.
  • silane coupling agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropyl.
  • a silane coupling agent may be used alone or in combination of two or more kinds at an arbitrary ratio.
  • the amount of the silane coupling agent is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 5 parts by weight or less, more preferably 100 parts by weight of the acrylic polymer. 3 parts by weight or less.
  • the acrylic pressure-sensitive adhesive composition can contain additives other than the components described above.
  • additives include antistatic agents; adhesives other than those described above; urethane resins, rosins, rosin esters, hydrogenated rosin esters, phenol resins, aromatic modified terpene resins, aliphatic petroleum resins, fats Tackifiers such as cyclic petroleum resins, styrene resins, xylene resins; colorants; fillers; anti-aging agents; ultraviolet absorbers; functional dyes; compounds that can cause coloration or discoloration upon irradiation with ultraviolet rays or radiation And so on.
  • components such as impurities contained in the raw material for producing the constituent components of the acrylic pressure-sensitive adhesive composition may be contained in a small amount in the acrylic pressure-sensitive adhesive composition.
  • the amounts of these components can be appropriately set so as to obtain desired physical properties.
  • the refractive index of the acrylic pressure-sensitive adhesive composition is usually 1.52 or more, preferably 1.53 or more, more preferably 1.54 or more, and usually 1.67 or less, preferably 1.66 or less, more preferably 1. .65 or less, particularly preferably 1.64 or less.
  • an adhesive layer can be made flexible.
  • the refractive index can be measured with an ellipsometer (“M-2000” manufactured by JA Woollam Japan Co., Ltd.).
  • the acrylic pressure-sensitive adhesive composition has adhesiveness, it can function as an adhesive.
  • the “pressure-sensitive adhesive” refers to a material having a shear storage modulus at 23 ° C. of less than 1 MPa and exhibiting adhesiveness at room temperature.
  • Such a pressure-sensitive adhesive is a pressure-sensitive pressure-sensitive adhesive that can be adhered by applying pressure, and can be bonded without affecting the member to be bonded to the optical laminate, such as deterioration due to heating.
  • Light scattering particles are particles that can scatter light.
  • the light scattering particles can scatter light passing through the adhesive layer. Therefore, when the optical laminated body of this invention is provided in an organic EL element, light extraction efficiency can be improved.
  • the light scattering particles particles having a predetermined refractive index lower than that of the acrylic pressure-sensitive adhesive composition are used.
  • the specific refractive index of the light-scattering particles is usually 1.4 or more, preferably 1.41 or more, more preferably 1.42 or more, and usually 1.49 or less, preferably 1.48 or less, more preferably 1.47 or less. If the refractive index of the light scattering particles is within the above range, light can be effectively reflected at the interface between the light scattering particles and the acrylic pressure-sensitive adhesive composition, so that the light can be sufficiently scattered in the pressure-sensitive adhesive layer. it can.
  • an inorganic material or an organic material may be used as the material for the light scattering particles.
  • an organic material it is preferable to use an organic material as the material for the light scattering particles.
  • an adhesion layer is manufactured using the coating liquid suitable for manufacturing an adhesion layer.
  • this coating solution light scattering particles tend to settle, and light scattering particles made of an inorganic material having a high specific gravity are particularly likely to settle.
  • light scattering particles made of an organic material are unlikely to settle. Therefore, the dispersibility of the light scattering particles in the adhesive layer can be enhanced.
  • the dispersibility of the light scattering particles is good as described above, it is easy to stably develop characteristics such as adhesiveness in the adhesive layer.
  • Examples of the light scattering particles include product names “XC-99” (manufactured by Momentive Performance Materials, volume average particle diameter 0.7 ⁇ m). Can be mentioned. Moreover, as a light-scattering particle which consists of acrylic resins, a brand name “MP series” (the Soken Chemical Co., Ltd. make, volume average particle diameter of 0.8 micrometer) is mentioned, for example. Furthermore, examples of the light scattering particles made of polystyrene resin include trade name “SX series” (manufactured by Soken Chemical Co., Ltd., volume average particle diameter: 3.5 ⁇ m). One kind of light scattering particles may be used alone, or two or more kinds of light scattering particles may be used in combination at any ratio.
  • the volume average particle diameter of the light scattering particles is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, particularly preferably 0.4 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.9 ⁇ m or less.
  • the particle diameter can be reduced by setting the volume average particle diameter of the light scattering particles to be equal to or less than the upper limit of the above range, the light hitting the light scattering particles can be reflected in a wider range, thereby Efficient scattering of visible light is possible.
  • the particle diameter of at least 1/4 of the volume is within the range of 0.1 ⁇ m to 1 ⁇ m. More specifically, among the light scattering particles contained in the adhesive layer, particles of preferably 25% by volume or more, more preferably 35% by volume or more, particularly preferably 50% by volume or more have a particle diameter of 0.1 ⁇ m to 1 ⁇ m. It is preferable to have. Since light scattering particles having a particle diameter of 0.1 ⁇ m to 1 ⁇ m have a large surface area, light scattering can be performed effectively. Therefore, when the optical laminated body of this invention is provided in an organic EL element, light extraction efficiency can be improved effectively.
  • the adhesive layer contains many light scattering particles having a particle diameter of 1 ⁇ m or more, the haze of the adhesive layer can be increased, and therefore it is difficult to see the opposite side through the adhesive layer. Therefore, when the optical layered body of the present invention is provided in an organic EL element, the wiring of the organic EL element and the reflective electrode can be made difficult to see, so that the beauty can be improved.
  • the volume concentration V of the light-scattering particles with respect to the adhesive layer is usually 3% or more, preferably 4% or more, more preferably 5% or more, and usually 35% or less, preferably 30 with the entire volume of the adhesive layer being 100%. % Or less, more preferably 25% or less.
  • Light scattering can be increased by setting the volume concentration V of the light scattering particles to be equal to or higher than the lower limit value of the range, and compatibility between the acrylic polymer and the light scattering particles is improved by setting the volume concentration V to be lower than the upper limit value of the range.
  • the dispersibility of the light scattering particles can be improved. Therefore, by setting the volume concentration V of the light scattering particles in the above range, the light extraction efficiency can be effectively increased when the optical laminate of the present invention is provided in the organic EL element.
  • the ratio “D1 / L1” is preferably 1 or more, more preferably 1.2 or more, particularly preferably. Is 1.4 or more, preferably 6 or less, more preferably 5.5 or less, and particularly preferably 5 or less.
  • the ratio D1 / L1 indicates how many times the light transmitted through the adhesive layer is reflected on the surface of the light scattering particles on average.
  • the number density of light scattering particles is the number of light scattering particles per unit volume.
  • the value of the volume per light scattering particle is usually used.
  • the particle diameter of the light scattering particle may be used.
  • the volume average particle diameter of the light scattering particles can be used as a representative value as the particle diameter used for calculating the number density of the light scattering particles.
  • the shape of the light scattering particle can be calculated assuming a sphere.
  • the scattering cross section can be obtained by Mie scattering theory (MIE THEORY).
  • MIE THEORY The Mie scattering theory is a solution of Maxwell's electromagnetic equation in the case where spherical particles having a refractive index different from that of a medium (matrix) having a uniform refractive index exist.
  • the spherical particles correspond to light scattering particles, and the medium corresponds to an adhesive composition.
  • the intensity distribution I ( ⁇ , ⁇ ) depending on the angle of the scattered light is expressed by the following equation (2).
  • the scattering efficiency K ( ⁇ ) is expressed by the following equation (3).
  • is an amount corresponding to the radius r of the spherical particle represented by the following formula (4) and normalized by the wavelength ⁇ of light in the medium.
  • i 1 and i 2 in equation (2) is expressed by equation (5).
  • a and b with the subscript ⁇ in the expressions (3) to (5) are expressed by the expression (6).
  • P (cos ⁇ ) with the superscript 1 and the subscript ⁇ is composed of a Legendre polynomial.
  • “A” and “b” with subscript ⁇ are composed of first and second-order Recati-Bessel functions ⁇ v and ⁇ v (where v means subscript ⁇ ) and their derivatives.
  • n scatter represents the refractive index of the spherical particles.
  • N matrix represents the refractive index of the medium.
  • an average free path L1 of a pressure-sensitive adhesive layer having a refractive index of 1.56 and a pressure-sensitive adhesive layer containing approximately 10.6% by weight (8% by volume) of silicone particles having a refractive index of 1.43 as light scattering particles is obtained in a vacuum. 2 is calculated by the above method with respect to light having a wavelength of 550 nm.
  • the mean free path L1 when the volume concentration V of the light scattering particles in the adhesive layer is constant and the particle diameter of the light scattering particles is changed to 200 nm, 600 nm, 1000 nm, 1500 nm, and 2000 nm is shown. Yes.
  • the number density [number / mm 3 ] of the light scattering particles was calculated by setting the specific gravity of the pressure-sensitive adhesive composition to 1 g / cm 3 and the specific gravity of the light scattering particles to 1.32 g / cm 3 . Furthermore, the shape of the light scattering particles was assumed to be a sphere. Assuming that the shape of the light scattering particle is a sphere in this manner is applicable when the actual shape of the light scattering particle is close to a sphere.
  • the tendency of the mean free path L1 and the particle diameter of the light-scattering particles is a problem of size, and thus it is considered that the same tendency is exhibited.
  • the thickness D1 of the pressure-sensitive adhesive layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, particularly preferably 10 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • the total light transmittance of the adhesive layer is preferably 80% or more, more preferably 85% or more.
  • the total light transmittance can be measured according to JIS K 7136.
  • the adhesion of the adhesive layer to glass is preferably 5 N / 25 mm or more, more preferably 7.5 N / 25 mm or more. Since the adhesion of the adhesive layer to glass is so high, the optical laminate can be strongly adhered to the organic EL element.
  • the upper limit of the adhesion to the glass of the adhesive layer is not particularly limited, but is usually 30 N / 25 mm or less. Measurement of adhesion of the adhesive layer to glass can be performed according to JIS K 6854-1.
  • the pressure-sensitive adhesive layer As a method for producing the pressure-sensitive adhesive layer, any method capable of obtaining a desired pressure-sensitive adhesive layer can be employed.
  • the pressure-sensitive adhesive layer is produced by a production method including a step of forming a coating liquid film containing an acrylic polymer and light scattering particles and a step of curing the coating liquid film to obtain a pressure-sensitive adhesive layer.
  • the coating solution is a coating solution for forming an adhesive layer and includes components contained in the adhesive layer. Therefore, the adhesion layer contains an acrylic polymer and light scattering particles, and may contain optional components such as inorganic oxide particles, a crosslinking agent, a plasticizer, and a silane coupling agent as necessary. Furthermore, the coating solution may contain a solvent.
  • a solvent capable of dissolving the acrylic polymer can be used.
  • the solvent include ester solvents such as methyl acetate, ethyl acetate, methyl acetoacetate and ethyl acetoacetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic solvents such as toluene and xylene; methanol, And alcohol solvents such as ethanol and propyl alcohol.
  • ester solvents such as methyl acetate, ethyl acetate, methyl acetoacetate and ethyl acetoacetate
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • aromatic solvents such as toluene and xylene
  • methanol methanol
  • Alcohol solvents such as ethanol and propyl alcohol.
  • a solvent may be used individually by 1
  • components contained in the adhesive layer may be prepared as a solution or a suspension.
  • components contained in the adhesive layer may be prepared as a solution or a suspension.
  • the above components are produced by a production method using a solvent, and when a commercially available product is purchased as the above components, the above components are prepared as a solution or suspension containing the above components.
  • the above solution or suspension may be blended as it is for the preparation of a coating solution for forming an adhesive layer.
  • the solvent contained in the solution or suspension can be used as a part or all of the solvent of the coating solution for forming the adhesive layer.
  • the amount of the solvent is usually set so that the solid content concentration of the coating solution can be adjusted to a desired concentration.
  • the solid content concentration of the coating solution is preferably 5% by weight or more, more preferably 10% by weight or more, particularly preferably 20% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, particularly preferably. Is 75% by weight or less.
  • the solid content of a certain liquid refers to a substance remaining after the liquid is dried.
  • the viscosity of the coating solution at 25 ° C. is preferably 20,000 mPa ⁇ s or less, more preferably 18,000 mPa ⁇ s or less, particularly preferably 15,000 mPa ⁇ s or less, and preferably 100 mPa ⁇ s or more.
  • the viscosity is measured according to 9. of JIS Z8803 (2011). This can be carried out in accordance with a viscosity measuring method using a single cylindrical rotational viscometer.
  • a step of forming the coating solution film is performed.
  • a film of the coating solution is formed by coating the coating solution on an appropriate support surface.
  • a coating method for example, methods such as roll coating, die coating, gravure coating, comma coating, and screen printing can be used.
  • the compatibility between the acrylic polymer and the particles in the adhesive layer is good, and the amount of particles can be reduced. Therefore, since it is easy to apply the coating liquid uniformly, the occurrence of defects (local protrusions or depressions) in the adhesive layer can be suppressed.
  • a step of curing the coating solution film to obtain an adhesive layer is performed.
  • the film of the coating liquid is cured by drying the film of the coating liquid to obtain an adhesive layer. Drying is usually performed by heat drying. Specific drying conditions can be arbitrarily set within a range in which a desired adhesive layer can be obtained.
  • the drying temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, further preferably 65 ° C. or higher, particularly preferably 70 ° C. or higher, preferably 250 ° C. or lower, more preferably 150 ° C. or lower, still more preferably 120 ° C. It is 95 degrees C or less especially preferably.
  • the drying time is preferably 10 seconds to 10 minutes.
  • the manufacturing method of the adhesion layer may include arbitrary processes in combination with the processes described above.
  • a crosslinking agent it is preferable to perform an aging treatment step after curing the coating solution film to obtain an adhesive layer.
  • the temperature condition for the aging treatment is usually from room temperature to 70 ° C.
  • the processing time for the aging process is usually 1 day to 30 days.
  • the reaction may be performed at 23 ° C. for 1 to 20 days, at 23 ° C. for 3 to 10 days, at 40 ° C. for 1 to 7 days, and the like.
  • the layer before the aging treatment and the layer after the aging treatment are referred to as “adhesive layer” without distinction.
  • the optical layered body of the present invention may further include an arbitrary layer in combination with the base material and the adhesive layer.
  • a peelable separator film layer may be provided on the opposite side of the adhesive layer from the substrate.
  • a light diffusion layer may be provided on the side opposite to the adhesive layer of the substrate.
  • the light diffusion layer is a layer containing a material having light diffusibility.
  • an ultraviolet absorbing layer may be provided on the side of the substrate opposite to the adhesive layer.
  • the adhesive layer has high adhesiveness. Therefore, the optical laminate can be adhered to the member by bonding the surface of the adhesive layer to an arbitrary member.
  • the adhesive layer can scatter light that passes through the adhesive layer. Therefore, the optical laminated body of this invention can raise the light extraction efficiency of the light which arose in the light emitting layer in the said organic EL element by arrange
  • the optical layered body of the present invention has haze.
  • the specific haze of the optical laminate can be appropriately set according to the use of the optical laminate.
  • the haze of the optical laminate is preferably 20% or more, more preferably 40% or more, particularly preferably 70% or more, preferably 99% or less, more preferably 97% or less, particularly preferably. 95% or less.
  • an optical laminated body is arbitrary as long as a desired optical laminated body is obtained.
  • an optical laminated body can be manufactured by manufacturing the adhesion layer by the method mentioned above using the surface of a base material as a support surface.
  • the optical laminate is formed by a first manufacturing method including a step of forming a coating liquid film for forming an adhesive layer on a substrate and a step of curing the coating liquid film to obtain an adhesive layer. Can be manufactured.
  • the optical layered body can be manufactured by manufacturing the adhesive layer by the method described above and then bonding the manufactured adhesive layer to the base material.
  • a second step includes a step of forming a coating solution film for forming an adhesive layer, a step of curing the coating solution film to obtain an adhesive layer, and a step of bonding the adhesive layer and the substrate.
  • An optical laminated body can be manufactured by the manufacturing method.
  • the substrate may be deteriorated in the process of manufacturing the adhesive layer due to factors such as the solvent contained in the coating liquid, the heat for drying the film of the coating liquid, and irradiation with active energy rays.
  • the second manufacturing method As a specific example of such a second production method, a coating solution is applied to the surface of the separator film layer having a surface having releasability and coated with silicone or the like, and dried to obtain an adhesive layer. Then, there is a method in which this adhesive layer is bonded to a substrate to obtain an optical laminate. Such a method can be carried out as long as the above-mentioned pressure-sensitive adhesive layer is used even if the surface of the base material to be bonded to the pressure-sensitive adhesive layer has low smoothness, for example, when the base material is embossed.
  • the optical layered body of the present invention By disposing the optical layered body of the present invention on one side of the organic EL element, a light source device is obtained.
  • the light source device is manufactured by bonding the surface of the optical layered body on the adhesive layer side to the light emitting surface of the organic EL element.
  • FIG. 3 is a cross-sectional view schematically showing a cross section taken along a plane parallel to the thickness direction of an example of a light source device including the optical laminate according to an embodiment of the present invention.
  • the light source device 200 includes an organic EL element 300 and an optical laminate 100.
  • the organic EL element 300 includes a substrate layer 310, a transparent electrode layer 320, a light emitting layer 330, an electrode layer 340, and a sealing layer 350 in this order, and a light emitting layer is formed by applying a voltage from the transparent electrode layer 320 and the electrode layer 340. 330 can produce light.
  • such an organic EL element 300 is formed by sequentially forming each layer such as the transparent electrode layer 320, the light emitting layer 330, and the electrode layer 340 on the substrate layer 310 by a layer forming method such as sputtering. It can be manufactured by sealing the layer.
  • a glass plate is often used as such a substrate layer 310. The refractive index of this glass plate tends to be higher than that of a general resin.
  • the surface 120D of the adhesive layer 120 on the side opposite to the base 110 is bonded to the light exit surface 300U of the organic EL element 300. Therefore, the light generated in the light emitting layer 330 passes through the transparent electrode layer 320, the substrate layer 310, the adhesive layer 120, and the base material 110 in this order, and exits through the surface 110U.
  • the adhesive layer 120 according to the present embodiment includes the light scattering particles 122, the adhesive layer 120 can scatter light. Therefore, according to the light source device 200 shown in the present embodiment, it is possible to efficiently extract light through the optical laminate 100.
  • the refractive index of the pressure-sensitive adhesive composition contained in the pressure-sensitive adhesive layer 120 is low, the refractive index difference between the substrate layer 310 and the pressure-sensitive adhesive layer 120 increases, and light is reflected at the interface between the substrate layer 310 and the pressure-sensitive adhesive layer 120. This may cause a decrease in light extraction efficiency.
  • the acrylic adhesive composition included in the adhesive layer 120 according to the present embodiment has a high refractive index, the difference in refractive index between the substrate layer 310 and the adhesive layer 120 can be reduced. Therefore, since reflection at the interface between the substrate layer 310 and the adhesive layer 120 is suppressed, the light extraction efficiency is further increased in the light source device 200 according to the present embodiment.
  • the light source device as described above can be used for applications such as a lighting fixture and a backlight device.
  • the luminaire includes the light source device as a light source, and may further include arbitrary components such as a member that holds the light source and a circuit that supplies power.
  • the backlight device includes the light source device as a light source, and further includes an optional component such as a housing, a circuit for supplying power, a diffusion plate, a diffusion sheet, a prism sheet, and the like for making light emitted more uniform. Can be included.
  • the use of the backlight device can be used as a backlight of a display device such as a liquid crystal display device that displays an image by controlling pixels and a display device that displays a fixed image such as a signboard.
  • Example 1 (Production of acrylic polymer (A-1)) A mixture of 0.16 part of azobisisobutyronitrile (AIBN) as a polymerization initiator in 70 parts of benzyl acrylate (a1), 15 parts of 2-hydroxyethyl acrylate (a2) and 15 parts of butyl acrylate (a3) (X) was prepared.
  • AIBN azobisisobutyronitrile
  • This coating solution was applied to one side of a polyethylene terephthalate film (“U34” manufactured by Toray Industries, Inc., thickness 100 ⁇ m) as a base material so that the thickness after drying was 60 ⁇ m, and dried at 80 ° C. for 5 minutes. A layer was formed. Thereafter, a polyester release sheet was bonded to the surface of the pressure-sensitive adhesive layer opposite to the substrate, and aged for 14 days at 80 ° C. Thereby, the optical laminated body provided with a release sheet, an adhesion layer, and a base material in this order was obtained. When calculated in consideration of the specific gravity, the volume concentration V of the light scattering particles in the adhesive layer was 5%.
  • the surface of the optical laminate thus obtained on the side of the release sheet was observed to examine defects in the adhesive layer.
  • a local depression or protrusion is formed on the surface of the release sheet.
  • the value of D1 / L1 of the adhesive layer was determined by Mie scattering theory (MIE THEORY). Moreover, the haze of the optical laminated body was measured.
  • a commercially available organic EL element was prepared, and the total luminous flux of this organic EL element was measured.
  • the release sheet was peeled off from the optical laminate, and the surface of the pressure-sensitive adhesive layer opposite to the base material was bonded to the light-emitting surface of the organic EL element to obtain a light source device.
  • the total luminous flux of this light source device was measured.
  • the light extraction efficiency was calculated by dividing the total luminous flux of the light source device by the total luminous flux of the organic EL element not provided with the optical laminate. The light extraction efficiency thus obtained represents the size of the total luminous flux of the light source device when the total luminous flux of the organic EL element not provided with the optical laminated body is set to “1.00”.
  • Example 2 Comparative Example 1 and Comparative Example 2
  • the thickness of the adhesive layer and the volume concentration V of the light scattering particles were changed as shown in Table 1. Except for the above, the optical laminate was produced and evaluated in the same manner as in Example 1.
  • Example 7 A solution of the acrylic polymer (A-1) was taken as 100 parts by weight in terms of solid content. With respect to the acrylic polymer (A-1) solution thus obtained, 130 parts by weight of inorganic oxide particles (Solar “NANON5 ZR-010”, volume average particle diameter 15 nm), plasticizer (Eastman “ 14 parts by weight of “BENZOFLEX 9-88SG”, melting point ⁇ 30 ° C.), and light scattering particles (“XC-99” manufactured by Momentive Performance Materials, Inc., silicone particles whose volume average particle diameter is adjusted to 0.7 ⁇ m, refraction (Rate 1.43) 26 parts by weight was added and stirred for 15 minutes to obtain a solution containing dispersed light scattering particles.
  • inorganic oxide particles Solar “NANON5 ZR-010”, volume average particle diameter 15 nm
  • plasticizer Eastman “ 14 parts by weight of “BENZOFLEX 9-88SG”, melting point ⁇ 30 ° C.
  • XC-99 manufactured by Momentive Performance
  • the amount of the light-scattering particles used here is an amount that gives a volume concentration V of 15% of the light-scattering particles in the adhesive layer to be formed later when calculated in consideration of the specific gravity.
  • To this solution was further added 0.3 part of a 55% ethyl acetate solution of trimethylolpropane tolylene diisocyanate adduct (manufactured by Nippon Polyurethane Co., Ltd., “Coronate L-55E”), and the mixture was stirred for 15 minutes. Obtained.
  • the coating solution thus produced was used as a coating solution for forming the adhesive layer. Further, the thickness of the adhesive layer was changed to 20 ⁇ m. Except for the above, the optical laminate was produced and evaluated in the same manner as in Example 1. The results are shown in Table 2. Table 2 also shows the results of Example 2 for comparison.
  • Example 8 0.16 part of azobisisobutyronitrile (AIBN)) as a polymerization initiator was dissolved in 70 parts of phenoxyethyl acrylate (a1), 15 parts of 2-hydroxyethyl acrylate (a2) and 15 parts of butyl acrylate (a3).
  • a mixture (Y) was prepared.
  • a reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser 28 parts of methyl ethyl ketone and 8 parts of toluene were charged and heated while stirring. After the temperature in the reactor reached 90 ° C., the mixture (Y) was dropped into the reactor over 2 hours.
  • a concentration of 65.0% and a viscosity of 1100 mPa ⁇ s (25 ° C.)) were obtained.
  • the weight average molecular weight of the acrylic polymer (A-2) was 108,000, the number average molecular weight was 41,700, the molecular weight distribution was 2.59, and the glass transition temperature was ⁇ 26.6 ° C.
  • the acrylic polymer (A-2) solution was used.
  • the thickness of the adhesive layer was changed to 20 ⁇ m. Further, the amount of light scattering particles was changed so that the volume concentration V was 15%. Except for the above, the optical laminate was produced and evaluated in the same manner as in Example 1. The results are shown in Table 3. Table 3 also shows the results of Example 2 for comparison.
  • Example 9 Instead of using “XC-99” (silicone particle with a volume average particle diameter adjusted to 0.7 ⁇ m, refractive index: 1.43) manufactured by Momentive Performance Materials, Inc. as a light scattering particle, the above momentum performance is used. “Material XC-99” (silicone particles with a volume average particle diameter adjusted to 0.7 ⁇ m, refractive index 1.43) and Momentive Performance Materials “Tospearl 120” (volume average particle diameter 2 ⁇ m) In combination with silicone particles having a refractive index of 1.43). The amount of these light scattering particles was adjusted so that the volume concentrations V 1 and V 2 of the light scattering particles in the produced adhesive layer were values shown in Table 4 below.
  • V 1 represents the volume concentration of light scattering particles having a volume average particle diameter of 0.7 ⁇ m
  • V 2 represents the volume concentration of light scattering particles having a volume average particle diameter of 2 ⁇ m.
  • the thickness of the adhesive layer was changed to 20 ⁇ m. Except for the above, the optical laminate was produced and evaluated in the same manner as in Example 1. The results are shown in Table 4. Table 4 also shows the results of Examples 3 and 4 for comparison.
  • particles (0.7 ⁇ m) refers to light scattering particles having a volume average particle diameter of 0.7 ⁇ m.
  • particles (2 ⁇ m) refers to light scattering particles having a volume average particle diameter of 2 ⁇ m.
  • Example 10 to 12 and Comparative Example 3 The amount of inorganic oxide particles (“NANON5 ZR-010” manufactured by Solar Co., Ltd., volume average particle diameter of 15 nm) relative to 100 parts by weight of the solid content of the acrylic polymer (A-1) was changed to 23 parts by weight. Further, the thickness of the adhesive layer and the volume concentration V of the light scattering particles were changed as shown in Table 5 below. Except for the above, the optical laminate was produced and evaluated in the same manner as in Example 7. The results are shown in Table 5.
  • inorganic oxide particles (“NANON5 ZR-010” manufactured by Solar Co., Ltd., volume average particle diameter of 15 nm) relative to 100 parts by weight of the solid content of the acrylic polymer (A-1) was changed to 23 parts by weight. Further, the thickness of the adhesive layer and the volume concentration V of the light scattering particles were changed as shown in Table 5 below. Except for the above, the optical laminate was produced and evaluated in the same manner as in Example 7. The results are shown in Table 5.
  • Example 13 to 15 A coating solution for forming an adhesive layer similar to that in Example 10 was prepared. This coating solution was applied to one side of a release sheet made of polyethylene terephthalate so that the thickness after drying was 40 ⁇ m, and dried at 80 ° C. for 5 minutes to form an adhesive layer. In addition, a polyethylene terephthalate film (thickness 38 ⁇ m) is prepared, and dot-like depressions having the maximum height (depth) Ry shown in Table 6 are formed at about 1 mm pitch on one side of the film by hot embossing treatment. A substrate was obtained.
  • the surface of the pressure-sensitive adhesive layer on the side opposite to the release sheet and the surface on the side opposite to that on which the depressions of the base material were formed were bonded and aged at 80 ° C. for 14 days. Thereby, the optical laminated body provided with a release sheet, an adhesion layer, and a base material in this order was obtained. Evaluation of the optical laminated body thus obtained was performed in the same manner as in Example 1. Further, the matte feeling was evaluated by observing the substrate side surface of the optical laminate. The case where gloss was suppressed was judged as “good”, and the case where gloss was visible was judged as “bad”. The results are shown in Table 6. Table 6 also shows the results of Example 10 for comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 基材と、前記基材上に形成された粘着層とを備え、前記粘着層が、アクリル系重合体を含むアクリル系粘着組成物、及び、光散乱粒子を含み、前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、前記アクリル系重合体の重量平均分子量が、20万以下であり、前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、前記アクリル系粘着組成物の屈折率が、1.52~1.67であり、前記光散乱粒子の屈折率が、1.4~1.49である、光学積層体。

Description

光学積層体及びその製造方法
 本発明は、基材及び粘着層を備える光学積層体及びその製造方法に関する。
 複数層の電極間に発光層を設け、電気的に発光を得る有機エレクトロルミネッセンス素子は、高発光効率、低電圧駆動、軽量、低コスト等の優れた特性を有する。以下、有機エレクトロルミネッセンス素子を、適宜「有機EL素子」と呼ぶことがある。前記のような有機EL素子の優れた特性を活かすために、有機EL素子を用いて、平面型照明、液晶表示装置用バックライト装置等の光源装置を開発することが試みられている。
 有機EL素子を光源装置に利用する場合、有機EL素子の出光面に光学フィルムを設けることが求められることがある。例えば、有機EL素子の発光層自体は発光効率が高いものの、発光装置が備える層間の屈折率差等の条件によっては、光が前記の層を透過して出光するまでの間の光の損失が大きくなりうる。そこで、このような光の損失を低減するために、有機EL素子の出光面に、適切な凹凸構造を有する光学フィルムを設けることが求められることがある(特許文献1参照)。
 前記のような光学フィルムは、通常、適切な粘着剤を用いて、有機EL素子の出光面に設けられる。例えば、光学フィルムの片面に粘着剤からなる粘着層を設けて光学積層体を用意し、この光学積層体の粘着層側の面を有機EL素子の出光面に貼り合わせることで所望の光源装置を製造しうる。このような光源装置では、有機EL素子の発光層で発生した光は、粘着層及び光学フィルムを通って出光する。
国際公開第2012/002260号
 前記のように、凹凸構造を有する光学フィルムを用いれば、光源装置内での光の損失を抑えて、光取出効率を向上させることが可能である。しかし、本発明者の検討によれば、光取出効率を効果的に向上させるための凹凸構造の形状には制約があり、このような制約の範囲内で凹凸構造を形成しようとした場合、光学フィルムの厚みを薄くすることが難しくなったり、光学フィルムを製造するための工程数が増えたりすることがある。また、光源装置のデザイン上の制約から凹凸構造を有さない光学フィルムが求められる場合、従来の技術では、光取出効率の向上が難しかった。このような事情から、必ずしも光取出効率の向上のための凹凸構造を有する光学フィルムを用いなくても、光取出効率に優れた光源装置を得ることが可能な光学積層体の開発が求められる。
 本発明は前記の課題に鑑みて創案されたもので、光取出効率に優れた光源装置を得ることが可能な新たな光学積層体及びその製造方法を提供することを目的とする。
 本発明者は前記課題を解決するべく鋭意検討した。その結果、特定のアクリル系重合体を含むアクリル系粘着組成物と特定の光散乱粒子とを組み合わせて含む粘着層を用いれば、光取出効率に優れた光源装置が得られる光学積層体を実現できることを見い出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
 〔1〕 基材と、前記基材上に形成された粘着層とを備え、
 前記粘着層が、アクリル系重合体を含むアクリル系粘着組成物、及び、光散乱粒子を含み、
 前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、
 前記アクリル系重合体の重量平均分子量が、20万以下であり、
 前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、
 前記アクリル系粘着組成物の屈折率が、1.52~1.67であり、
 前記光散乱粒子の屈折率が、1.4~1.49である、光学積層体。
 〔2〕 前記光散乱粒子が、シリコーン粒子又はアクリル粒子である、〔1〕記載の光学積層体。
 〔3〕 前記粘着層に含まれる前記光散乱粒子のうち、少なくとも体積で1/4の粒子の粒子径が、0.1μm~1μmである、〔1〕又は〔2〕記載の光学積層体。
 〔4〕 前記光散乱粒子の平均粒子径が、0.1μm~1μmであり、
 前記粘着層の厚さをD1、光散乱の平均自由工程をL1とするとき、D1/L1が、1~6である、〔1〕~〔3〕のいずれか一項に記載の光学積層体。
 〔5〕 前記粘着層とは反対側の前記基材の面が、凹凸構造を有する、〔1〕~〔4〕のいずれか一項に記載の光学積層体。
 〔6〕 前記基材が単層構造を有し、
 前記凹凸構造の最大高さをRyとし、前記基材の厚さをD2とするとき、0.05<Ry/D2<0.25である、〔5〕記載の光学積層体。
 〔7〕 有機エレクトロルミネッセンス素子の一方の側に配置される、〔1〕~〔6〕のいずれか一項に記載の光学積層体。
 〔8〕 基材及び粘着層を備える光学積層体の製造方法であって、
 アクリル系重合体及び光散乱粒子を含む塗布液の膜を、前記基材上に形成する工程と、
 前記塗布液の膜を硬化させて、前記粘着層を得る工程とを含み、
 前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、
 前記アクリル系重合体の重量平均分子量が、20万以下であり、
 前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、
 前記光散乱粒子の屈折率が、1.4~1.49であり、
 前記粘着層中の前記光散乱粒子以外の成分としてのアクリル系粘着組成物の屈折率が、1.52~1.67である、光学積層体の製造方法。
 〔9〕 基材及び粘着層を備える光学積層体の製造方法であって、
 アクリル系重合体及び光散乱粒子を含む塗布液の膜を形成する工程と、
 前記塗布液の膜を硬化させて、前記粘着層を得る工程と、
 前記粘着層と前記基材とを貼り合わせる工程とを含み、
 前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、
 前記アクリル系重合体の重量平均分子量が、20万以下であり、
 前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、
 前記光散乱粒子の屈折率が、1.4~1.49であり、
 前記粘着層中の前記光散乱粒子以外の成分としてのアクリル系粘着組成物の屈折率が、1.52~1.67である、光学積層体の製造方法。
 本発明によれば、光取出効率に優れた光源装置を得ることが可能な光学積層体及びその製造方法を提供できる。
図1は、本発明の一実施形態に係る光学積層体を厚み方向に平行な平面で切った断面を模式的に示す断面図である。 図2は、ある例に係る粘着層の平均自由行程と当該粘着層に含まれる光散乱粒子の粒子径との関係を示すグラフである。 図3は、本発明の一実施形態に係る光学積層体を備えた光源装置の一例を厚み方向に平行な平面で切った断面を模式的に示す断面図である。 図4は、参考例1で得られた光散乱粒子の濃度と比D1/L1との関係を示すグラフである。
 以下、実施形態及び例示物を示して本発明について詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、「溶媒」とは、別に断らない限り、その中に溶質が溶解される、溶液を構成する媒体のみならず、その中に分散物が分散される、懸濁液(スラリーを含む)を構成する媒体をも含む用語として用いられる。
 以下の説明において、ある物質と他のある物質との「相溶性」とは、別に断らない限り、それらの物質と、必要に応じて溶媒とを混合して溶液又は懸濁液とした際に、これらがゲル化又は分離を起こさず均質な状態を保つ性質をいう。
 以下の説明において、粒子の平均粒子径とは、別に断らない限り、体積平均粒子径のことを指す。体積平均粒子径は、レーザー回折法で測定された粒子径分布において小径側から計算した累積体積が50%となる粒子径である。測定装置としては、動的光散乱式粒度分布分析装置(日機装株式会社製 Nanotrac Wave-EX150)を用いうる。
 以下の説明において、別に断らない限り、(メタ)アクリルとはアクリル及びメタクリルを包含する用語であり、(メタ)アクリロイルとはアクリロイル及びメタクリロイルを包含する用語であり、(メタ)アクリレートとはアクリレート及びメタクリレートを包含する用語であり、アクリル系重合体とは(メタ)アクリル系モノマーを少なくとも1種類含有するモノマー成分を重合して得られる重合体を意味し、(メタ)アクリル系モノマーとは(メタ)アクリル酸及び(メタ)アクリレートを包含する用語である。
[1.光学積層体の概要]
 図1は、本発明の一実施形態に係る光学積層体を厚み方向に平行な平面で切った断面を模式的に示す断面図である。
 図1に示すように、本実施形態に係る光学積層体100は、基材110と、この基材110上に形成された粘着層120とを備える。粘着層120は、アクリル系粘着組成物121及び光散乱粒子122を含む。通常、このような光学積層体100は、基材110とは反対側の粘着層120の面120Dで、任意の部材に粘着しうる。また、粘着層120とは反対側の基材110の面110Uは、凹凸構造を有していてもよい。この実施形態では、エンボス加工処理によって形成された複数の窪み111を有することにより、基材110の面110Uが凹凸構造を有する例を示す。
[2.基材]
 基材を構成する材料としては、通常は透明の樹脂を用いる。樹脂が「透明」であるとは、光学部材として用いるのに適した程度の光線透過率を樹脂が有する意味である。通常、光学積層体が備える部材(即ち、基材、粘着層及び任意の層)は、光学積層体全体として80%以上の全光線透過率を有するように設けられる。
 樹脂としては、熱可塑性樹脂を用いることが好ましい。熱可塑性樹脂からなる基材は、エンボス加工処理によって凹凸構造を容易に形成できる。熱可塑性樹脂としては、熱可塑性を有する重合体を含む樹脂を用いうる。熱可塑性を有する重合体としては、ポリエチレンナフタート、ポリエチレンテレフタレート、ボリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート共重合体等のポリエステル;ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン;ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、及び、これらの水素添加物等のポリシクロオレフィン;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化エチレン等のポリフッ化エチレン;ナイロン6、ナイロン6,6等のポリアミド;ポリ塩化ビニル、ポリ塩化ビニル/酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ビニロン等のビニル重合体;三酢酸セルロース、セロファン等のセルロース系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル等のアクリル系ポリマー;ポリスチレン;ポリカーボネート;ポリアリレート;ポリイミド等を挙げることができる。中でも、ポリエステル及びポリシクロオレフィンが好ましく、ポリシクロオレフィンが特に好ましい。ポリシクロオレフィンを含む基材としては、例えば、日本ゼオン社製「ゼオノアフィルム」等を用いうる。また、これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で用いてもよい。
 前記の重合体の重量平均分子量(Mw)は、光学積層体の使用目的に応じて適宜選定でき、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。重量平均分子量がこのような範囲にあるときに、基材の機械的強度および成型加工性が高度にバランスされる。
 前記の重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、好ましくは1.2以上、より好ましくは1.5以上、特に好ましくは1.8以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.7以下である。分子量分布を前記下限値以上にすることにより、重合体の生産性を高め、製造コストを抑制できる。また、分子量分布を前記上限値以下にすることにより、低分子成分の量が小さくなるので、高温曝露時の緩和を抑制して、光学積層体の安定性を高めることができる。
 ここで、前記の重量平均分子量及び数平均分子量は、溶媒としてシクロヘキサンを用いたゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレン又はポリスチレン換算の値として測定しうる。また、測定の際、試料がシクロヘキサンに溶解しない場合には、溶媒としてトルエンを用いてもよい。
 樹脂における重合体の割合は、好ましくは50重量%~100重量%であり、より好ましくは70重量%~100重量%、更に好ましくは80重量%~100重量%、特に好ましくは90重量%~100重量%である。
 また、樹脂は、本発明の効果を著しく損なわない限り、重合体以外に任意の成分を含んでいてもよい。その任意の成分の例を挙げると、顔料、染料等の着色剤;可塑剤;蛍光増白剤;分散剤;熱安定剤;光安定剤;紫外線吸収剤;帯電防止剤;酸化防止剤;滑剤;界面活性剤などの添加剤が挙げられる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 樹脂のガラス転移温度は、光学積層体の使用目的に応じて適宜選択しうるが、好ましくは70℃以上、より好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは150℃以下である。ガラス転移温度が、前記範囲の下限値以上であることにより高温下における光学積層体の耐久性を良好にでき、また、上限値以下であることにより凹凸構造の形成を容易に行うことができる。
 基材の材料としての樹脂の屈折率は、好ましくは1.53以上、より好ましくは1.60以上である。また、前記樹脂の屈折率は、粘着層に含まれるアクリル系粘着組成物の屈折率以上であることが好ましい。さらに、樹脂の屈折率とアクリル系粘着組成物の屈折率との差は、好ましくは0.05以下、より好ましくは0.02以下である。基材の材料としての樹脂の屈折率を前記の範囲に収めることにより、基材と粘着層との界面での光のロスを減らすことができ、本発明の光学積層体を有機EL素子に設けた場合に光取出効率を効果的に高めることができる。
 基材としては、通常、フィルムを用いる。この際、基材は、1層からなる単層構造のフィルムであってもよく、2層以上を備える複層構造のフィルムであってもよい。
 基材の厚みD2(図1参照)は、光学積層体の用途に応じて設定しうる。基材がフィルムである場合、当該基材の厚みD2は、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、特に好ましくは75μm以下である。
 粘着層とは反対側の基材の面は、凹凸構造を有していてもよい。前記の凹凸構造は、図1に示す窪み111のように周囲よりも凹んだ凹部を含んでいてもよく、周囲よりも突出した凸部を含んでいてもよく、凹部及び凸部を組み合わせて含んでいてもよい。このように基材の面が凹凸構造を有することにより、粘着層とは反対側の基材の面の光沢を抑制することができる。そのため、光学積層体の見た目上の質感(マット感等)を調整できる。ここでマット感とは、光沢が抑えられた見た目上の質感のことをいう。また、凹凸構造によって基材の面のデザインを自由に設定できるので、光学積層体の美観を改善することができる。さらに、凹凸構造を適切に形成した場合には、この凹凸構造を有する面を通した光の取出効率を更に向上させることが可能である。
 凹凸構造に含まれる凹部又は凸部の形状は、例えば点状、線状、面状等の任意の形状に設定しうる。また、点状の凹部又は凸部の形状は、例えば、角錐形状、円錐形状、球面の一部の形状などとしうる。さらに、線状の凹部又は凸部の形状は、例えば、直線状、曲線状などとしうる。凹凸構造には、通常、凹部又は凸部が複数含まれる。これら複数の凹部及び凸部の形状は、同じでもよく、異なっていてもよい。これらの中でも、凹凸構造に含まれる凹部又は凸部としては、点状のものが好ましい。
 凹凸構造の最大高さRy(図1参照)は、基材の厚さD2との間に、所定の関係を満たすことが好ましい。具体的には、Ry/D2が、好ましくは0.05より大きく、より好ましくは0.07以上、特に好ましくは0.1以上であり、好ましくは0.25未満、より好ましくは0.23以下、特に好ましくは0.2以下である。ここで、凹凸構造の最大高さRyとは、凹凸構造に含まれる凹部の深さ及び凸部の高さのうち、最大の値をいう。凹凸構造の最大高さRyを前記のようにすることによって、凹凸構造を有する面の光沢を抑制して、光学積層体の美観を向上させることができる。また、凹凸構造の最大高さRyを前記のようにすることによって、凹凸構造をエンボス加工処理によって容易に形成できる。
 前記のように、基材は、2以上の層を備える複層構造を有していてもよい。例えば、粘着層に近い層(支持層)と凹凸構造を有する層(凹凸構造層)とを備える複層構造を基材が有する場合、光取出効率の向上のための凹凸構造の形状を精密に形成しやすい点で有利である。しかし、本発明の光学積層体では粘着層による光散乱によって十分に光取出効率の向上を実現できる。そのため、粘着層による光取出効率の向上という効果を活用する観点では、図1に示すように、基材110は1層のみからなる単層構造を有することが好ましい。このような単層構造の光学積層体は、層の数が多くなって基材の厚みが厚くなることを抑制でき、また、凹凸構造の形成のための手間が多くなることを抑制できる。さらに、基材が単層構造を有する場合、Ry/D2を前記の範囲に収めることが、特に好ましい。これにより、基材の厚みを薄くしながら、エンボス加工処理によって凹凸構造を基材に容易に形成することができる。
 凹凸構造に含まれる凹部又は凸部のピッチP(図1参照)は、好ましくは20μm以上、より好ましくは100μm以上、特に好ましくは200μm以上であり、好ましくは3mm以下、より好ましくは1.5mm以下、特に好ましくは1mm以下である。凹部又は凸部のピッチPを前記の範囲に収めることにより、凹凸構造を有する基材の面での光沢を抑制して、光学積層体の美観を向上させ易い。
 凹凸構造に含まれる凹部又は凸部の幅W(図1参照)は、好ましくは5μm以上、より好ましくは25μm以上、特に好ましくは50μm以上であり、好ましくは1.5mm以下、より好ましくは0.75mm以下、特に好ましくは0.5mm以下である。凹部又は凸部の幅Wを前記の範囲に収めることにより、凹凸構造を有する基材の面での光沢を抑制して、光学積層体の美観を向上させ易い。
 凹凸構造が複数の凹部及び凸部を含む場合、これら複数の凹部及び凸部の寸法は、同じでもよく、異なっていてもよい。
 基材の製造方法は、任意である。例えば、熱可塑性樹脂から基材を製造する場合は、溶融成形法、溶液流延法などの成形方法によって樹脂をフィルム状に成形することにより、基材を製造しうる。溶融成形法は、さらに詳細には、例えば、押出成形法、プレス成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法などの方法に分類できる。これらの方法の中でも、機械強度及び表面精度に優れた基材を得るためには、押出成形法、インフレーション成形法及びプレス成形法が好ましい。中でも、効率良く簡単に基材を製造するためには、押出成形法が特に好ましい。
 また、基材の製造方法は、基材に延伸処理を施す工程を含んでいてもよい。これにより、基材として延伸フィルムを得ることができるので、基材に多様な光学的物性及び機械的物性を発現させることができる。延伸方法としては、例えば長尺のフィルムを延伸する場合、ロールの周速の差を利用してフィルムを長手方向に一軸延伸する方法、テンター延伸機を用いてフィルムを幅方向に一軸延伸する方法、などの一軸延伸法;フィルムを長手方向及び幅方向に同時に延伸する同時二軸延伸法、フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法、などの二軸延伸法;テンター延伸機を用いた斜め方向への延伸方法;などが挙げられる。ここで斜め方向とは、フィルムの幅方向に平行でも垂直でもない方向を表す。また、長尺のフィルムとは、幅に対して、通常5倍以上の長さを有するフィルムをいい、好ましくは10倍以上の長さを有するフィルムをいい、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。
 基材の製造方法は、基材の面に凹凸構造を形成する工程を含んでいてもよい。凹凸構造の形成方法は、任意である。例えば、特許文献1記載のように紫外線硬化性樹脂及び型を用いて凹凸構造層を形成したり、レーザー光の照射によって凹凸構造を形成したりしてもよい。特に、凹凸構造は、エンボス加工処理によって形成することが好ましい。
 エンボス加工処理では、一般に、基材を加熱した状態で基材の面に型を押圧して、前記面に凹凸構造を形成する。型としては、粘着層とは反対側の基材の面に形成したい凹凸構造に対応した凹凸形状を有する面を備えた部材を用いうる。型の具体例を挙げると、所望の凹凸形状を周面に有するロール又はドラムが挙げられる。前記の型で基材を押圧することにより、型の凹凸形状を基材の面に転写して、所望の凹凸構造を基材の面に形成することができる。
 型で基材を押圧する際には、粘着層とは反対側の基材の面を押圧しうる型と、粘着層側の基材の面を押圧しうる支持具との間に基材を挟んで、押圧を行ってもよい。支持具としては、粘着層側の基材の面の形状に応じた面を備えた部材を用いうる。通常は、粘着層側の基材の面は平面に形成されるので、支持具の面の形状は、平坦面又は滑らかな曲面に設定される。支持具の具体例を挙げると、滑らかな周面を有するロール又はドラムが挙げられる。これにより、基材の厚みが薄くても凹凸構造を安定して形成することができる。
 エンボス加工処理において、基材を加熱する方法は任意である。例えば、型又は支持具を加熱して、この加熱された型または支持具によって基材を加熱してもよい。また、例えば、型または支持具とは別に用意したヒーターによって基材を加熱してもよい。通常、エンボス加工処理においては、基材は当該基材に含まれる樹脂のガラス転移温度以上の温度に加熱された状態で、型によって押圧される。
 エンボス加工処理によれば、型で押圧するだけで基材に凹凸構造を形成できるため、製造方法が簡単であり、コストを抑制することができる。また、厚みの薄い基材であっても凹凸構造を容易に形成できる。一般に、厚みの薄い基材にはエンボス加工処理によって深い凹部を形成することは難しいが、前記「Ry/D2」が前記の範囲に収まる程度の凹部であれば、エンボス加工処理による形成が容易である。そのため、厚みの薄い基材を採用することが可能となるので、光学積層体全体の厚みを例えば50μm以下と薄くすることが期待できる。さらに、特許文献1記載のような紫外線硬化性樹脂は硬化後の可撓性が低い傾向があったのでフレキシブルな基材を得ることが困難であったが、エンボス加工処理によれば、フレキシブルな基材を実現することが可能である。
 粘着層側の基材の面は、通常、平面として形成される。ところが、前記のように粘着層とは反対側の面にエンボス加工処理によって凹凸構造を形成した場合、粘着層側の基材の面には小さい起伏が形成され、平滑性が低下することがある。本発明者の検討によれば、この起伏は、エンボス加工処理の後で基材が冷却される時に生じる基材の収縮によって生じていると推察される。従来の高屈折率の粘着層では、高屈折化をするために、ジルコニア等の無機酸化物粒子を大量に含有させていることから粘着層が固くなり、このように起伏のある面で基材と光学密着させることは、難しかった。しかし、本発明に係る粘着層は、無機酸化物粒子を含まないか無機酸化物粒子の量が少なくても高屈折率を実現できるため、粘着層が固くなりすぎず、基材と粘着層との光学密着を容易に実現することが可能である。
[3.粘着層]
 粘着層は、アクリル系粘着組成物及び光散乱粒子を含む層である。通常、粘着層は、アクリル系粘着組成物及び光散乱粒子のみからなる。したがって、通常は、粘着層に含まれる成分のうち、光散乱粒子以外の成分としての組成物が、アクリル系粘着組成物である。粘着層において、光散乱粒子はアクリル系粘着組成物中に分散しており、粘着層を透過する光はアクリル系粘着組成物と光散乱粒子との界面で反射される。この反射によって粘着層内で光が散乱されるので、本発明の光学積層体を有機EL素子に設けた場合に光取出効率を向上させることができる。また、粘着層は粘着性を有するので、基材とは反対側の粘着層の面を任意の部材に貼り合わせることにより、光学積層体を任意の部材と貼り合わせることができる。
 [3.1.アクリル系粘着組成物]
 アクリル系粘着組成物は、アクリル系重合体を含み、必要に応じて任意の成分を含みうる。アクリル系粘着組成物は、通常、粘着層においてバインダーとして機能できる。したがって、アクリル系粘着組成物の作用によって、粘着層は粘着性を発現しうる。また、アクリル系粘着組成物の作用によって、光散乱粒子は粘着層に保持されうる。
 [3.1.1.アクリル系重合体]
 アクリル系重合体は、芳香環含有モノマー(a1)及び水酸基含有モノマー(a2)を含む共重合成分[I]の共重合体である。また、前記の共重合成分[I]は、必要に応じて、(メタ)アクリル酸アルキルエステル系モノマー(a3)、及び、任意の共重合性モノマー(a4)を含みうる。このアクリル系重合体は、高い屈折率を有しうる。したがって、アクリル系重合体を含むアクリル系粘着組成物の屈折率を容易に高くできる。
 芳香環含有モノマー(a1)は、1つの分子内に1つ以上の芳香環及び1つ以上のエチレン性不飽和基を有する化合物である。
 エチレン性不飽和基を含有する官能基としては、例えば、(メタ)アクリロイル基、クロトノイル基、ビニル基、アリル基等が挙げられ、中でも反応性に優れる点で(メタ)アクリロイル基が好ましい。
 前記芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、ビフェニル環、フルオレン環等が挙げられる。芳香環含有モノマー(a1)の1分子当たりの芳香環の個数は、1つでもよく、複数個でもよい。芳香環含有モノマー(a1)は、粘着物性のバランスが取れる点では、1分子当たり芳香環を1つ含有する化合物であることが好ましく、効率良く、粘着層の屈折率及び複屈折を制御できる点では、1分子当たり芳香環を2つ含有する化合物であることが好ましい。
 このような芳香環含有モノマー(a1)は、(メタ)アクリル系モノマーであることが好ましい。
 芳香環含有モノマー(a1)としては、例えば、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ベンジルオキシエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、エチレンオキサイド変性(メタ)アクリル酸クレゾール、エチレンオキサイド変性(メタ)アクリル酸ノニルフェノール、(メタ)アクリル酸ビフェニルオキシエチルエステル、スチレン等が挙げられる。中でも(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチルが特に好ましい。芳香環含有モノマー(a1)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 共重合成分[I]における芳香環含有モノマー(a1)の量は、共重合成分[I]全体を100重量%として、通常40重量%以上、好ましくは50重量%以上、更に好ましくは55重量%以上、特に好ましくは60重量%以上であり、通常93重量%以下、好ましくは90重量%以下、より好ましくは85重量%以下である。芳香環含有モノマー(a1)の量を、前記範囲の下限値以上にすることによりアクリル系粘着組成物の屈折率を十分に高くでき、また、上限値以下にすることによりアクリル系粘着組成物の粘着性を良好にできる。
 水酸基含有モノマー(a2)は、水酸基を含有するモノマーであり、中でも水酸基を含油する(メタ)アクリル系モノマーが好ましい。
 水酸基含有モノマー(a2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等のアクリル酸ヒドロキシアルキルエステル;カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等のカプロラクトン変性モノマー;ジエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のオキシアルキレン変性モノマー;2-アクリロイロキシエチル2-ヒドロキシエチルフタル酸、N-メチロール(メタ)アクリルアミド、ヒドロキシエチルアクリルアミド等の1級水酸基含有モノマー;2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-クロロ2-ヒドロキシプロピル(メタ)アクリレート等の2級水酸基含有モノマー;2,2-ジメチル2-ヒドロキシエチル(メタ)アクリレート等の3級水酸基含有モノマーを挙げることができる。水酸基含有モノマー(a2)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水酸基含有モノマー(a2)の中でも、架橋剤との反応性に優れる点で、1級水酸基含有モノマーが好ましい。更に、分子鎖末端に水酸基を有するモノマーが、より優れた帯電防止性能を示しやすく、好ましい。さらには、2-ヒドロキシエチル(メタ)アクリレートを使用することが、ジ(メタ)アクリレート等の不純物が少なく、製造しやすい点で特に好ましい。
 水酸基含有モノマー(a2)としては、不純物であるジ(メタ)アクリレートの含有割合が少ないことが好ましい。具体的には、水酸基含有モノマー(a2)のジ(メタ)アクリレートの含有割合は、好ましくは0.5重量%以下、より好ましくは0.2重量%以下、更に好ましくは0.1%重量以下である。
 特に好ましい水酸基含有モノマー(a2)としては、2-ヒドロキシエチルアクリレート及び2-ヒドロキシプロピルアクリレートが挙げられる。
 共重合成分[I]における水酸基含有モノマー(a2)の量は、共重合成分[I]全体を100重量%として、通常7重量%以上、好ましくは10重量%以上であり、通常60重量%以下、好ましくは50重量%以下、より好ましくは40重量%以下、特に好ましくは35重量%以下である。水酸基含有モノマー(a2)の量を、前記範囲の下限値以上にすることにより、アクリル系重合体と粒子(例えば、光散乱粒子及び無機酸化物粒子)との相溶性を良好にできるので、粘着層における粒子の分散性を良好にできる。また、水酸基含有モノマー(a2)の量を、前記範囲の上限値以下にすることにより、芳香環含有モノマー(a1)の量を相対的に多くして、アクリル系粘着組成物の屈折率を高くできる。
 また、芳香環含有モノマー(a1)と水酸基含有モノマー(a2)との重量比(a1):(a2)は、好ましくは93:7~40:60、より好ましくは90:10~50:50、さらに好ましくは85:15~60:40である。水酸基含有モノマー(a2)に対する芳香環含有モノマー(a1)の量を前記のように多くすることで、アクリル系粘着組成物の屈折率を効果的に高くできる。また、水酸基含有モノマー(a2)に対する芳香環含有モノマー(a1)の量を前記のように少なくすることで、アクリル系重合体と粒子(例えば、光散乱粒子及び無機酸化物粒子)との相溶性を良好にできるので、粘着層における粒子の分散性を良好にできる。
 (メタ)アクリル酸アルキルエステル系モノマー(a3)としては、当該(メタ)アクリル酸アルキルエステル系モノマー(a3)が有するアルキル基の炭素原子数が、所定範囲に収まるものが好ましい。具体的には、前記アルキル基の炭素原子数は、好ましくは1以上、より好ましくは4以上であり、好ましくは20以下、より好ましくは12以下、特に好ましくは8以下である。
 (メタ)アクリル酸アルキルエステル系モノマー(a3)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。(メタ)アクリル酸アルキルエステル系モノマー(a3)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 (メタ)アクリル酸アルキルエステル系モノマー(a3)の中でも、共重合性、粘着物性、取り扱い性、及び、原料入手しやすさの点で、n-ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートが好ましい。さらに、耐久性に優れる点で、n-ブチル(メタ)アクリレートが特に好ましい。
 共重合成分[I]における(メタ)アクリル酸アルキルエステル系モノマー(a3)の量は、共重合成分[I]全体を100重量%として、好ましくは0~40重量%、より好ましくは0~35重量%、更に好ましくは0~30重量%である。このような範囲で(メタ)アクリル酸エステル系モノマー(a3)を用いることにより、粘着層の粘着性を効果的に高めることができる。
 任意の共重合性モノマー(a4)としては、前記のモノマー(a1)~(a3)以外のモノマーが挙げられ、例えば、カルボキシル基含有モノマー、アミノ基含有モノマー、アセトアセチル基含有モノマー、イソシアネート基含有モノマー、グリシジル基含有モノマー等の、官能基含有モノマーが挙げられる。
 カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、アクリル酸ダイマー、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、グルタコン酸、イタコン酸、アクリルアミドN-グリコール酸、ケイ皮酸等が挙げられ、中でも(メタ)アクリル酸が好ましい。
 アミノ基含有モノマーとしては、例えば、t-ブチルアミノエチル(メタ)アクリレート、エチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が挙げられる。
 アセトアセチル基含有モノマーとしては、例えば、2-(アセトアセトキシ)エチル(メタ)アクリレート、アリルアセトアセテート等が挙げられる。
 イソシアネート基含有モノマーとしては、例えば、2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、及び、これらのアルキレンオキサイド付加物等が挙げられる。
 グリシジル基含有モノマーとしては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリルグリシジル等が挙げられる。
 また、アクリル系重合体を高分子量化させたい場合、任意の共重合性モノマー(a4)として、エチレン性不飽和基を二つ以上有する化合物を用いてもよい。エチレン性不飽和基を二つ以上有する化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジビニルベンゼン等が挙げられる。
 任意の共重合性モノマー(a4)として、カルボキシル基含有モノマー等の酸性基含有モノマーを用いてもよい。ただし、耐腐食性の観点から、任意の共重合性モノマー(a4)としては酸性基含有モノマーを用いないことが好ましい。
 任意の共重合性モノマー(a4)の例としては、更に、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-ブトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコール-モノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート等のアルコキシ基およびオキシアルキレン基を含有するモノマー;メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、イソプロポキシメチル(メタ)アクリルアミド、n-ブトキシメチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド等のアルコキシアルキル(メタ)アクリルアミド系モノマー;(メタ)アクリロイルモルホリン、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、(メタ)アクリルアミドN-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー;アクリロニトリル、メタクリロニトリル、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル、ビニルトルエン、ビニルピリジン、ビニルピロリドン、イタコン酸ジアルキルエステル、フマル酸ジアルキルエステル、アリルアルコール、アクリルクロライド、メチルビニルケトン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン等が挙げられる。
 任意の共重合性モノマー(a4)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 共重合成分[I]における任意の共重合性モノマー(a4)の量は、共重合成分[I]全体を100重量%として、好ましくは0~40重量%、より好ましくは0~30重量%、さらに好ましくは0~20重量%である。このような範囲で任意の共重合性モノマー(a4)を用いることにより、芳香環含有モノマー(a1)の量を相対的に多くしてアクリル系粘着組成物の屈折率を効果的に高くできる。
 アクリル系重合体の重量平均分子量は、通常20万以下、好ましくは18万以下、より好ましくは16万以下、特に好ましくは15万以下である。アクリル系重合体の重量平均分子量を前記範囲の上限値以下にすることにより、アクリル系重合体と粒子(例えば、光散乱粒子及び無機酸化物粒子)との相溶性を良好にできるので、粘着層における粒子の分散性を良好にできる。アクリル系重合体の重量平均分子量は、本発明の効果を著しく損なわない限り任意であり、通常1万以上である。
 アクリル系重合体の分子量分布(重量平均分子量/数平均分子量)は、好ましくは10以下、より好ましくは8以下、さらに好ましくは6以下、特に好ましくは5以下である。アクリル系重合体の分子量分布を前記範囲の上限値以下にすることにより、粘着層の耐久性を良好にできる。アクリル系重合体の分子量分布の下限は任意であるが、製造の限界の点から、通常1.1以上である。
 アクリル系重合体の重量平均分子量及び数平均分子量は、高速液体クロマトグラフィー(日本Waters社製「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×10、分離範囲:100~2×10、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本直列を用いることにより測定されうる。また、前記の重量平均分子量及び数平均分子量は、標準ポリスチレン分子量換算により求めうる。
 アクリル系重合体のガラス転移温度は、好ましくは-70℃以上、より好ましくは-50℃以上、特に好ましくは-40℃以上であり、好ましくは10℃以下、より好ましくは5℃以下、特に好ましくは0℃以下である。アクリル系重合体のガラス転移温度を、前記範囲の下限値以上にすることにより粘着層の耐熱性を高めることができ、前記範囲の上限値以下にすることにより粘着層の粘着力が高くなりすぎることを抑制できる。
 共重合体であるアクリル系重合体のガラス転移温度は、下記(1)に示すFoxの式より算出されうる。
 1/Tg=Wa/Tga+Wb/Tgb+・・・Wn/Tgn  (1)
 Tg:共重合体のガラス転移温度(K)
 Tga:モノマーAのホモポリマーのガラス転移温度(K)
 Wa:モノマーAの重量分率
 Tgb:モノマーBのホモポリマーのガラス転移温度(K)
 Wb:モノマーBの重量分率
 Tgn:モノマーNのホモポリマーのガラス転移温度(K)
 Wn:モノマーNの重量分率
  (Wa+Wb+・・・+Wn=1)
 アクリル系重合体の製造方法としては、所望のアクリル系重合体が得られうる任意の方法を採用しうる。通常、アクリル系重合体は、芳香環含有モノマー(a1)及び水酸基含有モノマー(a2)、並びに、必要に応じて用いうる(メタ)アクリル酸アルキルエステル系モノマー(a3)及び任意の共重合性モノマー(a4)といったモノマー成分を重合することによって製造しうる。重合にあたっては、例えば、溶液ラジカル重合、懸濁重合、塊状重合、乳化重合などの重合方法を採用しうる。中でも、溶液ラジカル重合が好ましい。
 重合条件は、重合反応を進行させうる適切な条件を採用しうる。例えば、有機溶媒中に、芳香環含有モノマー(a1)、水酸基含有モノマー(a2)、(メタ)アクリル酸アルキルエステル系モノマー(a3)及び任意の共重合性モノマー(a4)を含む重合モノマー、並びに、重合開始剤を混合あるいは滴下し、ラジカル重合を行うことにより、アクリル系重合体を製造しうる。前記の重合は、還流状態あるいは50℃~90℃の条件下で行いうる。また、前記の重合の重合時間は、通常、2時間~20時間である。
 かかる重合に用いられる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素溶媒;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶媒;n-プロピルアルコール、イソプロピルアルコール等の脂肪族アルコール溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶媒等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 かかる重合に用いられる重合開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ系重合開始剤;ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系重合開始剤;等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 アクリル系粘着組成物におけるアクリル系重合体の量は、アクリル系粘着組成物全体を100重量%として、好ましくは65重量%~100重量%、より好ましくは80重量%~100重量%、特に好ましくは85重量%~100重量%である。アクリル系重合体の量を前記のように大きくすることにより、アクリル系粘着組成物の粘着性及び屈折率の両方を効果的に高くできる。
 [3.1.2.任意の成分]
 アクリル系粘着組成物は、前述したアクリル系重合体に組み合わせて、更に任意の成分を含みうる。
 (無機酸化物粒子)
 例えば、アクリル系粘着組成物は、無機酸化物粒子を含みうる。無機酸化物粒子は、比較的屈折率が高い。そのため、無機酸化物粒子を用いることにより、アクリル系粘着組成物の屈折率を更に高めることができる。
 無機酸化物粒子は、無機酸化物を含む粒子である。無機酸化物としては、例えば金属酸化物及び非金属酸化物が挙げられ、特に金属酸化物が好ましい。中でも、無機酸化物粒子は、金属酸化物と、その表面を修飾する、反応性官能基を有する有機物とを含む粒子が好ましく、より具体的には、金属酸化物の粒子と、当該粒子の表面を修飾する、反応性官能基を有する有機物とを含む被覆粒子(以下適宜「反応性修飾金属酸化物粒子」ということがある。)が好ましい。反応性官能基は、金属酸化物と、水素結合等の相互作用を有した状態にあってもよいし、そのような状態になく別物質と相互作用できる状態にあってもよい。
 金属酸化物としては、一般的に樹脂にフィラーとして使用されうる金属酸化物が好ましい。金属酸化物の具体例としては、酸化ジルコニウム(ZrO:ジルコニア)、酸化チタン(TiO:チタニア)、酸化アルミニウム(Al:アルミナ)、酸化鉄(Fe、Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y:イットリア)、酸化ニオブ(Nb)、酸化モリブデン(MoO、MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta、TaO)、酸化タングステン(WO、WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO:セリア)、酸化アンチモン(Sb、Sb)、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、フッ素ドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アンチモン酸亜鉛(AZO)、インジウムドープ酸化亜鉛(IZO)、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛等が挙げられる。
 非金属酸化物としては、一般的に樹脂にフィラーとして使用されうる非金属酸化物が好ましい。非金属酸化物の具体例としては、酸化ケイ素(SiO:シリカ)、酸化ホウ素(B)等が挙げられる。
 前記の金属酸化物及び非金属酸化物等の無機酸化物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの無機酸化物の中でも、屈折率が高いものが好ましく、具体的には屈折率が1.5以上のものが好ましい。このように屈折率が高い無機酸化物を用いることにより、アクリル系粘着組成物中の無機酸化物粒子の量を少なくできる。そのため、アクリル系粘着組成物の粘着性を高めたり、アクリル系粘着組成物を柔軟にしたりできる。高屈折率の無機酸化物としては、例えば、酸化チタン(屈折率:2.3~2.7)、チタン酸カリウム(屈折率:2.68)、酸化ジルコニウム(屈折率:2.05~2.4)、及び、酸化亜鉛(屈折率:2.01~2.03)が挙げられる。これらの中でも、高屈折率のアクリル系粘着組成物が得られ易いので、酸化ジルコニウム及び酸化チタンが好ましい。
 反応性官能基を有する有機物における反応性官能基としては、例えば、水酸基、リン酸基、カルボキシル基、アミノ基、アルコキシ基、イソシアネート基、酸ハライド、酸無水物、グリシジル基、クロロシラン基、及びアルコキシシラン基が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 反応性官能基を有する有機物としては、イソシアネート基を有する有機物が、金属酸化物と周囲の物質との安定性を向上させうるため、好ましい。イソシアネート基を有する有機物の例としては、アクリロキシメチルイソシアネート、メタクリロキシメチルイソシアネート、アクリロキシエチルイソシアネート、メタクリロキシエチルイソシアネート、アクリロキシプロピルイソシアネート、メタクリロキシプロピルイソシアネート、1,1-ビス(アクリロキシメチル)エチルイソシアネートが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 反応性修飾金属酸化物粒子において、反応性官能基を有する有機物の割合は、金属酸化物100重量部に対して、好ましくは1重量部~40重量部である。
 無機酸化物粒子の体積平均粒子径は、好ましくは5nm以上、より好ましくは10nm以上、特に好ましくは20nm以上であり、好ましくは50nm以下、より好ましくは40nm以下、特に好ましくは30nm以下である。無機酸化物粒子の体積平均粒子径を前記の範囲に収めることにより、着色が少なく光透過率の高い粘着層を得ることができ、且つ、粒子の分散が容易となる。無機酸化物粒子が凝集して二次粒子又はそれ以上の高次粒子を構成する場合、前記の平均粒子径の範囲は、一次粒子径の範囲としうる。
 無機酸化物粒子の態様としては、例えば、微粒子粉体、ペースト、またはゾルを挙げることができる。中でも、無機酸化物粒子は、ゾルの態様であることが好ましい。
 無機酸化物粒子の製造方法は任意である。例えば、反応性修飾金属酸化物粒子は、金属酸化物の粒子、反応性官能基を有する有機物、有機溶媒及び必要に応じて使用しうる任意の添加剤を、混合し、さらに得られた混合組成物に必要に応じて超音波処理等の処理を施すことにより、有機溶媒中に粒子が分散した懸濁液として得ることができる。
 有機溶媒の例としては、メチルエチルケトン、メチルイソブチルケトン、アセトン、シクロヘキサノン等のケトン溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素溶媒;メタノール、エタノール、イソプロピルアルコール、n-ブタノール、iso-ブタノール等のアルコール溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル溶媒;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル溶媒;ジメチルフォルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド溶媒が挙げられる。有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 任意の添加剤としては、例えば、金属キレート剤が挙げられる。任意の添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 反応性修飾金属酸化物粒子を、有機溶媒中に粒子が分散した懸濁液として得る場合、溶媒の量などの条件を調整し、当該懸濁液中に、反応性修飾金属酸化物粒子が1重量%~50重量%含まれるよう調整することが好ましい。こうして得られた懸濁液は、そのままアクリル系粘着組成物の製造に供することができるので、アクリル系粘着組成物の製造を簡便に行うことができる。
 前記の混合組成物の調製に際し、ビーズミル等の混合装置により、各成分を混合することが好ましい。かかる混合により、二次粒子又はそれ以上の高次粒子を一次粒子レベルに粉砕し、一次粒子の状態で表面を処理することができる。その結果、金属酸化物粒子に均一な表面処理を施すことができる。
 混合組成物に、必要に応じて更に超音波処理を施してもよい。超音波処理は、超音波洗浄機、超音波ホモジナイザー、超音波分散機等の超音波処理装置を用いて行いうる。かかる処理により、良好な懸濁液を得ることができる。
 反応性修飾金属酸化物粒子としては、市販の粒子をそのまま用いてもよい。当該市販の粒子は、溶媒及び添加剤等の成分を含むスラリーとして提供される場合があるが、かかる成分をそのまま含んだスラリーの状態で、アクリル系粘着組成物の材料として用いうる。金属酸化物としてZrOを含む反応性修飾金属酸化物粒子のスラリーの例としては、商品名「NANON5 ZR-010」(株式会社ソーラー製、溶媒:メチルエチルケトン、粒子含有割合30%、表面を修飾する反応性官能基を有する有機物:重合性官能基を有するイソシアネート、体積平均粒子径15nm)を挙げることができる。金属酸化物としてTiOを含む反応性修飾金属酸化物粒子のスラリーの例としては、商品名「NOD-742GTF」(ナガセケムテックス株式会社製、溶媒:ポリエチレングリコールモノメチルエーテル、粒子含有割合30%、体積平均粒子径48nm)を挙げることができる。
 アクリル系粘着組成物における無機酸化物粒子の割合は、アクリル系重合体100重量部に対して、好ましくは30重量部以上、より好ましくは40重量部以上、特に好ましくは50重量部以上であり、好ましくは130重量部以下、より好ましくは120重量部以下、特に好ましくは110重量部以下である。無機酸化物粒子の量を、前記範囲の下限値以上にすることによりアクリル系粘着組成物の屈折率を効果的に高めることができ、前記範囲の上限値以下にすることによりアクリル系粘着組成物の粘着性及び柔軟性を効果的に高めることができる。ただし、粘着層の形成を容易にしたり、粘着層と基材との光学密着を容易にしたりして、光学積層体の製造を容易に行う観点からは、アクリル系粘着組成物における無機酸化物粒子の量は少ないことが好ましく、アクリル系粘着組成物は無機酸化物粒子を含まないことが特に好ましい。
 (架橋剤)
 例えば、アクリル系粘着組成物は、架橋剤を含みうる。架橋剤を用いることにより、アクリル系重合体間を架橋させて、粘着層にある程度の硬さとして耐久性を付与することができる。
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、メラミン系架橋剤、アルデヒド系架橋剤、アミン系架橋剤、金属キレート系架橋剤等の、化学架橋を形成しうる架橋剤;多官能アクリレート系架橋剤等の、物理架橋を形成しうる架橋剤;が挙げられる。これらの中でも、水酸基と反応しうる架橋剤が好ましく、イソシアネート系架橋剤及び金属キレート系架橋剤がより好ましい。更には、基材と粘着層との密着性を向上させる点、及び、アクリル系重合体との反応性の点で、イソシアネート系架橋剤が特に好ましい。
 イソシアネート系架橋剤としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、水素化トリレンジイソシアネート、1,3-キシレンジイソシアネート、1,4-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタン-4,4-ジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、テトラメチルキシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート;これらのポリイソシアネート化合物とトリメチロールプロパン等のポリオール化合物とのアダクト体;これらのポリイソシアネート化合物のビュレット体;これらのポリイソシアネート化合物のイソシアヌレート体;などが挙げられる。
 金属キレート系架橋剤としては、例えば、アルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、パナジウム、クロム、ジルコニウム等の多価金属の、アセチルアセトン又はアセトアセチルエステル配位化合物等が挙げられる。
 架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 架橋剤の量は、アクリル系重合体100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.02重量部以上、特に好ましくは0.03重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下、特に好ましくは10重量部以下である。架橋剤の量を、前記範囲の下限値以上にすることにより凝集力を高めて粘着層の耐久性を効果的に高めることができ、上限値以下にすることにより粘着層の柔軟性及び粘着性を良好にし易い。
 (可塑剤)
 例えば、アクリル系粘着組成物は、可塑剤を含みうる。可塑剤を用いることにより、アクリル系粘着組成物の粘度を低くできるので、粘着層の粘着性を良好に保持できる。通常、アクリル系粘着組成物は、前記の無機酸化物粒子を含むと粘度が高くなり、その結果、粘着性が低下する傾向がある。これに対し、アクリル系粘着組成物が無機酸化物粒子と組み合わせて可塑剤を含む場合には、粘着層の粘着性を良好に保持できるので、高い屈折率と高い粘着性とを両立させることが可能である。
 可塑剤の融点は、好ましくは-70℃以上、より好ましくは-60℃以上であり、好ましくは0℃以下、より好ましくは-10℃以下である。可塑剤の融点がこの範囲内であると、アクリル系粘着組成物に含まれる各成分の相溶性を良好にできる。また、糊残りを抑制しながら、粘着層の粘着性を適度な範囲に収めることができる。ここで糊残りとは、光学積層体を任意の部材に貼り合わせた後で当該光学積層体を任意の部材から剥がした場合に、任意の部材へアクリル系粘着組成物が残留する現象をいう。
 可塑剤としては、例えば、ポリブテン、ビニルエーテル類、ポリエーテル(ポリアルキレンオキシド及び官能化ポリアルキレンオキシドを含む)、エステル類、ポリオール(例えば、グリセリン)、石油樹脂、水添石油樹脂、及び、スチレン系化合物(例えばα-メチルスチレン)が挙げられる。中でも、アクリル系重合体との混和性が良好で且つ屈折率が比較的高いことから、エステル類が好ましく、安息香酸系及びフタル酸系などの芳香族環含有エステルが特に好ましい。
 可塑剤として用いうる安息香酸エステルとしては、例えば、ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、ベンジルベンゾエート、及び、1,4-シクロヘキサンジメタノールジベンゾエートが挙げられる。特に好ましい安息香酸エステル系可塑剤としては、例えば、ジプロピレングリコールジベンゾエート、及びベンジルベンゾエートが挙げられる。また、前記フタル酸エステルとしては、例えば、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ブチルベンジルフタレート、ジシクロヘキシルフタレート、及びエチルフタリルエチルグリコレートが挙げられる。可塑剤の市販品の例としては、商品名「BENZOFLEX 9-88SG」(イーストマン社製)、商品名「α-メチルスチレン」(三菱化学株式会社製)が挙げられる。
 可塑剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 可塑剤の量は、アクリル系重合体100重量部に対して、好ましくは5重量部以上、より好ましくは10重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下である。
 (シランカップリング剤)
 例えば、アクリル系粘着組成物は、シランカップリング剤を含みうる。シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、及び3-イソシアネートプロピルトリエトキシシランが挙げられる。市販のシランカップリング剤の例としては、商品名「KBM-803」(信越化学工業株式会社製)を挙げることができる。
 シランカップリング剤は、1種類を単独で用いてもよく、種類以上を任意の比率で組み合わせて用いてもよい。
 シランカップリング剤の量は、アクリル系重合体100重量部に対して、好ましくは0.05重量部以上、より好ましくは0.1重量部以上であり、好ましくは5重量部以下、より好ましくは3重量部以下である。
 (その他の添加剤)
 アクリル系粘着組成物は、上述した成分以外の添加剤を含みうる。このような添加剤としては、例えば、帯電防止剤;上述した以外の粘着剤;ウレタン樹脂、ロジン、ロジンエステル、水添ロジンエステル、フェノール樹脂、芳香族変性テルペン樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、スチレン系樹脂、キシレン系樹脂等の粘着付与剤;着色剤;充填剤;老化防止剤;紫外線吸収剤;機能性色素;紫外線あるいは放射線照射により呈色あるいは変色を起こしうる化合物;などが挙げられる。さらに、前記添加剤の他にも、アクリル系粘着組成物の構成成分の製造原料に含まれる不純物等の成分が、アクリル系粘着組成物に少量含まれていてもよい。これらの成分の量は、所望する物性が得られるように適切に設定しうる。
 [3.1.3.アクリル系粘着組成物の物性]
 アクリル系粘着組成物の屈折率は、通常1.52以上、好ましくは1.53以上、より好ましくは1.54以上であり、通常1.67以下、好ましくは1.66以下、より好ましくは1.65以下、特に好ましくは1.64以下である。アクリル系粘着組成物の屈折率を前記範囲の下限値以上にすることにより、光学積層体を有機EL素子に設けた場合の光取出効率を効果的に向上させることができる。さらに、光散乱粒子の量を多くしなくても光取出効率を向上させられるので、粘着層の粘着性を高めることができる。また、アクリル系粘着組成物の屈折率を前記範囲の上限値以下にすることにより、無機酸化物粒子の量を少なくできるので、粘着層を柔軟にできる。
 屈折率の測定は、エリプソメーター(ジェー・エー・ウーラム・ジャパン株式会社製「M-2000」)により行いうる。
 アクリル系粘着組成物は、粘着性を有するので、粘着剤として機能しうる。ここで「粘着剤」とは、23℃における剪断貯蔵弾性率が1MPa未満であり、常温で粘着性を示すものをいう。このような粘着剤は、圧力を加えることにより粘着が可能な感圧式の粘着剤であり、加熱による劣化等の影響を、光学積層体と貼り合わせられる部材に及ぼすことなく貼り合わせができる。
 [3.2.光散乱粒子]
 光散乱粒子は、光を散乱させうる粒子である。この光散乱粒子により、粘着層を通る光を散乱させることができる。そのため、本発明の光学積層体を有機EL素子に設けた場合に光取出効率を向上させることができる。
 光散乱粒子としては、アクリル系粘着組成物よりも低い所定の屈折率を有する粒子を用いる。光散乱粒子の具体的な屈折率は、通常1.4以上、好ましくは1.41以上、より好ましくは1.42以上であり、通常1.49以下、好ましくは1.48以下、より好ましくは1.47以下である。光散乱粒子の屈折率が前記の範囲に収まっていると、光散乱粒子とアクリル系粘着組成物との界面において光を効果的に反射させられるので、粘着層において光を十分に散乱させることができる。
 光散乱粒子の材料としては、無機材料を用いてもよく、有機材料を用いてもよい。中でも、光散乱粒子の材料としては、有機材料を用いることが好ましい。通常、粘着層は、粘着層を製造するのに適した塗布液を用いて製造される。この塗布液において、光散乱粒子は沈降しやすく、中でも比重の重い無機材料からなる光散乱粒子は、特に沈降を生じやすい。これに対し、有機材料からなる光散乱粒子は沈降を生じにくい。そのため、粘着層における光散乱粒子の分散性を高めることができる。また、このように光散乱粒子の分散性が良好である場合、粘着層において粘着性等の特性を安定して発現させ易い。
 光散乱粒子の材料として用いうる有機材料の好ましい例としては、シリコーン樹脂、アクリル樹脂、及びポリスチレン樹脂等の樹脂が挙げられる。中でも、分散が容易であり、且つ、分散後に沈降を生じ難いので、シリコーン樹脂及びアクリル樹脂が好ましい。したがって、光散乱粒子としては、シリコーン樹脂からなるシリコーン粒子又はアクリル樹脂からなるアクリル粒子を用いることが好ましい。
 光散乱粒子の例を商品名で挙げると、シリコーン樹脂からなる光散乱粒子としては、例えば、商品名「XC-99」(モメンティブ・パフォーマンス・マテリアルズ社製、体積平均粒子径0.7μm)が挙げられる。また、アクリル樹脂からなる光散乱粒子としては、例えば、商品名「MPシリーズ」(綜研化学社製、体積平均粒子径0.8μm)が挙げられる。さらに、ポリスチレン樹脂からなる光散乱粒子としては、例えば、商品名「SXシリーズ」(綜研化学社製、体積平均粒子径3.5μm)が挙げられる。
 光散乱粒子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 光散乱粒子の体積平均粒子径は、好ましくは0.1μm以上、より好ましくは0.3μm以上、特に好ましくは0.4μm以上であり、好ましくは1μm以下、より好ましくは0.9μm以下である。光散乱粒子の体積平均粒子径を前記範囲の下限値以上にすることにより、散乱させるべき光の波長よりも光散乱粒子の粒子径を安定して大きくできるので、光散乱粒子によって可視光を安定して散乱させることができる。また、光散乱粒子の体積平均粒子径を前記範囲の上限値以下にすることにより、粒子径を小さくできるので、光散乱粒子に当たった光をより広範な範囲に反射させることができ、それにより可視光の効率的な散乱が可能になる。
 さらに、粘着層に含まれる光散乱粒子のうち、少なくとも体積で1/4の粒子の粒子径は、0.1μm~1μmの範囲に収まることが好ましい。より詳しくは、粘着層に含まれる光散乱粒子のうち、好ましくは25体積%以上、より好ましくは35体積%以上、特に好ましくは50体積%以上の粒子は、0.1μm~1μmの粒子径を有することが好ましい。0.1μm~1μmの粒子径を有する光散乱粒子は、表面積が大きいので、光の散乱を効果的に行うことができる。そのため、本発明の光学積層体を有機EL素子に設けた場合に光取出効率を効果的に向上させることができる。また、1μm以上の粒子径を有する光散乱粒子を粘着層が多く含む場合、粘着層のヘイズを大きくできるので、粘着層を通して反対側を見通し難くできる。そのため、本発明の光学積層体を有機EL素子に設けた場合に、有機EL素子の配線及び反射電極を見え難くできるので、美観を向上させることができる。
 光散乱粒子の粘着層に対する体積濃度Vは、粘着層全体の体積を100%として、通常3%以上、好ましくは4%以上、より好ましくは5%以上であり、通常35%以下、好ましくは30%以下、より好ましくは25%以下である。光散乱粒子の体積濃度Vを、前記範囲の下限値以上にすることにより光の散乱を大きくでき、前記範囲の上限値以下にすることによりアクリル系重合体と光散乱粒子との相溶性を良好にして光散乱粒子の分散性を向上させることができる。そのため、光散乱粒子の体積濃度Vを前記範囲に収めることにより、本発明の光学積層体を有機EL素子に設けた場合に光取出効率を効果的に高めることができる。
 [3.3.粘着層の属性及び寸法]
 粘着層の厚さを「D1」、粘着層の光散乱の平均自由工程を「L1」とするとき、比「D1/L1」は、好ましくは1以上、より好ましくは1.2以上、特に好ましくは1.4以上であり、好ましくは6以下、より好ましくは5.5以下、特に好ましくは5以下である。前記の比D1/L1は、粘着層を透過する光が光散乱粒子の表面で平均何回反射されるかを表す。比D1/L1を前記の範囲に収めることにより、本発明の光学積層体を有機EL素子に設けた場合に、光取出効率を効果的に高めることができる。
 一般に、ある粘着組成物及び当該粘着組成物中に分散する光散乱粒子を含む粘着層における光散乱の平均自由行程L1は、「平均自由行程L1=1/(光散乱粒子の数密度×散乱断面積)」で算出される。
 光散乱粒子の数密度は、単位体積当たりの光散乱粒子の数である。光散乱粒子の数密度の計算には、通常、光散乱粒子の1個当たりの体積の値を用いる。光散乱粒子の1個当たりの体積の値を求める場合、光散乱粒子の粒子径を用いる場合がある。一般に、光散乱粒子の粒子径には分布があるため、光散乱粒子の数密度の計算に用いる粒子径としては、光散乱粒子の体積平均粒子径を代表値として用いうる。また、光散乱粒子の1個当たりの体積の値の計算の簡単化のため、光散乱粒子の形状は、球と仮定して計算しうる。
 散乱断面積は、ミー散乱理論(MIE THEORY)により求めうる。ミー散乱理論は、一様な屈折率を有する媒体(マトリックス)中に、該媒体と異なる屈折率を有する球形粒子が存在するケースについて、マックスウェルの電磁方程式の解を求めたものである。球形粒子が光散乱粒子に相当し、媒体が粘着組成物に相当する。この理論によると、前記の散乱断面積は「散乱断面積=散乱効率K(α)×球形粒子の実断面積πr」で算出される。
 ここで、散乱光の角度に依存した強度分布I(α,θ)は、下記(2)式で表わされる。また、散乱効率K(α)は、下記(3)式で表わされる。さらに、αは、下記(4)式で表わされ、媒体中での光の波長λで規格化された球形粒子の半径rに相当する量である。角度θは散乱角であり、入射光の進行方向と同一方向をθ=180°にとる。また、(2)式中のi及びiは、(5)式で表わされる。そして、(3)式~(5)式中の下添字ν付のa及びbは、(6)式で表わされる。上添字1及び下添字νを付したP(cosθ)は、Legendreの多項式からなる。下添字ν付のa及びbは、1次及び2次のRecatti-Bessel関数Ψ及びζ(但し、は、下添字νを意味する)とその導関数とからなる。mは、マトリックスを基準にした球形粒子の相対屈折率であり、m=nscatter/nmatrixである。nscatterは、球状粒子の屈折率を表す。また、nmatrixは、媒体の屈折率を表す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 例えば、屈折率1.56の粘着組成物、及び、光散乱粒子として屈折率1.43のシリコーン粒子を略10.6重量%(8体積%)含む粘着層の平均自由行程L1を、真空中での波長550nmの光に対して前記の方法で計算すると、図2のようになる。図2に示す例では、粘着層における光散乱粒子の体積濃度Vを一定として、光散乱粒子の粒子径を200nm、600nm、1000nm、1500nm及び2000nmに変化させた時の平均自由行程L1を示している。また、計算に当たって、光散乱粒子の数密度[個/mm]は、粘着組成物の比重を1g/cm、光散乱粒子の比重を1.32g/cmとして計算した。さらに、光散乱粒子の形状は、球で仮定した。このように光散乱粒子の形状を球と仮定することは、実際の光散乱粒子の形状が球に近い場合に適用可能である。さらに、実際の光散乱粒子の形状が球に近い形状でない場合でも、平均自由行程L1と光散乱粒子の粒子径の傾向は大きさの問題であるため、同様の傾向を示すと考えられる。
 粘着層の厚みD1は、好ましくは3μm以上、より好ましくは5μm以上、特に好ましくは10μm以上であり、好ましくは500μm以下、より好ましくは300μm以下、特に好ましくは250μm以下である。粘着層の厚みD1を前記範囲の下限値以上にすることにより、粘着層によって十分に光を散乱することができる。また、粘着層の厚みD1を前記範囲の上限値以下にすることにより、粘着層の面状を容易に平らにできる。
 粘着層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上である。全光線透過率の測定は、JIS K 7136によって行いうる。
 粘着層の対ガラス密着性は、好ましくは5N/25mm以上、より好ましくは7.5N/25mm以上である。粘着層の対ガラス密着性がこのように高いことにより、光学積層体を有機EL素子に強力に粘着させることができる。粘着層の対ガラス密着性の上限は、特に制限はないが、通常30N/25mm以下である。粘着層の対ガラス密着性の測定は、JIS K 6854-1によって行いうる。
 [3.4.粘着層の製造方法]
 粘着層の製造方法としては、所望の粘着層が得られる任意の方法を採用しうる。通常は、アクリル系重合体及び光散乱粒子を含む塗布液の膜を形成する工程と、前記塗布液の膜を硬化させて粘着層を得る工程とを含む製造方法によって、粘着層を製造する。
 前記の塗布液は、粘着層形成用の塗布液であって、粘着層に含まれる成分を含む。したがって、粘着層は、アクリル系重合体及び光散乱粒子を含み、必要に応じて無機酸化物粒子、架橋剤、可塑剤及びシランカップリング剤等の任意の成分を含みうる。さらに、塗布液は、溶媒を含んでいてもよい。
 溶媒としては、アクリル系重合体を溶解しうる溶媒を用いうる。溶媒の例としては、酢酸メチル、酢酸エチル、アセト酢酸メチル、アセト酢酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;トルエン、キシレン等の芳香族系溶媒;メタノール、エタノール、プロピルアルコール等のアルコール系溶媒;が挙げられる。これらの中でも、溶解性、乾燥性及び価格の点から、酢酸エチル及びメチルエチルケトンが好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ところで、粘着層に含まれる成分(即ち、アクリル系重合体、光散乱粒子及び任意の成分等の成分)は、溶液又は懸濁液として用意されることがありえる。例えば、溶媒を用いる製造方法によって前記の成分を製造した場合、並びに、前記の成分として市販品を購入した場合などには、前記の成分を含む溶液又は懸濁液として、前記の成分が用意されることがある。このような場合、粘着層形成用の塗布液の調製のために前記の溶液又は懸濁液をそのまま配合してもよい。この際には、溶液又は懸濁液に含まれる溶媒を、粘着層形成用の塗布液の溶媒の一部又は全部として用いうる。
 溶媒の量は、通常、塗布液の固形分濃度を所望の濃度に調整しうるように設定する。塗布液の固形分濃度は、好ましくは5重量%以上、より好ましくは10重量%以上、特に好ましくは20重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、特に好ましくは75重量%以下である。ここで、ある液体の固形分とは、その液体の乾燥を経て残留する物質のことをいう。
 25℃における塗布液の粘度は、好ましくは20,000mPa・s以下、より好ましくは18,000mPa・s以下、特に好ましくは15,000mPa・s以下であり、好ましくは100mPa・s以上である。塗布液の粘度をこのように低くすることにより、塗工筋の発生を抑制できるので、塗布液の膜を均一に形成することが容易である。ここで、粘度の測定は、JIS Z8803(2011)の9.単一円筒形回転粘度計による粘度測定方法に準じて行いうる。
 塗布液を用意した後で、前記の塗布液の膜を形成する工程を行う。通常は、適切な支持面に塗布液を塗布することにより、塗布液の膜を形成する。塗布方法としては、例えば、ロールコーティング、ダイコーティング、グラビアコーティング、コンマコーティング、スクリーン印刷等の方法を用いうる。本発明に係る光学積層体では、粘着層におけるアクリル系重合体と粒子との相溶性が良好であり、且つ、粒子の量を少なくできる。そのため、塗布液を均一に塗布することが簡単であるので、粘着層における欠陥(局所的な突起又は窪み)の発生を抑制できる。
 塗布液の膜を形成した後で、この塗布液の膜を硬化させて粘着層を得る工程を行う。通常は、塗布液の膜を乾燥させることで塗布液の膜を硬化させて、粘着層を得る。乾燥は、通常、加熱乾燥によって行う。具体的な乾燥条件は、所望の粘着層が得られる範囲で任意に設定しうる。乾燥温度は、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは65℃以上、特に好ましくは70℃以上であり、好ましくは250℃以下、より好ましくは150℃以下、更に好ましくは120℃以下、特に好ましくは95℃以下である。また、乾燥時間は、好ましくは10秒~10分である。
 また、粘着層の製造方法は、上述した工程に組み合わせて更に任意の工程を含んでいてもよい。
 例えば、架橋剤を用いる場合には、塗布液の膜を硬化させて粘着層を得た後で、エージング処理工程を行うことが好ましい。このエージング処理工程を行うことにより、粘着層の粘着物性のバランスをとることができる。エージング処理の温度条件は、通常、室温~70℃である。また、エージング処理の処理時間は、通常、1日~30日である。具体例としては、23℃で1日~20日間、23℃で3~10日間、40℃で1日~7日間等の条件で行ないうる。本発明では、エージング処理を施す前の層及びエージング処理後の層を、区別せず「粘着層」という。
[4.任意の層]
 本発明の光学積層体は、基材及び粘着層に組み合わせて、更に任意の層を備えていてもよい。
 例えば、粘着層の基材とは反対側に、剥離可能なセパレーターフィルム層が設けられていてもよい。このようなセパレーターフィルム層を設けることにより、粘着層を保護したり、光学積層体の巻き取りを容易にしたりできる。
 また、例えば、基材の粘着層とは反対側に、光拡散層を設けてもよい。光拡散層は、光拡散性を有する材料を含む層である。光拡散層を設けることにより、光拡散層を透過する光を拡散させて光の光路を変化させることができる。これにより、光路長を長くして、光の取り出し効率をより高めることができる。
 さらに、例えば、基材の粘着層とは反対側に、紫外線吸収層を設けてもよい。これにより、基材及び粘着層、並びに、光学積層体を貼り合わせられた有機EL素子に含まれる有機材料の紫外線による劣化を抑制することができる。
[5.光学積層体の用途等]
 本発明の光学積層体は、粘着層が高い粘着性を有する。そのため、粘着層の表面を任意の部材に貼り合わせることにより、光学積層体を前記部材に粘着させることができる。また、本発明の光学積層体において、粘着層は、当該粘着層を透過する光を散乱させることができる。そのため、本発明の光学積層体は、有機EL素子の一方の側に配置することにより、当該有機EL素子内の発光層で生じた光の光取出効率を高めることができる。したがって、本発明の光学積層体は、有機EL素子と組み合わせて光源装置を製造する用途に用いて好適である。
 粘着層が光を散乱させうる光散乱粒子を含むので、本発明の光学積層体は、ヘイズを有する。光学積層体の具体的なヘイズは、光学積層体の用途に応じて適切に設定しうる。具体的には、光学積層体のヘイズは、好ましくは20%以上、より好ましくは40%以上、特に好ましくは70%以上であり、好ましくは99%以下、より好ましくは97%以下、特に好ましくは95%以下である。このようなヘイズを有することにより、光学積層体を有機EL素子に設けた場合に、有機EL素子の配線及び反射電極を見え難くできるので、美観を向上させることができる。
[6.光学積層体の製造方法]
 光学積層体の製造方法は、所望の光学積層体が得られる限り、任意である。
 例えば、光学積層体は、基材の表面を支持面として用いて上述した方法で粘着層を製造することによって、製造しうる。この場合、粘着層形成用の塗布液の膜を基材上に形成する工程と、この塗布液の膜を硬化させて粘着層を得る工程とを含む第一の製造方法により、光学積層体を製造しうる。
 また、例えば、光学積層体は、上述した方法で粘着層を製造した後で、製造された粘着層を基材と貼り合わせることによって、製造しうる。この場合、粘着層形成用の塗布液の膜を形成する工程と、この塗布液の膜を硬化させて粘着層を得る工程と、この粘着層と基材とを貼り合わせる工程とを含む第二の製造方法により、光学積層体を製造しうる。
 特に、塗布液に含まれる溶媒、塗布液の膜の乾燥のための熱、及び、活性エネルギー線の照射等の要因によって、粘着層を製造する工程で基材が劣化する可能性がある場合には、第二の製造方法によって光学積層体を製造することが好ましい。このような第二の製造方法の具体例を挙げると、シリコーン等を塗布されて離型性を有する面を備えたセパレーターフィルム層の前記面に塗布液を塗布し、乾燥して粘着層を得て、この粘着層を基材に貼り合わせて光学積層体を得る方法が挙げられる。このような方法は、例えば基材にエンボス加工処理を施した場合のように、粘着層と貼り合わせる基材の面の平滑性が低くても、上述した粘着層であれば実施可能である。
[7.光源装置]
 本発明の光学積層体を有機EL素子の一方の側に配置することにより、光源装置が得られる。通常は、光学積層体の粘着層側の面を有機EL素子の出光面に貼り合わせて、光源装置を製造する。
 図3は、本発明の一実施形態に係る光学積層体を備えた光源装置の一例を厚み方向に平行な平面で切った断面を模式的に示す断面図である。
 図3に示すように、光源装置200は、有機EL素子300及び光学積層体100を備える。
 有機EL素子300は、基板層310、透明電極層320、発光層330、電極層340及び封止層350をこの順に備え、透明電極層320及び電極層340から電圧を印加されることにより発光層330が光を生じうる。
 通常、このような有機EL素子300は、透明電極層320、発光層330及び電極層340等の各層を、スパッタリング等の層形成方法によって基板層310上に順次形成し、封止層350でこれらの層を封止することにより製造しうる。このような基板層310としては、ガラス板が用いられることが多い。このガラス板の屈折率は、一般的な樹脂よりも高い傾向がある。
 光学積層体100は、基材110とは反対側の粘着層120の面120Dを有機EL素子300の出光面300Uに貼り合わせられている。そのため、発光層330で生じた光は、透明電極層320、基板層310、粘着層120及び基材110をこの順に透過して、面110Uを通って出光する。ここで、本実施形態に係る粘着層120は、光散乱粒子122を含むので、粘着層120において光を散乱させることができる。したがって、本実施形態に示す光源装置200によれば、光学積層体100を通した光の取り出しを効率的に行うことができる。
 仮に粘着層120に含まれる粘着組成物の屈折率が低いと、基板層310と粘着層120との間の屈折率差が大きくなり、基板層310と粘着層120との界面において光が反射して光取出効率の低下を生じる可能性がある。しかし、本実施形態に係る粘着層120が含むアクリル系粘着組成物が高い屈折率を有するので、基板層310と粘着層120との間の屈折率差を小さくできる。そのため、基板層310と粘着層120との界面での反射が抑制されるので、本実施形態に係る光源装置200では、光取出効率が更に高くなっている。
 前記のような光源装置は、例えば、照明器具及びバックライト装置等の用途に用いうる。照明器具は、前記の光源装置を光源として有し、さらに、光源を保持する部材、電力を供給する回路等の任意の構成要素を含みうる。バックライト装置は、前記の光源装置を光源として有し、さらに、筐体、電力を供給する回路、出光する光をさらに均一にするための拡散板、拡散シート、プリズムシート等の任意の構成要素を含みうる。バックライト装置の用途は、液晶表示装置等、画素を制御して画像を表示させる表示装置、並びに、看板等の固定された画像を表示させる表示装置のバックライトとして用いうる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものでは無く、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の実施例及び比較例において、材料の量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、実施例及び比較例中の操作は、別に断らない限り常温常圧の環境下で行った。
 さらに、以下の実施例及び比較例において、粘着層における光散乱の平均自由行程の計算は、真空中での波長550nmの光に対して、ミー散乱理論を用いた前述の方法によって行った。
[実施例1]
 (アクリル系重合体(A-1)の製造)
 ベンジルアクリレート(a1)70部、2-ヒドロキシエチルアクリレート(a2)15部及びブチルアクリレート(a3)15部に、重合開始剤としてアゾビスイソブチロニトリル(AIBN)0.16部を溶解させた混合物(X)を用意した。
 温度計、攪拌機、滴下ロート及び還流冷却器を備えた反応器内に、メチルエチルケトン28部及びトルエン8部を仕込み、攪拌しながら昇温した。反応器内の温度が90℃になった後で、前記の混合物(X)を反応器中に2時間にわたって滴下した。さらに、酢酸エチル2部にAIBN0.06部を溶解させた重合触媒液を、重合途中に反応器内に逐次追加しながら7時間重合させて、アクリル系重合体(A-1)の溶液(固形分濃度65.1%、粘度1300mPa・s(25℃))を得た。アクリル系重合体(A-1)の重量平均分子量は105,000、数平均分子量は36,000、分子量分布は2.92、ガラス転移温度は-8.3℃であった。
 (粘着組成物の屈折率の測定)
 アクリル系重合体(A-1)の溶液を固形分で100部と、トリメチロールプロパンのトリレンジイソシアネート付加物の55%酢酸エチル溶液(日本ポリウレタン社製「コロネートL-55E」)0.3部とを混合して、塗布液を製造した。この塗布液を、ポリエステル系の離型シートの片面に、乾燥後の厚みが30μmになるように塗布し、100℃で4分間乾燥して、分析用粘着層を形成した。前記離型シートとは反対側の分析用粘着層の面に、別のポリエステル系の離型シートを貼り合わせ、40℃の条件下で10日間エージングさせた。これにより、離型シート、粘着層及び離型シートをこの順に備える分析用積層体を得た。この分析用積層体を用いて分析用粘着層の屈折率を測定したところ、1.54であった。
 (光学積層体の製造)
 前述したアクリル系重合体(A-1)の溶液を、固形分で100重量部に相当する量を採った。こうして採ったアクリル系重合体(A-1)の溶液に対し、光散乱粒子(モメンティブ・パフォーマンス・マテリアル社製「XC-99」、体積平均粒子径を0.7μmに調整されたシリコーン粒子、屈折率1.43)6重量部を加え、15分攪拌した。この溶液に、更にトリメチロールプロパンのトリレンジイソシアネート付加物の55%酢酸エチル溶液(日本ポリウレタン社製「コロネートL-55E」)0.3部を配合し、15分間撹拌して、粘着層形成用の塗布液を得た。この塗布液を、基材としてのポリエチレンテレフタレートフィルム(東レ社製「U34」、厚み100μm)の片面に、乾燥後の厚みが60μmとなるように塗布し、80℃で5分乾燥して、粘着層を形成した。その後、基材とは反対側の粘着層の面に、ポリエステル系の離型シートを貼り合わせ、80℃の条件下で14日間エージングさせた。これにより、離型シート、粘着層及び基材をこの順に備える光学積層体を得た。比重を考慮して計算したところ、粘着層での光散乱粒子の体積濃度Vは5%であった。
 このようにして得られた光学積層体の離型シート側の面を観察して、粘着層の欠陥を調べた。粘着層に欠陥が形成された部分では、離型シートの表面に局所的な窪み又は突起が形成される。観察された窪み又は突起の数が少ない場合(1m当たりの欠陥が100個未満である場合)は「良」と判定し、窪み又は突起の数が多い場合(1m当たりの欠陥が100個以上である場合)は「不良」と判定した。
 また、粘着層のD1/L1の値をミー散乱理論(MIE THEORY)により求めた。また、光学積層体のヘイズの測定を行った。
 さらに、市販の有機EL素子を用意し、この有機EL素子の全光束を測定した。
 また、前記の光学積層体から離型シートを剥がし、基材とは反対側の粘着層の面を有機EL素子の出光面に貼り合わせて、光源装置を得た。そして、この光源装置の全光束を測定した。
 光源装置の全光束を、光学積層体を備えない有機EL素子の全光束で割ることにより、光取出効率を計算した。こうして求められた光取出効率は、光学積層体を備えていない有機EL素子の全光束を「1.00」とした場合の光源装置の全光束の大きさを表す。
[実施例2~6、比較例1及び比較例2]
 粘着層の厚み、及び、光散乱粒子の体積濃度Vを表1に示すように変更した。以上の事項以外は実施例1と同様にして、光学積層体の製造及び評価を行った。
[実施例1~6、比較例1及び比較例2の結果]
 実施例1~6、比較例1及び比較例2の結果を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000006
[実施例7]
 アクリル系重合体(A-1)の溶液を、固形分で100重量部採った。こうして採ったアクリル系重合体(A-1)の溶液に対し、無機酸化物粒子(ソーラー社製「NANON5 ZR-010」、体積平均粒子径15nm)130重量部、可塑剤(イーストマン社製「BENZOFLEX 9-88SG」、融点-30℃)14重量部、及び、光散乱粒子(モメンティブ・パフォーマンス・マテリアル社製「XC-99」、体積平均粒子径を0.7μmに調整されたシリコーン粒子、屈折率1.43)26重量部を加え、15分攪拌して、分散した光散乱粒子を含む溶液を得た。ここで使用した光散乱粒子の量は、比重を考慮して計算したところ、後に形成される粘着層での光散乱粒子の体積濃度Vが15%となる量である。この溶液に、更にトリメチロールプロパンのトリレンジイソシアネート付加物の55%酢酸エチル溶液(日本ポリウレタン社製、「コロネートL-55E」)0.3部を配合し、15分間撹拌して、塗布液を得た。
 粘着層を形成するための塗布液として、このようにして製造された塗布液を用いた。また、粘着層の厚みを、20μmに変更した。以上の事項以外は実施例1と同様にして、光学積層体の製造及び評価を行った。結果を表2に示す。また、表2には、対比のため、実施例2の結果も示す。
Figure JPOXMLDOC01-appb-T000007
[実施例8]
 フェノキシエチルアクリレート(a1)70部、2-ヒドロキシエチルアクリレート(a2)15部及びブチルアクリレート(a3)15部に、重合開始剤としてアゾビスイソブチロニトリル(AIBN))0.16部を溶解させた混合物(Y)を用意した。
 温度計、攪拌機、滴下ロート及び還流冷却器を備えた反応器内に、メチルエチルケトン28部及びトルエン8部を仕込み、攪拌しながら昇温した。反応器内の温度が90℃になった後で、前記の混合物(Y)を反応器中に2時間にわたって滴下した。さらに、酢酸エチル2部にAIBN0.06部を溶解させた重合触媒液を、重合途中に反応器内に逐次追加しながら7時間重合させ、アクリル系重合体(A-2)の溶液(固形分濃度65.0%、粘度1100mPa・s(25℃))を得た。アクリル系重合体(A-2)の重量平均分子量は108,000、数平均分子量は41,700、分子量分布は2.59、ガラス転移温度は-26.6℃であった。
 アクリル系重合体(A-1)の溶液の代わりに、前記のアクリル系重合体(A-2)の溶液を用いた。また、粘着層の厚みを、20μmに変更した。さらに、光散乱粒子の量を、体積濃度Vが15%になるように変更した。以上の事項以外は実施例1と同様にして、光学積層体の製造及び評価を行った。結果を表3に示す。また、表3には、対比のため、実施例2の結果も示す。
Figure JPOXMLDOC01-appb-T000008
[実施例9]
 光散乱粒子として、モメンティブ・パフォーマンス・マテリアル社製「XC-99」(体積平均粒子径を0.7μmに調整されたシリコーン粒子、屈折率1.43)を単独で用いる代わりに、前記モメンティブ・パフォーマンス・マテリアル社製「XC-99」(体積平均粒子径を0.7μmに調整されたシリコーン粒子、屈折率1.43)とモメンティブ・パフォーマンス・マテリアル社製「トスパール120」(体積平均粒子径を2μmに調整されたシリコーン粒子、屈折率1.43)とを組み合わせて用いた。これらの光散乱粒子の量は、製造される粘着層における光散乱粒子の体積濃度V及びVが下記表4に示す値になるように調整した。ここで、Vは体積平均粒子径0.7μmの光散乱粒子の体積濃度を表し、Vは体積平均粒子径2μmの光散乱粒子の体積濃度を表す。
 また、粘着層の厚みを、20μmに変更した。
 以上の事項以外は実施例1と同様にして、光学積層体の製造及び評価を行った。結果を表4に示す。また、表4には、対比のため、実施例3及び4の結果も示す。表4において、「粒子(0.7μm)」とは、体積平均粒子径が0.7μmの光散乱粒子を示す。また、表4において、「粒子(2μm)」とは、体積平均粒子径が2μmの光散乱粒子を示す。表4から分かるように、少なくとも体積で1/4の粒子の粒子径を0.1μm~1μmの範囲に収めることにより、少ない光散乱粒子の体積濃度Vで光取出効率の向上とヘイズの向上を両立できるので、有機EL素子の反射電極を隠ぺいする効果が得られる。
Figure JPOXMLDOC01-appb-T000009
[実施例10~12及び比較例3]
 アクリル系重合体(A-1)の固形分100重量部に対する無機酸化物粒子(ソーラー社製「NANON5 ZR-010」、体積平均粒子径15nm)の量を、23重量部に変更した。
 また、粘着層の厚み、及び、光散乱粒子の体積濃度Vを下記表5に示すように変更した。
 以上の事項以外は実施例7と同様にして、光学積層体の製造及び評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
[実施例13~15]
 実施例10と同様の、粘着層形成用の塗布液を用意した。この塗布液を、ポリエチレンテレフタレート製の離型シートの片面に、乾燥後の厚みが40μmとなるように塗布し、80℃で5分乾燥して、粘着層を形成した。
 また、ポリエチレンテレフタレートフィルム(厚み38μm)を用意し、このフィルムの片面に、熱エンボス加工処理によって、表6に示す最大高さ(深さ)Ryを有する点状の窪みを約1mmピッチで形成し、基材を得た。
 離型シートとは反対側の粘着層の面と、基材の窪みが形成されたのとは反対側の面とを貼り合わせ、80℃の条件下で14日間エージングさせた。これにより、離型シート、粘着層及び基材をこの順に備える光学積層体を得た。
 こうして得られた光学積層体の評価を、実施例1と同様に行った。また、光学積層体の基材側の面を観察して、マット感を評価した。光沢が抑えられているものを「良」と判定し、光沢が見えるものを「不良」と判定した。結果を表6に示す。また、表6には、対比のため、実施例10の結果も示す。
Figure JPOXMLDOC01-appb-T000011
[参考例1]
 光散乱粒子及び粘着組成物を含む粘着層の厚みD1と光散乱の平均自由行程L1との比D1/L1を、屈折率nが1.48又は1.56の粘着組成物を用いた場合それぞれについて、図4に示す。この際、層の厚み20μm、光散乱粒子の平均粒子径0.7μm、光散乱粒子の屈折率1.43とした。
 図4から、屈折率の高い粘着組成物を使う方が、少ない量の光散乱粒子によって大きなD1/L1の値を得ることができることが分かる。よって、屈折率の高い粘着組成物を用いると、所望のD1/L1を得ることが容易になり、結果として光取出効率を向上させることが容易になることが分かる。
 100 光学積層体
 110 基材
 111 窪み
 120 粘着層
 121 アクリル系粘着組成物
 122 光散乱粒子
 200 光源装置
 300 有機EL素子
 310 基板層
 320 透明電極層
 330 発光層
 340 電極層
 350 封止層

Claims (9)

  1.  基材と、前記基材上に形成された粘着層とを備え、
     前記粘着層が、アクリル系重合体を含むアクリル系粘着組成物、及び、光散乱粒子を含み、
     前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、
     前記アクリル系重合体の重量平均分子量が、20万以下であり、
     前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、
     前記アクリル系粘着組成物の屈折率が、1.52~1.67であり、
     前記光散乱粒子の屈折率が、1.4~1.49である、光学積層体。
  2.  前記光散乱粒子が、シリコーン粒子又はアクリル粒子である、請求項1記載の光学積層体。
  3.  前記粘着層に含まれる前記光散乱粒子のうち、少なくとも体積で1/4の粒子の粒子径が、0.1μm~1μmである、請求項1又は2記載の光学積層体。
  4.  前記光散乱粒子の平均粒子径が、0.1μm~1μmであり、
     前記粘着層の厚さをD1、光散乱の平均自由工程をL1とするとき、D1/L1が、1~6である、請求項1~3のいずれか一項に記載の光学積層体。
  5.  前記粘着層とは反対側の前記基材の面が、凹凸構造を有する、請求項1~4のいずれか一項に記載の光学積層体。
  6.  前記基材が単層構造を有し、
     前記凹凸構造の最大高さをRyとし、前記基材の厚さをD2とするとき、0.05<Ry/D2<0.25である、請求項5記載の光学積層体。
  7.  有機エレクトロルミネッセンス素子の一方の側に配置される、請求項1~6のいずれか一項に記載の光学積層体。
  8.  基材及び粘着層を備える光学積層体の製造方法であって、
     アクリル系重合体及び光散乱粒子を含む塗布液の膜を、前記基材上に形成する工程と、
     前記塗布液の膜を硬化させて、前記粘着層を得る工程とを含み、
     前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、
     前記アクリル系重合体の重量平均分子量が、20万以下であり、
     前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、
     前記光散乱粒子の屈折率が、1.4~1.49であり、
     前記粘着層中の前記光散乱粒子以外の成分としてのアクリル系粘着組成物の屈折率が、1.52~1.67である、光学積層体の製造方法。
  9.  基材及び粘着層を備える光学積層体の製造方法であって、
     アクリル系重合体及び光散乱粒子を含む塗布液の膜を形成する工程と、
     前記塗布液の膜を硬化させて、前記粘着層を得る工程と、
     前記粘着層と前記基材とを貼り合わせる工程とを含み、
     前記アクリル系重合体が、芳香環含有モノマー(a1)40重量%~93重量%、及び、水酸基含有モノマー(a2)7重量%~60重量%を含む共重合成分[I]の共重合体であり、
     前記アクリル系重合体の重量平均分子量が、20万以下であり、
     前記光散乱粒子の前記粘着層に対する体積濃度Vが、3%~35%であり、
     前記光散乱粒子の屈折率が、1.4~1.49であり、
     前記粘着層中の前記光散乱粒子以外の成分としてのアクリル系粘着組成物の屈折率が、1.52~1.67である、光学積層体の製造方法。
PCT/JP2016/053251 2015-02-09 2016-02-03 光学積層体及びその製造方法 WO2016129486A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021444A KR20170116017A (ko) 2015-02-09 2016-02-03 광학 적층체 및 그 제조 방법
JP2016574761A JP6627783B2 (ja) 2015-02-09 2016-02-03 光学積層体及びその製造方法
US15/547,086 US20180016477A1 (en) 2015-02-09 2016-02-03 Optical layered body and method for manufacturing same
EP16749130.7A EP3258298A4 (en) 2015-02-09 2016-02-03 Optical layered body and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-023476 2015-02-09
JP2015023476 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129486A1 true WO2016129486A1 (ja) 2016-08-18

Family

ID=56614726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053251 WO2016129486A1 (ja) 2015-02-09 2016-02-03 光学積層体及びその製造方法

Country Status (5)

Country Link
US (1) US20180016477A1 (ja)
EP (1) EP3258298A4 (ja)
JP (1) JP6627783B2 (ja)
KR (1) KR20170116017A (ja)
WO (1) WO2016129486A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141741A (ko) * 2017-06-01 2019-12-24 니끼 쇼꾸바이 카세이 가부시키가이샤 세리아계 복합 미립자 분산액, 그 제조 방법 및 세리아계 복합 미립자 분산액을 포함하는 연마용 지립 분산액
WO2020240933A1 (ja) * 2019-05-27 2020-12-03 三菱電機株式会社 拡散体及び照明装置
WO2022044598A1 (ja) * 2020-08-31 2022-03-03 株式会社巴川製紙所 異方性光学フィルム用組成物及び異方性光学フィルム
WO2023163148A1 (ja) * 2022-02-28 2023-08-31 日東電工株式会社 Oled表示装置用光学積層体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108153041A (zh) * 2018-01-18 2018-06-12 京东方科技集团股份有限公司 一种显示面板、背光模组及显示装置
JP2021152134A (ja) * 2020-03-24 2021-09-30 三星エスディアイ株式会社Samsung SDI Co., Ltd. 光学フィルム用粘着剤、および光学フィルム用粘着剤層
KR20220017371A (ko) * 2020-08-04 2022-02-11 삼성에스디아이 주식회사 점착 필름, 이를 포함하는 광학 부재 및 이를 포함하는 광학표시장치
KR20240093841A (ko) * 2022-01-10 2024-06-24 엘지전자 주식회사 복합 광학 필름 및 이를 포함하는 디스플레이 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310267A (ja) * 2007-06-18 2008-12-25 Daio Paper Corp 光拡散性粘着シート
JP2012128097A (ja) * 2010-12-14 2012-07-05 Nippon Zeon Co Ltd 光学積層体の製造方法、光学積層体及び面光源装置
JP2014209439A (ja) * 2013-03-27 2014-11-06 日本ゼオン株式会社 面光源装置
JP2014224964A (ja) * 2012-09-13 2014-12-04 日東電工株式会社 光拡散粘着剤ならびに該光拡散粘着剤を用いた偏光板および光学部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110091A1 (ja) * 2008-03-07 2009-09-11 綜研化学株式会社 光拡散性樹脂組成物およびこれを利用した光拡散シート
TWI472076B (zh) * 2012-07-31 2015-02-01 Mitsubishi Rayon Co El元件用光取出膜、面發光體及el元件用光取出膜的製造方法
JP2014224963A (ja) * 2012-09-13 2014-12-04 日東電工株式会社 光学部材、偏光板のセットおよび液晶表示装置
CN105190370A (zh) * 2013-04-05 2015-12-23 三菱丽阳株式会社 光学膜和面发光体
WO2014208429A1 (ja) * 2013-06-25 2014-12-31 日本ゼオン株式会社 光学積層体及び面光源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310267A (ja) * 2007-06-18 2008-12-25 Daio Paper Corp 光拡散性粘着シート
JP2012128097A (ja) * 2010-12-14 2012-07-05 Nippon Zeon Co Ltd 光学積層体の製造方法、光学積層体及び面光源装置
JP2014224964A (ja) * 2012-09-13 2014-12-04 日東電工株式会社 光拡散粘着剤ならびに該光拡散粘着剤を用いた偏光板および光学部材
JP2014209439A (ja) * 2013-03-27 2014-11-06 日本ゼオン株式会社 面光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258298A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141741A (ko) * 2017-06-01 2019-12-24 니끼 쇼꾸바이 카세이 가부시키가이샤 세리아계 복합 미립자 분산액, 그 제조 방법 및 세리아계 복합 미립자 분산액을 포함하는 연마용 지립 분산액
KR102343869B1 (ko) 2017-06-01 2021-12-27 니끼 쇼꾸바이 카세이 가부시키가이샤 세리아계 복합 미립자 분산액, 그 제조 방법 및 세리아계 복합 미립자 분산액을 포함하는 연마용 지립 분산액
US11267715B2 (en) 2017-06-01 2022-03-08 Jgc Catalysts And Chemicals Ltd. Ceria-based composite fine particle dispersion, production method therefor, and polishing abrasive grain dispersion including ceria-based composite fine particle dispersion
WO2020240933A1 (ja) * 2019-05-27 2020-12-03 三菱電機株式会社 拡散体及び照明装置
JPWO2020240933A1 (ja) * 2019-05-27 2020-12-03
JP7262577B2 (ja) 2019-05-27 2023-04-21 三菱電機株式会社 拡散体及び照明装置
US11874431B2 (en) 2019-05-27 2024-01-16 Mitsubishi Electric Corporation Diffuser and lighting device
WO2022044598A1 (ja) * 2020-08-31 2022-03-03 株式会社巴川製紙所 異方性光学フィルム用組成物及び異方性光学フィルム
JP7092962B1 (ja) * 2020-08-31 2022-06-28 株式会社巴川製紙所 異方性光学フィルム用組成物及び異方性光学フィルム
WO2023163148A1 (ja) * 2022-02-28 2023-08-31 日東電工株式会社 Oled表示装置用光学積層体

Also Published As

Publication number Publication date
EP3258298A4 (en) 2018-09-19
KR20170116017A (ko) 2017-10-18
US20180016477A1 (en) 2018-01-18
JP6627783B2 (ja) 2020-01-08
EP3258298A1 (en) 2017-12-20
JPWO2016129486A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016129486A1 (ja) 光学積層体及びその製造方法
US9624405B2 (en) Optical laminate body and surface light source device
JP6520483B2 (ja) 光学部材用粘着剤組成物、光学積層体及び面光源装置
JP6644752B2 (ja) 粘着剤層を有する光学部材積層体及びその製造方法
TWI688632B (zh) 飛散防止黏著片及觸摸面板
WO2014115639A1 (ja) 光学部材用粘着剤組成物、光学部材用粘着層及び面光源装置
US10074828B2 (en) Light scattering layer having particles for an organic EL light-emitting device
JP2020015915A (ja) 透明な粘着剤層を有する粘着剤シート
JP6508046B2 (ja) 光学積層体及び面光源装置
EP3177110A1 (en) Organic el light-emitting device
TWI707023B (zh) 黏著片
TW201600577A (zh) 雙面黏著片
JP2006063189A (ja) 粘着剤付光学部材およびその製造方法、ならびに画像表示装置
JP6207387B2 (ja) アクリル系粘着剤組成物及びアクリル系粘着剤
JP5420786B1 (ja) 粘着剤層付きマイクロレンズフイルム
JP2012041549A (ja) 光学部材用粘着剤層およびその製造方法、ならびに、粘着剤付光学部材
JP2017013347A (ja) 光学積層体及び面光源装置
TW202347832A (zh) 光半導體元件密封用片材及顯示體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574761

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547086

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177021444

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016749130

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE