WO2022044598A1 - 異方性光学フィルム用組成物及び異方性光学フィルム - Google Patents

異方性光学フィルム用組成物及び異方性光学フィルム Download PDF

Info

Publication number
WO2022044598A1
WO2022044598A1 PCT/JP2021/026518 JP2021026518W WO2022044598A1 WO 2022044598 A1 WO2022044598 A1 WO 2022044598A1 JP 2021026518 W JP2021026518 W JP 2021026518W WO 2022044598 A1 WO2022044598 A1 WO 2022044598A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
component
anisotropic optical
weight
composition
Prior art date
Application number
PCT/JP2021/026518
Other languages
English (en)
French (fr)
Inventor
将吾 菅
翼 坂野
里果 三宅
仁英 杉山
昌央 加藤
純弥 荒島
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to JP2022523551A priority Critical patent/JP7092962B1/ja
Priority to CN202180044678.8A priority patent/CN115943326A/zh
Priority to KR1020237009818A priority patent/KR20230058658A/ko
Publication of WO2022044598A1 publication Critical patent/WO2022044598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F263/00Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00
    • C08F263/02Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00 on to polymers of vinyl esters with monocarboxylic acids
    • C08F263/04Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00 on to polymers of vinyl esters with monocarboxylic acids on to polymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a composition for an anisotropic optical film and an anisotropic optical film manufactured by using a composition for an anisotropic optical film.
  • Various display devices such as a liquid crystal display device (LCD) and an organic electroluminescence element (organic EL) may be provided with an anisotropic light diffusion film for the purpose of expanding the viewing angle and the like.
  • LCD liquid crystal display device
  • organic EL organic electroluminescence element
  • Patent Document 1 as a composition for a light diffusing film for producing a light diffusing film, Patent Document 1 describes a (meth) acrylic acid ester containing a plurality of aromatic rings as a component (A).
  • the content of the component (A) is set to a value in the range of 25 parts by weight to 400 parts by weight with respect to 100 parts by weight of the component (B), and the content of the component (C) is set to a value.
  • the value is set in the range of 0.2 parts by weight to 20 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B), and the content of the component (D) is the component (A).
  • the value is set in the range of 0.1 part by weight to 10 parts by weight with respect to the total amount (100 parts by weight) of the components.
  • Patent Document 2 as a photocurable composition that can be suitably used as a raw material for a light control film, a fluorene compound (A) having a polymerizable carbon-carbon double bond in the molecule, the fluorene compound.
  • a fluorene compound (A) having a polymerizable carbon-carbon double bond in the molecule the fluorene compound.
  • Patent No. 5914751 Japanese Unexamined Patent Publication No. 2008-239757
  • the light diffusing film of Patent Document 1 has a drawback that the film thickness required to obtain sufficient light diffusivity is thick. Further, in the optical control film according to Patent Document 2, if the cationic polymerization initiator used as the composition material remains after the composition is cured, there is a risk that other parts may be defective when used as a display device. there were. Further, the conventional light diffusing film may not have sufficient transparency and may exhibit a color.
  • an object of the present invention is to provide a composition for an anisotropic optical film for producing a light diffusing film capable of achieving both good diffusivity and good hue.
  • the present inventors have studied the above-mentioned Patent Documents 1 and 2 in detail, and have found that a composition for an anisotropic optical film containing a specific component can solve the above-mentioned problems. That is, the present invention is as follows.
  • the present invention A (meth) acrylic acid ester having one or more fluorene skeleton and (meth) acryloyl group as a component (A-1), and A (meth) acrylic acid ester having one or more aromatic rings and (meth) acryloyl groups as components (A-2) and having no fluorene skeleton, (B) A thermoplastic polymer having a weight average molecular weight of 1,000 to 500,000 and a glass transition temperature of ⁇ 40 ° C. or higher as a component.
  • the total content of the (meth) acrylic acid ester containing the component (A-1) and the component (A-2) is 100 parts by weight. It is a composition for an anisotropic optical film, characterized in that it is 10 parts by weight to 400 parts by weight.
  • the component (A-1) may have two or more aromatic rings in one molecule as a substituent of the fluorene skeleton.
  • the refractive index of the component (A-1) may be 1.55 to 1.70.
  • the (A-1) component may have a plurality of (meth) acryloyl groups.
  • the component (A-2) may have a plurality of aromatic rings in one molecule.
  • the refractive index of the component (A-2) may be 1.50 to 1.65.
  • the component (A-2) may have a biphenyl structure and / or a diphenyl ether structure.
  • the refractive index of the component (B) may be 1.35 to 1.50.
  • an anisotropic optical film that is a cured product of the composition for an anisotropic optical film, wherein the anisotropic optical film has a matrix region and a plurality of columnar regions having a refractive index different from that of the matrix region. It is an anisotropic optical film characterized by having.
  • the plurality of columnar regions of the anisotropic optical film are oriented and extended from one surface of the anisotropic optical film to the other surface.
  • the aspect ratio of the columnar region which is the average major axis / average minor axis of the columnar region in the cross section perpendicular to the column axis of the anisotropic optical film, may be 1 to 50.
  • the thickness of the anisotropic optical film may be 10 ⁇ m to 100 ⁇ m.
  • composition for an anisotropic optical film for producing a light diffusing film capable of achieving both good diffusivity and good hue.
  • the composition for an anisotropic optical film according to the present invention the anisotropic optical film obtained by curing the composition for an anisotropic optical film, and the like will be described.
  • the composition for an anisotropic optical film is a composition used for producing an anisotropic optical film.
  • the refractive index of each component is measured by a method according to JIS K0062.
  • composition for an anisotropic optical film contains a component (A) which is a (meth) acrylic acid ester, a component (B) which is a thermoplastic polymer, and a component (C) which is a photopolymerization initiator.
  • the component (A) is a component (A-1) which is a (meth) acrylic acid ester having one or more fluorene skeleton and one or more (meth) acryloyl groups, and one aromatic ring and one (meth) acryloyl group, respectively.
  • composition for an anisotropic optical film may contain a component (D) which is another component.
  • ⁇ (A) component >> ⁇ (A-1) component: (meth) acrylic acid ester>
  • the component (A-1) is a (meth) acrylic acid ester having at least one fluorene skeleton and one or more (meth) acryloyl groups.
  • the component (A-1) may contain one or more aromatic rings (aromatic ring group / aromatic ring-containing group) as a substituent of a fluorene skeleton, and two or more aromatic rings as a substituent of a fluorene skeleton. It is preferable to include it.
  • the upper limit of the number of aromatic rings as a substituent of the fluorene skeleton contained in the component (A-1) is not particularly limited, but is preferably 10 or less, for example.
  • the number of (meth) acryloyl groups contained in the component (A-1) is not particularly limited, but may be 1 or 2 or more, and preferably contains a plurality of (meth) acryloyl groups.
  • the upper limit is not particularly limited, but is preferably 8 or less.
  • component (A-1) containing two or more aromatic rings as a substituent of the fluorene skeleton include compounds represented by the following (formula A).
  • RA and RC are each independently a substituent containing a (meth) acryloyl group, and preferably a (meth) acryloyloxy group (EO addition or PO addition with a repetition number of 1 to 5).
  • RB and RD are each independently a hydrogen atom or an aliphatic substituent having 1 to 6 carbon atoms.
  • component (A-1) compounds represented by the following (formula B) to (formula D) can be exemplified.
  • Examples of commercially available products of the component (A-1) include “A-BPEF-2” (9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd.). Examples thereof include “OGSOL EA-0200”, “OGSOL EA-0300”, “OGSOL EA-5060GP”, and “OGSOL GA-2800” manufactured by Osaka Gas Chemical Co., Ltd.
  • the refractive index of the component (A-1) is preferably 1.50 or more, more preferably 1.53 or more, and even more preferably 1.56 or more.
  • the upper limit of the refractive index is not particularly limited, but is preferably 1.70 or less, for example.
  • the component (A-1) may contain only one kind of the above-mentioned component, or may contain a plurality of kinds.
  • the component (A-2) is a component different from the component (A-1), and is a (meth) acrylic acid ester having one or more aromatic rings and (meth) acryloyl groups and having no fluorene skeleton. be.
  • the component (A-2) preferably has a plurality of aromatic rings.
  • a structure containing a plurality of aromatic rings it is preferable to have a biphenyl structure and / or a diphenyl ether structure.
  • Such a biphenyl structure or a diphenyl ether structure may have only one or two or more in the skeleton. Having such a structure results in a (meth) acrylic acid ester having a very high refractive index.
  • the component (A-2) is usually a high refractive index material.
  • the refractive index of the component (A-2) is preferably 1.50 or more, more preferably 1.53 or more, and even more preferably 1.56 or more.
  • the upper limit of the refractive index is not particularly limited, but is preferably 1.65 or less, for example.
  • Such (A-2) component is not particularly limited, and examples thereof include a biphenyl compound represented by the following general formula (1), a diphenyl ether compound represented by the following general formula (2), and the like.
  • R 1 to R 10 are independent of each other, and any one of R 1 to R 10 is a substituent represented by the following general formula (3) or (4).
  • the rest may be free of (meth) acryloyl groups, specifically hydrogen atoms, hydroxyl groups, carboxyl groups, alkyl groups, alkoxy groups, alkyl halide groups, hydroxyalkyl groups, carboxylalkyl groups and halogens. Substituents such as atoms can be mentioned.
  • R 11 to R 20 are independent of each other, and any one of R 11 to R 20 is a substituent represented by the following general formula (3) or (4). ..
  • the rest may be free of (meth) acryloyl groups, specifically hydrogen atoms, hydroxyl groups, carboxyl groups, alkyl groups, alkoxy groups, alkyl halide groups, hydroxyalkyl groups, carboxylalkyl groups and halogens. Substituents such as atoms can be mentioned.
  • R 21 is a hydrogen atom or a methyl group
  • n is an integer of 1 to 4
  • the repetition number m is an integer of 1 to 10.
  • R 22 is a hydrogen atom or a methyl group, n is an integer of 1 to 4, and the repetition number m is an integer of 1 to 10.
  • the number of repetitions m in the substituents represented by the general formulas (3) and (4) is usually preferably an integer of 1 to 10. The reason for this is that when the number of repetitions m exceeds 10, the effect of improving the refractive index derived from the aromatic ring peculiar to the component (A-2) is suppressed, and the diffusivity of the anisotropic optical film is lowered. Because there is. Therefore, the number of repetitions m in the substituents represented by the general formulas (3) and (4) is more preferably an integer of 1 to 4, and further preferably an integer of 1 to 2. From the same viewpoint, n in the substituents represented by the general formulas (3) and (4) is usually preferably an integer of 1 to 4, and more preferably an integer of 1 to 2.
  • biphenyl compound represented by the general formula (1) As a specific example of the biphenyl compound represented by the general formula (1), a compound represented by the following formula (5) can be preferably mentioned.
  • the component (A-2) may contain only one kind of the above-mentioned component, or may contain a plurality of kinds.
  • the viscosity of the component (A-2) at 25 ° C. is preferably 1000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s or less, and even more preferably 100 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is, for example, 1 mPa ⁇ s.
  • the viscosity of the component (A-2) at 25 ° C. is in these ranges, the fluidity of the composition is enhanced when the component (A-1) and the component (A-2) are used in combination. Therefore, it is possible to promote the phase separation of each component at the time of curing and improve the diffusion performance of the obtained anisotropic optical film.
  • the component (A) is a (meth) acrylic acid ester other than the component (A-1) and the component (A-2) (other than those usually used in a composition for an optical film) as long as the effect of the present invention is not impaired.
  • (Meta) acrylic acid ester) may be contained.
  • the viscosity of the component (A) as a whole at 25 ° C. is preferably 10,000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less, further preferably 3000 mPa ⁇ s or less, and 1000 mPa. -It is particularly preferable that it is s or less.
  • the viscosity of the component (A) as a whole at 25 ° C. is most preferably 500 mPa ⁇ s or less, 250 mPa ⁇ s or less, or 100 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is, for example, 1 mPa ⁇ s.
  • the viscosity of the component (A) as a whole at 25 ° C. is in these ranges, the flow of the composition when the component (A-1), the component (A-2) and the other component (A) are used in combination. Since the properties are enhanced, the phase separation of each component at the time of curing can be promoted, and the diffusion performance of the obtained anisotropic optical film can be improved.
  • thermoplastic polymer thermoplastic polymer
  • the glass transition temperature of the component (B) is ⁇ 40 ° C. or higher, preferably 0 ° C. or higher, and more preferably 30 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited, but is preferably 150 ° C. or lower, for example.
  • the glass transition temperature can be measured by a known measuring method, for example, a method based on JIS K7121-1987 "Plastic transition temperature measuring method".
  • the weight average molecular weight of the component (B) is 1,000 to 500,000, preferably 10,000 to 400,000, and more preferably 50,000 to 300,000.
  • the weight average molecular weight can be measured by a known measuring method, for example, the GPC method as a polystyrene-equivalent molecular weight.
  • the compatibility with the components (A-1) and (A-2) is enhanced, and an anisotropic optical film having excellent performance can be obtained. It is possible to improve the durability in heat resistance tests and the like, and to give an anisotropic optical film before UV curing an appropriate elastic modulus so that it can be stored in a roll.
  • the component (B) is usually a low refraction material.
  • the refractive index of the component (B) is preferably 1.50 or less or less than 1.50, more preferably 1.49 or less, and further preferably 1.48 or less. ..
  • the lower limit of the refractive index is not particularly limited, but is, for example, 1.35 or more.
  • the component (B) is not particularly limited, but is, for example, an acrylic resin, a styrene resin, a styrene-acrylic copolymer, a polyurethane resin, a polyester resin, an epoxy resin, a cellulose resin, a silicone resin, or a vinyl acetate resin. , Vinyl chloride-vinyl acetate copolymer, polyvinyl butyral resin, polyvinyl alcohol resin, polyvinyl formal resin, polyvinyl acetal resin, polyvinylidene fluoride, PMMA-PBA block copolymer, PVDF-HFP copolymer, and the like.
  • phase separation due to a difference in refractive index from a high bending material containing the component (A-1) and the component (A-2) can be facilitated, and anisotropic optics can be easily obtained.
  • it is made into a film, it is less likely to cause indentation and can be excellent in storability.
  • the component (B) may contain only one kind of the above-mentioned component, or may contain a plurality of kinds.
  • the photopolymerization initiator of the component (C) is a compound that generates radical species by irradiation with active energy rays such as ultraviolet rays, and conventionally known ones can be used.
  • photopolymerization initiator examples include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone and benzyl dimethyl ketal.
  • 2,2-Dimethoxy-1,2-diphenylethane-1-one 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-methyl-1- [4 -(Methylthio) phenyl] -2-morpholinopropanol-1,1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one, bis (cyclopenta) Dienyl) -bis [2,6-difluoro-3- (pyr-1-yl) phenyl] titanium, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2 Examples thereof include 4,6-trimethylbenzoyldiphenylphosphine oxide.
  • These compounds may be used alone or in admixture of a plurality.
  • the photopolymerization initiator usually powder may be used by directly dissolving it in a photopolymerizable compound, but if the solubility is poor, a photopolymerization initiator dissolved in a solvent in advance may be used. can.
  • component (D) component other components
  • D various known dyes and sensitizers, other known additives and the like may be contained in order to improve photopolymerizability. Further, it may contain a solvent, a dispersion medium and the like.
  • thermosetting initiator capable of curing the photopolymerizable compound by heating can be used in combination with the photopolymerization initiator. In this case, it can be expected that the polymerization curing of the photopolymerizable compound is further promoted and completed by heating after the photocuring.
  • the solvent for preparing the composition containing the photopolymerizable compound for example, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene and the like can be used.
  • the acid generator used as the cationically polymerizable initiator remains after the composition is cured, it may cause problems in other parts when used in a device such as a display. Therefore, it is preferable that the other components do not contain an acid generator.
  • the content of the acid generator in the composition is preferably 1% or less.
  • the content of the component (A-1) in the composition is 3 parts by weight to 100 parts by weight, and 4 parts by weight to 50 parts by weight, when the content of the component (A-2) is 100 parts by weight. It is preferably 5 parts by weight to 25 parts by weight, and more preferably 5 parts by weight.
  • Total of (A-1) component and (A-2) component with respect to (A) component (hereinafter referred to as the total of (meth) acrylic acid ester containing (A-1) component and (A-2) component)
  • the content ratio of the ester can be 50% by weight or more (preferably 70% by mass or more, 80% by mass or more, or 90% by mass or more).
  • the content of the component (B) in the composition may be 10 parts by weight to 400 parts by weight and 25 parts by weight to 200 parts by weight when the content of the component (A) is 100 parts by weight. It is preferably 50 parts by weight to 100 parts by weight, more preferably 100 parts by weight.
  • the total ratio of the contents of the component (A) and the component (B) to the total solid content (total amount of the non-volatile component excluding the volatile solvent) of the composition is not particularly limited, but is, for example, 50% by weight or more. be able to.
  • the content of the component (C) in the composition is preferably 0.1 part by weight to 20 parts by weight, and 0.5 part by weight to 10 parts by weight, based on 100 parts by weight of the content of the component (A). Is more preferable.
  • composition for an anisotropic optical film according to the present invention can achieve both good diffusivity and good hue by setting the content of each component in the above range.
  • anisotropic optical film obtained by using the composition for the anisotropic optical film. If the composition for an anisotropic optical film is used, it is possible to manufacture an anisotropic optical film other than the anisotropic optical film shown below.
  • the "anisotropic optical film” has anisotropy and directivity depending on the incident light angle, in which the diffusion, transmission and diffusion distribution of light change depending on the incident angle of light. Therefore, it is different from a directional diffusion film, an isotropic diffusion film, and a diffusion film oriented in a specific direction, which are independent of the incident light angle.
  • the linear transmittance [(transmitted light amount of incident light in the linear direction) / (light amount of incident light)] changes depending on the incident light angle of light. That is, with respect to the incident light on the anisotropic optical film, the incident light in a predetermined angle range is mainly transmitted because the linearity is enhanced, and the incident light in other angle ranges is mainly diffused because the diffusivity is enhanced.
  • the anisotropic optical film in the present invention has a matrix region and a plurality of columnar regions having a refractive index different from that of the matrix region.
  • the "matrix region” and the “plural columnar region” in the anisotropic optical film are regions formed by the local difference in refractive index of the material constituting the anisotropic optical film according to the present invention. It is a relative one showing whether the refractive index is lower or higher than that of the other. These regions are formed by phase separation as the material forming the anisotropic optical film cures.
  • the difference in refractive index is not particularly limited as long as at least a part of the light incident on the anisotropic optical film is different to the extent that reflection occurs at the interface between the matrix region and the columnar region.
  • the plurality of columnar regions included in the anisotropic optical film are usually oriented and extended from one surface of the anisotropic optical film to the other surface (see FIG. 1).
  • the length of the columnar region is not particularly limited, and may be a length that penetrates from one surface of the anisotropic optical film to the other surface, or may be a length that does not reach the other surface from one surface.
  • the plurality of columnar regions of the anisotropic optical film can have a surface shape having a minor axis and a major axis in a cross section perpendicular to the column axis.
  • the surface shape of the columnar region is not particularly limited, and may be, for example, a circle, an ellipse, or a polygon.
  • the minor axis and the major axis are equal, in the case of an ellipse, the minor axis is the length of the minor axis, in the case of the ellipse, the major axis is the length of the major axis, and in the case of a polygon, the polygon.
  • the shortest length connecting the two points of the polygonal outer shape can be the minor axis, and the longest length can be the major axis.
  • FIG. 2 shows a columnar region seen from the surface direction of the anisotropic optical film.
  • LA represents a major axis
  • SA represents a minor axis.
  • minor axis and major axis of the columnar region For the minor axis and major axis of the columnar region, observe the surface of the anisotropic optical film in the cross section perpendicular to the columnar region column axis with an optical microscope, and determine the minor axis and major axis of 20 columnar regions arbitrarily selected. It can be measured and used as the average value of these.
  • the ratio of the average major axis to the average minor axis of the columnar region (average major axis / average minor axis), that is, the aspect ratio is not particularly limited, but can be, for example, 1 to 50.
  • FIG. 2A shows an anisotropic optical film having an aspect ratio of a columnar region of 2 to 50
  • FIG. 2B shows an anisotropic optical film having an aspect ratio of a columnar region of 1 or more and less than 2. Is shown.
  • the aspect ratio is 1 or more and less than 2, when the light parallel to the column axis direction of the columnar region is irradiated, the transmitted light is isotropically diffused (see FIG. 1A).
  • the aspect ratio is 2 to 50, when light parallel to the column axis direction is similarly irradiated, the light diffuses with anisotropy according to the aspect ratio (see FIG. 1 (b)).
  • the diffusion becomes more anisotropic.
  • the aspect ratio when the aspect ratio is set to 2 to 50 and the aspect ratio is set to the range of more than 20 and 50 or less, the diffusion becomes more anisotropic.
  • the aspect ratio when the aspect ratio is in the range of 2 to 20, it has an intermediate property between the case where the aspect ratio is 1 or more and less than 2 and the case where the aspect ratio is in the range of more than 20 and 50 or less. Become. In this way, by dividing the range of the aspect ratio into 1 or more and less than 2, 2 to 20, and 20 or more and 50 or less, it is possible to obtain an anisotropic optical film having different optical characteristics.
  • the composition for an anisotropic optical film according to the present invention can be used as a preferable raw material in the production of an anisotropic optical film having any aspect ratio.
  • the anisotropic optical film may include a plurality of columnar regions having one aspect ratio, or may include a plurality of columnar regions having different aspect ratios.
  • the anisotropic optical film has a scattering center axis.
  • the "scattering center axis" coincides with the incident light angle of light when the incident light angle to the anisotropic optical film is changed and the light diffusivity has substantially symmetry at the incident light angle. Means the direction to do. "Having substantially symmetry” means that the optical profile (described later) regarding light diffusivity is strict when the scattering center axis has an inclination with respect to the normal direction of the film (the film thickness direction). This is because it does not have symmetry.
  • the central axis of scattering and the orientation direction (extending direction) of the columnar region are usually in a parallel relationship.
  • the central axis of scattering and the orientation direction of the columnar region are parallel does not have to be exactly parallel as long as it satisfies the law of refractive index (Snell's law).
  • Snell's law the law of refractive index
  • the column axis tilt of the columnar region in the cross section of the anisotropic optical film is observed with an optical microscope, and the projected shape of light through the anisotropic optical film is observed by changing the incident light angle. In addition, it can be confirmed by the optical profile.
  • the incident light angle and the refraction angle are different in this way, as long as they satisfy Snell's law, they are included in the concept of parallelism in the present invention.
  • the scattering center axis coincides with the incident light angle of light whose light diffusivity is substantially symmetric with respect to the incident light angle when the incident light angle to the anisotropic optical film is changed. Means direction.
  • an optical profile which is a graph showing the relationship is created, and this optical profile (as an example). It can be set to the incident light angle (central portion of the diffusion region, about 0 ° in the case of FIG. 3) in the substantially central portion sandwiched between the minimum values of the linear transmittance in FIG. 3).
  • the optical profile does not directly express the light diffusivity, but if it is interpreted that the diffusive transmittance increases due to the decrease in the linear transmittance, it generally shows the light diffusivity. It can be said that there is.
  • the two incident light angle ranges with respect to the linear transmittance of the intermediate value between the maximum linear transmittance and the minimum linear transmittance are referred to as "diffuse regions", and other incident light angles.
  • the range is referred to as a "non-diffuse region”.
  • FIG. 4 is a three-dimensional polar coordinate display for explaining the scattering center axis P in the anisotropic optical film.
  • the scattering center axis has a polar angle ⁇ when the surface of the anisotropic optical film is the xy plane and the normal to the surface of the anisotropic optical film is the z-axis. And the azimuth ⁇ . That is, it can be said that Pxy in FIG. 4 is the length direction of the scattering center axis projected on the surface of the anisotropic optical film.
  • the polar angle ⁇ ( ⁇ 90 ° ⁇ ⁇ 90 °) formed by the normal of the anisotropic optical film (z-axis shown in FIG. 4) and the columnar region can be defined as the scattering center axis angle. ..
  • the angle of the columnar region in the column axis direction can be adjusted to a desired range by changing the direction of the irradiated light beam.
  • the thickness of the anisotropic optical film is not particularly limited, but is preferably 10 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m, and further preferably 10 ⁇ m to 100 ⁇ m.
  • the diffusion performance of the anisotropic optical film can be measured, for example, as follows. For the measurement conditions and the like of these diffusion performances, the methods described in detail in the examples can be referred to.
  • an anisotropic optical film is placed between the light source and the detector.
  • the detection angle is 0 ° when the light is detected in the straight direction of the light.
  • the detector is arranged so that it can be arbitrarily rotated while keeping the distance from the anisotropic optical film constant, and the light source and the anisotropic optical film are fixed.
  • the rotation angle of the detector when the anisotropic optical film is fixed is centered on 0 °, where 0 ° is the angle when the incident light is incident perpendicular to the anisotropic optical film.
  • any angle within the range of -90 ° to + 90 ° can be selected in the direction (MD direction, which is the flow direction in the film manufacturing process, or TD direction, which is the direction perpendicular to the MD direction), and each incident light can be selected.
  • the diffusion performance with respect to the angle can be evaluated. According to this method, the higher the diffusion performance of the optical film, the wider the detection angle range in which the amount of scattered transmitted light to be detected exceeds a specific value.
  • the ratio of the scattered transmitted light amount to the light amount (incident light amount, incident light amount) directly irradiated from the light source to the detector at a detection angle of 0 ° without using an anisotropic optical film is determined by the scattering transmittance (%). ),
  • the angular range of the detection angle satisfying "scattering transmittance (%)> 0.1%" was defined as "diffusion width" which is an index of diffusion performance.
  • the anisotropic optical film obtained by using the composition for an anisotropic optical film according to the present invention can have the diffusion width of 32 ° or more.
  • the hue of the anisotropic optical film is obtained by measuring L * a * b * (CIE1976) using a spectrophotometer (UV-2450, manufactured by Shimadzu Corporation).
  • the hue b * of the anisotropic optical film is preferably ⁇ 7.00 to +7.00, and more preferably ⁇ 2.00 to +2.00.
  • a composition for an anisotropic optical film (hereinafter, may be referred to as a "photocurable resin composition”) is applied onto an appropriate substrate such as a transparent PET film and provided in the form of a sheet to form a film. Then, if necessary, it is dried to volatilize the solvent to provide an uncured resin composition layer.
  • An anisotropic optical film can be produced by irradiating the uncured resin composition layer with light.
  • the step of forming the anisotropic optical film mainly includes the following steps.
  • Step 1-1 Step of providing the uncured resin composition layer on the substrate
  • Step 1-2 Step of obtaining parallel light rays from a light source
  • Arbitrary step 1-3 Directive light rays Obtaining step
  • Step 1-4 Step of curing the uncured resin composition layer
  • Step 1-1 Step of providing the uncured resin composition layer on the substrate >>
  • a normal coating method or a printing method is applied. Specifically, air doctor coating, bar coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, calendar coating, dam coating, dip coating.
  • Coating such as die coating, intaglio printing such as gravure printing, printing such as stencil printing such as screen printing, and the like can be used. If the composition has a low viscosity, a weir of a certain height can be provided around the substrate, and the composition can be cast in the weir.
  • step 1-1 in order to prevent oxygen inhibition of the uncured resin composition layer and efficiently form columnar regions characteristic of the anisotropic optical film, the uncured resin composition layer is placed on the light irradiation side. It is also possible to stack masks that are in close contact with each other and locally change the irradiation intensity of light.
  • the material of the mask is a material in which a light-absorbing filler such as carbon is dispersed in a matrix, and a part of the incident light is absorbed by carbon, but the opening is configured so that light can be sufficiently transmitted.
  • a matrix may be a transparent plastic such as PET, TAC, PVAc, PVA, acrylic or polyethylene, or an inorganic substance such as glass or quartz.
  • the mask may be one in which a sheet containing these matrices is patterned for controlling the amount of ultraviolet rays transmitted, or one containing a pigment that absorbs ultraviolet rays.
  • Step 1-2 Step of obtaining parallel rays from a light source
  • a short arc ultraviolet light source is usually used, and specifically, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • a parallel light ray for example, a point light source is arranged and the parallel light ray is generated between the point light source and the uncured resin composition layer. It can be obtained by arranging an optical lens such as a Frenel lens for irradiating, or arranging a reflecting mirror behind the light source so that light is emitted as a point light source in a predetermined direction.
  • Arbitrary step 1-3 Step of obtaining a light beam having directivity >>
  • Optional steps 1-3 are steps in which parallel light rays are incident on a directional diffusion element to obtain directional light rays.
  • FIG. 6 is a schematic diagram showing optional steps 1-3 in the method for producing an anisotropic optical film according to the present invention.
  • the directivity diffusion elements 11 and 12 used in the optional steps 1-3 may be any as long as they impart directivity to the parallel light rays A incident from the light source 10.
  • FIG. 6 describes that light having directivity (B1 or B2) is incident on the uncured resin composition layer 1 in a manner in which a large amount of light (B1 or B2) is diffused in the x direction and hardly diffused in the y direction. ..
  • the directional diffusion elements 11 and 12 contain a needle-shaped filler having a high aspect ratio, and the needle-shaped filler is placed in the major axis direction in the y direction. A method of orienting to persist can be adopted.
  • various methods can be used in addition to the method using the needle-shaped filler.
  • the aspect ratio of the light having directivity may be 2 to 50.
  • a columnar region having an aspect ratio is formed, which substantially corresponds to the aspect ratio.
  • the size of the columnar region to be formed (aspect ratio, minor axis SA, major axis LA, etc.) can be appropriately determined by adjusting the spread of light having directivity.
  • the anisotropic optical film of the present embodiment can be obtained.
  • the difference between (a) and (b) in FIG. 6 is that the spread of light having directivity is large in (a) while small in (b) (B2).
  • the size of the columnar region differs depending on the size of the spread of the light having directivity.
  • the spread of light having directivity mainly depends on the types of the directional diffusion elements 11 and 12 and the distance between the uncured resin composition layer 1. The smaller the distance, the smaller the size of the columnar region, and the longer the distance, the larger the size of the columnar region. Therefore, the size of the columnar region can be adjusted by adjusting the distance.
  • Step 1-4 Step of curing the uncured resin composition layer >>
  • the light beam that irradiates the uncured resin composition layer to cure the uncured resin composition layer needs to contain a wavelength at which the photopolymerizable compound can be cured, and is usually centered on 365 nm of a mercury lamp. Light of the wavelength to be used is used.
  • the illuminance is preferably in the range of 0.01 mW / cm 2 to 100 mW / cm 2 , and more preferably 0.1 mW / cm 2 to 20 mW / cm 2 .
  • the illuminance is less than 0.01 mW / cm 2 , it takes a long time to cure, resulting in poor production efficiency. If it exceeds 100 mW / cm 2 , the photopolymerizable compound cures too quickly and does not form a structure. This is because the desired optical characteristics cannot be exhibited.
  • the light irradiation time is not particularly limited, but is preferably 10 seconds to 180 seconds, more preferably 30 seconds to 120 seconds.
  • the anisotropic optical film is obtained by irradiating light with low illuminance for a relatively long time to form a specific internal structure in the uncured resin composition layer. Therefore, unreacted monomer components may remain due to such light irradiation alone, resulting in stickiness and problems in handleability and durability.
  • the residual monomer can be polymerized by additionally irradiating with high illuminance light of 1000 mW / cm 2 or more. The light irradiation at this time may be performed from the opposite side of the side where the masks are laminated.
  • the scattering center axis of the anisotropic optical film obtained by adjusting the angle of the light applied to the uncured resin composition layer is desired. Can be.
  • the anisotropic optical film may have yet another layer (adhesive layer, functional layer, transparent film layer, etc.).
  • anisotropic optical film Since the anisotropic optical film is excellent in the effect of improving the viewing angle dependence, it can be applied to all display devices such as a liquid crystal display device, an organic EL display device, and a plasma display. Further, the anisotropic optical film can be expected to have an effect of increasing the reflection brightness in a specific direction by using it in a reflective liquid crystal display device. Since the anisotropic optical film has not only good diffusivity but also good hue, it can be expected to have an effect of improving gradation inversion by using it in a transmissive liquid crystal display device. In addition to this, the anisotropic optical film can also be applied to lighting equipment, building materials and the like.
  • anisotropic optical film of the present invention According to the following method, the anisotropic optical film of the present invention and the anisotropic optical film of the comparative example were produced.
  • Example 1 Preparation of Composition Solution 1 for Anisotropic Optical Film
  • the various materials shown below are mixed in the blending amounts shown below, diluted appropriately with a butyl acetate solvent, and then stirred to obtain an anisotropic optical film.
  • Composition solution 1 for use was obtained.
  • the viscosity of the entire component (A-1) and the component (A-2), which is the component (A-2) was measured with a B-type viscometer (BM type, manufactured by Toki Sangyo Co., Ltd.) and found to be 38 mPa ⁇ s (). 25 ° C.).
  • BM type manufactured by Toki Sangyo Co., Ltd.
  • -(A-1) component 9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-BPEF-2, refractive index: 1.62 (25 ° C), viscosity: 100,000 mPa ⁇ s or more (25 ° C), number of aromatic rings as substituent of fluorene skeleton: 2) 10 parts by weight ⁇ (A-2) component: m-phenoxybenzyl acrylate (refractive index: 1) .57 (25 ° C), viscosity: 18 mPa ⁇ s (25 ° C)) 90 parts by weight ⁇ (B) component: polyvinyl acetate (PVAc) (refractive index: 1.46 (25 ° C), average weight molecular weight: 200,000 , Glass transition temperature: 40 ° C.) 80 parts by weight ⁇ (C) component: 2,2-dimethoxy-2-phenylacetophen
  • composition 1 for Anisotropic Optical Film The obtained composition solution 1 for anisotropic light diffusion film was applied to a PET film having a thickness of 100 ⁇ m using an applicator, and then the temperature in the drying oven was set to 80 ° C. By drying this coating film in the set clean oven, the composition 1 for an anisotropic optical film having a film thickness of 50 ⁇ m was obtained.
  • the light beam was irradiated at an irradiation intensity of 2 mW / cm 2 for 30 seconds from the normal direction of the laminated body.
  • the above-mentioned PVA mask and PET film were peeled off from the obtained laminate to obtain an anisotropic optical film 1 of Example 1.
  • the surface of the obtained anisotropic optical film 1 in the cross section perpendicular to the column axis is observed with an optical microscope, and the minor axis and the major axis of each of the 20 arbitrarily selected columnar regions are measured and averaged.
  • the minor axis and the average major axis were calculated, and the aspect ratio, which is the ratio of the average major axis to the average minor axis (average major axis / average minor axis), was 1.
  • Example 2 The same method as in Example 1 was carried out except that the blending amount of the component (A-1) was changed to 3 parts by weight and the blending amount of the component (B) was changed to 97 parts by weight, and the anisotropy of Example 2 was carried out.
  • Optical film 2 was obtained.
  • the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 21 mPa ⁇ s (25 ° C.).
  • the aspect ratio of the obtained anisotropic optical film 2 was calculated by the same method as in Example 1, it was 1.
  • Example 3 The same method as in Example 1 was carried out except that the blending amount of the component (A-1) was changed to 50 parts by weight and the blending amount of the component (B) was changed to 50 parts by weight, and the anisotropy of Example 3 was carried out. An optical film 3 was obtained.
  • the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 9000 mPa ⁇ s (25 ° C.).
  • the aspect ratio of the obtained anisotropic optical film 3 was calculated by the same method as in Example 1, it was 1.
  • Example 4 Except that the component (A-2) was changed to ethoxylated o-phenylphenol acrylate (refractive index: 1.58 (25 ° C.), viscosity: 130 mPa ⁇ s (25 ° C.)) in the formulation of Example 1. The same method as in Example 1 was carried out to obtain an anisotropic optical film 4 of Example 4. Here, the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 225 mPa ⁇ s (25 ° C.). Moreover, when the aspect ratio of the obtained anisotropic optical film 4 was calculated by the same method as in Example 1, it was 1.
  • Example 5 In the formulation of Example 1, the component (A-2) was changed to 2-hydroxy-3-phenoxypropyl acrylate (refractive index: 1.52 (25 ° C.), viscosity: 170 mPa ⁇ s (25 ° C.)). Except for the above, the same method as in Example 1 was carried out to obtain an anisotropic optical film 5 of Example 5. Here, the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 450 mPa ⁇ s (25 ° C.). Moreover, when the aspect ratio of the obtained anisotropic optical film 5 was calculated by the same method as in Example 1, it was 1.
  • Example 6 Examples except that the component (A-2) was changed to modified bisphenol A dimethacrylate (refractive index: 1.54 (25 ° C.), viscosity: 600 mPa ⁇ s (25 ° C.)) in the formulation of Example 1.
  • the same method as in No. 1 was carried out to obtain an anisotropic optical film 6 of Example 6.
  • the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 1800 mPa ⁇ s (25 ° C.).
  • the aspect ratio of the obtained anisotropic optical film 6 was calculated by the same method as in Example 1, it was 1.
  • Example 1 The same method as in Example 1 was carried out except that the blending amount of the component (A-1) was 100 parts by weight and the material used as the component (A-2) was not used, and the anisotropic optical film a of Comparative Example 1 was used.
  • the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 100,000 mPa ⁇ s (25 ° C.).
  • the aspect ratio of the obtained anisotropic optical film a was calculated by the same method as in Example 1, it was 1.
  • Example 2 The method was the same as in Example 1 except that the material used as the component (A-1) was not used and the material used as the component (A-2) was changed to 100 parts by weight. An anisotropic optical film b was obtained. Further, the aspect ratio of the obtained anisotropic optical film b was calculated by the same method as in Example 1 and found to be 1.
  • the component (A-2) is modified bisphenol A diacrylate (refractive index: 1.53 (25 ° C.), viscosity: 1100 mPa ⁇ s (25 ° C.)) 100 without using the material as the component (A-1).
  • An anisotropic optical film c of Comparative Example 3 was obtained by the same method as in Example 1 except that the weight was changed to a part by weight. Further, the aspect ratio of the obtained anisotropic optical film c was calculated by the same method as in Example 1 and found to be 1.
  • Example 4 Implementation except that the component (A-2) was changed to dipentaerythritol hexaacrylate (refractive index: 1.49 (25 ° C.), viscosity: 6000 mPa ⁇ s (25 ° C.)) in the formulation of Example 1.
  • the same method as in Example 1 was carried out to obtain an anisotropic optical film d of Comparative Example 4.
  • the viscosities of the components (A-1) and (A-2) as a whole were measured by the same method as in Example 1 and found to be 7200 mPa ⁇ s (25 ° C.).
  • the aspect ratio of the obtained anisotropic optical film d was calculated by the same method as in Example 1, it was 1.
  • Table 1 summarizes the "types and blending amounts" of the components (A-1), (A-2) and (B) of the anisotropic optical film compositions of the above-mentioned Examples and Comparative Examples.
  • the detection angle is set to 0 ° when light is detected in the straight direction of the light (direction perpendicular to the anisotropic optical film), and the detector is kept constant in distance from the anisotropic optical film. It was arranged so that it could be rotated in any one direction while still being. Subsequently, the detector is continuously rotated in the coating direction by the applicator in 1 ° increments in the range of -75 ° to 75 °, and the amount of light transmitted through the sample (scattered transmitted light amount) is measured at each detection angle. did. The amount of scattered transmitted light was measured by measuring the wavelength in the visible light region using a luminosity factor filter.
  • the ratio of the scattered transmitted light amount to the light amount (incident light amount, incident light amount) directly radiated from the light source to the detector at a detection angle of 0 ° without passing through the anisotropic optical film is calculated as the scattering transmittance (%).
  • the scattering transmittance (%) is calculated as the scattering transmittance (%).
  • a graph showing the relationship between the detection angle and the amount of scattered transmitted light is obtained from the obtained data, and in this graph, the detection satisfying "scattering transmittance (%)>0.1%".
  • the angle range of the angle was defined as the "diffusion width".
  • the evaluation criteria for each evaluation of the examples of the present invention are as follows. "Diffusion width" ⁇ : Very good diffusivity 40 ° or more ⁇ : Excellent diffusivity 32 ° or more and less than 40 ° ⁇ : Insufficient diffusivity less than 32 ° “Hue b * ” ⁇ : Very good -2.00 to +2.00 ⁇ : Excellent -7.00 or more and less than -2.00 or +2.00 or more and +7.00 or less ⁇ : Insufficient-less than -7.00 or +7.00 or more
  • Table 2 shows the evaluation results of the anisotropic optical film of Examples and Comparative Examples of the present invention.
  • the anisotropic optical film of the present invention is an anisotropic optical film having excellent hue in addition to good diffusivity having a wide diffusion width.
  • Examples 1 and 4 use acrylates having a plurality of aromatic rings in one molecule as the component (A-2), and further, the component (A-1) and (A-). 2) Since the blending amount of the components was optimal, the evaluation results were particularly excellent among the examples.
  • Examples 2 and 3 are anisotropic optical films produced by changing the blending amounts of the components (A-1) and (A-2), respectively, although the materials used are the same as those of Example 1.
  • Example 2 an anisotropic optical film having excellent diffusivity and excellent hue can be obtained
  • Example 3 anisotropic optics having excellent diffusivity and excellent hue can be obtained. I was able to get the film.
  • the reason why the hue of Example 2 is slightly inferior to that of Example 1 is derived from the component (A-2) because the component (A-2) is larger than that of Example 1. It is considered that color development is caused by the ⁇ - ⁇ stacking interaction between aromatic rings.
  • Example 3 was slightly inferior to that of Example 1
  • component (A-2) was smaller than that of Example 1, so that the composition for an anisotropic optical film was used. It is considered that this is due to the fact that the flowability of the film is reduced, and the phase separation that occurs between the matrix region inside the anisotropic optical film and the plurality of columnar regions is not sufficiently performed during curing formation. Be done.
  • Example 5 is an anisotropic optical film produced by using an acrylate having one aromatic ring in one molecule as the component (A-2), and has excellent diffusivity and a very excellent hue. An anisotropic optical film having the above could be obtained.
  • the reason why the diffusivity of Example 5 was slightly inferior to that of Examples 1 and 4 was that the refractive index of the component (A-2) was not sufficiently higher than that of Examples 1 and 4. It is considered that this is because the difference in refractive index between the matrix region inside the anisotropic optical film and the plurality of columnar regions is reduced.
  • Example 6 is an anisotropic optical film produced by using methacrylate having two aromatic rings in one molecule as the component (A-2), and has excellent diffusivity and a very excellent hue. An anisotropic optical film having the above could be obtained.
  • the reason why the diffusivity of Example 6 was slightly inferior to that of Examples 1 and 4 was that the refractive index of the component (A-2) was not sufficiently higher than that of Examples 1 and 4. It is considered that this is because the difference in refractive index between the matrix region inside the anisotropic optical film and the plurality of columnar regions is reduced.
  • Comparative Example 1 is an anisotropic optical film produced without using the material as the component (A-2), and it was confirmed that this anisotropic optical film has insufficient diffusivity. This is because the component (A-2) is not contained, so that the fluidity of the composition for anisotropic optical film is remarkably deteriorated, and at the time of curing formation, the matrix region inside the anisotropic optical film and a plurality of columns are formed. It is considered that this is due to the fact that the phase separation that occurs between the regions and the region is hardly performed.
  • Comparative Example 2 is an anisotropic optical film produced without using the material as the component (A-1), and although this anisotropic optical film has excellent diffusivity, the hue is insufficient. Was confirmed.
  • the reason why the hue is significantly inferior to that of Example 1 is that the component (A-1) is not contained, so that the aromatic rings derived from the component (A-2) are mutually ⁇ - ⁇ stacking. It is considered that the color development due to the action is strongly generated.
  • the reason why the diffusivity is slightly inferior to that of Example 1 is that the component (A-1) is not contained, so that the refractive index of the entire component (A) is low, and anisotropic optics is used. It is considered that this is due to the decrease in the difference in refractive index between the matrix region inside the film and the plurality of columnar regions.
  • Comparative Example 3 is an anisotropic optical film produced by using a bifunctional acrylate as the component (A-2) without using the material as the component (A-1). Although it has a very good hue, it was confirmed that the diffusivity was insufficient. This is due to the fact that by using a bifunctional acrylate as the component (A-2), overlapping of aromatic rings is less likely to occur, and the ⁇ - ⁇ stacking interaction is caused even without using the component (A-1). Although color development could be suppressed, the refractive index of the entire component (A) was not sufficiently high, and the difference in refractive index between the matrix region inside the anisotropic optical film and the plurality of columnar regions was reduced. It is thought that it is.
  • Comparative Example 4 is an anisotropic optical film produced by using a hexafunctional acrylate as the component (A-2), and although this anisotropic optical film has a very excellent hue, it has poor diffusivity. It was confirmed that it was sufficient. This is because the refractive index of the component (A-2) is not sufficiently high, and the difference in the refractive index between the matrix region inside the anisotropic optical film and the plurality of columnar regions is reduced, and (A-2). Since the viscosity of the components is not sufficiently low, the fluidity of the composition for anisotropic optical film is lowered, and during the formation of curing, between the matrix region inside the anisotropic optical film and the plurality of columnar regions. It is considered that this is due to the fact that the resulting phase separation is not sufficiently performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

良好な拡散性と、良好な色相とを両立させることができる光拡散フィルムを製造するための異方性光学フィルム用組成物の提供。フルオレン骨格及び(メタ)アクリロイル基をそれぞれ一つ以上有する(メタ)アクリル酸エステル:(A-1)成分と、芳香環及び(メタ)アクリロイル基をそれぞれ一つ以上有し、フルオレン骨格を有さない(メタ)アクリル酸エステル:(A-2)成分と、重量平均分子量が1,000~500,000であり、ガラス転移温度が-40℃以上である熱可塑性ポリマー:(B)成分と、光重合開始剤:(C)成分と、を含み、(A-1)成分の含有量が(A-2)成分の含有量100重量部に対して3重量部~100重量部であり、(B)成分の含有量が、(A-1)成分及び(A-2)成分を含む(メタ)アクリル酸エステルの合計100重量部に対して10重量部~400重量部である、異方性光学フィルム用組成物。

Description

異方性光学フィルム用組成物及び異方性光学フィルム
 本発明は、異方性光学フィルム用組成物及び異方性光学フィルム用組成物を用いて製造された異方性光学フィルムに関する。
 液晶表示装置(LCD)、有機エレクトロルミネッセンス素子(有機EL)等の各種表示装置は、視野角の拡大等を目的として、異方性を有する光拡散フィルムが適用される場合がある。
 例えば、特許文献1では、光拡散フィルムを製造するための光拡散フィルム用組成物として、特許文献1には、(A)成分としての複数の芳香環を含有する(メタ)アクリル酸エステルと、(B)成分としてのウレタン(メタ)アクリレートと、(C)成分としての光重合開始剤と、(D)成分としての、特定のヒンダードアミン系光安定化剤と、を含む組成物を開示している。この組成物は、(A)成分の含有量を、(B)成分100重量部に対して、25重量部~400重量部の範囲内の値とするとともに、(C)成分の含有量を、(A)成分及び(B)成分の合計量(100重量部)に対して、0.2重量部~20重量部の範囲内の値とし、(D)成分の含有量を、(A)成分及び(B)成分の合計量(100重量部)に対して、0.1重量部~10重量部の範囲内の値としている。
 また、特許文献2では、光制御膜の原料として好適に用いることができる光硬化性組成物として、分子内に重合性の炭素-炭素二重結合を有するフルオレン系化合物(A)、該フルオレン系化合物(A)と屈折率が異なるカチオン重合性化合物(B)、及び光カチオン重合開始剤(C)を含有するものが開示されている。
特許第5914751号 特開2008-239757号公報
 しかしながら、特許文献1の光拡散フィルムは、十分な光拡散性を得るために必要な膜厚が厚いという欠点があった。また、特許文献2に係る光制御膜は、組成物材料として用いられるカチオン重合開始剤が組成物の硬化後に残存していた場合、ディスプレイのデバイスとしたとき、他の部品に不具合をきたす恐れがあった。更に、従来の光拡散フィルムは、透明性が不十分で色味を呈する場合があった。
 そこで本発明は、良好な拡散性と、良好な色相とを両立させることができる光拡散フィルムを製造するための異方性光学フィルム用組成物の提供を課題とする。
 本発明者らは、上記特許文献1及び特許文献2について詳細に検討を行い、特定の成分を含む異方性光学フィルム用組成物が、上記課題を解決可能なことを見出した。即ち、本発明は以下の通りである。
 本発明は、
 (A-1)成分としての、フルオレン骨格及び(メタ)アクリロイル基をそれぞれ一つ以上有する(メタ)アクリル酸エステルと、
 (A-2)成分としての、芳香環及び(メタ)アクリロイル基をそれぞれ一つ以上有し、フルオレン骨格を有さない(メタ)アクリル酸エステルと、
 (B)成分としての、重量平均分子量が1,000~500,000であり、ガラス転移温度が-40℃以上である熱可塑性ポリマーと、
 (C)成分としての、光重合開始剤と、
を含む組成物であって、
 前記組成物中の前記(A-1)成分の含有量が、前記(A-2)成分の含有量を100重量部とした際に、3重量部~100重量部であり、
 前記組成物中の前記(B)成分の含有量が、前記(A-1)成分及び前記(A-2)成分を含む(メタ)アクリル酸エステル合計の含有量を100重量部とした際に、10重量部~400重量部であることを特徴とする、異方性光学フィルム用組成物である。
 前記(A-1)成分が1分子中に2つ以上の芳香環をフルオレン骨格の置換基として有していてもよい。
 前記(A-1)成分の屈折率が、1.55~1.70であってもよい。
 前記(A-1)成分が複数の(メタ)アクリロイル基を有していてもよい。
 前記(A-2)成分が1分子中に複数の芳香環を有していてもよい。
 前記(A-2)成分の屈折率が、1.50~1.65であってもよい。
 前記(A-2)成分が、ビフェニル構造及び/又はジフェニルエーテル構造を有していてもよい。
 前記(B)成分の屈折率が、1.35~1.50であってもよい。
 また、本発明は、
 前記異方性光学フィルム用組成物の硬化物である異方性光学フィルムであって、前記異方性光学フィルムは、マトリックス領域と、前記マトリックス領域とは屈折率の異なる複数の柱状領域とを有することを特徴とする、異方性光学フィルムである。
 前記異方性光学フィルムの複数の柱状領域は、前記異方性光学フィルムの一方の表面から他方の表面にかけて配向、かつ、延在して構成されており、
 前記異方性光学フィルムの柱軸に垂直な断面における、前記柱状領域の平均長径/平均短径、である前記柱状領域のアスペクト比が、1~50であってもよい。
 前記異方性光学フィルムの厚さが、10μm~100μmであってもよい。
 本発明によれば、良好な拡散性と、良好な色相とを両立させることができる光拡散フィルムを製造するための異方性光学フィルム用組成物を提供可能である。
異方性光学フィルムの例を示す模式図である。 異方性光学フィルムの表面構造を示す上面図である。 異方性光学フィルムにおける光学プロファイルの一例を示すグラフである。 異方性光学フィルムにおける散乱中心軸を説明するための3次元極座標表示である。 異方性光学フィルムの拡散性能測定方法を示す模式図である。 本発明に係る異方性光学フィルムの製造方法における任意工程1-3を示す模式図である。
 本発明に係る異方性光学フィルム用組成物、及び、異方性光学フィルム用組成物を硬化して得られた異方性光学フィルム等について説明する。なお、異方性光学フィルム用組成物とは、異方性光学フィルムを製造するために用いられる組成物である。
 以下の説明において、上限値と下限値とが別々に記載されている場合、上限値と下限値との全ての組み合わせが、本明細書に記載されているものとする。
 本発明において、各成分の屈折率とは、JIS K0062に準拠した方法にて測定されたものを示す。
<<<<異方性光学フィルム用組成物>>>>
<<<成分>>>
 本発明に係る異方性光学フィルム用組成物は、(メタ)アクリル酸エステルである(A)成分、熱可塑性ポリマーである(B)成分、光重合開始剤である(C)成分を含む。また、(A)成分は、フルオレン骨格と(メタ)アクリロイル基をそれぞれ一つ以上有する(メタ)アクリル酸エステルである(A-1)成分と、芳香環及び(メタ)アクリロイル基をそれぞれ一つ以上有し、フルオレン骨格を有さない(メタ)アクリル酸エステルである(A-2)成分と、を含む。
 更に、異方性光学フィルム用組成物は、その他の成分である(D)成分を含んでいてもよい。
 以下、それぞれの成分について説明する。
<<(A)成分>>
<(A-1)成分:(メタ)アクリル酸エステル>
 (A-1)成分は、フルオレン骨格及び(メタ)アクリロイル基をそれぞれ一つ以上有する(メタ)アクリル酸エステルである。
 (A-1)成分は、1つ以上の芳香環(芳香環基/芳香環含有基)をフルオレン骨格の置換基として含んでいてもよく、2つ以上の芳香環をフルオレン骨格の置換基として含むことが好ましい。(A-1)成分に含まれるフルオレン骨格の置換基としての芳香環の個数の上限値は、特に限定されないが、例えば10以下であることが好ましい。
 (A-1)成分に含まれる(メタ)アクリロイル基の個数は、特に限定されないが、1又は2以上とすることができ、複数の(メタ)アクリロイル基を含むことが好ましい。また、上限としては特に限定されないが、8以下とすることが好ましい。
 2つ以上の芳香環をフルオレン骨格の置換基として含む(A-1)成分としては、具体的には、下記(式A)で示される化合物を例示できる。
Figure JPOXMLDOC01-appb-C000001
 
 上記式Aにおいて、R及びRは、各々独立して、(メタ)アクリロイル基を含む置換基であり、好ましくは、(メタ)アクリロイルオキシ基(繰り返し数1~5のEO付加又はPO付加がされていてもよい。)であり、R及びRは、各々独立して、水素原子又は炭素数1~6の脂肪族置換基である。
 (A-1)成分としては、より具体的には、下記(式B)~(式D)で示される化合物を例示できる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 (A-1)成分は市販品を使用することができる。(A-1)成分の市販品としては、例えば、新中村化学株式会社製の「A-BPEF-2」(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンジアクリレート)、大阪ガスケミカル株式会社製の「OGSOL EA-0200」、「OGSOL EA-0300」、「OGSOL EA-5060GP」、「OGSOL GA-2800」等が挙げられる。
 (A-1)成分の屈折率は、1.50以上であることが好ましく、1.53以上であることがより好ましく、1.56以上であることが更に好ましい。屈折率の上限としては特に限定されないが、例えば、1.70以下であることが好ましい。(A-1)成分の屈折率をこのような範囲とすることで、異方性光学フィルムの拡散性をより向上させることができる。
 (A-1)成分は、上述したような成分を、1種のみ含んでいてもよいし、複数種を含んでいてもよい。
<(A-2)成分:(メタ)アクリル酸エステル>
 (A-2)成分は、(A-1)成分とは異なる成分であり、芳香環及び(メタ)アクリロイル基をそれぞれ一つ以上有し、フルオレン骨格を有さない(メタ)アクリル酸エステルである。
 (A-2)成分は、複数の芳香環を有することが好ましい。複数の芳香環を含む構造として、ビフェニル構造及び/又はジフェニルエーテル構造を有していることが好ましい。このようなビフェニル構造やジフェニルエーテル構造は、骨格中に、1つのみ有してもよいし、2つ以上有していてもよい。このような構造を有することで、非常に高い屈折率を持つ(メタ)アクリル酸エステルとなる。
 (A-2)成分は、通常、高屈折率材料である。具体的には、(A-2)成分の屈折率が、1.50以上であることが好ましく、1.53以上であることがより好ましく、1.56以上であることが更に好ましい。屈折率の上限としては特に限定されないが、例えば、1.65以下であることが好ましい。(A-2)成分の屈折率をこのような範囲とすることで、異方性光学フィルムの拡散性をより向上させることができる。
 このような(A-2)成分としては、特に限定されないが、下記一般式(1)で表わされるビフェニル化合物、もしくは下記一般式(2)で表されるジフェニルエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中、R~R10は、それぞれ独立しており、R~R10のいずれか1つが、下記一般式(3)又は(4)で表わされる置換基である。残りは、(メタ)アクリロイル基が含まれていなければ良く、具体的には、水素原子、ヒドロキシル基、カルボキシル基、アルキル基、アルコキシ基、ハロゲン化アルキル基、ヒドロキシアルキル基、カルボキシアルキル基及びハロゲン原子等の置換基が挙げられる。
 また、一般式(2)中、R11~R20は、それぞれ独立しており、R11~R20のいずれか1つが、下記一般式(3)又は(4)で表わされる置換基である。残りは、(メタ)アクリロイル基が含まれていなければ良く、具体的には、水素原子、ヒドロキシル基、カルボキシル基、アルキル基、アルコキシ基、ハロゲン化アルキル基、ヒドロキシアルキル基、カルボキシアルキル基及びハロゲン原子等の置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(一般式(3)中、R21は、水素原子又はメチル基であり、nは1~4の整数であり、繰り返し数mは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000008
(一般式(4)中、R22は、水素原子又はメチル基であり、nは1~4の整数であり、繰り返し数mは1~10の整数である。)
 上記一般式(3)及び(4)で表わされる置換基における繰り返し数mを、通常1~10の整数とすることが好ましい。
 この理由は、繰り返し数mが10を超えた値となると、(A-2)成分特有の芳香環に由来する屈折率の向上効果が抑制され、異方性光学フィルムの拡散性が低下する場合があるためである。
 したがって、一般式(3)及び(4)で表わされる置換基における繰り返し数mを、1~4の整数とすることがより好ましく、1~2の整数とすることが更に好ましい。
 なお、同様の観点から、一般式(3)及び(4)で表わされる置換基におけるnを、通常1~4の整数とすることが好ましく、1~2の整数とすることより好ましい。
 上記一般式(1)で表わされるビフェニル化合物の具体例としては、下記式(5)で表わされる化合物を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(2)で表わされるジフェニルエーテル化合物の具体例としては、下記式(6)で表わされる化合物を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 (A-2)成分は、上述したような成分を、1種のみ含んでいてもよいし、複数種を含んでいてもよい。
((A-2)成分粘度)
 (A-2)成分は、25℃における粘度が、1000mPa・s以下であることが好ましく、500mPa・s以下であることがより好ましく、100mPa・s以下であることが更に好ましい。粘度の下限値は特に限定されないが、例えば、1mPa・sである。
 (A-2)成分の25℃における粘度がこれらの範囲であることにより、(A-1)成分及び(A-2)成分を組み合わせて使用した際、組成物の流動性を高めることとなるので、硬化時の各成分の相分離を促進させ、得られる異方性光学フィルムの拡散性能を向上させることができる。
<その他(A)成分:(メタ)アクリル酸エステル>
 (A)成分は、本発明の効果を阻害しない範囲で、(A-1)成分及び(A-2)成分以外の(メタ)アクリル酸エステル(光学フィルム用組成物に通常使用されるその他の(メタ)アクリル酸エステル)を含んでいてもよい。
((A)成分粘度)
 本発明では、(A)成分全体としての25℃における粘度が、10000mPa・s以下であることが好ましく、5000mPa・s以下であることがより好ましく、3000mPa・s以下であることが更に好ましく、1000mPa・s以下であることが特に好ましい。なお、(A)成分全体としての25℃における粘度は、500mPa・s以下、250mPa・s以下、又は、100mPa・s以下であることが最も好ましい。粘度の下限値は特に限定されないが、例えば、1mPa・sである。
 (A)成分全体としての25℃における粘度がこれらの範囲であることにより、(A-1)成分、(A-2)成分及びその他(A)成分を組み合わせて使用した際、組成物の流動性を高めることとなるので、硬化時の各成分の相分離を促進させ、得られる異方性光学フィルムの拡散性能を向上させることができる。
<<(B)成分:熱可塑性ポリマー>>
 (B)成分のガラス転移温度は、-40℃以上であり、0℃以上であることが好ましく、30℃以上であることがより好ましい。ガラス転移温度の上限値は特に限定されないが、例えば150℃以下であることが好ましい。
 ガラス転移温度は、公知の測定方法、例えば、JIS K7121-1987「プラスチックの転移温度測定方法」に準拠した方法により測定できる。
 (B)成分の重量平均分子量は、1,000~500,000であり、10,000~400,000であることが好ましく、50,000~300,000であることがより好ましい。
 重量平均分子量は、公知の測定方法、例えば、ポリスチレン換算分子量として、GPC法を用いて測定することができる。
 (B)成分のガラス転移温度及び重量平均分子量を上記範囲とすることで、(A-1)成分及び(A-2)成分との相溶性を高め、優れた性能の異方性光学フィルムとすること、耐熱性試験等での耐久性を向上させること、UV硬化前の異方性光学フィルムに適度な弾性率を持たせロールでの保管を可能とすること、等が可能となる。
 (B)成分は、通常、低屈折材料である。具体的には、(B)成分の屈折率が、1.50以下又は1.50未満であることが好ましく、1.49以下であることがより好ましく、1.48以下であることが更に好ましい。屈折率の下限値は特に限定されないが、例えば、1.35以上である。
 このような(B)成分としては、特に限定されないが、例えばアクリル樹脂、スチレン樹脂、スチレン-アクリル共重合体、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、セルロース系樹脂、シリコーン系樹脂、酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル共重合体、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール樹脂、ポリフッ化ビニリデン、PMMA-PBAブロック共重合体、PVDF-HFP共重合体、等が挙げられる。
 このような(B)成分を配合することで、(A-1)成分及び(A-2)成分を含む高屈材料との屈折率差による相分離をしやすくでき、また、異方性光学フィルムとした際に圧痕になりにくく、貯蔵性に優れたものとすることができる。
 (B)成分は、上述したような成分を、1種のみ含んでいてもよいし、複数種を含んでいてもよい。
<<(C)成分:光重合開始剤>>
 (C)成分の光重合開始剤は、紫外線等の活性エネルギー線の照射により、ラジカル種を発生させる化合物であり、従来公知のものを使用することができる。
 光重合開始剤としては、例えば、ベンゾフェノン、ベンジル、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(ピル-1-イル)フェニル]チタニウム、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等が挙げられる。
 これらの化合物は、各単体で用いてもよく、複数混合して用いてもよい。
 光重合開始剤は、通常粉体を光重合性化合物中に直接溶解して使用しても良いが、溶解性が悪い場合は光重合開始剤を予め溶剤に溶解させたものを使用することもできる。
<<(D)成分:その他の成分>>
 (D)成分として、光重合性を向上させるために公知の各種染料や増感剤や、その他の公知の添加剤等を含んでいてもよい。また、溶媒や分散媒等を含んでいてもよい。
 更に、光重合性化合物を加熱により硬化させることのできる熱硬化開始剤を光重合開始剤と共に併用することもできる。この場合、光硬化の後に加熱することにより光重合性化合物の重合硬化を更に促進し完全なものにすることが期待できる。
 光重合性化合物を含む組成物を調製する際の溶剤としては、例えば、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン、キシレン等を使用することができる。
 なお、カチオン重合性の開始剤として用いられる酸発生剤が組成物の硬化後に残存していると、ディスプレイ等のデバイスに使用した場合、他の部品に不具合をきたす可能性が考えられる。そのため、その他の成分としては、酸発生剤を含まないことが好ましい。例えば、組成物中の酸発生剤の含有量が、1%以下であることが好ましい。
<<<各成分の含有量>>>
 組成物中の(A-1)成分の含有量は、(A-2)成分の含有量を100重量部とした際に、3重量部~100重量部であり、4重量部~50重量部であることが好ましく、5重量部~25重量部であることがより好ましい。
 (A)成分(以下、(A-1)成分及び(A-2)成分を含む(メタ)アクリル酸エステルの合計とする)に対する、(A-1)成分及び(A-2)成分の合計の含有量割合は、50重量%以上(好ましくは、70質量%以上、80質量%以上、又は、90質量%以上)とすることができる。
 組成物中の(B)成分の含有量は、(A)成分の含有量を100重量部とした際に、10重量部~400重量部であり、25重量部~200重量部であることが好ましく、50重量部~100重量部であることがより好ましい。
 組成物の全固形分(揮発性溶媒を除いた、不揮発成分の全量)に対する、(A)成分、(B)成分の含有量の合計割合は、特に限定されないが、例えば50重量%以上とすることができる。
 組成物中の(A)成分、(B)成分の含有量を上記のような範囲とすることで、各成分同士の相互作用を適切なものとすることができる。
 組成物中の(C)成分の含有量は、(A)成分の含有量100重量部に対し、0.1重量部~20重量部であることが好ましく、0.5重量部~10重量部であることがより好ましい。
 本発明に係る異方性光学フィルム用組成物は、各成分の含有量を上記のような範囲とすることで、良好な拡散性と、良好な色相とを両立させることができる。
 次に、異方性光学フィルム用組成物を使用して得られる異方性光学フィルムの好適例について説明する。なお、異方性光学フィルム用組成物を使用すれば、下記に示す異方性光学フィルム以外の異方性光学フィルムも製造することが可能である。
<<<<異方性光学フィルム>>>>
 「異方性光学フィルム」は、光の拡散、透過及び拡散分布が、光の入射角度によって変化する、入射光角度依存の異方性及び指向性を有するものである。したがって、入射光角依存が無い指向性拡散フィルム、等方性拡散フィルム、特定方位に配向する拡散フィルムとは異なるものである。
 異方性光学フィルムの入射光角度依存では、光の入射光角度により、直線透過率[(入射した光の直線方向の透過光量)/(入射した光の光量)]が変化する。即ち、異方性光学フィルムに対する入射光について、所定の角度範囲の入射光は直線性が高まるため、主として透過し、その他の角度範囲の入射光は拡散性が高まるため、主として拡散する。
<<<構造>>>
 本発明における異方性光学フィルムは、マトリックス領域と、マトリックス領域とは屈折率の異なる複数の柱状領域とを有する。
 異方性光学フィルム内の「マトリックス領域」と「複数の柱状領域」とは、本発明に係る異方性光学フィルムを構成する材料の局所的な屈折率の高低差により形成される領域であって、他方に比べて屈折率が低いか高いかを示した相対的なものである。これらの領域は、異方性光学フィルムを形成する材料が硬化する際に相分離により形成される。
 つまり屈折率が異なるとは、異方性光学フィルムに入射した光の少なくとも一部が、マトリックス領域と、柱状領域との界面において反射が起こる程度に差異があればよく、特に限定されない。
 異方性光学フィルムに含まれる複数の柱状領域は、通常、異方性光学フィルムの一方の表面から他方の表面にかけて配向、かつ、延在して構成されている(図1参照)。
<<柱状領域>>
 柱状領域の長さは、特に限定されず、異方性光学フィルムの一方の表面から他方の表面に貫通したものでもよく、一方の表面から他方の表面に届かない長さでも良い。
 異方性光学フィルムの複数の柱状領域は、柱軸に垂直な断面における表面形状が、短径と、長径とを有する形状とすることができる。
 柱状領域の表面形状は、特に限定されず、例えば、円形、楕円形、多角形とすることができる。円形の場合には、短径と長径とは等しくなり、楕円形の場合には、短径は短軸の長さ、長径は長軸の長さであり、多角形の場合には、多角形内で多角形外形2点を結ぶ最も短い長さを短径とし、最も長い長さを長径とすることができる。図2に、異方性光学フィルムの表面方向から見た柱状領域を示す。図2中、LAは長径を表わし、SAは短径を表わしている。
 柱状領域の短径及び長径は、異方性光学フィルムの、柱状領域柱軸に垂直な断面における表面を光学顕微鏡で観察し、任意に選択した20個の柱状領域についてそれぞれの短径、長径を計測し、これらの平均値とすることができる。
 柱状領域の平均短径に対する平均長径の比(平均長径/平均短径)、即ち、アスペクト比は、特に限定されないが、例えば、1~50とすることができる。
 図2(a)は、柱状領域のアスペクト比が2~50の異方性光学フィルムを示しており、図2(b)は、柱状領域のアスペクト比が1以上2未満の異方性光学フィルムを示している。
 アスペクト比が1以上2未満の場合には、柱状領域の柱軸方向に平行な光を照射した場合、その透過光は等方的に拡散する(図1(a)を参照)。一方、アスペクト比が2~50の場合には、同様に柱軸方向に平行な光を照射した場合には、アスペクト比に応じた異方性をもって拡散する(図1(b)を参照)。
 なお、アスペクト比を2~50とした場合において、アスペクト比を20超50以下の範囲とした場合、より異方性をもった拡散となる。その一方で、アスペクト比を2~20の範囲とした場合、アスペクト比が1以上2未満の場合と、アスペクト比を20超50以下の範囲とした場合と、の中間的な性質を有するものとなる。このように、アスペクト比の範囲を、1以上2未満、2~20、20超50以下として区分することで、それぞれ異なる光学特性を有する異方性光学フィルムとすることができる。本発明に係る異方性光学フィルム用組成物は、いずれのアスペクト比を有する異方性光学フィルムの製造においても、好ましい原料として使用することができる。
 異方性光学フィルムは、1つのアスペクト比を有する複数の柱状領域を含んでもよいし、異なるアスペクト比を持つ、複数の柱状領域を含んでもよい。
<<<散乱中心軸>>>
 異方性光学フィルムは、散乱中心軸を有する。
 「散乱中心軸」とは、異方性光学フィルムへの入射光角度を変化させた際にその入射光角度を境に光拡散性が略対称性を有する場合の、光の入射光角度と一致する方向を意味する。「略対称性を有する」としたのは、散乱中心軸がフィルムの法線方向(フィルムの膜厚方向)に対して傾きを有する場合には、光拡散性に関する光学プロファイル(後述する)が厳密には対称性を有しないためである。
 ここで、散乱中心軸と柱状領域の配向方向(延在方向)とは、通常、平行な関係にある。なお、散乱中心軸と柱状領域の配向方向とが平行であるとは、屈折率の法則(Snellの法則)を満たすものであればよく、厳密に平行である必要はない。
 散乱中心軸は、異方性光学フィルムの断面における柱状領域の柱軸傾きを光学顕微鏡によって観察することや、異方性光学フィルムを介した光の投影形状を入射光角度を変化させて観察することの他、光学プロファイルにより、確認することができる。
 Snellの法則は、屈折率nの媒質から屈折率nの媒質の界面に対して光が入射する場合、その入射光角度θと屈折角θとの間に、nsinθ=nsinθの関係が成立するものである。例えば、n=1(空気)、n=1.51(異方性光学フィルム)とすると、入射光角度が30°の場合、柱状領域の配向方向(屈折角)は約19°となるが、このように入射光角度と屈折角が異なっていてもSnellの法則を満たしていれば、本発明においては平行の概念に包含される。
 散乱中心軸は、上述したように、異方性光学フィルムへの入射光角度を変化させた際に光拡散性がその入射光角度を境に略対称性を有する光の入射光角度と一致する方向を意味する。なお、このときの散乱中心軸は、異方性光学フィルムへの光の入射光角度による直線透過率を測定した後、その関係を示すグラフである光学プロファイルを作成し、この光学プロファイル(一例として図3)における直線透過率の極小値に挟まれた略中央部の入射光角度(拡散領域の中央部、図3の場合では約0°)とすることができる。
 光学プロファイルは、光拡散性を直接的に表現しているものではないが、直線透過率が低下することで逆に拡散透過率が増大していると解釈すれば、概ね光拡散性を示していると言える。
 また、図3に示すように、最大直線透過率と、最小直線透過率との間の中間値の直線透過率に対する2つの入射光角度範囲を「拡散領域」と称し、それ以外の入射光角度範囲を「非拡散領域」と称する。
 次に、図4を参照しながら、異方性光学フィルムにおける散乱中心軸Pについて、別視点により、説明する。図4は、異方性光学フィルムにおける散乱中心軸Pを説明するための3次元極座標表示である。
 散乱中心軸は、図4に示すような3次元極座標表示によれば、異方性光学フィルムの表面をxy平面とし、異方性光学フィルムの表面に対する法線をz軸とすると、極角θと方位角φとによって表現することができる。つまり、図4中のPxyが、異方性光学フィルムの表面に投影した散乱中心軸の長さ方向ということができる。
 ここで、異方性光学フィルムの法線(図4に示すz軸)と、柱状領域とのなす極角θ(-90°<θ<90°)を散乱中心軸角度と定義することができる。未硬化樹脂組成物層を光硬化させ柱状領域を形成させる工程において、照射する光線の方向を変えることで、柱状領域の柱軸方向の角度を所望の範囲に調整することができる。
<<<厚さ>>>
 異方性光学フィルムの厚さは、特に限定されないが、10μm~500μmであることが好ましく、10μm~200μmであることがより好ましく、10μm~100μmであることが更に好ましい。
<<<拡散性能>>>
 異方性光学フィルムの拡散性能は、例えば以下のようにして測定できる。なお、これら拡散性能の測定条件等は、実施例にて詳しく説明された方法を参照できる。
 図5に示すように、異方性光学フィルムを光源と検出器との間に配置する。本形態においては、光の直進方向で光を検出した場合を検出角度0°とした。また、検出器は異方性光学フィルムとの距離を一定に保ったまま任意に回転させることができるように配置され、光源及び異方性光学フィルムは固定されている。異方性光学フィルムを固定した際の検出器の回転角度は、入射光が異方性光学フィルムに対して垂直に入射したときの角度を0°としたとき、0°を中心とした、一方向(フィルム製造工程での流れ方向であるMD方向、又はMD方向に垂直な方向であるTD方向)における、-90°~+90°の範囲内の任意の角度を選択可能で、それぞれの入射光角度に対する拡散性能を評価することができる。この方法によれば、拡散性能の高い光学フィルムほど、検出される散乱透過光量が特定の値を超える検出角度範囲が広くなる。本発明では異方性光学フィルムを介さず、検出角度0°で光源から検出器に直接照射される光量(入射した光の光量、入射光量)に対する散乱透過光量の割合を、散乱透過率(%)として、「散乱透過率(%)>0.1%」を満たす検出角度の角度範囲を、拡散性能の指標である「拡散幅」と定義した。
 本発明に係る異方性光学フィルム用組成物を用いることで得られる異方性光学フィルムは、上記拡散幅を、32°以上とすることができる。
<<<色相>>>
 異方性光学フィルムの色相は、分光光度計(島津製作所社製、UV-2450)を用いて、L(CIE1976)を測定することにより得られる。
 異方性光学フィルムの色相bは、-7.00~+7.00であることが好ましく、-2.00~+2.00であることがより好ましい。
<<<異方性光学フィルムの製造方法>>>
 次に、異方性光学フィルム用組成物を用いた、異方性光学フィルムの製造方法について説明する。
 まず、異方性光学フィルム用組成物(以下、「光硬化樹脂組成物」と称する場合がある。)を、透明PETフィルムのような適当な基体上に塗布してシート状に設け、成膜し、必要に応じて乾燥し溶剤を揮発させて未硬化樹脂組成物層を設ける。この未硬化樹脂組成物層上に光を照射することで、異方性光学フィルムを作製することができる。
 より具体的には、異方性光学フィルムの形成工程は、主に、以下の工程を有するものである。
(1)工程1-1:未硬化樹脂組成物層を基体上に設ける工程
(2)工程1-2:光源から平行光線を得る工程
(3)任意工程1-3:指向性を有する光線を得る工程
(4)工程1-4:未硬化樹脂組成物層を硬化させる工程
<<工程1-1:未硬化樹脂組成物層を基体上に設ける工程>>
 光硬化樹脂組成物を、基体上に、シート状に、未硬化樹脂組成物層として設ける手法は、通常の塗工方式や印刷方式が適用される。具体的には、エアドクターコーティング、バーコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコーティング、ダムコーティング、ディップコーティング、ダイコーティング等のコーティングや、グラビア印刷等の凹版印刷、スクリーン印刷等の孔版印刷等の印刷等が使用できる。組成物が低粘度の場合は、基体の周囲に一定の高さの堰を設けて、この堰で囲まれた中に組成物をキャストすることもできる。
 工程1-1において、未硬化樹脂組成物層の酸素阻害を防止して、異方性光学フィルムの特徴である柱状領域を効率良く形成させるために、未硬化樹脂組成物層の光照射側に密着して光の照射強度を局所的に変化させるマスクを積層することも可能である。
 マスクの材質としては、カーボン等の光吸収性のフィラーをマトリックス中に分散したもので、入射光の一部はカーボンに吸収されるが、開口部は光が十分に透過できるような構成のものが好ましい。このようなマトリックスとしては、PET、TAC、PVAc、PVA、アクリル、ポリエチレン等の透明プラスチックや、ガラス、石英等の無機物であってもよい。また、マスクは、これらのマトリックスを含むシートに紫外線透過量を制御するためのパターニングを行ったものや、紫外線を吸収する顔料を含んだものであっても構わない。
 このようなマスクを用いない場合には、窒素雰囲気下で光照射を行うことで、未硬化樹脂組成物層の酸素阻害を防止することも可能である。また、通常の透明フィルムを未硬化樹脂組成物層上に積層するだけでも、酸素阻害を防ぎ柱状領域の形成を促す上で有効である。このようなマスクや透明フィルムを介した光照射では、光重合性化合物を含む組成物中に、その照射強度に応じた光重合反応を生じるため、屈折率分布を生じ易く、本形態に係る異方性光学フィルムの作製に有効である。
<<工程1-2:光源から平行光線を得る工程>>
 光源としては、通常はショートアークの紫外線発生光源が使用され、具体的には高圧水銀灯、低圧水銀灯、メタハライドランプ、キセノンランプ等が使用可能である。このとき、所望の散乱中心軸と平行な光線を得る必要があるが、このような平行光線は、例えば点光源を配置して、この点光源と未硬化樹脂組成物層の間に平行光線を照射するためのフレネルレンズ等の光学レンズを配置する他、光源の背後に反射鏡を配置して、所定の方向に点光源として光が出射するようにすること等で、得ることができる。
<<任意工程1-3:指向性を有する光線を得る工程>>
 任意工程1-3は、平行光線を指向性拡散要素に入射させ、指向性を有する光線を得る工程である。図6は、本発明に係る異方性光学フィルムの製造方法における任意工程1-3を示す模式図である。
 任意工程1-3で用いられる指向性拡散要素11及び12は、光源10から入射した平行光線Aに指向性を付与するものであればよい。
 図6においては指向性を有する光(B1又はB2)が、x方向に多く拡散し、y方向にはほとんど拡散しない態様にて、未硬化樹脂組成物層1に入射することを記載している。このように指向性を有する光を得るためには、例えば、指向性拡散要素11及び12内に、アスペクト比の高い針状フィラーを含有させるとともに、当該針状フィラーをy方向に長軸方向が延存するように配向させる方法を採用することができる。指向性拡散要素11及び12は、針状フィラーを使用する方法以外に、種々の方法を使用することができる。
 ここで、指向性を有する光のアスペクト比は、2~50であってもよい。当該アスペクト比にほぼ対応した、アスペクト比を有する柱状領域が形成される。
 任意工程1-3においては、指向性を有する光の広がりを調整することにより、形成される柱状領域の大きさ(アスペクト比、短径SA、長径LA等)を適宜定めることができる。例えば、図6の(a)、(b)のいずれにおいても、本形態の異方性光学フィルムを得ることができる。図6の(a)と(b)で異なるのは、指向性を有する光の広がりが、(a)では大きいのに対し(B1)、(b)では小さいことである(B2)。指向性を有する光の広がりの大きさに依存して、柱状領域の大きさが異なることとなる。
 指向性を有する光の広がりは、主に指向性拡散要素11及び12の種類と、未硬化樹脂組成物層1との距離に依存する。当該距離を短くするにつれ柱状領域の大きさは小さくなり、長くするにつれ柱状領域の大きさは大きくなる。したがって、当該距離を調整することにより、柱状領域の大きさを調整することができる。
<<工程1-4:未硬化樹脂組成物層を硬化させる工程>>
 未硬化樹脂組成物層に照射して、未硬化樹脂組成物層を硬化させる光線は、光重合性化合物を硬化可能な波長を含んでいることが必要であり、通常は水銀灯の365nmを中心とする波長の光が利用される。この波長帯を使って異方性光学フィルムを作製する場合、照度としては0.01mW/cm~100mW/cmの範囲が好ましく、0.1mW/cm~20mW/cmがより好ましい。照度が0.01mW/cm未満であると、硬化に長時間を要するため、生産効率が悪くなり、100mW/cmを超えると、光重合性化合物の硬化が速すぎて構造形成を生じず、目的の光学特性を発現できなくなるからである。
 なお、光の照射時間は特に限定されないが、10秒間~180秒間が好ましく、30秒間~120秒間がより好ましい。上記光線を照射することで、本形態の異方性光学フィルムを得ることができる。
 異方性光学フィルムは、上述の如く、低照度の光を比較的長時間照射することにより、未硬化樹脂組成物層中に、特定の内部構造が形成されることで得られるものである。そのため、このような光照射だけでは未反応のモノマー成分が残存して、べたつきを生じたりしてハンドリング性や耐久性に問題がある場合がある。そのような場合は、1000mW/cm以上の高照度の光を追加照射して残存モノマーを重合させることができる。このときの光照射はマスクを積層した側の逆側から行ってもよい。
 前述したように、未硬化樹脂組成物層を硬化させる際に、未硬化樹脂組成物層に照射される光の角度を調整することにより、得られる異方性光学フィルムの散乱中心軸を所望のものとすることができる。
 なお、異方性光学フィルムは、更に別の層(粘着層、機能層、透明フィルム層等)を有していてもよい。
<<<異方性光学フィルムの用途>>>
 異方性光学フィルムは、視角依存性改善効果に優れることから、液晶表示装置、有機EL表示装置、プラズマディスプレイ等のあらゆる表示装置に適用することができる。また、異方性光学フィルムは、反射型液晶表示装置に使用することで、特定方向に対する反射輝度を高める効果が期待できる。異方性光学フィルムは、良好な拡散性に加えて、良好な色相も有するため、透過型液晶表示装置に使用することで、階調反転の改善効果も期待できる。この他にも、異方性光学フィルムは、照明器具や建材等に適用することもできる。
 次に、本発明を実施例及び比較例により、更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。
(異方性光学フィルムの製造)
 以下の方法にしたがって、本発明の異方性光学フィルム及び比較例の異方性光学フィルムを製造した。
[実施例1]
1.異方性光学フィルム用組成物溶液1の調製
 下記に示す各種材料を、それぞれ、下記に示す配合量で混合し、酢酸ブチル溶剤で適宜希釈した後、攪拌を行うことにより、異方性光学フィルム用組成物溶液1を得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、B型粘度計(BM形、東機産業社製)により測定したところ、38mPa・s(25℃)であった。
・(A-1)成分:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンジアクリレート(新中村化学株式会社製、商品名:A-BPEF-2、屈折率:1.62(25℃)、粘度:100000mPa・s以上(25℃)、フルオレン骨格の置換基として有する芳香環数:2) 10重量部
・(A-2)成分:m-フェノキシベンジルアクリレート(屈折率:1.57(25℃)、粘度:18mPa・s(25℃)) 90重量部
・(B)成分:ポリビニルアセテート(PVAc)(屈折率:1.46(25℃)、平均重量分子量:200,000、ガラス転移温度:40℃) 80重量部
・(C)成分:2、2-ジメトキシ-2-フェニルアセトフェノン 2重量部
2.異方性光学フィルム用組成物1の作製
 得られた異方性光拡散フィルム用組成物溶液1を、厚さ100μmのPETフィルムに対し、アプリケーターを用いて塗布し、その後乾燥炉内温度を80℃に設定したクリーンオーブン内で、この塗膜を乾燥させることにより、膜厚50μmの異方性光学フィルム用組成物1を得た。
3.異方性光学フィルム1の作製
 次に、異方性光学フィルム用組成物1のPETフィルムとは接していない面に対し、カーボンを均一に分散させたポリビニルアルコール膜(以下、PVAマスクと称する)を、ラミネーターを用いて積層させた。得られた積層体を70℃に加熱し、温度を一定に保った状態にて、PVAマスク面の上から落射用照射ユニット(浜松ホトニクス社製、商品名:L2859-01)から出射される平行光線を、照射強度2mW/cmにて30秒間、上記積層体の法線方向より照射した。
 得られた積層体から、上述のPVAマスク及びPETフィルムを剥がし、実施例1の異方性光学フィルム1を得た。
 なお、得られた異方性光学フィルム1の柱状領域柱軸に垂直な断面における表面を光学顕微鏡で観察し、任意に選択した20個の柱状領域についてそれぞれの短径、長径を計測して平均短径及び平均長径を算出し、平均短径に対する平均長径の比(平均長径/平均短径)であるアスペクト比を算出したところ、1であった。
[実施例2]
(A-1)成分の配合量を3重量部、(B)成分の配合量を、97重量部に変更したこと以外は、実施例1と同様の方法で行い、実施例2の異方性光学フィルム2を得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、21mPa・s(25℃)であった。
 また、得られた異方性光学フィルム2のアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[実施例3]
(A-1)成分の配合量を50重量部、(B)成分の配合量を、50重量部に変更したこと以外は、実施例1と同様の方法で行い、実施例3の異方性光学フィルム3を得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、9000mPa・s(25℃)であった。
 また、得られた異方性光学フィルム3のアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[実施例4]
 実施例1の配合で、(A-2)成分を、エトキシ化o-フェニルフェノールアクリレート(屈折率:1.58(25℃)、粘度:130mPa・s(25℃))に変更したこと以外は、実施例1と同様の方法で行い、実施例4の異方性光学フィルム4を得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、225mPa・s(25℃)であった。
 また、得られた異方性光学フィルム4のアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[実施例5]
 実施例1の配合で、(A-2)成分を、2-ヒドロキシ-3-フェノキシプロピルアクリレート(屈折率:1.52(25℃)、粘度:170mPa・s(25℃))に変更したこと以外は、実施例1と同様の方法で行い、実施例5の異方性光学フィルム5を得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、450mPa・s(25℃)であった。
 また、得られた異方性光学フィルム5のアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[実施例6]
 実施例1の配合で、(A-2)成分を、変性ビスフェノールAジメタクリレート(屈折率:1.54(25℃)、粘度:600mPa・s(25℃))に変更したこと以外は実施例1と同様の方法で行い、実施例6の異方性光学フィルム6を得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、1800mPa・s(25℃)であった。
 また、得られた異方性光学フィルム6のアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[比較例1]
 (A-1)成分の配合量を100重量部、(A-2)成分となる材料を使用しないこと以外は、実施例1と同様の方法で行い、比較例1の異方性光学フィルムaを得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、100000mPa・s(25℃)であった。
 また、得られた異方性光学フィルムaのアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[比較例2]
 (A-1)成分となる材料を使用せず、(A-2)成分となる材料を100重量部に変更したこと以外は、実施例1と同様の方法で行い、比較例2の異方性光学フィルムbを得た。
 また、得られた異方性光学フィルムbのアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[比較例3]
 (A-1)成分となる材料を使用せず、(A-2)成分を、変性ビスフェノールAジアクリレート(屈折率:1.53(25℃)、粘度:1100mPa・s(25℃))100重量部に変更したこと以外は、実施例1と同様の方法で行い、比較例3の異方性光学フィルムcを得た。
 また、得られた異方性光学フィルムcのアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
[比較例4]
 実施例1の配合で、(A-2)成分を、ジペンタエリスリトールヘキサアクリレート(屈折率:1.49(25℃)、粘度:6000mPa・s(25℃))に変更したこと以外は、実施例1と同様の方法で行い比較例4の異方性光学フィルムdを得た。
 ここで、(A-1)成分及び(A-2)成分である(A)成分全体の粘度を、実施例1と同様の方法により測定したところ、7200mPa・s(25℃)であった。
 また、得られた異方性光学フィルムdのアスペクト比について、実施例1と同様の方法により算出したところ、1であった。
 上述の実施例及び比較例の異方性光学フィルム用組成物の(A-1)成分、(A-2)成分及び(B)成分の「種類及び配合量」をまとめ、表1に示す。
Figure JPOXMLDOC01-appb-T000011

 
(評価方法)
 上述のようにして製造した本発明実施例及び比較例の異方性光学フィルムに対し、以下評価を行った。
[拡散性能の評価]
 図5に示すような、光源の投光角、検出器の受光角を任意に可変できる変角光度計ゴニオフォトメータ(ジェネシア社製)を用いて、実施例及び比較例の異方性光学フィルムの拡散性能の評価を行った。図5に示すように、実施例及び比較例の異方性光学フィルムを、光源と検出器との間に配置した(ここで、異方性光学フィルムの法線方向から光が入射するように光源及び異方性光学フィルムをそれぞれ固定しておく)。本評価においては、光の直進方向(異方性光学フィルムに対して垂直な方向)で光を検出した場合を検出角度0°とし、検出器を異方性光学フィルムとの距離を一定に保ったまま任意の一方向に回転させることができるよう配置した。
 続いて、検出器を-75°~75°の範囲において、1°刻みでアプリケーターによる塗布方向に連続的に回転させ、それぞれの検出角度におけるサンプルを透過した光の光量(散乱透過光量)を測定した。なお、散乱透過光量の測定は、視感度フィルターを用いて可視光領域の波長を測定することにより得られた。そして、異方性光学フィルムを介さず、検出角度0°で光源から検出器に直接照射される光量(入射した光の光量、入射光量)に対する散乱透過光量の割合を、散乱透過率(%)とした。
 以上のような測定の結果、得られたデータにより検出角度と、散乱透過光量との関係を示すグラフが得られ、このグラフにおいて、「散乱透過率(%)>0.1%」を満たす検出角度の角度範囲を「拡散幅」とした。
[色相の評価]
 分光光度計(島津製作所社製、UV-2450)を用いて、実施例及び比較例の異方性光学フィルムのL(CIE1976)を測定した。
[評価基準]
 本発明実施例の各評価の評価基準は以下の通りである。
「拡散幅」
◎:拡散性がとても優れている  40°以上
〇:拡散性が優れている     32°以上40°未満
×:不十分な拡散性である    32°未満
「色相 b
◎:とても優れている -2.00~+2.00
〇:優れている    -7.00以上-2.00未満又は+2.00超+7.00以下
×:不十分である   -7.00未満又は+7.00超
 本発明実施例及び比較例の異方性光学フィルム評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 表2の実施例1~5より、本発明異方性光学フィルムは、広い拡散幅を有する良好な拡散性に加え、優れた色相を有する異方性光学フィルムであることが確認された。
 特に、実施例1及び実施例4は、(A-2)成分として、1分子中に複数の芳香環を有しているアクリレートを用いており、更に、(A-1)成分及び(A-2)成分の配合量が最適であるため、実施例の中でも特に優れた評価結果となった。
 実施例2及び3は、用いている材料は実施例1と同じだが、(A-1)成分及び(A-2)成分の配合量をそれぞれ変更して作製した異方性光学フィルムである。
 実施例2は、とても優れた拡散性と、優れた色相とを有する異方性光学フィルムを得ることができ、実施例3は、優れた拡散性と、とても優れた色相を有する異方性光学フィルムを得ることができた。
 ここで、実施例2が、実施例1と比較し、色相が若干劣ることとなった原因は、実施例1よりも(A-2)成分が多いことにより、(A-2)成分由来の芳香環同士によるπ-πスタッキング相互作用に起因して発色が生じているものと考えられる。
 また、実施例3が、実施例1と比較し、拡散性が若干劣ることとなった原因は、実施例1よりも(A-2)成分が少ないことにより、異方性光学フィルム用組成物の流動性が落ちることとなり、硬化形成時に、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との間に生じる相分離が十分に行われなくなったことに起因しているものと考えられる。
 実施例5は、(A-2)成分として、1分子中に一つの芳香環を有しているアクリレートを用いて作製した異方性光学フィルムであり、優れた拡散性と、とても優れた色相とを有する異方性光学フィルムを得ることができた。
 ここで実施例5が、実施例1及び4と比較し、拡散性が若干劣ることとなった原因は、実施例1及び4よりも(A-2)成分の屈折率が十分に高くなく、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との屈折率差が減少したことに起因しているものと考えられる。
 実施例6は、(A-2)成分として、1分子中に二つの芳香環を有しているメタクリレートを用いて作製した異方性光学フィルムであり、優れた拡散性と、とても優れた色相とを有する異方性光学フィルムを得ることができた。
 ここで実施例6が、実施例1及び4と比較し、拡散性が若干劣ることとなった原因は、実施例1及び4よりも(A-2)成分の屈折率が十分に高くなく、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との屈折率差が減少したことに起因しているものと考えられる。
 比較例1は、(A-2)成分となる材料を用いずに作製した異方性光学フィルムであり、この異方性光学フィルムは拡散性が不十分であることが確認された。これは、(A-2)成分が含まれていないため、異方性光学フィルム用組成物の流動性が著しく悪化し、硬化形成時に、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との間に生じる相分離がほとんど行われなくなったことに起因しているものと考えられる。
 比較例2は、(A-1)成分となる材料を用いずに作製した異方性光学フィルムであり、この異方性光学フィルムは、優れた拡散性を有するものの色相が不十分であることが確認された。
 ここで実施例1と比較し、色相が大きく劣ることとなった原因は、(A-1)成分が含まれないことによって、(A-2)成分由来の芳香環同士によるπ-πスタッキング相互作用に起因した発色が強く生じているものと考えられる。
 更に、実施例1と比較して拡散性が若干劣ることとなった原因は、(A-1)成分が含まれていないため、(A)成分全体の屈折率が低くなり、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との屈折率差が減少したことに起因しているものと考えられる。
 比較例3は(A-1)成分となる材料を用いず、更に(A-2)成分として、2官能のアクリレートを用いて作製した異方性光学フィルムであり、この異方性光学フィルムは、とても優れた色相を有するものの、拡散性が不十分であることが確認された。
 これは(A-2)成分として、2官能のアクリレートを使用することで、芳香環同士の重なりが起こりにくくなり、(A-1)成分を使用せずともπ-πスタッキング相互作用に起因する発色を抑えることが出来たが、(A)成分全体の屈折率が十分に高くなく、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との屈折率差が減少したことに起因しているものと考えられる。
 比較例4は、(A-2)成分として、6官能のアクリレートを用いて作製した異方性光学フィルムであり、この異方性光学フィルムは、とても優れた色相を有するものの、拡散性が不十分であることが確認された。これは、(A-2)成分の屈折率が十分に高くなく、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との屈折率差が減少したことに加え、(A-2)成分の粘度が十分に低くないために、異方性光学フィルム用組成物の流動性が落ちることとなり、硬化形成時に、異方性光学フィルム内部のマトリックス領域と、複数の柱状領域との間に生じる相分離が十分に行われなくなったことに起因しているものと考えられる。
 以上、図面を参照しながら本発明の好適な実施の形態について説明したが、本発明は上述した形態に限定されない。すなわち、特許請求の範囲に記載された発明の範囲内で当業者が想到し得る他の形態又は各種の変更例についても本発明の技術的範囲に属するものと理解される。
1 未硬化樹脂組成物層
10 光源
11、12 指向性拡散要素
LA 長径
SA 短径
A 平行光線
B1、B2 指向性を有する光

Claims (11)

  1.  (A-1)成分としての、フルオレン骨格及び(メタ)アクリロイル基をそれぞれ一つ以上有する(メタ)アクリル酸エステルと、
     (A-2)成分としての、芳香環及び(メタ)アクリロイル基をそれぞれ一つ以上有し、フルオレン骨格を有さない(メタ)アクリル酸エステルと、
     (B)成分としての、重量平均分子量が1,000~500,000であり、ガラス転移温度が-40℃以上である熱可塑性ポリマーと、
     (C)成分としての、光重合開始剤と、
    を含む組成物であって、
     前記組成物中の前記(A-1)成分の含有量が、前記(A-2)成分の含有量を100重量部とした際に、3重量部~100重量部であり、
     前記組成物中の前記(B)成分の含有量が、前記(A-1)成分及び前記(A-2)成分を含む(メタ)アクリル酸エステル合計の含有量を100重量部とした際に、10重量部~400重量部であることを特徴とする、異方性光学フィルム用組成物。
  2.  前記(A-1)成分が1分子中に2つ以上の芳香環をフルオレン骨格の置換基として有していることを特徴とする、請求項1に記載の異方性光学フィルム用組成物。
  3.  前記(A-1)成分の屈折率が、1.55~1.70であることを特徴とする、請求項1又は2に記載の異方性光学フィルム用組成物。
  4.  前記(A-1)成分が複数の(メタ)アクリロイル基を有していることを特徴とする、請求項1~3のいずれか一項に記載の異方性光学フィルム用組成物。
  5.  前記(A-2)成分が1分子中に複数の芳香環を有していることを特徴とする、請求項1~4のいずれか一項に記載の異方性光学フィルム用組成物。
  6.  前記(A-2)成分の屈折率が、1.50~1.65であることを特徴とする、請求項1~5のいずれか一項に記載の異方性光学フィルム用組成物。
  7.  前記(A-2)成分が、ビフェニル構造及び/又はジフェニルエーテル構造を有することを特徴とする、請求項5又は6に記載の異方性光学フィルム用組成物。
  8.  前記(B)成分の屈折率が、1.35~1.50であることを特徴とする、請求項1~7のいずれか一項に記載の異方性光学フィルム用組成物。
  9.  請求項1~8のいずれか一項に記載の異方性光学フィルム用組成物の硬化物である異方性光学フィルムであって、前記異方性光学フィルムは、マトリックス領域と、前記マトリックス領域とは屈折率の異なる複数の柱状領域とを有することを特徴とする、異方性光学フィルム。
  10.  前記異方性光学フィルムの複数の柱状領域は、前記異方性光学フィルムの一方の表面から他方の表面にかけて配向、かつ、延在して構成されており、
     前記異方性光学フィルムの柱軸に垂直な断面における、前記柱状領域の平均長径/平均短径、である前記柱状領域のアスペクト比が、1~50であることを特徴とする、請求項9に記載の異方性光学フィルム。
  11.  前記異方性光学フィルムの厚さが、10μm~100μmであることを特徴とする、請求項9又は10に記載の異方性光学フィルム。
PCT/JP2021/026518 2020-08-31 2021-07-14 異方性光学フィルム用組成物及び異方性光学フィルム WO2022044598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022523551A JP7092962B1 (ja) 2020-08-31 2021-07-14 異方性光学フィルム用組成物及び異方性光学フィルム
CN202180044678.8A CN115943326A (zh) 2020-08-31 2021-07-14 各向异性光学膜用组合物及各向异性光学膜
KR1020237009818A KR20230058658A (ko) 2020-08-31 2021-07-14 이방성 광학 필름용 조성물 및 이방성 광학 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020146376 2020-08-31
JP2020-146376 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044598A1 true WO2022044598A1 (ja) 2022-03-03

Family

ID=80354991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026518 WO2022044598A1 (ja) 2020-08-31 2021-07-14 異方性光学フィルム用組成物及び異方性光学フィルム

Country Status (5)

Country Link
JP (1) JP7092962B1 (ja)
KR (1) KR20230058658A (ja)
CN (1) CN115943326A (ja)
TW (1) TW202212366A (ja)
WO (1) WO2022044598A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129486A1 (ja) * 2015-02-09 2016-08-18 日本ゼオン株式会社 光学積層体及びその製造方法
WO2018070426A1 (ja) * 2016-10-12 2018-04-19 日産化学工業株式会社 防眩性ハードコート積層体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914751B2 (ja) 1975-12-24 1984-04-05 株式会社リコー 転写型電子写真複写機のモ−タ制御回路
JP2008239757A (ja) 2007-03-27 2008-10-09 Sumitomo Chemical Co Ltd 光硬化性組成物及びこれを硬化させてなる光制御膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129486A1 (ja) * 2015-02-09 2016-08-18 日本ゼオン株式会社 光学積層体及びその製造方法
WO2018070426A1 (ja) * 2016-10-12 2018-04-19 日産化学工業株式会社 防眩性ハードコート積層体

Also Published As

Publication number Publication date
JP7092962B1 (ja) 2022-06-28
KR20230058658A (ko) 2023-05-03
TW202212366A (zh) 2022-04-01
CN115943326A (zh) 2023-04-07
JPWO2022044598A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
US9989678B2 (en) Anisotropic optical film
US10330831B2 (en) Anisotropic optical film
JP6230670B2 (ja) 異方性光拡散フィルム用組成物および異方性光拡散フィルム
WO2014084361A1 (ja) 異方性光学フィルム
JP6039911B2 (ja) 偏光板用異方性光学フィルムおよびその製造方法
CN112074771A (zh) 头戴式显示器
JP7092962B1 (ja) 異方性光学フィルム用組成物及び異方性光学フィルム
JP6542007B2 (ja) 異方性光学フィルム及びその製造方法
JP7191537B2 (ja) 異方性光学フィルム
WO2021187555A1 (ja) 異方性光学フィルム用組成物及び異方性光学フィルム
WO2022138390A1 (ja) 異方性光学フィルム用組成物及び異方性光学フィルム
WO2022209566A1 (ja) 異方性光拡散フィルム及び表示装置
WO2019220775A1 (ja) ヘッドマウントディスプレイ
JP7475333B2 (ja) 異方性光学フィルムを用いた反射型表示装置
JP7475182B2 (ja) 異方性光拡散フィルム積層体および表示装置
WO2021200891A1 (ja) 異方性光拡散フィルムおよび表示装置
TWI838501B (zh) 使用各向異性光學膜之反射型顯示裝置
WO2022209567A1 (ja) 異方性光拡散フィルムおよび表示装置
JP6902895B2 (ja) 異方性光学フィルム及びその製造方法
JP6581329B1 (ja) ヘッドマウントディスプレイ
JP2022157897A (ja) 異方性光拡散フィルム積層体及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523551

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009818

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861027

Country of ref document: EP

Kind code of ref document: A1