WO2014084361A1 - 異方性光学フィルム - Google Patents

異方性光学フィルム Download PDF

Info

Publication number
WO2014084361A1
WO2014084361A1 PCT/JP2013/082204 JP2013082204W WO2014084361A1 WO 2014084361 A1 WO2014084361 A1 WO 2014084361A1 JP 2013082204 W JP2013082204 W JP 2013082204W WO 2014084361 A1 WO2014084361 A1 WO 2014084361A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical film
anisotropic optical
linear transmittance
region
Prior art date
Application number
PCT/JP2013/082204
Other languages
English (en)
French (fr)
Inventor
杉山 仁英
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to EP13858105.3A priority Critical patent/EP2927714B1/en
Priority to US14/648,372 priority patent/US9958580B2/en
Priority to CN201380061920.8A priority patent/CN104838292B/zh
Priority to JP2014509535A priority patent/JP5670601B2/ja
Priority to KR1020157017055A priority patent/KR102045391B1/ko
Publication of WO2014084361A1 publication Critical patent/WO2014084361A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Definitions

  • the present invention relates to an anisotropic optical film having a prismatic structure inside.
  • the light diffusing member is used not only in lighting fixtures and building materials but also in display devices.
  • Examples of the display device include a liquid crystal display device (LCD) and an organic electroluminescence element (organic EL).
  • LCD liquid crystal display device
  • organic EL organic electroluminescence element
  • scattering due to unevenness formed on the surface surface scattering
  • scattering due to a refractive index difference between the matrix resin and fine particles dispersed therein internal scattering
  • surface scattering scattering due to a refractive index difference between the matrix resin and fine particles dispersed therein
  • surface scattering This is due to both internal scattering.
  • these light diffusing members generally have isotropic diffusion performance, and even if the incident angle is slightly changed, the diffusion characteristics of the transmitted light are not greatly different.
  • an anisotropic optical film in which incident light in a certain angle region is strongly diffused and incident light at other angles is transmitted (for example, Patent Document 1).
  • This anisotropic optical film is cured by irradiating light from above the sheet-like photosensitive composition layer using a linear light source. Then, in the sheet-like substrate, as shown in FIG. 10, the peripheral region and the refractive index coincide with the length direction of the linear light source 51 disposed above when the anisotropic optical film 50 is produced. It is considered that different plate-like structures 40 are formed in parallel to each other. As shown in FIG.
  • a sample 1 anisotropic optical film
  • a light source not shown
  • a light receiver 3 a light receiver 3
  • the sample is transmitted straight through while changing the angle around the straight line L of the sample surface as a central axis.
  • the linear transmittance entering the light receiver 3 can be measured.
  • FIG. 11 shows the incident angle dependence of the scattering characteristics of the anisotropic optical film 50 shown in FIG. 10 measured using the method shown in FIG.
  • FIG. 11 shows an evaluation of an anisotropic optical film having a plate-like structure as in Comparative Examples 2 and 3 described later.
  • the vertical axis indicates the linear transmittance (an amount of parallel light emitted in the same direction as the incident direction when a predetermined amount of parallel light is incident), which is an index indicating the degree of scattering, and the horizontal axis indicates the incident angle. Indicates.
  • the solid line and the broken line in FIG. 11 respectively rotate the anisotropic optical film 50 about the AA axis (through the plate-like structure) and the BB axis (parallel to the plate-like structure) in FIG.
  • the sign of the incident angle indicates that the direction in which the anisotropic optical film 50 is rotated is opposite.
  • the solid line in FIG. 11 shows that the linear transmittance remains small both in the front direction and in the oblique direction. This is because the optical film 50 is scattered regardless of the incident angle when rotated about the AA axis. It means a state.
  • the broken line in FIG. 11 shows that the linear transmittance is small in the direction near 0 °. This is also true when the optical film is rotated with respect to the light in the front direction when rotated about the BB axis. Means that it is in a scattering state.
  • the linear transmittance increases in the direction where the incident angle is large.
  • the anisotropic optical film transmits light in an oblique direction. It means that. Thanks to this structure, for example, although the transmissivity varies depending on the incident angle in the horizontal direction, the transmissivity does not change even if the incident angle is changed in the vertical direction.
  • the curve indicating the incident angle dependence of the scattering characteristics as shown in FIG. 11 is hereinafter referred to as “optical profile”.
  • the optical profile does not directly represent the scattering characteristics, but if it is interpreted that the diffuse transmittance is increased due to the decrease of the linear transmittance, the diffusion profile is generally indicated. I can say that.
  • the anisotropic optical film 50 has optical characteristics defined by the inclination of the plate-like structure 40 with respect to the film normal. In this case, the incident light from a direction substantially parallel to the plate-like structure 40 is strongly diffused, and the incident light passing through the plate-like structure is transmitted without being diffused. It can be said.
  • the anisotropic optical film 50 Since the properties of the anisotropic optical film 50 depend on the inclination of the plate-like structure and the inclination of incident light, the incident angle range when light is strongly diffused is limited. In addition, since the anisotropic optical film 50 has a very steep change in diffusivity when the incident angle is changed, when it is applied to a display device, it appears as a sudden change in visibility, giving an unnatural impression. There was something to hold me. In order to solve this problem, there is a method of laminating a plurality of anisotropic optical films in which the inclination of the plate-like structure is changed. However, there is a problem that the cost is high, and improvement is required. In addition, the anisotropic optical film having a plate-like structure is likely to cause light interference (rainbow), and improvement in visibility has been demanded.
  • drainbow light interference
  • An object is to provide an anisotropic optical film in which interference (rainbow) hardly occurs.
  • the present invention has solved the above problems by the following technical configuration.
  • An anisotropic optical film whose diffusivity changes according to the incident angle of light, which has a plurality of prismatic regions and a matrix region, and has a maximum linear transmittance at an incident angle at which the linear transmittance is maximum.
  • An anisotropic optical film characterized in that the minimum linear transmittance at an incident angle at which the linear transmittance is minimum is 20% or less.
  • the angle range of the diffusion range of incident light with respect to the linear transmittance at which the difference between the maximum linear transmittance and the minimum linear transmittance is 1 ⁇ 2 or less is 50 ° to 80 °.
  • a display device comprising the anisotropic optical film.
  • a step of obtaining parallel light from a light source a step of obtaining the light having directivity by causing the parallel light to enter the directional diffusion element, and the light having directivity in the photocurable composition layer And a step of allowing the photocurable composition layer to enter and curing the photocurable composition layer.
  • FIG. 2 is an optical profile of an anisotropic optical film of Example 1.
  • FIG. 2 is an optical profile of an anisotropic optical film of Example 2.
  • 2 is an optical profile of an anisotropic optical film of Example 3.
  • FIG. 4 is an optical profile of an anisotropic optical film of Example 4.
  • 2 is an optical profile of an anisotropic optical film of Comparative Example 1.
  • 5 is an optical profile of an anisotropic optical film of Comparative Example 2.
  • 10 is an optical profile of an anisotropic optical film of Comparative Example 3.
  • the “low refractive index region” and the “high refractive index region” are regions formed by a difference in local refractive index of the material constituting the anisotropic optical film and have a lower refractive index than the other. It is a relative one indicating whether it is expensive. These regions are formed when the material forming the anisotropic optical film is cured.
  • “Diffusion center axis” means a direction in which the scattering characteristic coincides with the incident angle of light having a substantially target property with the incident angle as a boundary when the incident angle is changed. The reason for having “substantially target” is because it does not strictly have the target of optical characteristics.
  • the diffusion center axis can be found by observing the inclination of the film cross section with an optical microscope or by observing the projection shape of light through the anisotropic optical film while changing the incident angle.
  • Linear transmittance is the ratio of the amount of transmitted light in the linear direction and the amount of incident light when incident from an incident angle, with respect to the linear transmittance of the incident light on the anisotropic optical film. It is expressed by a formula.
  • Linear transmittance (%) (Linear transmitted light amount / incident light amount) ⁇ 100
  • FIG. 1 is a schematic view of an anisotropic optical film 5 of the present invention.
  • 1A is a plan view of the anisotropic optical film 5
  • FIG. 1B is a cross-sectional view of the anisotropic optical film 5 cut along the line CC in FIG. 1A.
  • the anisotropic optical film 5 has a plurality of prismatic regions 6 and a matrix region 4.
  • the plurality of prismatic regions 6 and the matrix regions 4 have an irregular distribution and shape, but are formed over the entire surface of the anisotropic optical film, so that the obtained optical properties (for example, linear transmittance described later) are The measurement is the same regardless of the location. Since the plurality of prismatic regions 6 and the matrix region 4 have an irregular distribution or shape, the anisotropic optical film 5 of the present invention is less likely to cause light interference (rainbow).
  • the surface shape of the prismatic region 6 has a short diameter SA and a long diameter LA as shown in FIG.
  • the short diameter SA and the long diameter LA can be confirmed by observing the anisotropic optical film with an optical microscope (plan view).
  • the surface shape of the prismatic column region 6 is not particularly limited as long as it satisfies the diffusion range described later, and may be linear or wavy, or a mixture of both.
  • the cross-sectional shape of the prismatic region 6 is formed such that the prismatic regions 6 and the matrix regions 4 are alternated.
  • FIG. 1B shows a shape in which the prismatic region 6 extends linearly in the direction of the thickness T, it may be linear, wavy or bent, or these may enter. It may be mixed.
  • region 4 should just differ from the refractive index of the prismatic area
  • the matrix region 4 becomes a low refractive index region.
  • the matrix region 4 becomes a high refractive index region.
  • the refractive index at the interface between the matrix region 4 and the prismatic region 6 preferably changes gradually.
  • the diffusive change when the incident angle is changed becomes very steep, and the problem of easily giving an unnatural impression is less likely to occur.
  • the refractive index of the interface between the matrix region 4 and the prismatic region 6 can be gradually increased.
  • the lower limit of the aspect ratio of the minor axis SA and the major axis LA is preferably 2, more preferably 4, and even more preferably 6. As the aspect ratio becomes smaller, there is a problem that the maximum linear transmittance at the incident angle at which the linear transmittance becomes maximum becomes lower.
  • the upper limit of the aspect ratio of the minor axis SA and the major axis LA is preferably 40, more preferably 25, and even more preferably 15. As the aspect ratio increases, there is a problem in that the light diffusion range becomes narrower. Further, there is a problem that light interference (rainbow) is more likely to occur as the aspect ratio increases.
  • These lower limit value and upper limit value of the aspect ratio can be appropriately combined. For example, by setting the aspect ratio of the prismatic region 6 to 2 to 40, the diffusion range can be widened, and the change in diffusivity when the incident angle is changed becomes extremely steep and it is easy to give an unnatural impression. Problems are less likely to occur.
  • the lower limit of the length of the minor axis SA of the prismatic region 6 is preferably 0.5 ⁇ m, and more preferably 1.0 ⁇ m. As the minor axis SA becomes shorter, there is a problem that light diffusibility and light condensing properties become insufficient.
  • the upper limit of the length of the minor axis SA of the prismatic region 6 is preferably 5.0 ⁇ m, more preferably 3.0 ⁇ m, and even more preferably 2.0 ⁇ m. There is a problem that the diffusion range becomes narrow as the minor axis SA becomes longer.
  • These lower limit value and upper limit value of the minor axis SA of the prismatic region 6 can be appropriately combined. For example, by setting the short axis SA of the prismatic region 6 to 0.5 ⁇ m to 5.0 ⁇ m, the diffusion range can be widened and the light diffusibility and light condensing properties are sufficient.
  • the lower limit of the length of the major axis LA of the prismatic region 6 is preferably 3.0 ⁇ m, and more preferably 5 ⁇ m. There is a problem that the diffusion range becomes narrower as the major axis LA becomes smaller.
  • the upper limit of the length of the major axis LA of the prismatic region 6 is preferably 40 ⁇ m, more preferably 20 ⁇ m, and even more preferably 10 ⁇ m. There is a problem that the diffusion range becomes narrower as the major axis LA becomes larger, and a change in diffusibility when the incident angle is changed becomes extremely steep and an unnatural impression is easily given. There is also a problem that light interference (rainbow) tends to occur when the major axis LA becomes large.
  • the thickness T of the prismatic region 6 By setting the thickness T of the prismatic region 6 to 30 ⁇ m to 200 ⁇ m, the problem of cost is reduced and the contrast of the image is sufficient.
  • the lower limit value of the thickness T of the prismatic region 6 is preferably 30 ⁇ m, and more preferably 50 ⁇ m. As the thickness T decreases, there is a problem that light diffusibility and light condensing properties become insufficient.
  • the upper limit value of the thickness T of the prismatic region 6 is preferably 200 ⁇ m, more preferably 150 ⁇ m, and even more preferably 100 ⁇ m. As the thickness T increases, the cost of materials increases and the time required for manufacturing increases, and blurring tends to occur in the image due to increased diffusion in the thickness T direction. There is a problem that the contrast tends to decrease. These lower limit value and upper limit value of the thickness T of the prismatic region 6 can be appropriately combined.
  • the aspect ratio, the length of the minor axis SA, the length of the major axis LA, and the thickness T of the prismatic region 6 can be appropriately combined with the above numerical ranges.
  • the upper surface 5a and the lower surface 5b of the anisotropic optical film 5 are illustrated.
  • the upper surface 5a and the lower surface 5b are provided for the sake of convenience. If the anisotropic optical film 5 is turned upside down, it is reversed (lower surface and upper surface).
  • the surface shapes of the upper surface 5a and the lower surface 5b of the anisotropic diffusion layer 5 are preferably different. Thereby, the anisotropic optical film 5 of the present invention can reduce the occurrence of light interference (rainbow).
  • the surface shapes of the upper surface 5a and the lower surface 5b can be made different.
  • the prismatic region 6 is gradually formed in the thickness T direction from the light-irradiated surface, but after the prismatic region 6 reaches the other surface (the opposite surface of the light-irradiated surface), the prismatic region 6 is further increased. This is because of stretching. In such a case, the prismatic region 6 can be easily confirmed by observing the other surface with an optical microscope.
  • the interface between the prismatic column region 4 and the matrix region 6 may be continuously present without being interrupted over the thickness T direction (Z direction) of the single anisotropic diffusion layer 7.
  • the interface between the prismatic region 4 and the matrix region 6 is connected, light diffusion and condensing easily occur continuously while passing through the anisotropic optical film 5, Increases efficiency.
  • the prismatic region and the matrix region are mainly mottled like spots, because it is difficult to obtain the light collecting property that is the effect of the present invention.
  • the maximum linear transmittance at an incident angle at which the linear transmittance of the anisotropic optical film is maximized is preferably 30% or more and less than 95%.
  • the upper limit value of the maximum linear transmittance is more preferably 80% or less, and further preferably 70% or less.
  • the lower limit value of the maximum linear transmittance is more preferably 40% or more, and further preferably 50% or more.
  • the anisotropic optical film of the present invention has the above-mentioned maximum linear transmittance, and while maintaining excellent light diffusion / condensation in the horizontal direction, light diffusion / condensation in the vertical direction Is provided sufficiently.
  • the minimum linear transmittance at an incident angle at which the linear transmittance of the anisotropic optical film is minimized is preferably 20% or less. It shows that the amount of linear transmitted light decreases (the haze value increases) as the minimum linear transmittance decreases. Therefore, the amount of diffused light increases as the minimum linear transmittance decreases.
  • a lower minimum linear transmittance is preferred. It is preferably 10% or less, and more preferably 5% or less. Although a lower limit is not limited, For example, it is 0%.
  • the linear transmitted light amount and the linear transmittance can be measured by the method shown in FIG. That is, the linear transmitted light amount and the linear transmittance are measured at each incident angle so that the rotation axis L shown in FIG.
  • the maximum linear transmittance and the minimum linear transmittance of the anisotropic optical film are obtained, and the difference between the maximum linear transmittance and the minimum linear transmittance is obtained.
  • a straight line that is 1 ⁇ 2 of the difference is created on the optical profile, two intersections where the straight line and the optical profile intersect are obtained, and an incident angle corresponding to the intersection is read.
  • the normal direction is set to zero degrees, and the incident angle is shown in the minus direction and the plus direction. Therefore, the incident angle corresponding to the incident angle and the intersection may have a negative value.
  • the value of the two intersections has a positive incident angle value and a negative incident angle value
  • the sum of the absolute value of the negative incident angle value and the positive incident angle value is the angular range of the incident light diffusion range. It becomes.
  • the values of the two intersection points are both positive, the difference obtained by subtracting the smaller value from the larger value is the angular range of the diffusion range of the incident light.
  • the values of the two intersections are both negative, the absolute value of each is taken, and the difference obtained by subtracting the smaller value from the larger value is the angular range of the incident light diffusion range.
  • the angle range of the diffusion range of incident light with respect to the linear transmittance where the difference between the maximum linear transmittance and the minimum linear transmittance is 1 ⁇ 2 or less is preferably 50 ° to 80 °.
  • the angle range of the incident light diffusion range is smaller than 50 °, there is no great difference from the conventional anisotropic optical film.
  • a more preferable angle range of the diffusion range is 60 to 80 °, and an angle range of 50 ° or more can be given by having a prismatic region.
  • the angle range of the diffusion range of incident light exceeds 80 °, the light collecting property is impaired, which is not preferable.
  • the angle at which one prismatic region extending straightly strongly scatters the light is approximately ⁇ 10 ° in the difference between the inclination of the prismatic region and the light traveling direction. When it is in range.
  • the inclination of the prismatic region means a direction in which the scattering characteristic coincides with the incident angle of light having substantially target property with the incident angle as a boundary when the incident angle is changed.
  • the reason for having “substantially target” is because it does not strictly have the target of optical characteristics.
  • the inclination of the prismatic region can be found by observing the inclination of the film cross section with an optical microscope or by observing the projected shape of light through the anisotropic optical film while changing the incident angle.
  • the angle (bending angle) when the prismatic region is bent is preferably 10 to 40 °. More preferably, efficient diffusion can be obtained at 15 to 25 °. As a result, the region where light is strongly scattered can be further expanded. In addition, since the region that strongly scatters light can be formed continuously, the light condensing property can be further enhanced in a state where the light intensity is kept substantially constant.
  • the inclinations are preferably in the range of ⁇ 70 ° when the normal direction is zero °. If it is smaller than -70 ° or larger than + 70 °, depending on the material forming the anisotropic optical film, light exceeding these upper limits tends to be reflected on the surface of the anisotropic optical film. This is because it is difficult to be incident on the conductive optical film.
  • the number of slopes is not limited, but is preferably between 2 and 5. This is because as the number of inclinations increases, the thickness of the anisotropic optical film increases and the productivity decreases.
  • At least one of the inclinations is preferably within a range of ⁇ 5 ° (when the normal direction is zero °), and the inclination of another diffusion center axis is ⁇ 15 ° to ⁇ 5 ° or + 5 °. It is preferably in the range of + 15 °.
  • the region where light is strongly scattered can be further expanded.
  • the region that strongly scatters light can be formed continuously, the light condensing property can be further enhanced in a state where the light intensity is kept substantially constant.
  • the shape where the inclination is bent may be such that the bent portion bends in a substantially straight line, may gradually change (for example, a curved shape), or may change sharply (for example, Linear). This makes it easier to obtain the effects of the present invention.
  • the bending direction it is preferable that the bending direction gradually changes without interruption in the extending direction. By gradually changing without interruption, light can be efficiently diffused and collected.
  • Such a structure in which the inclination is bent can be adjusted by the aspect ratio of the minor axis SA and the major axis LA of the prismatic structure, the thickness T, and the like.
  • An anisotropic optical film in which another layer is provided on one surface of the anisotropic diffusion layer may be used.
  • other layers include an adhesive layer, a polarizing layer, a light diffusion layer, a low reflection layer, an antifouling layer, an antistatic layer, an ultraviolet / near infrared (NIR) absorption layer, a neon cut layer, and an electromagnetic wave shielding layer. be able to.
  • Other layers may be sequentially stacked.
  • Other layers may be laminated on both surfaces of the anisotropic diffusion layer. The other layer laminated on both surfaces may be a layer having the same function or a layer having another function.
  • the anisotropic optical film of the present invention can be produced by subjecting a specific photocurable composition layer to UV irradiation under special conditions.
  • the raw material of the anisotropic optical film will be described first, and then the manufacturing process will be described.
  • the material for forming the anisotropic optical film of the present invention is a photocurable compound selected from a macromonomer, polymer, oligomer or monomer having a radical polymerizable or cationic polymerizable functional group. It is a material composed of a photoinitiator and polymerized and solidified by irradiation with ultraviolet rays and / or visible rays.
  • a difference in refractive index occurs due to the difference in density.
  • (meth) acrylate means that either acrylate or methacrylate may be sufficient.
  • the radically polymerizable compound mainly contains one or more unsaturated double bonds in the molecule, and specifically includes epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polybutadiene acrylate, silicone acrylate, and the like.
  • a compound having at least one epoxy group, vinyl ether group or oxetane group in the molecule can be used.
  • the compounds having an epoxy group include 2-ethylhexyl diglycol glycidyl ether, glycidyl ether of biphenyl, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetrachloro Diglycidyl ethers of bisphenols such as bisphenol A and tetrabromobisphenol A, polyglycidyl ethers of novolac resins such as phenol novolak, cresol novolak, brominated phenol novolak, orthocresol novolak, ethylene glycol, polyethylene glycol, polypropylene glycol, Butanediol, 1,6-hexanediol, neopentyl glycol, trimethyl Diglycidyl ethers of
  • Examples of the compound having a vinyl ether group include diethylene glycol divinyl ether, triethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, hydroxybutyl vinyl ether, ethyl vinyl ether, dodecyl vinyl ether, and trimethylolpropane trivinyl ether. , Propenyl ether propylene carbonate and the like, but are not limited thereto. Vinyl ether compounds are generally cationically polymerizable, but radical polymerization is also possible by combining with acrylates.
  • the above cationic polymerizable compounds may be used alone or in combination.
  • the photopolymerizable compound is not limited to the above.
  • fluorine atoms (F) may be introduced into the photopolymerizable compound in order to reduce the refractive index, and in order to increase the refractive index, Sulfur atoms (S), bromine atoms (Br), and various metal atoms may be introduced.
  • ultrafine particles made of a metal oxide having a high refractive index such as titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnOx)
  • a photopolymerizable functional group such as an acryl group, a methacryl group, or an epoxy group is introduced to the above-described photopolymerizable compound.
  • Photo-curable compound having a silicone skeleton It is preferable to use a photocurable compound having a silicone skeleton as the photocurable compound.
  • a photocurable compound having a silicone skeleton is oriented and polymerized and solidified along with its structure (mainly ether bonds), and has a low refractive index region, a high refractive index region, or a low refractive index region and a high refractive index region. Form.
  • the prismatic region is easily bent, and the light condensing property in the front direction is improved.
  • the low refractive index region corresponds to either a prismatic region or a matrix region, and the other corresponds to a high refractive index region.
  • the silicone resin which is a cured product of the photocurable compound having a silicone skeleton, is relatively increased. This makes it easier to bend the diffusion center axis, thereby improving the light condensing property in the front direction. Since a silicone resin contains more silica (Si) than a compound having no silicone skeleton, the relative use of the silicone resin can be achieved by using an EDS (energy dispersive X-ray spectrometer) with this silica as an index. The amount can be confirmed.
  • EDS energy dispersive X-ray spectrometer
  • the photocurable compound having a silicone skeleton is a monomer, oligomer, prepolymer or macromonomer having a radical polymerizable or cationic polymerizable functional group.
  • the radical polymerizable functional group include an acryloyl group, a methacryloyl group, and an allyl group.
  • the cationic polymerizable functional group include an epoxy group and an oxetane group. There are no particular restrictions on the type and number of these functional groups, but it is preferable to have a polyfunctional acryloyl group or methacryloyl group because the higher the functional groups, the higher the crosslink density and the greater the difference in refractive index. .
  • skeleton may be inadequate in compatibility with another compound from the structure, in such a case, it can urethanize and can improve compatibility.
  • silicone, urethane, (meth) acrylate having an acryloyl group or a methacryloyl group at the terminal is preferably used.
  • the weight average molecular weight (Mw) of the photocurable compound having a silicone skeleton is preferably in the range of 500 to 50,000. More preferably, it is in the range of 2,000 to 20,000.
  • Mw weight average molecular weight
  • a sufficient photocuring reaction occurs, and the silicone resin present in the anisotropic optical film is easily oriented. With the orientation of the silicone resin, the diffusion center axis is easily bent.
  • silicone skeleton examples include those represented by the following general formula (1).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are each independently a methyl group, an alkyl group, a fluoroalkyl group, a phenyl group, an epoxy group, an amino group, a carboxyl group.
  • a functional group such as a polyether group, an acryloyl group, and a methacryloyl group.
  • n is preferably an integer of 1 to 500.
  • thermoplastic resin examples include polyester, polyether, polyurethane, polyamide, polystyrene, polycarbonate, polyacetal, polyvinyl acetate, acrylic resin, and a copolymer or modified product thereof.
  • thermoplastic resin it is dissolved using a solvent in which the thermoplastic resin dissolves, and after application and drying, the photocurable compound having a silicone skeleton is cured with ultraviolet rays to form an anisotropic optical film.
  • thermosetting resin examples include epoxy resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, copolymers thereof, and modified products.
  • thermosetting resin an anisotropic optical film is formed by curing the photocurable compound having a silicone skeleton with ultraviolet rays and then appropriately heating to cure the thermosetting resin.
  • the most preferable compound that does not have a silicone skeleton is a photo-curing compound, which easily separates a low refractive index region from a high refractive index region, and does not require a solvent and a drying process when using a thermoplastic resin. It is excellent in productivity, such as being unnecessary and a thermosetting process like a thermosetting resin is unnecessary.
  • the refractive index difference (absolute value) between the low refractive index region and the high refractive index region is preferably 0.02 or more. More preferably, it is 0.03 or more, More preferably, it is 0.04 or more. As the refractive index difference increases, the degree of anisotropy increases, and it becomes easier to confirm whether a plate-like structure is formed with an optical microscope or the like.
  • Photoinitiators that can polymerize radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2- Diethoxyacetophenone, benzyldimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 -On, bis (cyclo Nt
  • the photoinitiator of a cationic polymerizable compound is a compound that generates an acid by light irradiation and can polymerize the above-mentioned cationic polymerizable compound with the generated acid.
  • an onium salt or a metallocene complex is used.
  • the onium salt a diazonium salt, a sulfonium salt, an iodonium salt, a phosphonium salt, a selenium salt, or the like is used, and these counter ions include anions such as BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ and the like. Used.
  • Specific examples include 4-chlorobenzenediazonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, (4-phenylthiophenyl) diphenylsulfonium hexafluoroantimonate, (4-phenylthiophenyl) diphenyl.
  • the photoinitiator is about 0.01 to 10 parts by weight, preferably 0.1 to 7 parts by weight, more preferably about 0.1 to 5 parts by weight with respect to 100 parts by weight of the photopolymerizable compound. Blended. This is because when less than 0.01 parts by weight, the photo-curing property decreases, and when it exceeds 10 parts by weight, only the surface is cured and the internal curability is deteriorated. This is because it inhibits the formation of.
  • photoinitiators are usually used by directly dissolving powder in a photopolymerizable compound, but if the solubility is poor, a photoinitiator dissolved beforehand in a very small amount of solvent at a high concentration is used. It can also be used.
  • a solvent is more preferably photopolymerizable, and specific examples thereof include propylene carbonate and ⁇ -butyrolactone. It is also possible to add various known dyes and sensitizers in order to improve the photopolymerizability.
  • a thermosetting initiator capable of curing the photopolymerizable compound by heating can be used in combination with the photoinitiator. In this case, by heating after photocuring, it can be expected to further accelerate the polymerization and curing of the photopolymerizable compound to complete it.
  • an anisotropic optical film can be formed by curing the above-mentioned photo-curable compound alone or a mixture of a plurality of them.
  • the anisotropic optical film of the present invention can also be formed by curing a mixture of a photocurable compound and a polymer resin that does not have photocurability.
  • Polymer resins that can be used here include acrylic resin, styrene resin, styrene-acrylic copolymer, polyurethane resin, polyester resin, epoxy resin, cellulose resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer, polyvinyl Examples include butyral resin.
  • polymer resins and photo-curable compounds must have sufficient compatibility before photo-curing, but various organic solvents, plasticizers, etc. are used to ensure this compatibility. It is also possible.
  • an acrylate as a photocurable compound, it is preferable from a compatible point to select as a polymer resin from an acrylic resin.
  • the ratio of the photocurable compound having a silicone skeleton to the compound having no silicone skeleton is preferably in the range of 15:85 to 85:15 by mass ratio. More preferably, it is in the range of 30:70 to 70:30. By setting it in this range, the phase separation between the low refractive index region and the high refractive index region can easily proceed, and the prismatic region can be easily bent.
  • the ratio of the photocurable compound having a silicone skeleton is less than the lower limit value or exceeds the upper limit value, the phase separation is difficult to proceed, and the prismatic region is hardly bent.
  • silicone / urethane / (meth) acrylate is used as the photocurable compound having a silicone skeleton, the compatibility with a compound having no silicone skeleton is improved. Accordingly, the prismatic region can be bent even if the mixing ratio of the materials is widened.
  • FIG. 2 [process] Next, the manufacturing method (process) of the anisotropic optical film of this invention is demonstrated using FIG.
  • the anisotropic optical film of the present invention can be obtained by sequentially performing the following steps. (1) Step of obtaining the parallel light D from the light source 30 (2) Step of obtaining the light E having directivity by making the parallel light D incident on the directional diffusion element 60 (3) Light with the light E having directivity The process of making it enter into the curable composition layer 20, and hardening a photocurable composition layer In any of FIG. 2 (a), (b), the anisotropic optical film of this invention can be obtained.
  • the difference between FIGS. 2A and 2B is that the spread of the light E with directivity is large in (a) but small in (b). Depending on the size of the spread of the light E having directivity, the size of the prismatic region is different.
  • the spread of the light E having directivity mainly depends on the distance between the directional diffusion element 60 and the photocurable composition layer 20 and the type of the directional diffusion element 60. As the distance is shortened, the size of the prismatic region is reduced, and as the distance is increased, the size of the prismatic region is increased. Therefore, the size of the prismatic region can be adjusted by adjusting the distance.
  • a short arc ultraviolet light source As a light source for irradiating a composition containing a photocurable compound, a short arc ultraviolet light source is usually used, and specifically, a high pressure mercury lamp, a low pressure mercury lamp, a metahalide lamp, a xenon lamp or the like is used. Is possible.
  • the light beam applied to the composition containing the photocurable compound needs to include a wavelength capable of curing the photocurable compound. Usually, light having a wavelength centered at 365 nm of a mercury lamp is used. Any lamp can be used as long as the light source includes a wavelength close to the absorption wavelength of the photopolymerization initiator to be used.
  • An anisotropic optical film is formed by curing the photocurable composition layer.
  • a reflecting mirror is arranged behind the light source so that the light is emitted as a point light source in a predetermined direction. Obtainable. If a point light source is used, parallel rays can be easily obtained.
  • the directivity diffusing element 60 only needs to provide directivity to the incident parallel light beam D.
  • FIG. 2 shows a mode in which light E having directivity is diffused much in the X direction and hardly diffused in the Y direction.
  • a needle-like filler having a high aspect ratio is contained in the directivity diffusing element 60 and the major axis of the needle-like filler extends in the Y direction.
  • a method of aligning can be employed.
  • Various methods can be used for the directional diffusion element in addition to the method using the needle-like filler.
  • the diffusibility of light may vary depending on the incident part of the directional diffusing element.
  • the parallel light D passes through the directional diffusing element 60 to generate the light E having directivity. What is necessary is just to arrange
  • the aspect ratio of the light E having directivity is preferably 5 to 40.
  • the aspect ratio of the prismatic region is formed substantially corresponding to the aspect ratio.
  • the lower limit of the aspect ratio is preferably 5, more preferably 8, and even more preferably 10.
  • the upper limit of the aspect ratio is preferably 40, more preferably 40, and even more preferably 30. As the aspect ratio increases, there is a problem that light diffusibility and light condensing properties become insufficient.
  • the anisotropic optical film of the present invention can be obtained by making light E having directivity incident on the photocurable composition layer 20 and curing the photocurable composition layer.
  • the photocurable composition layer 20 is coated on a suitable substrate 10 such as a transparent polyethylene terephthalate (PET) film to provide a coating film (photocurable composition layer).
  • PET transparent polyethylene terephthalate
  • the solvent is evaporated by drying as necessary, but the dry film thickness is preferably 30 to 200 ⁇ m.
  • the lower limit of the dry film thickness is more preferably 50 ⁇ m. Increasing the film thickness tends to cause bending.
  • the upper limit of the dry film thickness is more preferably 150 ⁇ m, still more preferably 100 ⁇ m. Productivity improves as the film thickness decreases.
  • a preferable value, a more preferable value, and a still more preferable value can be combined suitably.
  • a dry film thickness of less than 30 ⁇ m is not preferable because light diffusibility is poor.
  • the dry film thickness exceeds 200 ⁇ m the overall diffusibility is too strong and it becomes difficult to obtain the characteristic anisotropy of the present invention, and it is not preferable because it is not suitable for thinning applications.
  • a release film or a mask described later is laminated on the coated film or cured film to form a photosensitive laminate.
  • a normal coating method or printing method is applied. Specifically, air doctor coating, bar coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, calendar coating, dam coating, dip coating Coating such as die coating, intaglio printing such as gravure printing, printing such as stencil printing such as screen printing, and the like can be used.
  • a weir having a certain height can be provided around the substrate, and the composition can be cast in the area surrounded by the weir.
  • a mask can be laminated in order to prevent oxygen inhibition of the photocurable composition layer.
  • the material of the mask is not particularly limited, but it is necessary to use a sheet that transmits at least part of incident ultraviolet rays.
  • Examples of such sheets include transparent plastic sheets such as PET, TAC, PVAc, PVA, acrylic, and polyethylene, inorganic sheets such as glass and quartz, and patterning and ultraviolet rays for controlling the amount of ultraviolet rays transmitted to these sheets. It may also contain pigments that absorb water.
  • the illuminance of UV light applied to the photocurable composition layer is preferably in the range of 0.01 to 100 mW / cm 2 , more preferably in the range of 0.1 to 20 mW / cm 2 . If the illuminance is 0.01 mW / cm 2 or less, it takes a long time to cure, resulting in poor production efficiency. If the illuminance is 100 mW / cm 2 or more, the photo-curing compound is cured too quickly to form a structure, This is because the desired anisotropic diffusion characteristic cannot be expressed.
  • the UV irradiation time is not particularly limited, but is 10 to 180 seconds, more preferably 30 to 120 seconds. Then, the anisotropic optical film of this invention can be obtained by peeling a release film.
  • the anisotropic optical film of the present invention is obtained by forming a specific internal structure in the photocurable composition layer by irradiating low-illuminance UV light for a relatively long time as described above. For this reason, unreacted monomer components remain by such UV irradiation alone, and stickiness may occur, which may cause problems in handling properties and durability.
  • the residual monomer can be polymerized by additional irradiation with UV light having a high illuminance of 1000 mW / cm 2 or more.
  • the UV irradiation at this time is preferably performed from the opposite side of the mask side.
  • the means for obtaining the internal bending structure in the anisotropic optical film of the present invention is not limited, but in the thickness direction of the photocurable composition layer when the composition containing the photocurable compound is cured.
  • a method obtained by giving a temperature distribution is effective.
  • the photocurable composition layer here refers to the state before the anisotropic diffusion layer is formed. That is, the photocurable composition layer refers to a state before the composition containing the photocurable compound is cured.
  • it is possible to generate a temperature distribution in the thickness direction of the composition layer by applying cool air to the surface side on which ultraviolet rays are incident to cool the substrate and heating the substrate side with various temperature control plates.
  • the refractive index of the photocurable composition changes with temperature, and the photocurable composition bends as the irradiated ultraviolet rays pass through the interior.
  • the bending angle, position, and direction can be changed by the refractive index of the composition, the reaction rate, the temperature gradient, and the like. Further, the number of the main bends can be adjusted by adjusting the film thickness.
  • the reaction rate is appropriately adjusted depending on the reactivity of the composition itself, the viscosity, the intensity of ultraviolet rays, the type and amount of initiator, and the like.
  • the anisotropic optical film of the present invention is a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), a cathode ray tube display device (CRT), a surface electric field display (SED), an electronic paper. It can be applied to such a display device. It is particularly preferably used for a liquid crystal display (LCD).
  • the anisotropic optical film of the present invention is formed by curing a photocurable compound having a silicone skeleton, but there are few problems of adhesive strength, and it can be placed at a desired place via an adhesive layer or an adhesive layer. Can be used together.
  • the anisotropic optical film of the present invention can be preferably used for a transmissive, reflective, or transflective liquid crystal display device.
  • the anisotropic optical film of the present invention and the anisotropic optical film of the comparative example were produced.
  • Example 1 A partition wall having a height of 0.1 mm was formed with a curable resin using a dispenser on the entire periphery of a PET film (trade name: A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m and a size of 76 ⁇ 26 mm. This was filled with the following photocurable resin composition and covered with another PET film.
  • a PET film trade name: A4300, manufactured by Toyobo Co., Ltd.
  • Silicone urethane acrylate (refractive index: 1.460, weight average molecular weight: 5,890) 20 parts by weight (trade name: 00-225 / TM18, manufactured by RAHN) 30 parts by weight of neopentyl glycol diacrylate (refractive index: 1.450) (manufactured by Daicel Cytec Co., Ltd., trade name Ebecryl 145) Bisphenol A EO adduct diacrylate (refractive index: 1.536) 15 parts by weight (manufactured by Daicel Cytec, trade name: Ebecyl 150) ⁇ Phenoxyethyl acrylate (refractive index: 1.518) 40 parts by weight (Kyoeisha Chemical Co., Ltd., trade name: Light acrylate PO-A) ⁇ 2,2-dimethoxy-1,2-diphenylethane-1-one 4 parts by weight (manufactured by BASF, trade name: Irgacure 651) A 0.1mm-th
  • Example 2 An anisotropic optical film of Example 2 was obtained in the same manner as in Example 1 except that a directional diffusion element having an aspect ratio of transmitted UV light of 20 was used as the directional diffusion element.
  • Example 3 An anisotropic optical film of Example 3 was obtained in the same manner as in Example 1 except that a directional diffusion element having an aspect ratio of transmitted UV light of 10 was used as the directional diffusion element.
  • Example 4 The manufacturing conditions were changed so that the thickness of the liquid film was 60 ⁇ m, and the directional diffusion element having an aspect ratio of transmitted UV light of 10 was used as the directional diffusion element in the same manner as in Example 1, An anisotropic optical film of Example 4 was obtained.
  • Comparative Example 1 An anisotropic optical film of Comparative Example 1 was obtained in the same manner as Example 1 except that the directional diffusion element was not used.
  • the anisotropic optical film of Comparative Example 1 had a plurality of columnar structures formed from the upper surface to the lower surface of the anisotropic optical film.
  • Comparative Example 2 An anisotropic optical film of Comparative Example 2 was obtained in the same manner as in Example 1 except that a directional diffusion element having an aspect ratio of transmitted UV light of 50 was used as the directional diffusion element.
  • the anisotropic optical film of Comparative Example 2 had a plate-like structure shown in FIG. 10 (however, the diffusion center axis is different from that in FIG. 10).
  • Comparative Example 3 The manufacturing conditions were changed so that the thickness of the liquid film was 60 ⁇ m, and a directional diffusion element having an aspect ratio of transmitted UV light of 50 was used as the directional diffusion element in the same manner as in Example 1, An anisotropic optical film of Comparative Example 3 was obtained.
  • the anisotropic optical film of Comparative Example 3 had a plate-like structure shown in FIG. 10 (however, the diffusion center axis is different from that in FIG. 10).
  • the weight average molecular weight (Mw) of the silicone, urethane, and acrylate used in Examples 1 to 3 was measured as a polystyrene-equivalent molecular weight using the GPC method under the following conditions.
  • Degasser DG-980-51 (manufactured by JASCO Corporation) Pump: PU-980-51 (manufactured by JASCO Corporation)
  • Autosampler AS-950 (manufactured by JASCO Corporation)
  • Thermostatic chamber C-965 (manufactured by JASCO Corporation)
  • Temperature 40 ° C Eluent: THF Injection volume: 150 ⁇ l Flow rate: 1.0ml / min Sample concentration: 0.2%
  • the anisotropic optical films of Examples and Comparative Examples were evaluated using a variable angle photometer goniophotometer (manufactured by Genesia Co., Ltd.) that can arbitrarily change the light projecting angle of the light source and the light receiving angle of the light receiver.
  • the light receiving part was fixed at a position where the light traveling straight from the light source was received, and the anisotropic optical films obtained in Examples and Comparative Examples were set in the sample holder therebetween. As shown in FIG. 12, the sample was rotated as the rotation axis (L), and the amount of linear transmitted light corresponding to each incident angle was measured. By this evaluation method, it is possible to evaluate in which angle range the incident light is diffused.
  • This rotation axis (L) is the same axis as the BB axis in the sample structure shown in FIG. 10 or the CC axis in the sample structure shown in FIG.
  • the linear transmitted light amount was measured by measuring the wavelength in the visible light region using a visibility filter.
  • the interference (rainbow) of the anisotropic optical film the transmitted light was visually observed from various angles, and the degree of interference was evaluated.
  • FIGS. 3 to 6 show the results of Examples obtained by the above measurement.
  • FIGS. 3 is Example 1
  • FIG. 4 is Example 2
  • FIG. 5 is Example 3
  • FIG. 6 is Example 4
  • FIG. 7 is Comparative Example 1
  • FIG. 8 is Comparative Example 2
  • FIG. show the dependence on incident light by measuring the amount of linear transmitted light.
  • Example 3 (Section observation of anisotropic optical film) As a representative example, the cross section of Example 3 was observed with an optical microscope, and the result of confirming the bent state of the prismatic structure was shown in FIG.
  • Table 1 summarizes the prism shape, optical characteristics, etc.
  • the value of the angle range of the diffusion range of incident light with respect to the linear transmittance where the difference between the maximum linear transmittance and the minimum linear transmittance is 1 ⁇ 2 or less correlates with the aspect ratio of the prismatic region.
  • the angle range of the incident light diffusion range can be set to 53 ° to 70 ° by using a prismatic region having an aspect ratio of 6 to 35. It was.
  • the aspect ratios of the prisms are almost the same, and the thickness of the anisotropic diffusion layer is different. However, even if the thickness of the anisotropic diffusion layer is about 60 ⁇ m, the above-mentioned input is sufficiently practical.
  • an angular range of the diffusion range of incident light could be achieved. That is, the anisotropic optical films of Examples 1 to 4 were able to diffuse and collect light over a wide incident angle range, and did not give an unnatural impression.
  • the angle range of the diffusion range of the incident light can be 50 ° or more. could not. That is, the anisotropic optical films of Comparative Examples 1 to 3 could not diffuse and collect light over a wide incident angle range, and gave an unnatural impression.
  • the aspect ratio of the prismatic region generally reflects the aspect ratio of the directional diffusion element.
  • Those skilled in the art who have seen this can adjust the distance between the directional diffusion element and the photocurable resin composition (before curing of the anisotropic optical film) while considering the aspect ratio of the directional diffusion element.
  • the values of the minor axis SA and the major axis LA can be adjusted, and an anisotropic optical film having a prismatic region defined in the present invention can be produced.
  • FIG. 13 in order to realize such a wide diffusion range, it plays the role of adjusting the bending of the prismatic structure by adjusting the aspect ratio and film thickness, and has a plurality of scattering central axes continuously. It is considered to obtain the same effect as.
  • the prism structure was bent as shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】 本発明は、1層の異方性拡散層であっても、広い入射角度範囲で、光の拡散と集光を行うことができ、不自然な印象を抱かせることがなく、且つ、光の干渉(虹)が生じにくい異方性光学フィルムを提供することを目的とする。 【解決手段】 光の入射角により拡散性が変化する異方性光学フィルムであって、複数の角柱領域とマトリックス領域とを有するものであり、直線透過率が最大となる入射角における最大直線透過率が30%以上95%未満であり、直線透過率が最小となる入射角における最小直線透過率が20%以下であることを特徴とする異方性光学フィルム。

Description

異方性光学フィルム
 本発明は、角柱型の構造を内部に有する異方性光学フィルムに関する。
 光拡散性を有する部材は、照明器具や建材の他、表示装置においても使用されている。この表示装置としては、例えば、液晶表示装置(LCD)、有機エレクトロルミネッセンス素子(有機EL)等がある。光拡散部材の光拡散発現機構としては、表面に形成された凹凸による散乱(表面散乱)、マトリックス樹脂とその中に分散された微粒子間の屈折率差による散乱(内部散乱)、及び表面散乱と内部散乱の両方によるものが挙げられる。但し、これら光拡散部材は、一般にその拡散性能は等方的であり、入射角度を少々変化させても、その透過光の拡散特性が大きく異なることはなかった。
 一方、一定の角度領域の入射光は強く拡散し、それ以外の角度の入射光は透過するという、異方性光学フィルムが知られている(例えば、特許文献1)。この異方性光学フィルムは、シート状の感光性組成物層の上空から線状光源を用いて光を照射して硬化せしめたものである。そして、シート状の基体内には、図10に示すように、異方性光学フィルム50の作製時にその上空に配置した線状光源51の長さ方向に一致して、周辺領域と屈折率が異なる板状構造40が互いに平行に形成されていると考えられている。図12に示すように、図示しない光源と受光器3との間にサンプル1(異方性光学フィルム)を配置し、サンプル表面の直線Lを中心軸として角度を変化させながらサンプルを直進透過して受光器3に入る直線透過率を測定することができる。
 図11は、図12に示す方法を用いて測定した図10に示す異方性光学フィルム50が有する散乱特性の入射角依存性を示すものである。図11は、後述する比較例2、3と同じく板状構造を有する異方性光学フィルムを評価したものである。縦軸は散乱の程度を表す指標である直線透過率(所定の光量の平行光線を入射させたときに、入射方向と同じ方向に出射された平行光線の光量)を示し、横軸は入射角を示す。図11中の実線及び破線はそれぞれ、図10中のA-A軸(板状構造を突き抜ける)及びB-B軸(板状構造に平行)を中心に異方性光学フィルム50を回転させた場合を示す。尚、入射角の正負は、異方性光学フィルム50を回転させる方向が反対であることを示す。図11中の実線は、正面方向でも斜め方向でも直線透過率が小さいままであるが、これは、A-A軸を中心に回転させた場合には、光学フィルム50が入射角に無関係に散乱状態であることを意味する。また、図11中の破線は、0°近傍の方向で直線透過率が小さくなっているが、これはB-B軸を中心に回転させた場合にも、光学フィルムが正面方向の光に対して散乱状態であることを意味する。更に、入射角が大きい方向では直線透過率が増加しているが、これは、B-B軸を中心に回転させた場合には、異方性光学フィルムが斜め方向の光に対して透過状態であることを意味する。この構造のおかげで、例えば、横方向には透過度が入射角によって異なるものの、縦方向には入射角を変えても透過度が変わらない、という特性を与えることができる。ここで、図11のように散乱特性の入射角依存性を示す曲線を以下、「光学プロファイル」と称する。光学プロファイルは、散乱特性を直接的に表現しているものではないが、直線透過率が低下することで逆に拡散透過率が増大していると解釈すれば、概ね拡散特性を示しているといえる。
 異方性光学フィルム50は、その板状構造40のフィルム法線に対する傾きにより光学特性が規定される。この場合、板状構造40にほぼ平行な方向からの入射光が強く拡散され、その板状構造を貫くように入射する光は殆ど拡散されずに透過するため、板状構造40は光散乱面といえる。
 この異方性光学フィルム50の性質は板状構造の傾きと入射光の傾きに依存するため、光が強く拡散される際の入射角度範囲は限定的であった。また、異方性光学フィルム50は入射角度を変えた場合の拡散性の変化が極めて急峻であるため、表示装置に適用した場合、視認性の急激な変化となって現れ、不自然な印象を抱かせることがあった。この問題を解決するために、板状構造の傾きを変えた異方性光学フィルムを複数積層する方法が挙げられるが、コストが多くかかる問題があり、改善が要求されていた。加えて、板状構造の異方性光学フィルムは光の干渉(虹)が生じやすく、視認性の改善が求められていた。
特許第2547417号公報
 本発明は、1層の異方性拡散層であっても、広い入射角度範囲で、光の拡散と集光を行うことができ、不自然な印象を抱かせることがなく、且つ、光の干渉(虹)が生じにくい異方性光学フィルムを提供することを目的とする。
 本発明は下記の技術的構成により上記課題を解決できたものである。
(1)光の入射角により拡散性が変化する異方性光学フィルムであって、複数の角柱領域とマトリックス領域とを有するものであり、直線透過率が最大となる入射角における最大直線透過率が30%以上95%未満であり、直線透過率が最小となる入射角における最小直線透過率が20%以下であることを特徴とする異方性光学フィルム。
(2)前記角柱領域の短径と長径のアスペクト比が2~40の範囲内にあることを特徴とする前記(1)に記載の異方性光学フィルム。
(3)前記角柱領域の厚さが30μm~200μmの範囲内にあることを特徴とする前記(1)に記載の異方性光学フィルム。
(4)前記最大直線透過率と前記最小直線透過率との差が1/2以下となる直線透過率に対する入射光の拡散範囲の角度範囲が50°~80°であることを特徴とする前記(1)に記載の異方性光学フィルム。
(5)前記短径の長さが0.5μm~5.0μmの範囲内にあることを特徴とする前記(2)に記載の異方性光学フィルム。
(6)前記長径の長さが3.0μm~50μmの範囲内にあることを特徴とする前記(2)に記載の異方性光学フィルム。
(7)前記異方性光学フィルムを備えたことを特徴とする表示装置。
(8)光源から平行光線を得る工程と、上記平行光線を指向性拡散要素に入射させ、指向性をもった光を得る工程と、上記指向性をもった光を光硬化性組成物層に入射させ、光硬化性組成物層を硬化させる工程と、を有することを特徴とする異方性光学フィルムの製造方法。
(9)前記指向性をもった光のアスペクト比が2~40の範囲内にあることを特徴とする前記(8)に記載の異方性光学フィルムの製造方法。
 本発明は、1層の異方性拡散層であっても、広い入射角度範囲で、光の拡散と集光を行うことができ、不自然な印象を抱かせることがなく、且つ、光の干渉(虹)が生じにくい異方性光学フィルムを提供することができる。
本発明の異方性光学フィルムの模式図であって、(a)平面図、(b)断面図、である。 本発明の異方性光学フィルムの製造方法を示す模式図である。 実施例1の異方性光学フィルムの光学プロファイルである。 実施例2の異方性光学フィルムの光学プロファイルである。 実施例3の異方性光学フィルムの光学プロファイルである。 実施例4の異方性光学フィルムの光学プロファイルである。 比較例1の異方性光学フィルムの光学プロファイルである。 比較例2の異方性光学フィルムの光学プロファイルである。 比較例3の異方性光学フィルムの光学プロファイルである。 従来の異方性光学フィルムの模式図である。 板状構造を有する異方性光学フィルムの直線透過率を示す図である。 異方性光学フィルムの光学プロファイルの測定方法を示す。 実施例3の異方性光学フィルム断面の光学顕微鏡写真である。
 ここで、本特許請求の範囲及び本明細書における各用語の定義を説明する。
 「低屈折率領域」と「高屈折率領域」は、異方性光学フィルムを構成する材料の局所的な屈折率の高低差により形成される領域であって、他方に比べて屈折率が低いか高いかを示した相対的なものである。これらの領域は、異方性光学フィルムを形成する材料が硬化する際に形成される。
 「拡散中心軸」とは、入射角を変化させた際に散乱特性がその入射角を境に略対象性を有する光の入射角と一致する方向を意味する。「略対象性を有する」としたのは、厳密に光学特性の対象性を有しないためである。拡散中心軸は、フィルム断面の傾きを光学顕微鏡によって観察することや、異方性光学フィルムを介した光の投影形状を入射角を変化させて観察することにより見出せる。
 直線透過率は、異方性光学フィルムに対して入射した光の直線透過性に関し、ある入射角から入射した際に、直線方向の透過光量と、入射した光の光量との比率であり、下記式で表される。
  直線透過率(%)=(直線透過光量/入射光量)×100
 本発明においては、「散乱」と「拡散」の両者を区別せずに使用しており、両者は同じ意味を示す。
 以下、本発明の内容について説明する。
 図1は本発明の異方性光学フィルム5の模式図である。図1(a)は異方性光学フィルム5の平面図、図1(b)は図1(a)のC-C線で切断した異方性光学フィルム5の断面図である。
 図1に示すように異方性光学フィルム5は、複数の角柱領域6とマトリックス領域4を有する。複数の角柱領域6およびマトリックス領域4は、不規則な分布や形状を有するが、異方性光学フィルムの全面にわたって形成されることから、得られる光学特性(例えば、後述する直線透過率等)はどの部位で測定しても略同じである。複数の角柱領域6およびマトリックス領域4が不規則な分布や形状を有するため、本発明の異方性光学フィルム5は光の干渉(虹)が発生することが少ない。
 角柱領域6の表面形状は図1(a)に示すように、短径SAと長径LAを有する。短径SAと長径LAは異方性光学フィルムを光学顕微鏡で観察することによって確認することができる(平面図)。角柱領域6の表面形状は後述する拡散範囲を満足するものであればよく、直線状もしくは波打ち状、または両者が入り混じっているものであってもよい。
 角柱領域6の断面形状は図1(b)に示すように、角柱領域6とマトリックス領域4が交互になるように形成されている。図1(b)においては角柱領域6が厚さTの方向に直線状に延存している形を示しているが、直線状、波打ち状もしくは屈曲していてもよいし、またはこれらが入り混じっているものであってもよい。
 マトリックス領域4の屈折率は角柱領域6の屈折率と異なっていればよいが、屈折率がどの程度異なるかは特に限定されず、相対的なものである。マトリックス領域4の屈折率が角柱領域6の屈折率よりも低い場合、マトリックス領域4は低屈折率領域となる。逆に、マトリックス領域4の屈折率が角柱領域6の屈折率よりも高い場合、マトリックス領域4は高屈折率領域となる。
 マトリックス領域4と角柱領域6の界面における屈折率は漸増的に変化するものであることが好ましい。漸増的に変化させることで、入射角度を変えた場合の拡散性の変化が極めて急峻となり不自然な印象を与えやすくなる問題が発生し難くなる。マトリックス領域4と角柱領域6を光照射に伴う相分離によって形成することで、マトリックス領域4と角柱領域6の界面の屈折率を漸増的に変化させることができる。
 短径SAと長径LAのアスペクト比の下限値は2であることが好ましく、4であることがより好ましく、6であることがさらに好ましい。アスペクト比が小さくなるにつれ直線透過率が最大となる入射角における最大直線透過率が低くなる問題がある。
 短径SAと長径LAのアスペクト比の上限値は40であることが好ましく、25であることがより好ましく、15であることがさらに好ましい。アスペクト比が大きくなるにつれ、光の拡散範囲が狭くなる問題がある。また、アスペクト比が大きくなるほど、光の干渉(虹)が生じやすくなる問題がある。
 これらアスペクト比の下限値および上限値は、適宜組み合わせることができる。例えば、角柱領域6のアスペクト比を2~40とすることで、拡散範囲を広くすることができるとともに、入射角度を変えた場合の拡散性の変化が極めて急峻となり不自然な印象を与えやすくなる問題が発生し難くなる。
 角柱領域6の短径SAの長さの下限値は0.5μmであることが好ましく、1.0μmであることがより好ましい。短径SAが短くなるにつれ、光の拡散性・集光性が不十分になる問題がある。
 角柱領域6の短径SAの長さの上限値は5.0μmであることが好ましく、3.0μmであることがより好ましく、2.0μmであることがさらに好ましい。短径SAが長くなるにつれ、拡散範囲が狭くなる問題がある。
 これら角柱領域6の短径SAの下限値および上限値は、適宜組み合わせることができる。例えば、角柱領域6の短径SAを0.5μm~5.0μmとすることで、拡散範囲を広くすることができるとともに、光の拡散性・集光性が十分なものとなる。
 角柱領域6の長径LAの長さの下限値は3.0μmであることが好ましく、5μmであることがより好ましい。長径LAが小さくなるにつれ、拡散範囲が狭くなる問題がある。
 角柱領域6の長径LAの長さの上限値は40μmであることが好ましく、20μmであることがより好ましく、10μmであることがさらに好ましい。長径LAが大きくなるにつれ、拡散範囲が狭くなる問題や入射角度を変えた場合の拡散性の変化が極めて急峻となり不自然な印象を与えやすくなる問題がある。また、長径LAが大きくなると光の干渉(虹)が発生しやすくなる問題もある。
 これら角柱領域6の短径SAの下限値および上限値は、適宜組み合わせることができる。例えば、角柱領域6の長径LAを3.0μm~40μmとすることで、拡散範囲を広くすることができるとともに、入射角度を変えた場合の拡散性の変化が極めて急峻となり不自然な印象を与えやすくなる問題を解消することができる。
 角柱領域6の厚さTは30μm~200μmとすることで、コストの問題が少なくなるとともに、画像のコントラストが十分なものとなる。
 角柱領域6の厚さTの下限値は30μmであることが好ましく、50μmであることがより好ましい。厚さTが小さくなるにつれ、光の拡散性・集光性が不十分になる問題がある。
 角柱領域6の厚さTの上限値は200μmであることが好ましく、150μmであることがより好ましく、100μmであることがさらに好ましい。厚さTが大きくなるにつれ、材料費が多くかかることや製造に時間を要すること等のコストが高くなる問題と、厚さT方向での拡散が多くなることにより画像にボケが発生しやすくなりコントラストが低下しやすくなる問題がある。
 これら角柱領域6の厚さTの下限値および上限値は、適宜組み合わせることができる。
 角柱領域6のアスペクト比、短径SAの長さ、長径LAの長さ、厚さTは、上記の数値範囲をそれぞれ適宜組み合わせることができる。
 図1(b)では、異方性光学フィルム5の上面5aと下面5bを図示している。上面5aと下面5bは便宜上設けたものであり、異方性光学フィルム5を裏返せば逆(下面と上面)になる。異方性拡散層5の上面5aと下面5bの表面形状は異なることが好ましい。これによって、本発明の異方性光学フィルム5は光の干渉(虹)が発生することを減少させることができる。マトリックス領域4と角柱領域6を光照射に伴う相分離によって形成することで、上面5aと下面5bの表面形状を異ならせることができる。
 相分離により異方性光学フィルムを作成すると、上面5aまたは下面5bのいずれか一方が光学顕微鏡で観察し難くなる場合がある。光を照射した面から厚さT方向に向けて徐々に角柱領域6が形成されていくが、その他面(光を照射した面の反対面)にまで角柱領域6が達した後にさらに角柱領域6が伸長するためである。このような場合はもう一方の面を光学顕微鏡で観察することによって角柱領域6を確認しやすくなる。
 本発明においては、1層の異方性拡散層7の厚さT方向(Z方向)に渡って、角柱領域4とマトリックス領域6の界面が途切れることなく連続して存在する構成を有することが好ましい。角柱領域4とマトリックス領域6の界面がつながった構成を有することで、光の拡散と集光が異方性光学フィルム5を通過する間、連続して生じやすくなり、光の拡散と集光の効率が上がる。一方、異方性光学フィルム5の断面において、角柱領域およびマトリックス領域が、斑のようにまだらに存在するものが主になると、本発明の効果である集光性が得にくくなるため好ましくない。
 異方性光学フィルムの直線透過率が最大となる入射角における最大直線透過率は30%以上95%未満であることが好ましい。最大直線透過率の上限値は80%以下であることがより好ましく、70%以下であることがさらに好ましい。最大直線透過率の下限値は40%以上であることがより好ましく、50%以上であることがさらに好ましい。
 最大直線透過率を当該範囲にすることによって、拡散範囲が広くなるとともに、入射角度を変えた場合の拡散性の変化が極めて急峻となり不自然な印象を与えやすくなる問題が発生し難くなる。また、最大直線透過率を低くするにつれ、光の干渉(虹)が生じにくくなる点で好ましいが、最大直線透過率が低すぎると拡散範囲が狭くなる問題がある。
 加えて、適度な異方性とすることができるため、異方性光学フィルムの適用範囲を広くすることができる。例えば表示装置に異方性光学フィルムを使用する場合、異方性が強すぎると、水平方向への光の拡散・集光性に極めて優れるものの、垂直方向への光の拡散・集光性が不十分となりやすい問題がある。本願発明の異方性光学フィルムは上記の最大直線透過率を有することで、水平方向への優れた光の拡散・集光性を維持した上で、垂直方向への光の拡散・集光性を十分に備えるものである。
 異方性光学フィルムの直線透過率が最小となる入射角における最小直線透過率は20%以下であることが好ましい。最小直線透過率は低くなるほど直線透過光量が減る(ヘイズ値が増大する)ことを示す。よって、最小直線透過率が低くなるほど拡散光量が増すことを示す。最小直線透過率は低い方が好ましい。10%以下であることが好ましく、5%以下であることがより好ましい。下限値は限定されないが、例えば0%である。
 ここで、直線透過光量および直線透過率は図12に示す方法によって測定することができる。すなわち、図12に示す回転軸Lと、図1(a)に示すC-C軸を一致させるようにして、入射角毎に直線透過光量及び直線透過率を測定する(法線方向をゼロ°とする)。得られたデータより光学プロファイルが得られ、この光学プロファイルから最大直線透過率および最小透過率を求める。
 なお、C-C軸と直交する軸を図12に示す回転軸Lと一致させるようにして、入射角毎に直線透過光量及び直線透過率を測定した場合、図11に示すように入射角によらずゼロ付近の直線透過率を示す。
 上記により、異方性光学フィルムの最大直線透過率と最小直線透過率を求め、最大直線透過率と最小直線透過率の差を求める。この差の1/2となる直線を光学プロファイル上に作成し、この直線と光学プロファイルとが交わる2つの交点を求め、その交点に対応する入射角を読み取る。光学プロファイルにおいては、法線方向をゼロ°とし、入射角をマイナス方向及びプラス方向で示している。したがって、入射角および交点に対応する入射角はマイナスの値を有する場合がある。2つの交点の値がプラスの入射角値と、マイナスの入射角値を有するものであれば、マイナスの入射角値の絶対値とプラスの入射角値の和が入射光の拡散範囲の角度範囲となる。
 2つの交点の値が両方ともプラスである場合、より大きい値からより小さい値を引いた差が入射光の拡散範囲の角度範囲となる。2つの交点の値が両方ともマイナスである場合、それぞれの絶対値をとり、より大きい値からより小さい値を引いた差が入射光の拡散範囲の角度範囲となる。
 最大直線透過率と最小直線透過率との差が1/2以下となる直線透過率に対する入射光の拡散範囲の角度範囲が50°~80°であることが好ましい。この入射光の拡散範囲の角度範囲が50°より小さいと、従来の異方性光学フィルムと大差ない。より好ましい拡散範囲の角度範囲は60~80°であり、50°以上の角度範囲は角柱領域を有することで付与することができる。一方、入射光の拡散範囲の角度範囲が80°を超えると、集光性が損なわれるため好ましくない。
 異方性光学フィルムを形成する材料にもよるが、真っ直ぐに延存する1つの角柱領域が光を強く散乱する角度は、角柱領域の傾きと光の進行方向の傾きの差が概ね±10°の範囲にあるときである。角柱領域の厚さT方向に角柱構造を屈曲させて延存させることにより、光を強く散乱する領域を広げることができる。屈曲させることにより、1つの角柱領域において、光を強く散乱する角度範囲を複数有することになるからである。
  角柱領域の傾きとは、入射角を変化させた際に散乱特性がその入射角を境に略対象性を有する光の入射角と一致する方向を意味する。「略対象性を有する」としたのは、厳密に光学特性の対象性を有しないためである。角柱領域の傾きは、フィルム断面の傾きを光学顕微鏡によって観察することや、異方性光学フィルムを介した光の投影形状を入射角を変化させて観察することにより見出せる。
 角柱領域が屈曲する場合の角度(屈曲角)は、10~40°であることが好ましい。更に好ましくは15~25°で効率の良い拡散を得ることができる。これによって、光を強く散乱する領域をより広げることができる。また、光を強く散乱する領域を連続して形成することができるため、光の強さを略一定に保った状態でより集光性を高めることができる。
 角柱領域が複数の傾きを有する場合、それぞれの傾きは法線方向をゼロ°としたとき、±70°の範囲にあることが好ましい。-70°より小さいか、+70°より大きくなると、異方性光学フィルムを形成する材料にもよるが、これらの上限値を超える光は、異方性光学フィルム表面で反射しやすくなり、異方性光学フィルム内に入射しにくいためである。傾きの数は制限されないが、2~5の間にあることが好ましい。傾きの数が多くなると、異方性光学フィルムの厚さが増すため生産性が下がるためである。
 この傾きのうち少なくとも一つは±5°の範囲にあることが好ましく(法線方向をゼロ°としたとき)、且つ、別の拡散中心軸の傾きは-15°~-5°または+5°~+15°の範囲にあることが好ましい。これによって光を強く散乱する領域をより広げることができる。また、光を強く散乱する領域を連続して形成することができるため、光の強さを略一定に保った状態でより集光性を高めることができる。
 傾きが屈曲する形状は、屈曲する部分が略直線状に曲がるものであってもよいし、徐々に変化するもの(例えば、曲線状)であってもよいし、急峻に変化するもの(例えば、直線状)であってもよい。これによって、本発明の効果が得やすくなる。本発明においては、屈曲方向が延存方向に途切れることなく徐々に変化することが好ましい。途切れることなく徐々に変化することによって、光を効率的に拡散・集光させることができる。
 このような傾きが屈曲する構造は、角柱構造の短径SAと長径LAのアスペクト比、および、厚さTなどによって調整することが可能である。
 異方性拡散層の一方の面に他の層を設けた異方性光学フィルムとしてもよい。他の層としては、例えば、粘着層、偏光層、光拡散層、低反射層、防汚層、帯電防止層、紫外線・近赤外線(NIR)吸収層、ネオンカット層、電磁波シールド層などを挙げることができる。他の層を順次積層してもよい。
 異方性拡散層の両方の面に、他の層を積層してもよい。両方の面に積層される他の層は、同一の機能を有する層であってもよいし、別の機能を有する層であってもよい。
異方性光学フィルムの製造方法
 本発明の異方性光学フィルムは、特定の光硬化性組成物層に特殊な条件でUV照射を行うことにより作製することが出来る。以下、まず異方性光学フィルムの原料を説明し、次いで製造プロセスを説明する。
異方性光学フィルムの原料
 本発明の異方性光学フィルムを形成する材料は、ラジカル重合性又はカチオン重合性の官能基を有するマクロモノマー、ポリマー、オリゴマーまたはモノマーから選択される光硬化性化合物と光開始剤とから構成され、紫外線及び/又は可視光線を照射することにより重合固化する材料である。
 ここで、異方性光学フィルムを形成する材料が1種類であっても、密度の高低差ができることによって屈折率差が生ずる。UVの照射強度が強い部分は硬化速度が早くなるため、その硬化領域周囲に硬化材料が移動し、結果として屈折率が高くなる領域と屈折率が低くなる領域が形成されるからである。
 なお、(メタ)アクリレートとは、アクリレートまたはメタアクリレートのどちらであってもよいことを意味する。  
 ラジカル重合性化合物は、主に分子中に1個以上の不飽和二重結合を含有するもので、具体的にはエポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリブタジエンアクリレート、シリコーンアクリレート等の名称で呼ばれるアクリルオリゴマーと、2-エチルヘキシルアクリレート、イソアミルアクリレート、ブトキシエチルアクリレート、エトキシジエチレングリコールアクリレート、フェノキシエチルアクリレート、テトラヒドロフルフリルアクリレート、イソノルボルニルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-アクリロイロキシフタル酸、ジシクロペンテニルアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ビスフェノールAのEO付加物ジアクリレート、トリメチロールプロパントリアクリレート、EO変成トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等のアクリレートモノマーが挙げられる。又、これらの化合物は、各単体で用いてもよく、複数混合して用いてもよい。尚、同様にメタクリレートも使用可能であるが、一般にはメタクリレートよりもアクリレートの方が光重合速度が速いので好ましい。
 カチオン重合性化合物としては、分子中にエポキシ基やビニルエーテル基、オキセタン基を1個以上有する化合物が使用できる。エポキシ基を有する化合物としては、2-エチルヘキシルジグリコールグリシジルエーテル、ビフェニルのグリシジルエーテル、ビスフェノールA、水添ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラクロロビスフェノールA、テトラブロモビスフェノールA等のビスフェノール類のジグリシジルエーテル類、フェノールノボラック、クレゾールノボラック、ブロム化フェノールノボラック、オルトクレゾールノボラック等のノボラック樹脂のポリグリシジルエーテル類、エチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、1,4-シクロヘキサンジメタノール、ビスフェノールAのEO付加物、ビスフェノールAのPO付加物等のアルキレングリコール類のジグリシジルエーテル類、ヘキサヒドロフタル酸のグリシジルエステルやダイマー酸のジグリシジルエステル等のグリシジルエステル類が挙げられる。
 更に、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ジ(3,4-エポキシシクロヘキシルメチル)アジペート、ジ(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキシド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、テトラ(3,4-エポキシシクロヘキシルメチル)ブタンテトラカルボキシレート、ジ(3,4-エポキシシクロヘキシルメチル)-4,5-エポキシテトラヒドロフタレート等の脂環式エポキシ化合物も挙げられるが、これらに限定されるものではない。
 ビニルエーテル基を有する化合物としては、例えばジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシブチルビニルエーテル、エチルビニルエーテル、ドデシルビニルエーテル、トリメチロールプロパントリビニルエーテル、プロペニルエーテルプロピレンカーボネート等が挙げられるが、これらに限定されるものではない。尚ビニルエーテル化合物は、一般にはカチオン重合性であるが、アクリレートと組み合わせることによりラジカル重合も可能である。
 オキセタン基を有する化合物としては、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、3-エチル-3-(ヒドロキシメチル)-オキセタン等が使用できる。
 尚、以上のカチオン重合性化合物は、各単体で用いてもよく、複数混合して用いてもよい。上記光重合性化合物は、上述に限定されるものではない。又、十分な屈折率差を生じさせるべく、上記光重合性化合物には、低屈折率化を図るために、フッ素原子(F)を導入しても良く、高屈折率化を図るために、硫黄原子(S)、臭素原子(Br)、各種金属原子を導入しても良い。又、特表2005-514487に開示されるように、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化錫(SnOx)等の高屈折率の金属酸化物からなる超微粒子の表面に、アクリル基やメタクリル基、エポキシ基等の光重合性官能基を導入した機能性超微粒子を上述の光重合性化合物に添加することも有効である。
(シリコーン骨格を有する光硬化性化合物)
 光硬化性化合物として、シリコーン骨格を有する光硬化性化合物を使用することが好ましい。シリコーン骨格を有する光硬化性化合物は、その構造(主にエーテル結合)に伴い配向して重合・固化し、低屈折率領域、高屈折率領域、又は、低屈折率領域及び高屈折率領域を形成する。シリコーン骨格を有する光硬化性化合物を使用することによって、角柱領域を屈曲させやすくなり、正面方向への集光性が向上する。
 低屈折率領域は角柱領域またはマトリックス領域のいずれかに相当するものであり、他方が高屈折率領域に相当する。
 低屈折率領域において、シリコーン骨格を有する光硬化性化合物の硬化物であるシリコーン樹脂が相対的に多くなることが好ましい。これによって、拡散中心軸をさらに屈曲させやすくすることができるため、正面方向への集光性が向上する。
 シリコーン樹脂はシリコーン骨格を有さない化合物に比べ、シリカ(Si)を多く含有するため、このシリカを指標として、EDS(エネルギー分散型X線分光器)を使用することによってシリコーン樹脂の相対的な量を確認することができる。
 シリコーン骨格を有する光硬化性化合物は、ラジカル重合性又はカチオン重合性の官能基を有するモノマー、オリゴマー、プレポリマーまたはマクロモノマーである。ラジカル重合性の官能基としては、アクリロイル基、メタクリロイル基、アリル基などが挙げられ、カチオン重合性の官能基としては、エポキシ基、オキセタン基などが挙げられる。これらの官能基の種類と数に特に制限はないが、官能基が多いほど架橋密度が上がり、屈折率の差が生じやすいため好ましいことから、多官能のアクリロイル基またはメタクリロイル基を有することが好ましい。また、シリコーン骨格を有する化合物はその構造から他の化合物との相容性において不十分なことがあるが、そのような場合にはウレタン化して相容性を高めることができる。本発明では末端にアクリロイル基またはメタクリロイル基を有するシリコーン・ウレタン・(メタ)アクリレートが好適に用いられる。
 シリコーン骨格を有する光硬化性化合物の重量平均分子量(Mw)は、500~50,000の範囲にあることが好ましい。より好ましくは2,000~20,000の範囲である。重量平均分子量が上記範囲にあることにより、十分な光硬化反応が起こり、異方性光学フィルム内に存在するシリコーン樹脂が配向しやすくなる。シリコーン樹脂の配向に伴い、拡散中心軸を屈曲させやすくなる。
 シリコーン骨格としては、例えば、下記の一般式(1)で示されるものが該当する。一般式(1)において、R、R、R、R、R、Rはそれぞれ独立に、メチル基、アルキル基、フルオロアルキル基、フェニル基、エポキシ基、アミノ基、カルボキシル基、ポリエーテル基、アクリロイル基、メタクリロイル基等の官能基を有する。
 一般式(1)中、nは1~500の整数であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(シリコーン骨格を有さない化合物)
 シリコーン骨格を有する光硬化性化合物にシリコーン骨格を有さない化合物を配合して、異方性光学フィルムを形成すると、低屈折領域と高屈折率領域が分離して形成されやすくなり、異方性の程度が強くなり好ましい。シリコーン骨格を有さない化合物は、光硬化性化合物のほかに熱可塑性樹脂、熱硬化性樹脂を用いることができ、これらを併用することもできる。光硬化性化合物としては、ラジカル重合性又はカチオン重合性の官能基を有するポリマー、オリゴマー、モノマーを使用することができる(ただし、シリコーン骨格を有していないものである)。熱可塑性樹脂としては、ポリエステル、ポリエーテル、ポリウレタン、ポリアミド、ポリスチレン、ポリカーボネート、ポリアセタール、ポリ酢酸ビニル、アクリル樹脂とその共重合体や変性物が挙げられる。熱可塑性樹脂を用いる場合においては熱可塑性樹脂が溶解する溶剤を使用して溶解し、塗布、乾燥後に紫外線でシリコーン骨格を有する光硬化性化合物を硬化せしめて異方性光学フィルムを成形する。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステルとその共重合体や変性物が挙げられる。熱硬化性樹脂を用いる場合においては、紫外線でシリコーン骨格を有する光硬化性化合物を硬化させた後に適宜過熱することで、熱硬化性樹脂を硬化せしめて異方性光学フィルムを成形する。シリコーン骨格を有さない化合物として最も好ましいのは光硬化性化合物であり、低屈折領域と高屈折率領域が分離しやすいことと、熱可塑性樹脂を用いる場合の溶剤が不要で乾燥過程が不要であること、熱硬化性樹脂のような熱硬化過程が不要であることとなど、生産性に優れている。
 低屈折率領域と高屈折率領域の屈折率差(絶対値)は、0.02以上あることが好ましい。より好ましくは0.03以上であり、さらに好ましくは0.04以上である。屈折率差が大きくなるほど、異方性の程度が大きくなることに加え、光学顕微鏡等で板状構造を形成しているか確認することが容易となる。
異方性光学フィルムの原料(光開始剤)
 ラジカル重合性化合物を重合させることのできる光開始剤としては、ベンゾフェノン、ベンジル、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピル-1-イル)チタニウム、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等が挙げられる。又、これらの化合物は、各単体で用いてもよく、複数混合して用いてもよい。
 カチオン重合性化合物の光開始剤は、光照射によって酸を発生し、この発生した酸により上述のカチオン重合性化合物を重合させることができる化合物であり、一般的には、オニウム塩、メタロセン錯体が好適に用いられる。オニウム塩としては、ジアゾニウム塩、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、セレニウム塩等が使用され、これらの対イオンには、BF 、PF 、AsF 、SbF 等のアニオンが用いられる。具体例としては、4-クロロベンゼンジアゾニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、(4-フェニルチオフェニル)ジフェニルスルホニウムヘキサフルオロアンチモネート、(4-フェニルチオフェニル)ジフェニルスルホニウムヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド-ビス-ヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド-ビス-ヘキサフルオロホスフェート、(4-メトキシフェニル)ジフェニルスルホニウムヘキサフルオロアンチモネート、(4-メトキシフェニル)フェニルヨードニウムヘキサフルオロアンチモネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ベンジルトリフェニルホスホニウムヘキサフルオロアンチモネート、トリフェニルセレニウムヘキサフルオロホスフェート、(η5-イソプロピルベンゼン)(η5-シクロペンタジエニル)鉄(II)ヘキサフルオロホスフェート等が挙げられるが、これらに限定されるものではない。又、これらの化合物は、各単体で用いてもよく、複数混合して用いてもよい。
異方性光学フィルムの原料(配合量、その他任意成分)
 本発明において、上記光開始剤は、光重合性化合物100重量部に対して、0.01~10重量部、好ましくは0.1~7重量部、より好ましくは0.1~5重量部程度配合される。これは、0.01重量部未満では光硬化性が低下し、10重量部を超えて配合した場合には、表面だけが硬化して内部の硬化性が低下してしまう弊害、着色、角柱領域の形成の阻害を招くからである。これらの光開始剤は、通常粉体を光重合性化合物中に直接溶解して使用されるが、溶解性が悪い場合は光開始剤を予め極少量の溶剤に高濃度に溶解させたものを使用することもできる。このような溶剤としては光重合性であることが更に好ましく、具体的には炭酸プロピレン、γ-ブチロラクトン等が挙げられる。又、光重合性を向上させるために公知の各種染料や増感剤を添加することも可能である。更に光重合性化合物を加熱により硬化させることのできる熱硬化開始剤を光開始剤と共に併用することもできる。この場合、光硬化の後に加熱することにより光重合性化合物の重合硬化を更に促進し完全なものにすることが期待できる。
 本発明では、上記の光硬化性化合物を単独で、又は複数を混合した組成物を硬化させて、異方性光学フィルムを形成することができる。又、光硬化性化合物と光硬化性を有しない高分子樹脂の混合物を硬化させることによっても本発明の異方性光学フィルムを形成することができる。ここで使用できる高分子樹脂としては、アクリル樹脂、スチレン樹脂、スチレン-アクリル共重合体、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、セルロース系樹脂、酢酸ビニル系樹脂、塩ビ-酢ビ共重合体、ポリビニルブチラール樹脂等が挙げられる。これらの高分子樹脂と光硬化性化合物は、光硬化前は十分な相溶性を有していることが必要であるが、この相溶性を確保するために各種有機溶剤や可塑剤等を使用することも可能である。尚、光硬化性化合物としてアクリレートを使用する場合は、高分子樹脂としてはアクリル樹脂から選択することが相溶性の点で好ましい。
 シリコーン骨格を有する光硬化性化合物と、シリコーン骨格を有さない化合物の比率は質量比で15:85~85:15の範囲にあることが好ましい。より好ましくは30:70~70:30の範囲である。当該範囲にすることによって、低屈折領域と高屈折率領域の相分離が進みやすくなるとともに、角柱領域が屈曲しやすくなる。シリコーン骨格を有する光硬化性化合物の比率が下限値未満または上限値超であると、相分離が進みにくくなってしまい、角柱領域が屈曲しにくくなる。シリコーン骨格を有する光硬化性化合物としてシリコーン・ウレタン・(メタ)アクリレートを使用すると、シリコーン骨格を有さない化合物との相溶性が向上する。これによって、材料の混合比率を幅広くしても角柱領域を屈曲させることができる。
[プロセス]
 次に本発明の異方性光学フィルムの製造方法(プロセス)について、図2を用いて説明する。以下の工程を順次経ることで、本発明の異方性光学フィルムを得ることができる。
 (1)光源30から平行光線Dを得る工程
 (2)平行光線Dを指向性拡散要素60に入射させ、指向性をもった光Eを得る工程
 (3)指向性をもった光Eを光硬化性組成物層20に入射させ、光硬化性組成物層を硬化させる工程
 図2(a)、(b)のいずれにおいても、本発明の異方性光学フィルムを得ることができる。図2(a)と(b)で異なるのは、指向性をもった光Eの広がりが(a)では大きいのに対し(b)では小さいことである。指向性をもった光Eの広がりの大きさに依存して、角柱領域の大きさが異なることになる。
 指向性をもった光Eの広がりは、主に指向性拡散要素60と光硬化性組成物層20の距離と指向性拡散要素60の種類に依存する。当該距離を短くするにつれ角柱領域の大きさは小さくなり、長くするにつれ角柱領域の大きさは大きくなる。したがって、当該距離を調整することにより、角柱領域の大きさを調整することができる。
(光源)
 光硬化性化合物を含む組成物に光照射を行うための光源としては、通常はショートアークの紫外線発生光源が使用され、具体的には高圧水銀灯、低圧水銀灯、メタハライドランプ、キセノンランプ等が使用可能である。光硬化性化合物を含む組成物に照射する光線は、該光硬化性化合物を硬化可能な波長を含んでいることが必要で、通常は水銀灯の365nmを中心とする波長の光が利用されるが、使用する光重合開始剤の吸収波長に近い波長を含む光源であればいずれのランプも使用できる。光硬化性組成物層を硬化させることで、異方性光学フィルムを形成する。
 上記のショートアークのUV光線からの光から平行光線Dを作るためには、例えば光源の背後に反射鏡を配置して、所定の方向に点光源として光が出射するようにて、平行光線を得ることができる。点光源を使用すれば、簡単に平行光線を得ることができる。
(指向性拡散要素)
 指向性拡散要素60は、入射した平行光線Dに指向性を付与するものであればよい。図2においては指向性をもった光Eが、X方向に多く拡散し、Y方向にはほとんど拡散しない態様を記載している。このように指向性をもった光を得るためには、例えば、指向性拡散要素60内にアスペクト比の高い針状フィラーを含有させるとともに、当該針状フィラーをY方向に長軸方向が延存するように配向させる方法を採用することができる。指向性拡散要素は針状フィラーを使用する方法以外に種々の方法を使用することができる。指向性拡散要素の種類によっては、指向性拡散要素への入射部分によって光の拡散性が異なることがあるが、平行光線Dが指向性拡散要素60を介することで指向性をもった光Eを得るように配置すればよい。
 指向性をもった光Eのアスペクト比は5~40とすることが好ましい。当該アスペクト比にほぼ対応した形で、角柱領域のアスペクト比が形成される。
 上記アスペクト比の下限値は5であることが好ましく、8であることがより好ましく、10であることがさらに好ましい。アスペクト比が小さくなるにつれ拡散範囲が狭くなる問題がある。
 上記アスペクト比の上限値は40であることが好ましく、40であることがより好ましく、30であることがさらに好ましい。アスペクト比が大きくなるにつれ、光の拡散性・集光性が不十分になる問題がある。
(硬化)
 指向性を持った光Eを光硬化性組成物層20に入射させ、当該光硬化性組成物層を硬化させることで、本発明の異方性光学フィルムを得ることができる。
 光硬化性組成物層20は、透明ポリエチレンテレフタレート(PET)フィルムのような適当な基体10上に塗工して塗工膜(光硬化性組成物層)を設ける。必要に応じて乾燥して溶剤を揮発させるが、その乾燥膜厚は30~200μmであることが好ましい。乾燥膜厚の下限値は、より好ましくは50μmである。膜厚を厚くするほど屈曲を生じさせやすくなる。乾燥膜厚の上限値は、より好ましくは150μm、更に好ましくは100μmである。膜厚を薄くするほど生産性が向上する。上記の乾燥膜厚の下限値および上限値について、好ましい値、より好ましい値、更に好ましい値を適宜組み合わせることができる。乾燥膜厚が30μm未満では、光拡散性が乏しいため好ましくない。一方乾燥膜厚が200μmを越えるような場合、全体の拡散性が強すぎて本発明の特徴的な異方性が得られ難くなると共に、コストアップ、薄型化用途に不適合といったことからも好ましくない。更に、この塗工膜あるいは硬化膜上には離型フィルムや後述するマスクをラミネートして感光性の積層体を作る。
 光硬化性化合物を含む組成物を基体上にシート状に設ける手法としては、通常の塗工方式や印刷方式が適用される。具体的には、エアドクターコーティング、バーコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコーティング、ダムコーティング、ディップコーティング、ダイコーティング等のコーティングや、グラビア印刷等の凹版印刷、スクリーン印刷等の孔版印刷等の印刷等が使用できる。組成物が低粘度の場合は、基体の周囲に一定の高さの堰を設けて、この堰で囲まれた中に組成物をキャストすることもできる。
 本発明の異方性光学フィルム形成させるために、光硬化性組成物層の酸素阻害を防止するために、マスクを積層することも可能である。マスクの材質としては特に限定されないが、入射する紫外線の少なくとも一部を透過するシートを用いることが必要である。このようなシートとしては、PET、TAC、PVAc、PVA、アクリル、ポリエチレンなどの透明プラスチックシートや、ガラス、石英などの無機シート、さらには、これらシートに紫外線透過量を制御するためのパターニングや紫外線を吸収する顔料を含んでもかまわない。このようなマスクを用いない場合には、窒素雰囲気下で光照射を行うことで、光硬化性組成物層の酸素阻害を防止することも可能である。
 光硬化性組成物層に照射されるUV光の照度としては、0.01~100mW/cmの範囲であることが好ましく、より好ましくは0.1~20mW/cmの範囲である。照度が0.01mW/cm以下であると硬化に長時間を要するため、生産効率が悪くなり、100mW/cm以上であると光硬化性化合物の硬化が速すぎて構造形成を生じず、目的の異方性拡散特性を発現できなくなるからである。
 UVの照射時間は特に限定されないが、10~180秒間、より好ましくは30~120秒間である。その後、離型フィルムを剥離することで、本発明の異方性光学フィルムを得ることができる。
 本発明の異方性光学フィルムは、上述の如く低照度UV光を比較的長時間照射することにより光硬化性組成物層中に特定の内部構造が形成されることで得られるものである。そのため、このようなUV照射だけでは未反応のモノマー成分が残存して、べたつきを生じたりしてハンドリング性や耐久性に問題がある場合がある。そのような場合は、1000mW/cm以上の高照度のUV光を追加照射して残存モノマーを重合させることが出来る。この時のUV照射はマスク側の逆側から行うのが好ましい。
 本発明の異方性光学フィルムに内部の屈曲構造を得るための手段は限定されるものではないが、光硬化性化合物を含む組成物が硬化する際に光硬化性組成物層の厚み方向に温度分布を与えることで得る方法が有効である。ここでいう光硬化性組成物層とは異方性拡散層を形成する前の状態をいう。すなわち、光硬化性組成物層とは光硬化性化合物を含む組成物が硬化する前の状態をいう。例えば、紫外線を入射する表面側に冷風を与え冷却させ、且つ、基体側は種種の温調プレートなどによって加熱することで、組成物層の厚み方向に温度分布を生じさせることが可能となる。光硬化性組成物は、温度によって屈折率が変化し、照射される紫外線が内部を通過するに従って屈曲する。この屈曲角や位置、方向は、組成物の屈折率や、反応速度、温度勾配などにより変化させることが可能である。また、主に屈曲する数は膜厚を調整することでも可能である。ここで、反応速度は組成物自体の配合による反応性や、粘度、紫外線の強度、開始剤の種類と量などにより適宜調整される。
表示装置
 本発明の異方性光学フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)、表面電界ディスプレイ(SED)、電子ペーパーのような表示装置に適用することができる。特に好ましくは液晶表示装置(LCD)に用いられる。本発明の異方性光学フィルムは、シリコーン骨格を有する光硬化性化合物を硬化して形成されるものであるが、接着強度の問題は少なく、接着層や粘着層を介して、所望の場所に貼り合わせて使用することができる。
 本発明の異方性光学フィルムは、透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。
 以下の方法に従って、本発明の異方性光学フィルム及び比較例の異方性光学フィルムを製造した。
[実施例1]
 厚さ100μm、76×26mmサイズのPETフィルム(東洋紡社製、商品名:A4300)の縁部全周に、ディスペンサーを使い硬化性樹脂で高さ0.1mmの隔壁を形成した。この中に下記の光硬化性樹脂組成物を充填し、別のPETフィルムでカバーした。
・シリコーン・ウレタン・アクリレート(屈折率:1.460、重量平均分子量:5,890) 20重量部
 (RAHN社製、商品名:00-225/TM18)
ネオペンチルグリコールジアクリレート(屈折率:1.450) 30重量部
(ダイセルサイテック社製、商品名Ebecryl145)
・ビスフェノールAのEO付加物ジアクリレート(屈折率:1.536) 15重量部
 (ダイセルサイテック社製、商品名:Ebecyl150)
・フェノキシエチルアクリレート(屈折率:1.518) 40重量部
 (共栄社化学製、商品名:ライトアクリレートPO-A)
・2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン  4重量部
 (BASF社製、商品名:Irgacure651)
 この両面をPETフィルムで挟まれた0.1mmの厚さの液膜を80℃に加熱したホットプレート載せ、表面からは送風機より風を送り冷やした状態にして、上部からUVスポット光源(浜松ホトニクス社製、商品名:L2859-01)の落射用照射ユニットから出射される平行光線を透過UV光線のアスペクト比が30となる指向性拡散要素を介して線状光線に変換した紫外線を垂直に、照射強度10mW/cmとして1分間照射して、図1に示すような角柱領域を多数有する実施例1の異方性光学フィルムを得た(ただし、図1とは拡散中心軸が異なる)。そこから、PETフィルムを剥がして本発明の異方性光学フィルムを得た。
[実施例2]
 指向性拡散要素として透過UV光線のアスペクト比が20となる指向性拡散要素を用いた
こと以外は実施例1と同様にして、実施例2の異方性光学フィルムを得た。
[実施例3]
 指向性拡散要素として透過UV光線のアスペクト比が10となる指向性拡散要素を用いたこと以外は実施例1と同様にして、実施例3の異方性光学フィルムを得た。
[実施例4]
 液膜の厚さを60μmになるように作製条件を変更し、指向性拡散要素として透過UV光線のアスペクト比が10となる指向性拡散要素を用いたこと意外は実施例1と同様にして、実施例4の異方性光学フィルムを得た。
[比較例1]
 指向性拡散要素を使用しないこと以外、実施例1と同様にして、比較例1の異方性光学フィルムを得た。
 比較例1の異方性光学フィルムは、異方性光学フィルムの上面から下面にかけて、複数の柱状構造が形成されているものであった。
[比較例2]
 指向性拡散要素として透過UV光線のアスペクト比が50となる指向性拡散要素を用いたこと以外は実施例1と同様にして、比較例2の異方性光学フィルムを得た。
 比較例2の異方性光学フィルムは、図10に示す板状構造が形成されているものであった(ただし、図10とは拡散中心軸が異なる)。
[比較例3]
 液膜の厚さを60μmになるように作製条件を変更し、指向性拡散要素として透過UV光線のアスペクト比が50となる指向性拡散要素を用いたこと以外は実施例1と同様にして、比較例3の異方性光学フィルムを得た。
 比較例3の異方性光学フィルムは、図10に示す板状構造が形成されているものであった(ただし、図10とは拡散中心軸が異なる)。
 実施例1~3で使用したシリコーン・ウレタン・アクリレートの重量平均分子量(Mw)の測定は、ポリスチレン換算分子量として、GPC法を用いて下記条件で行った。
デガッサー:DG-980-51(日本分光株式会社製)
ポンプ:PU-980-51(日本分光株式会社製)
オートサンプラー:AS-950(日本分光株式会社製)
恒温槽:C-965(日本分光株式会社製)
カラム:Shodex KF-806L × 2本  (昭和電工株式会社製)  
検出器:RI (SHIMAMURA YDR-880)
温度:40℃
溶離液:THF
注入量:150μl
流量:1.0ml/min
サンプル濃度:0.2%
(異方性光学フィルムの表面観察)
 実施例および比較例の異方性光学フィルムの表面(紫外線照射時の照射光側)を光学顕微鏡で観察し、角柱構造の長径LA、短径SAを測定した。長径LAおよび短径SAの算出には、任意の20の構造の平均値とした。また、長径LA/短径SAをアスペクト比として算出した。
(異方性光学フィルムの評価)
 光源の投光角、受光器の受光角を任意に可変できる変角光度計ゴニオフォトメータ(ジェネシア社製)を用いて、実施例および比較例の異方性光学フィルムの評価を行った。光源からの直進光を受ける位置に受光部を固定し、その間のサンプルホルダーに実施例および比較例で得られた異方性光学フィルムをセットした。図12に示すように回転軸(L)としてサンプルを回転させてそれぞれの入射角に対応する直線透過光量を測定した。この評価方法によって、どの角度の範囲で入射される光が拡散するかを評価することができる。この回転軸(L)は、図10に示されるサンプルの構造におけるB-B軸または図1(a)に示されるサンプルの構造におけるC-C軸と同じ軸である。直線透過光量の測定は、視感度フィルターを用いて可視光領域の波長を測定した。
 異方性光学フィルムの干渉(虹)については、透過光をさまざまな角度から目視で観察し、干渉の度合いを評価した。
 上記測定で得られた実施例の結果を、図3~図6に、比較例の結果を図7~9に示した。図3は実施例1、図4は実施例2、図5は実施例3、図6は実施例4、図7は比較例1、図8は比較例2、図9は比較例3であり、それぞれ直線透過光量の測定による入射光依存性を示している。
(異方性光学フィルムの断面観察)
 代表例として、実施例3の断面を光学顕微鏡で観察し、角柱構造の屈曲状態を確認した結果を図13に示した。
 表1に角柱の形状、光学特性等をまとめた。
Figure JPOXMLDOC01-appb-T000002
※1 最大直線透過率と最小直線透過率との差が1/2以下となる直線透過率に対する入射光の拡散範囲の角度範囲のこと(図3を例にとると、光学プロファイル上に矢印で表記した部分がこれに相当する)
 表1に示した結果から、最大直線透過率と最小直線透過率との差が1/2以下となる直線透過率に対する入射光の拡散範囲の角度範囲の値は、角柱領域のアスペクト比と相関することがわかる。実施例1~4の異方性光学フィルムにおいては角柱領域のアスペクト比が6~35のものを使用することで、前記入射光の拡散範囲の角度範囲を53°~70°にすることができた。実施例3と4は角柱のアスペクト比がほぼ一致し、異方性拡散層の厚みが異なるものであるが、異方性拡散層の厚さを60μm程度にしても十分実用性のある前記入射光の拡散範囲の角度範囲を達成することができた。すなわち、実施例1~4の異方性光学フィルムは、広い入射角度範囲で、光の拡散と集光を行うことができ、不自然な印象を抱かせることがないものであった。
 一方、角柱領域のアスペクト比が小さすぎる比較例1と、アスペクト比が大きすぎる比較例2~3の異方性光学フィルムは、前記入射光の拡散範囲の角度範囲を50°以上にすることができなかった。すなわち、比較例1~3の異方性光学フィルムは、広い入射角度範囲で、光の拡散と集光を行うことができず、不自然な印象を抱かせるものであった。
 表1に示した結果から、長径LAが光の干渉(虹)と相関することがわかる。実施例1~4の異方性光学フィルムでは長径LAが6~42μmであるものは、光の干渉(虹)は発生しないか実用上の問題が少ないものであった。
 一方、長径LAが大きすぎる比較例2と比較例3は、光の干渉(虹)が強く発生するため、実用上の問題を生じるものであった。なお、比較例1は長径LAが小さいことから光の干渉(虹)は発生しないものの、長径LAが小さすぎるため、最大直線透過率と最小直線透過率との差が1/2以下となる直線透過率に対する入射光の拡散範囲の角度範囲の値を50°以上にすることはできないものであった。
 表1に示すように、角柱領域のアスペクト比は概ね指向性拡散要素のアスペクト比を反映することがわかる。これを見た当業者であれば、指向性拡散要素のアスペクト比に配慮しつつ、指向性拡散要素と光硬化性樹脂組成物(異方性光学フィルムの硬化前)の距離を調整することで、短径SAと長径LAの値を調整することができ、本願発明で規定する角柱領域を有する異方性光学フィルムを製造することができるものである。
 更に、図13に示すように、このような広い拡散範囲の実現には、アスペクト比、膜厚の調節によって、角柱構造の屈曲を調整する役割を果たしており、散乱中心軸が連続して複数有するのと同等の効果を得るためと考えられる。 なお、本願の他の実施例においても図13に示すように、角柱構造が屈曲しているものであった。
 表1に示すように、本発明は1層の異方性拡散層であっても、広い入射角度範囲で、光の拡散と集光を行うことができ、不自然な印象を抱かせることがなく、且つ、干渉が生じにくい異方性光学フィルムを提供することができる。
1 サンプル
3 受光器
4 マトリックス領域
5、50 異方性光学フィルム
5a 上面
5b 下面
6 角柱領域
10 基体
20 光硬化性組成物層
30 光源
40 板状構造
51 線状光源
60 指向性拡散要素

Claims (9)

  1.  光の入射角により拡散性が変化する異方性光学フィルムであって、
     複数の角柱領域とマトリックス領域とを有するものであり、
     直線透過率が最大となる入射角における最大直線透過率が30%以上95%未満であり、
     直線透過率が最小となる入射角における最小直線透過率が20%以下であることを特徴とする異方性光学フィルム。
  2.  前記角柱領域の短径と長径のアスペクト比が2~40の範囲内にあることを特徴とする請求項1に記載の異方性光学フィルム。
  3.  前記角柱領域の厚さが30μm~200μmの範囲内にあることを特徴とする請求項1に記載の異方性光学フィルム。
  4.  前記最大直線透過率と前記最小直線透過率との差が1/2以下となる直線透過率に対する入射光の拡散範囲の角度範囲が50°~80°であることを特徴とする請求項1に記載の異方性光学フィルム。
  5.  前記短径の長さが0.5μm~5.0μmの範囲内にあることを特徴とする請求項2に記載の異方性光学フィルム。
  6.  前記長径の長さが3.0μm~50μmの範囲内にあることを特徴とする請求項2に記載の異方性光学フィルム。
  7.  前記異方性光学フィルムを備えたことを特徴とする表示装置。
  8.  光源から平行光線を得る工程と、
     上記平行光線を指向性拡散要素に入射させ、指向性をもった光を得る工程と、
     上記指向性をもった光を光硬化性組成物層に入射させ、光硬化性組成物層を硬化させる工程と、を有することを特徴とする異方性光学フィルムの製造方法。
  9.  前記指向性をもった光のアスペクト比が2~40の範囲内にあることを特徴とする請求項8に記載の異方性光学フィルムの製造方法。
PCT/JP2013/082204 2012-11-29 2013-11-29 異方性光学フィルム WO2014084361A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13858105.3A EP2927714B1 (en) 2012-11-29 2013-11-29 Anisotropic optical film
US14/648,372 US9958580B2 (en) 2012-11-29 2013-11-29 Anisotropic optical film
CN201380061920.8A CN104838292B (zh) 2012-11-29 2013-11-29 各向异性光学膜
JP2014509535A JP5670601B2 (ja) 2012-11-29 2013-11-29 異方性光学フィルム
KR1020157017055A KR102045391B1 (ko) 2012-11-29 2013-11-29 이방성 광학 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012260862 2012-11-29
JP2012-260862 2012-11-29

Publications (1)

Publication Number Publication Date
WO2014084361A1 true WO2014084361A1 (ja) 2014-06-05

Family

ID=50827989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082204 WO2014084361A1 (ja) 2012-11-29 2013-11-29 異方性光学フィルム

Country Status (7)

Country Link
US (1) US9958580B2 (ja)
EP (1) EP2927714B1 (ja)
JP (1) JP5670601B2 (ja)
KR (1) KR102045391B1 (ja)
CN (1) CN104838292B (ja)
TW (1) TWI605272B (ja)
WO (1) WO2014084361A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051560A1 (ja) * 2014-10-01 2016-04-07 リンテック株式会社 光拡散フィルムおよび光拡散フィルムの製造方法
JP2016194687A (ja) * 2015-03-31 2016-11-17 株式会社巴川製紙所 異方性光学フィルムの製造方法
US20170192137A1 (en) * 2014-03-28 2017-07-06 Tomoegawa Co., Ltd. Anisotropic optical film
JP2017181829A (ja) * 2016-03-31 2017-10-05 株式会社巴川製紙所 異方性光学フィルム
JP2018159936A (ja) * 2018-05-24 2018-10-11 リンテック株式会社 光拡散フィルムおよび光拡散フィルムの製造方法
WO2020203643A1 (ja) * 2019-03-29 2020-10-08 株式会社巴川製紙所 反射型表示装置用光拡散フィルム積層体及びこれを用いた反射型表示装置
WO2023190664A1 (ja) * 2022-03-31 2023-10-05 株式会社巴川製紙所 液晶表示装置用偏光板積層体、及び、液晶表示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330831B2 (en) * 2014-01-21 2019-06-25 Tomoegawa Co., Ltd. Anisotropic optical film
US10670788B2 (en) * 2016-09-14 2020-06-02 Tomoegawa Co., Ltd. Light diffusion film laminate for reflective display device and reflective display device including the same
EP3470892A3 (en) * 2017-10-11 2019-07-17 Agc Inc. Transparent screen
US11874481B2 (en) * 2018-05-14 2024-01-16 Tomoegawa Co., Ltd. Head-mounted display
WO2020066311A1 (ja) * 2018-09-28 2020-04-02 株式会社巴川製紙所 異方性光学フィルムを用いた導光積層体、及び、それを用いた表示装置用面状照明装置
JP7414561B2 (ja) * 2020-01-31 2024-01-16 キヤノン株式会社 画像観察装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547417B2 (ja) 1987-08-07 1996-10-23 日本板硝子株式会社 光制御板の製造方法
CN1289054A (zh) * 1999-09-21 2001-03-28 大赛璐化学工业株式会社 各向异性光散射膜
JP2002014240A (ja) * 2000-06-30 2002-01-18 Ricoh Co Ltd 二次元拡大縮小光学デバイスおよびその製造方法
US20020021501A1 (en) * 2000-06-30 2002-02-21 Ricoh Company, Ltd. Image magnifying/reducing optical device and manufacturing method thereof
WO2002041048A1 (en) * 2000-11-15 2002-05-23 3M Innovative Properties Company Light control device
JP2005514487A (ja) 2002-01-10 2005-05-19 クラリアント・ゲーエムベーハー 屈折率勾配型フィルムを製造するためのナノ複合材料
JP2009265406A (ja) * 2008-04-25 2009-11-12 Sony Corp 表示装置および電子機器
JP2011107405A (ja) * 2009-11-17 2011-06-02 Sekisui Chem Co Ltd 視野角制御シート及びその製造方法
KR20120067940A (ko) * 2010-12-16 2012-06-26 린텍 가부시키가이샤 광확산 필름 및 광확산 필름의 제조 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3789858T2 (de) 1986-12-18 1994-09-01 Nippon Sheet Glass Co Ltd Platten für Lichtkontrolle.
JPH08327805A (ja) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd 光拡散板及びその製造方法及びそれを用いた透過型投写スクリーン
JP3372016B2 (ja) * 1996-11-22 2003-01-27 シャープ株式会社 位相差シートの製造方法
JP2005025142A (ja) * 2003-07-04 2005-01-27 Sony Corp 光拡散シート、その製造方法及びスクリーン
JP2006096811A (ja) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd ハードコートフィルムおよび情報記録担体
JP2006251395A (ja) * 2005-03-10 2006-09-21 Daicel Chem Ind Ltd 異方性散乱シート
EP1855127A1 (en) 2006-05-12 2007-11-14 Rolic AG Optically effective surface relief microstructures and method of making them
JP4959307B2 (ja) * 2006-11-24 2012-06-20 株式会社巴川製紙所 光拡散フィルム、光拡散積層フィルム、及びそれらを用いた光学部材
KR101475548B1 (ko) * 2007-08-02 2014-12-22 주식회사 다이셀 광 확산 필름 및 그것을 구비한 장치
JP5405763B2 (ja) * 2008-03-28 2014-02-05 日東電工株式会社 指向性拡散フィルム、偏光板、液晶表示装置および指向性拡散フィルムの製造方法
JP5335401B2 (ja) * 2008-12-19 2013-11-06 富士フイルム株式会社 偏光フィルム及び偏光フィルムの製造方法、偏光板及び偏光板の製造方法、並びに乗り物用映り込み防止フィルム
JP5996183B2 (ja) * 2010-12-15 2016-09-21 リンテック株式会社 異方性光拡散フィルム用組成物および異方性光拡散フィルム
JP5926941B2 (ja) * 2010-12-15 2016-05-25 リンテック株式会社 異方性光拡散フィルム用組成物および異方性光拡散フィルム
JP5738006B2 (ja) * 2011-03-01 2015-06-17 株式会社巴川製紙所 光学フィルム

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547417B2 (ja) 1987-08-07 1996-10-23 日本板硝子株式会社 光制御板の製造方法
US6517914B1 (en) * 1999-09-21 2003-02-11 Daicel Chemical Industries, Ltd. Anisotropic light-scattering film
EP1089114A2 (en) * 1999-09-21 2001-04-04 Daicel Chemical Industries, Ltd. Anisothropic light-scattering film
KR20010067204A (ko) * 1999-09-21 2001-07-12 고지마 아끼로, 오가와 다이스께 이방성 광산란 필름
TW455700B (en) * 1999-09-21 2001-09-21 Daicel Chem Anisotropic light-scattering film
JP2001159704A (ja) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd 異方性光散乱フィルム
CN1289054A (zh) * 1999-09-21 2001-03-28 大赛璐化学工业株式会社 各向异性光散射膜
JP2002014240A (ja) * 2000-06-30 2002-01-18 Ricoh Co Ltd 二次元拡大縮小光学デバイスおよびその製造方法
US20020021501A1 (en) * 2000-06-30 2002-02-21 Ricoh Company, Ltd. Image magnifying/reducing optical device and manufacturing method thereof
US6398370B1 (en) * 2000-11-15 2002-06-04 3M Innovative Properties Company Light control device
WO2002041048A1 (en) * 2000-11-15 2002-05-23 3M Innovative Properties Company Light control device
JP2004514167A (ja) * 2000-11-15 2004-05-13 スリーエム イノベイティブ プロパティズ カンパニー 光制御素子
CN1474950A (zh) * 2000-11-15 2004-02-11 3M创新有限公司 光控装置
JP2005514487A (ja) 2002-01-10 2005-05-19 クラリアント・ゲーエムベーハー 屈折率勾配型フィルムを製造するためのナノ複合材料
JP2009265406A (ja) * 2008-04-25 2009-11-12 Sony Corp 表示装置および電子機器
JP2011107405A (ja) * 2009-11-17 2011-06-02 Sekisui Chem Co Ltd 視野角制御シート及びその製造方法
KR20120067940A (ko) * 2010-12-16 2012-06-26 린텍 가부시키가이샤 광확산 필름 및 광확산 필름의 제조 방법
TW201226999A (en) * 2010-12-16 2012-07-01 Lintec Corp Light diffusion film and producing method for the same
CN102565894A (zh) * 2010-12-16 2012-07-11 琳得科株式会社 光扩散膜及光扩散膜的制造方法
JP2012141593A (ja) * 2010-12-16 2012-07-26 Lintec Corp 光拡散フィルムおよび光拡散フィルムの製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989678B2 (en) * 2014-03-28 2018-06-05 Tomoegawa Co., Ltd. Anisotropic optical film
US20170192137A1 (en) * 2014-03-28 2017-07-06 Tomoegawa Co., Ltd. Anisotropic optical film
WO2016051560A1 (ja) * 2014-10-01 2016-04-07 リンテック株式会社 光拡散フィルムおよび光拡散フィルムの製造方法
KR20170066323A (ko) * 2014-10-01 2017-06-14 린텍 가부시키가이샤 광확산 필름 및 광확산 필름의 제조 방법
JPWO2016051560A1 (ja) * 2014-10-01 2017-07-20 リンテック株式会社 光拡散フィルムおよび光拡散フィルムの製造方法
US10545267B2 (en) 2014-10-01 2020-01-28 Lintec Corporation Optical diffusion film and method for manufacturing optical diffusion film
US10222522B2 (en) 2014-10-01 2019-03-05 Lintec Corporation Optical diffusion film and method for manufacturing optical diffusion film
KR102190142B1 (ko) 2014-10-01 2020-12-11 린텍 가부시키가이샤 광확산 필름 및 광확산 필름의 제조 방법
JP2016194687A (ja) * 2015-03-31 2016-11-17 株式会社巴川製紙所 異方性光学フィルムの製造方法
JP2017181829A (ja) * 2016-03-31 2017-10-05 株式会社巴川製紙所 異方性光学フィルム
JP2018159936A (ja) * 2018-05-24 2018-10-11 リンテック株式会社 光拡散フィルムおよび光拡散フィルムの製造方法
WO2020203643A1 (ja) * 2019-03-29 2020-10-08 株式会社巴川製紙所 反射型表示装置用光拡散フィルム積層体及びこれを用いた反射型表示装置
JPWO2020203643A1 (ja) * 2019-03-29 2020-10-08
WO2023190664A1 (ja) * 2022-03-31 2023-10-05 株式会社巴川製紙所 液晶表示装置用偏光板積層体、及び、液晶表示装置

Also Published As

Publication number Publication date
EP2927714A1 (en) 2015-10-07
JPWO2014084361A1 (ja) 2017-01-05
CN104838292A (zh) 2015-08-12
KR102045391B1 (ko) 2019-11-15
EP2927714B1 (en) 2020-04-01
CN104838292B (zh) 2017-07-28
US9958580B2 (en) 2018-05-01
TW201428353A (zh) 2014-07-16
EP2927714A4 (en) 2016-07-20
US20150346396A1 (en) 2015-12-03
TWI605272B (zh) 2017-11-11
JP5670601B2 (ja) 2015-02-18
KR20150090202A (ko) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5670601B2 (ja) 異方性光学フィルム
JP6288672B2 (ja) 異方性光学フィルム
JP6093113B2 (ja) 異方性光学フィルム
WO2018180541A1 (ja) 防眩性フィルム及び表示装置
JP6616921B1 (ja) ヘッドマウントディスプレイ
JP6039911B2 (ja) 偏光板用異方性光学フィルムおよびその製造方法
JP2016194687A (ja) 異方性光学フィルムの製造方法
JP5977955B2 (ja) 異方性光学フィルムおよびその製造方法
JP2015222441A (ja) 異方性光学フィルム
JP6745625B2 (ja) 異方性光学フィルム
JP6542007B2 (ja) 異方性光学フィルム及びその製造方法
JP6902895B2 (ja) 異方性光学フィルム及びその製造方法
JP7475182B2 (ja) 異方性光拡散フィルム積層体および表示装置
JP7475333B2 (ja) 異方性光学フィルムを用いた反射型表示装置
WO2021200891A1 (ja) 異方性光拡散フィルムおよび表示装置
WO2022209567A1 (ja) 異方性光拡散フィルムおよび表示装置
JP2022157897A (ja) 異方性光拡散フィルム積層体及び表示装置
JP2023130815A (ja) 液晶フォトマスク積層体及び露光装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509535

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14648372

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013858105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157017055

Country of ref document: KR

Kind code of ref document: A