WO2016129199A1 - 構造体および配線基板 - Google Patents
構造体および配線基板 Download PDFInfo
- Publication number
- WO2016129199A1 WO2016129199A1 PCT/JP2016/000018 JP2016000018W WO2016129199A1 WO 2016129199 A1 WO2016129199 A1 WO 2016129199A1 JP 2016000018 W JP2016000018 W JP 2016000018W WO 2016129199 A1 WO2016129199 A1 WO 2016129199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission line
- conductor
- conductor plane
- plane
- slit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/2005—Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
- H01P5/022—Transitions between lines of the same kind and shape, but with different dimensions
- H01P5/028—Transitions between lines of the same kind and shape, but with different dimensions between strip lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0218—Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
- H05K1/0224—Patterned shielding planes, ground planes or power planes
- H05K1/0227—Split or nearly split shielding or ground planes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0236—Electromagnetic band-gap structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/025—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
- H05K1/0251—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/165—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/0929—Conductive planes
- H05K2201/09309—Core having two or more power planes; Capacitive laminate of two power planes
Definitions
- the present invention relates to a structure and a wiring board.
- a magnetic field is induced by a current flowing into a circuit at the time of switching of a digital circuit, or an electric field is induced by a voltage fluctuation generated at the time of switching, thereby generating an electromagnetic wave.
- the electromagnetic wave becomes electromagnetic noise propagating through a parallel plate line composed of a conductor plane. Electromagnetic noise causes problems such as destabilizing the operation of other circuits and degrading the wireless performance of devices. For this reason, if the technique which suppresses electromagnetic noise can be established, the stability of a circuit and the radio
- Patent Documents 1, 2, and 3 have an EBG (Electromagnetic Band Gap) characteristic having a dispersion relationship with a band gap that prohibits propagation of an electromagnetic wave at a characteristic frequency (hereinafter, referred to as an electromagnetic band gap). , which is described as an EBG structure), and enables suppression of propagation of electromagnetic wave noise between power planes.
- EBG Electromagnetic Band Gap
- the EBG structure that is a structure for suppressing electromagnetic noise is preferably as small as possible.
- the structure described in Patent Document 1 has a problem that the size of the structure itself is large.
- an object of the present invention is to provide a structure that enables a small-sized EBG structure and a wiring board including the structure.
- the structure and the wiring board according to the present invention mainly adopt the following characteristic configuration.
- the structure according to the present invention is: A first conductor plane; A second conductor plane disposed to face the first conductor plane; A first transmission line formed in a different layer from both the first conductor plane and the second conductor plane, and disposed opposite to the second conductor plane; The second conductor plane is formed in a layer different from both of the first conductor plane and the second conductor plane, and the second conductor plane is formed on a layer opposite to the first transmission line with respect to the second conductor plane.
- a second transmission line disposed opposite the conductor plane; A first conductor via connecting one end of the first transmission line and the first conductor plane; A second conductor via connecting the other end of the first transmission line and one end of the second transmission line; And a slit formed on the second conductor plane so as to partially intersect the first transmission line or the second transmission line in plan view.
- a wiring board comprises: A second conductor plane disposed to face the first conductor plane; A first transmission line formed in a different layer from both the first conductor plane and the second conductor plane, and disposed opposite to the second conductor plane; The second conductor plane is formed in a layer different from both of the first conductor plane and the second conductor plane, and the second conductor plane is formed on a layer opposite to the first transmission line with respect to the second conductor plane.
- a second transmission line disposed opposite the conductor plane; A first conductor via connecting one end of the first transmission line and the first conductor plane; A second conductor via connecting the other end of the first transmission line and one end of the second transmission line; And a slit having a slit formed on the second conductor plane so as to partially intersect the first transmission line or the second transmission line in plan view.
- the first transmission line and the second transmission over the two layers adjacent to the second conductor plane, out of the first and second conductor planes forming the parallel plate line By arranging the lines and operating as a series of open stubs, the area occupied by the open stubs can be reduced.
- a slit is further provided as an inductance imparting member on the second conductor plane that operates as a return path of the open stub, it is possible to more reliably realize a miniaturized EBG structure. .
- FIG. 2 is a perspective view of a structure when a plurality of the structures shown in FIG. 1 are arranged.
- FIG. 4 is a circuit diagram showing an example of an equivalent circuit in a direction along an arbitrary straight line in an xy plane in the structure shown in FIG. 3.
- FIG. 4 is explanatory drawing which shows an example of S parameter of the EBG structure in embodiment which concerns on this invention.
- the same reference numerals are assigned to the same components, and the description thereof is omitted as appropriate.
- the reference numerals given in the drawings are the components for the purpose of facilitating understanding. Needless to say, the elements are added for convenience, and the present invention is not intended to be limited to the illustrated embodiments.
- the substrate thickness direction that is, for example, the vertical direction in FIG. 1 and the z-axis direction
- the present invention is different from any of the first conductor plane, the second conductor plane disposed so as to face the first conductor plane, and the first conductor plane and the second conductor plane.
- a first transmission line formed in a layer and disposed opposite to the second conductor plane, and formed in a layer different from any of the first conductor plane and the second conductor plane;
- a second transmission line disposed on a layer opposite to the first transmission line with respect to the second conductor plane and facing the second conductor plane; and the first transmission.
- the first transmission line or the second transmission line and a plane It is mainly characterized in that to provide a structure having a slit formed in the second conductive plane on so as to intersect a portion in. Thus, it is possible to realize a small EBG structure.
- FIG. 1 is a perspective view showing an external appearance of a structure in an embodiment according to the present invention, and shows an example of an EBG structure in the present embodiment.
- 2 is a cross-sectional view showing an example of a cross-sectional structure of the structure shown in FIG.
- the cross-sectional view of FIG. 2 shows a cross-section between II and II shown in FIG.
- the structure in the present embodiment includes a first conductor plane 101 (first conductor) and a second conductor plane 102 (second conductor).
- the first transmission line 104, the second transmission line 105, the first conductor via 103, the second conductor via 106, the slit 107 (inductance imparting member), and the clearance 111 are configured. .
- the second conductor plane 102 is opposed to the first conductor plane 101.
- the first transmission line 104 is provided in a region sandwiched between the first conductor plane 101 and the second conductor plane 102 as shown in FIG. 2.
- the first conductor plane 101 and the second conductor plane 102 are formed in a different layer (a layer adjacent to the second conductor plane 102).
- the first transmission line 104 is disposed so as to face the second conductor plane 102 and extends linearly in the y-axis direction of FIG.
- the second transmission line 105 is a region on the upper side of the second conductor plane 102 (that is, a layer opposite to the first transmission line 104 with respect to the second conductor plane 102, The first conductor plane 101 and the second conductor plane 102 are formed in a layer different from that of the first conductor plane 101 and the second conductor plane 102. Similar to the first transmission line 104, the second transmission line 105 is disposed to face the second conductor plane 102, and extends linearly in the y-axis direction of FIG.
- One end of the first transmission line 104 is connected to the first conductor plane 101 through a first conductor via 103 in a direct current manner.
- the other end of the first transmission line 104 is connected to one end of the second transmission line 105 via the second conductor via 106.
- the other end of the second transmission line 105 is an open end (open end).
- the distance t 1 between the transmission line 104 and the distance t 2 between the first conductor plane 101 and the first transmission line 104 be small.
- the distance t 1 between the second conductor plane 102 and the first transmission line 104 is (1 ⁇ 2) the distance t 2 between the first conductor plane 101 and the first transmission line 104. It is desirable that it is not more than double (t 1 ⁇ (1/2) ⁇ t 2 ).
- a first conductor It is desirable that the distance t 2 be smaller than the distance t 2 between the plane 101 and the first transmission line 104.
- the first conductor via 103 is extended in the z-axis direction (thickness direction) in order to connect one end of the first transmission line 104 and the first conductor plane 101.
- the first dielectric layer 108 extends from the upper surface to the lower surface.
- the second conductor via 106 extends in the z-axis direction (thickness direction) in order to connect the other end of the first transmission line 104 and one end of the second transmission line 105 as described above. Extending from the upper surface of the third dielectric layer 110 to the lower surface of the second dielectric layer 109 formed on the lower surface of the third dielectric layer 110 via the second conductor plane 102. Has been.
- the slit 107 is provided on the second conductor plane 102, and particularly in the example of FIG. 1 so as to partially intersect the first transmission line 104 or the second transmission line 105 in plan view.
- the first transmission line 104 is located on both sides of the first transmission line 104 with respect to the y-axis direction of the first transmission line 104. Extending in the vertical x-axis direction.
- the structure according to the present embodiment is formed in a wiring board such as a printed wiring board, for example, and behaves as a structure having an EBG (Electromagnetic Band Gap) characteristic (hereinafter referred to as an EBG structure).
- the EBG structure has at least a first conductor plane 101 and a second conductor plane 102 which are arranged in parallel at a distance in the thickness direction (z-axis direction in FIG. 1), and will be described next.
- the unit structure 301 is configured.
- the unit structure 301 is a set of components of the structure shown in FIG. 1, and as described above with reference to FIG. 1, the unit conductor 301 includes the first conductor plane 101 and the second conductor plane 102. In addition, it is formed on the first transmission line 104, the second transmission line 105, and the second conductor plane 102 that are disposed in a different layer from both the first conductor plane 101 and the second conductor plane 102. Slit 107, the first conductor via 103 that electrically connects one end of the first transmission line 104 and the first conductor plane 101, the other end of the first transmission line 104, and the second transmission. It has at least a second conductor via 106 that electrically connects one end of the line 105.
- the slit 107 is provided on the second conductor plane 102 and is provided so as to partially intersect the first transmission line 104 or the second transmission line 105 in plan view.
- the first transmission line 104 is extended to both sides starting from a position overlapping with the transmission line 104 in the z-axis direction (thickness direction).
- the second conductor plane 102 is provided with a clearance 111 at a position corresponding to the second conductor via 106 in order to avoid electrical contact with the second conductor via 106.
- the length (electric length) of the slit 107 is L
- the effective transmission line length of an open stub (which is constituted by the first transmission line 104, the second transmission line 105, and the second conductor via 106)
- the slit length L is usually not more than twice the effective transmission line length D of the open stub (L ⁇ 2 ⁇ D), thereby reducing the area occupied by the slit 107. Also desirable for.
- the first transmission line 104 or the second transmission line at the position where the slit 107 is (L / 2 ⁇ L / 4) or more and (L / 2 + L / 4) or less from the slit end of the slit 107.
- the first transmission line 104 overlaps with the slit 107 in a plan view at least at a position within (D / 8) or less from the connection point between the first transmission line 104 and the first conductor via 103. If so, the effect of reducing the size of the slit 107 can be further increased, which is further desirable.
- the EBG structure illustrated in FIGS. 1 and 2 further includes one side (upper surface side: first side) in the thickness direction of the first conductor plane 101 between the first conductor plane 101 and the second conductor plane 102.
- the first transmission line 104 is formed between the other side (lower surface side) of the second dielectric layer 109 in the thickness direction and one side (upper surface side) of the first dielectric layer 108. It is arranged in between.
- the second transmission line 105 is disposed on one side (upper surface side) of the third dielectric layer 110 in the thickness direction. Further, the slit 107 is provided in the second conductor plane 102.
- the first conductor via 103 is extended in the z-axis direction (thickness direction), and from one side (upper surface side) to the other side (lower surface side) of the first dielectric layer 108. And one end of the first transmission line 104 and the first conductor plane 101 are electrically connected.
- the second conductor via 106 extends in the z-axis direction (thickness direction), and extends from one side (upper surface side) of the third dielectric layer 110 to the other side of the second dielectric layer 109 ( The first transmission line 104 and the second transmission line 105 are electrically connected to each other.
- the clearance 111 is arranged on the second conductor plane 102 at a position where the second conductor via 106 is arranged in order to avoid electrical contact between the second conductor plane 102 and the second conductor via 106. Is done.
- each of the above-described components that is, the first conductor plane 101, the second conductor plane 102, the first transmission line 104, the second transmission line 105, the slit 107, the first
- the unit via 301 that can be repeatedly arranged in large numbers is constituted by the conductor via 103, the second conductor via 106, and the clearance 111.
- FIG. 3 is a perspective view of the structure according to the embodiment of the present invention when a plurality of the structures shown in FIG. 1 are arranged, and shows a region of the single unit structure 301 of FIG. ing. 3 shows the case where the unit structures 301 are regularly arranged.
- the present invention does not require the arrangement of the unit structures 301 to be regularly arranged as shown in FIG. You can arrange them randomly. Further, in the structure shown in FIG. 3, the case where a large number of unit structures 301 having the same shape are arranged is shown.
- the shape of the unit structures 301 does not need to be aligned to the same shape.
- Many types of unit structures 301 may be arranged such that the shape of the transmission line 104 is different, the shape of the second transmission line is different, or the shape of the slit 107 is different. Absent.
- FIG. 4 is a circuit diagram showing an example of an equivalent circuit in a direction along an arbitrary straight line in the xy plane in the structure shown in FIG. 3 as the present embodiment, and is an equivalent circuit of the EBG structure in the present embodiment.
- FIG. 5 is an explanatory diagram showing an example of the S parameter of the EBG structure in the embodiment according to the present invention, and explains the effect of the EBG structure in the present embodiment.
- the repeating unit 401 corresponding to the unit structure 301 is a parallel plate composed of a first conductor plane 101 and a second conductor plane 102.
- a transmission line 403 configured as an open stub by the line 402, the first transmission line 104, the second transmission line 105, and the second conductor via 106, and an inductance 404 by a slit 107 attached in the middle of the transmission line 403, , And an inductance 405 due to the first conductor via 103.
- the repeating unit 401 is one equivalent circuit of the unit structure 301 shown in FIG.
- the slit 107 is described as the inductance 404, but actually a short-end slot line (short stub) constituted by the slit 107 is added to the transmission line 403. become.
- the length 1 of the short stub is ⁇ ⁇ 2 (n ⁇ 1) / 4 or more and ⁇ ⁇ (2n ⁇
- the short stub formed by the slit 107 behaves as an inductance, so that the slit 107 can be described as an inductance. Therefore, the structure body in this embodiment can be described by the equivalent circuit illustrated in FIG.
- the graph shown in FIG. 5 is the actual measurement result of the S parameter (S21) of the EBG structure in the present embodiment.
- the vertical axis in FIG. 5 represents the propagation characteristic S21, and the horizontal axis represents the frequency.
- the graph shown in FIG. 5 shows the propagation characteristic S21 between the measurement ports at a location where five structures described later in FIG. 6 are arranged between the two measurement ports.
- a portion where the propagation characteristic S21 indicated by hatching in FIG. 5 has a small value represents a band gap band.
- a value leff / ⁇ g that serves as an index of (size) can be calculated.
- the index value leff / ⁇ g calculated based on the actual measurement result shown in FIG. 5 and the actual structure size is about (1/38).
- an electromagnetic wave propagating through the first transmission line 104 excites the vicinity of the center of the slit 107 so that the slit 107 operates as a short end slot line. It is necessary to make it. For this purpose, it is necessary to induce charges on both sides near the center of the slit 107 provided in the planar second conductor plane 102 serving as a return path for the first transmission line 104 and the second transmission line 105. It is. Therefore, it is desirable that the first transmission line 104 or the second transmission line 105 intersect the slit 107 in plan view at least near the center of the slit 107.
- the first transmission line 104, the second transmission line 105, and the second conductor plane 102 that is their return path different current standing waves are generated depending on the frequency.
- the first band gap (1 st BG) has a lower limit frequency.
- a current standing wave is generated such that the electric field current intensity changes from an antinode to a node as it advances from the connection portion with one conductor via 103 to the open end along the transmission line 403.
- the current intensity changes from node to node, belly, and node as it proceeds from the connection portion with the first conductor via 103 to the open end along the transmission line 403.
- Such a current standing wave is generated.
- the current intensity increases from the connection portion with the first conductor via 103 to the open end along the transmission line 403, and the current intensity increases.
- a standing wave of current is generated.
- the current intensity increases from the connection portion with the first conductor via 103 to the open end along the transmission line 403, and the current intensity increases.
- the standing wave of the current that changes with the node is generated.
- n th BG (n: natural number)
- the connection from the first conductor via 103 progresses to the open end along the transmission line 403.
- a current standing wave including n repetitions of the electric field current intensity antinode ⁇ node is generated.
- a current standing wave is generated which starts with a node of current intensity and thereafter includes n repetitions of antinodes ⁇ nodes.
- the second conductor plane at the lower limit frequency of the n- th band gap (n th BG).
- the slit 107 is provided at the position of the antinode of the current standing wave generated on the 102, and the slit 107 can be effectively operated as an inductance.
- the addition of inductance to the series portion of the equivalent circuit model of the transmission line 403 means that the electrical length of the transmission line 403 is extended.
- the band gap frequency is determined by the electrical length of the transmission line 403. That is, the band gap frequency can be lowered by adding the inductance 404 by the slit 107. This means that when the structure with the slit 107 is compared with the structure without the slit 107, the same band gap frequency can be realized with a shorter transmission line length, that is, a smaller structure. ing.
- the slit 107 has the nth band gap (n th BG). It operates as an inductance at the lower limit frequency, and operates to lower the lower limit frequency of the band gap.
- the upper limit frequency of the band gap is not greatly influenced by the inductance. Thus, the effect of widening the band gap band can be obtained at the same time.
- the first transmission line 104 may have any arrangement and shape as long as one end is connected to the first conductor via 103 and the other end is connected to the second conductor via 106.
- the second transmission line 105 may have any arrangement and shape as long as one end is connected to the second conductor via 106 and the other end is an open end.
- the first transmission line 104 and the second transmission line 105 are shown in a straight line shape. For example, as shown in FIG. It may be a spiral shape, a meander shape, or a completely irregular shape.
- the shape of the slit 107 also depends on the shape of the first transmission line 104 and the second transmission line 105. It is desirable to change. For example, when the shape of the first transmission line 104 and the second transmission line 105 is spiral as shown in FIG. 6, it is desirable that the shape of the slit 107 is also spiral.
- the first transmission line 104 and the second transmission line 105 have a spiral shape, as shown in FIG. 6, the first conductor via 103 is connected to the spiral-shaped first transmission line 104. It is desirable to arrange on the outer periphery.
- FIG. 6 is a perspective view showing the appearance of the structure according to the first modification of the embodiment of the present invention, and the structure according to the first modification is disassembled in the z-axis direction for each main component. The external appearance of the state is shown, and an example in which the first transmission line 104, the second transmission line 105, and the slit 107 are formed in a spiral shape is shown.
- FIG. 7 is a top view showing an example of the top surface of the structure shown in FIG.
- FIGS. 8 and 9 are both cross-sectional views showing an example of the cross-sectional structure of the structure shown in FIG. 6, and show xy cross-sections at positions indicated by reference numerals B and C in FIG. Yes.
- the slit 107 has a spiral shape according to the spiral shape of the first transmission line 104 and the second transmission line 105.
- the first transmission line 104 and the second transmission line 105 are formed in a spiral shape or a meander shape as shown in FIGS. 6, 7, 8, and 9.
- the transmission line length can be ensured by the mounting area, and the EBG structure can be efficiently arranged in a small area.
- the first transmission line 104 and the second transmission line 105 are arbitrarily irregular in shape, the first transmission line 104 and the second transmission line 104 can be avoided by avoiding other structures.
- the transmission line 105 can be routed, and the EBG structure can be efficiently arranged in a limited area.
- the shape of the slit 107 may be any arrangement and shape as long as it partially intersects the first transmission line 104 or the second transmission line 105 in a plan view when viewed from the z-axis direction. . 1, 2, and 3 in the above-described embodiment, the case where the slit 107 has a linear shape is shown. However, for example, a meander shape as shown in FIG. 10 may be used, or a spiral shape may be used. Or, it may be a completely irregular shape.
- FIG. 10 is a perspective view showing the external appearance of the structure in the second modification of the embodiment according to the present invention, and shows an example in which the slit 107 has a meander shape.
- the shapes of the first transmission line 104 and the second transmission line 105 are the same as those in the case of FIGS. 1, 2, and 3 in the above-described embodiment. The case of a linear shape is shown.
- the position where the slit 107 and the first transmission line 104 or the second transmission line 105 intersect in plan view is not necessarily near the connection point between the first transmission line 104 and the first conductor via 103. Instead, it may be away from the vicinity of the connection point between the first transmission line 104 and the first conductor via 103.
- the number of slits 107 is not necessarily one.
- a plurality of slits 107 a and 107 b may be arranged for the same first transmission line 104 or second transmission line 105.
- the plurality of slits 107a and 107b function as inductances added to the first transmission line 104 or the second transmission line 105, respectively, and the slit 107a is further provided with a slit 107b.
- the effect of lowering the band gap frequency can be expected to be larger than when only the slit 107a is used.
- the number of the slits 107 is two has been described above, the number of the slits 107 is not necessarily limited to two, and may be three, four, or more. good.
- the first transmission line 104 is on the other side (lower surface side) of the second conductor plane 102, that is, the first conductor plane 101 and the second conductor plane 102.
- the second transmission line 105 is disposed on one side (upper surface side) of the second conductor plane 102.
- the first transmission line 104 may be provided on one side (upper surface side) of the second conductor plane 102.
- FIG. 11 is a perspective view showing the appearance of the structure in the third modification of the embodiment according to the present invention, and the first transmission line 104 is not the other side (lower surface side) of the conductor plane 102, An example in the case of being provided on one side (upper surface side) of the conductor plane 102 is shown.
- 12 is a cross-sectional view showing an example of a cross-sectional structure of the structure shown in FIG.
- the cross-sectional view of FIG. 12 shows a cross section between XII and XII shown in FIG.
- the second transmission line 105 When the first transmission line 104 is arranged on one side (upper surface side) of the second conductor plane 102, the second transmission line 105 is connected to the second conductor plane 102 as shown in FIG. It is disposed on the other side (lower surface side), that is, between the first conductor plane 101 and the second conductor plane 102. However, when the first transmission line 104 is disposed on one side (upper surface side) of the second conductor plane 102, the second conductor plane 102 and the second conductor plane 102 interposed in the middle are disposed as shown in FIG. 12.
- the EBG structure shown in FIGS. 11 and 12 is similar to the EBG structure shown in FIGS. 1 and 2 between the first transmission line 104 and the first conductor plane 101.
- the second dielectric layer 109 laminated on one side (upper surface side) of the first dielectric layer 108 in the thickness direction, and one side (upper surface side) of the second conductor plane 102 in the thickness direction.
- a third dielectric layer 110 stacked on each other.
- the first conductor plane 101 is disposed on the other side (lower surface side) of the first dielectric layer 108 in the thickness direction, similarly to the EBG structure shown in FIGS.
- the second conductor plane 102 is disposed on one side (upper surface side) of the second dielectric layer 109. That is, the second conductor plane 102 is disposed between one side (upper surface side) of the second dielectric layer 109 and the other side (lower surface side) of the third dielectric layer 110.
- the first transmission line 104 is formed between the first conductor plane 101 and the second conductor plane 102, and the EBG structure shown in FIGS.
- the third dielectric layer 110 is disposed on one side (upper surface side) in the thickness direction (z-axis direction).
- the second transmission line 105 is formed between the first conductor plane 101 and the second conductor plane 102.
- One end of the first transmission line 104 is connected to the first conductor plane 101 via the first conductor via 103.
- the other end of the first transmission line 104 is connected to one end of the second transmission line 105 through the second conductor via 106.
- the other end of the second transmission line 105 is an open end, and the first transmission line 104, the second conductor via 106, and the second transmission line 105 return the second conductor plane 102 through the return path. It operates as an open-ended transmission line (open stub).
- the slit 107 is provided in the second conductor plane 102 as in the EBG structure shown in FIGS. 1 and 2, and is partially in plan view with the first transmission line 104 or the second transmission line 105.
- One transmission line 104 extends in the x-axis direction perpendicular to the y-axis direction.
- the first conductor via 103 is formed in the z-axis direction (thickness direction) to connect one end of the first transmission line 104 and the first conductor plane 101.
- first transmission lines 104 a and 104 b there are two first transmission lines 104 a and 104 b as the first transmission line 104.
- One end of each of the two first transmission lines 104a and one end of the first transmission line 104b are connected to the same first conductor via 103, and the other end of the first transmission line 104a
- the second conductor via 106a and the second conductor via 106b are connected to the other end of the second transmission line 104b, respectively, and the second conductor via 106a and the second conductor via 106b are connected to the second conductor via 106b, respectively.
- Two transmission lines 105a and a second transmission line 105b may be connected.
- the first pair that is, the set of the first transmission line 104a, the second conductor via 106a, and the second transmission line 105a, which has the subscript a
- the second pair that is, the pair of the first transmission line 104a and the second transmission line 105a
- a slit 107a and a slit 107b may be provided in each of the first transmission line 104b, the second conductor via 106b, and the second transmission line 105b) to which the subscript b is attached.
- the two slits 107 may be arranged so as to partially intersect with both the first pair and the second pair in plan view.
- first transmission line 104 and the second transmission line 105 may be branched in the middle.
- the distance between the first band gap and the second band gap is adjusted, or the width of the first band gap and the width of the second band gap are adjusted according to the branched position. You can do it.
- the number of branches is not necessarily a configuration that branches from one to two, but may be other patterns such as a configuration that branches from one to three, four, or more. It can also be considered that the slit 107 is branched.
- First conductor plane (first conductor) 102 Second conductor plane (second conductor) 103 first conductor via 104 first transmission line 105 second transmission line 106 second conductor via 107 slit (inductance imparting member) 108 First dielectric 109 Second dielectric 110 Third dielectric 111 Clearance 301 Unit structure 401 Repeat unit 402 Parallel plate line 403 Transmission line 404 Inductance (Inductance by slit 107) 405 inductance (inductance due to the first conductor via 103) 1101 Clearance
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
したがって、本発明の目的は、小型のEBG構造を可能にする構造体およびその構造体を備えた配線基板を提供することにある。
第1の導体プレーンと、
前記第1の導体プレーンと対向するように配設された第2の導体プレーンと、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対向して配設された第1の伝送線路と、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対して第1の伝送線路とは反対側の層に、前記第2の導体プレーンに対向して配設された第2の伝送線路と、
前記第1の伝送線路の一端と前記第1の導体プレーンとを接続する第1の導体ビアと、
前記第1の伝送線路の他端と前記第2の伝送線路の一端とを接続する第2の導体ビアと、
前記第1の伝送線路または前記第2の伝送線路と平面視で一部交差するように前記第2の導体プレーン上に形成されたスリットと
を有することを特徴とする。
前記第1の導体プレーンと対向するように配設された第2の導体プレーンと、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対向して配設された第1の伝送線路と、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対して第1の伝送線路とは反対側の層に、前記第2の導体プレーンに対向して配設された第2の伝送線路と、
前記第1の伝送線路の一端と前記第1の導体プレーンとを接続する第1の導体ビアと、
前記第1の伝送線路の他端と前記第2の伝送線路の一端とを接続する第2の導体ビアと、
前記第1の伝送線路または前記第2の伝送線路と平面視で一部交差するように前記第2の導体プレーン上に形成されたスリットと
を有する構造体を含むことを特徴とする。
本発明の実施形態の説明に先立って、本発明の特徴についてその概要をまず説明する。本発明は、第1の導体プレーンと、前記第1の導体プレーンと対向するように配設された第2の導体プレーンと、前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対向して配設された第1の伝送線路と、前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対して第1の伝送線路とは反対側の層に、前記第2の導体プレーンに対向して配設された第2の伝送線路と、前記第1の伝送線路の一端と前記第1の導体プレーンとを接続する第1の導体ビアと、前記第1の伝送線路の他端と前記第2の伝送線路の一端とを接続する第2の導体ビアと、前記第1の伝送線路または前記第2の伝送線路と平面視で一部交差するように前記第2の導体プレーン上に形成されたスリットと、を有する構造体を提供することを主要な特徴としている。而して、小型のEBG構造を実現することを可能にしている。
(実施の形態の構成例)
まず、実施の形態に係る構造体の構成について、図1および図2の各図面に基づいて説明する。図1は、本発明に係る実施の形態における構造体の外観を示す斜視図であり、本実施の形態におけるEBG構造の一例を示している。また、図2は、図1に示した構造体の断面構造の一例を示す断面図である。ここで、図2の断面図は、図1に示したII-II間の断面を示している。
次に、前述したEBG構造の基本的な動作原理について説明する。図4は、本実施の形態として図3に示した構造体におけるxy平面内の任意の直線に沿った方向の等価回路の一例を示す回路図であり、本実施の形態におけるEBG構造の等価回路図を示している。また、図5は、本発明に係る実施の形態におけるEBG構造のSパラメータの一例を示す説明図であり、本実施の形態におけるEBG構造の効果について説明している。
次に、本実施の形態の変形例について説明する。
まず、第1の変形例として、第1の伝送線路104および第2の伝送線路105の配置・形状に関する変形例について説明する。第1の伝送線路104は、一端が第1の導体ビア103に接続されており、かつ、他端が第2の導体ビア106に接続されていればどのような配置・形状であっても良い。第2の伝送線路105は、一端が第2の導体ビア106に接続されており、かつ、他端がオープン端になっていれば、どのような配置・形状であっても良い。また、前述の実施の形態における図1、図2、図3においては、第1の伝送線路104および第2の伝送線路105が直線形状の場合を示したが、例えば、図6に示すようなスパイラル形状であっても良いし、あるいは、ミアンダ形状であっても良いし、あるいは、全く不規則な形状としても良い。
次に、第2の変形例として、スリット107の配置・形状に関する変形例について説明する。スリット107の形状は、第1の伝送線路104または第2の伝送線路105とz軸方向から見た際に平面視で一部交差していれば、どのような配置・形状であっても良い。前述の実施の形態における図1、図2、図3においては、スリット107が直線形状の場合を示したが、例えば、図10に示すようなミアンダ形状であっても良いし、あるいは、スパイラル形状としても良いし、あるいは、全く不規則な形状としても良い。また、この際、スリット107は第1の伝送線路104または第2の伝送線路105と複数回交差するように配置されていても良い。図10は、本発明に係る実施の形態の第2の変形例における構造体の外観を示す斜視図であり、スリット107をミアンダ形状とした場合の一例を示している。なお、本第2の変形例の図10においては、第1の伝送線路104および第2の伝送線路105の形状は、前述の実施の形態における図1、図2、図3の場合と同様、直線形状の場合を示している。
次に、第3の変形例として、第1の伝送線路104および第2の伝送線路105を配置する層に関する変形例について説明する。前述の実施の形態における図1、図2、図3においては、第1の伝送線路104が、第2の導体プレーン102の他方側(下面側)、すなわち、第1の導体プレーン101と第2の導体プレーン102との間に配置されており、第2の伝送線路105が、第2の導体プレーン102の一方側(上面側)に配置されている場合を示したが、例えば、図11、図12に示すように、第1の伝送線路104が、第2の導体プレーン102の一方側(上面側)に設けられる構造とすることもできる。図11は、本発明に係る実施の形態の第3の変形例における構造体の外観を示す斜視図であり、第1の伝送線路104が、導体プレーン102の他方側(下面側)ではなく、導体プレーン102の一方側(上面側)に設けられた場合の一例を示している。また、図12は、図11に示した構造体の断面構造の一例を示す断面図である。ここで、図12の断面図は、図11に示したXII-XII間の断面を示している。
次に、第4の変形例として、第1の伝送線路104および第2の伝送線路105の変形例について記載する。本第4の変形例においては、例えば、第1の伝送線路104として、2つの第1の伝送線路104a、第1の伝送線路104bが存在する。そして、2つの第1の伝送線路104aの一端、第1の伝送線路104bの一端は、それぞれ、同一の第1の導体ビア103に接続され、また、第1の伝送線路104aの他端、第2の伝送線路104bの他端には、それぞれ、第2の導体ビア106a、第2の導体ビア106bが接続され、また、第2の導体ビア106a、第2の導体ビア106bそれぞれには、第2の伝送線路105a、第2の伝送線路105bが接続されている構成とすることもできる。
102 第2の導体プレーン(第2の導体)
103 第1の導体ビア
104 第1の伝送線路
105 第2の伝送線路
106 第2の導体ビア
107 スリット(インダクタンス付与部材)
108 第1の誘電体
109 第2の誘電体
110 第3の誘電体
111 クリアランス
301 単位構造
401 繰り返し単位
402 平行平板線路
403 伝送線路
404 インダクタンス(スリット107によるインダクタンス)
405 インダクタンス(第1の導体ビア103によるインダクタンス)
1101 クリアランス
Claims (10)
- 第1の導体プレーンと、
前記第1の導体プレーンと対向するように配設された第2の導体プレーンと、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対向して配設された第1の伝送線路と、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対して第1の伝送線路とは反対側の層に、前記第2の導体プレーンに対向して配設された第2の伝送線路と、
前記第1の伝送線路の一端と前記第1の導体プレーンとを接続する第1の導体ビアと、
前記第1の伝送線路の他端と前記第2の伝送線路の一端とを接続する第2の導体ビアと、
前記第1の伝送線路または前記第2の伝送線路と平面視で一部交差するように前記第2の導体プレーン上に形成されたスリットと
を有することを特徴とする構造体。 - 前記第1の導体プレーン、前記第2の導体プレーン、前記第1の伝送線路、前記第2の伝送線路、前記第1の導体ビア、前記第2の導体ビア、および、前記スリットは、EBG(Electromagnetic Band Gap)構造を構成していることを特徴とする請求項1に記載の構造体。
- 前記第2の導体プレーンと前記第1の伝送線路との間の距離が、前記第1の導体プレーンと前記第1の伝送線路との間の距離よりも小さいことを特徴とする請求項1または2に記載の構造体。
- 前記スリットの電気長が、前記第1の伝送線路と前記第2の伝送線路と前記第2の導体ビアとによって構成されるオープンスタブの電気長の2倍以下であることを特徴とする請求項1ないし3のいずれかに記載の構造体。
- 前記スリットの電気長をLとしたとき、前記スリットが、少なくとも、当該スリットのスリット端から(L/2-L/4)以上かつ(L/2+L/4)以下の位置において前記第1の伝送線路または前記第2の伝送線路と平面視で重なっていることを特徴とする請求項1ないし4のいずれかに記載の構造体。
- 前記第1の伝送線路と前記第2の伝送線路と前記第2の導体ビアとによって構成されるオープンスタブの電気長をDとしたとき、前記第1の伝送線路が、少なくとも、当該第1の伝送線路と前記第1の導体ビアとの接続点から(D/8)以下の範囲内の位置において前記スリットと平面視で重なっていることを特徴とする請求項1ないし4のいずれかに記載の構造体。
- 前記第1の伝送線路および前記第2の伝送線路の形状がスパイラル形状であることを特徴とする請求項1ないし4のいずれかに記載の構造体。
- 前記第1の導体ビアが、スパイラル形状をした前記第1の伝送線路の外周に配置されることを特徴とする請求項7に記載の構造体。
- 第1の導体プレーンと、
前記第1の導体プレーンと対向するように配設された第2の導体プレーンと、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対向して配設された第1の伝送線路と、
前記第1の導体プレーンおよび前記第2の導体プレーンのいずれとも異なる層に形成され、かつ、前記第2の導体プレーンに対して第1の伝送線路とは反対側の層に、前記第2の導体プレーンに対向して配設された第2の伝送線路と、
前記第1の伝送線路の一端と前記第1の導体プレーンとを接続する第1の導体ビアと、
前記第1の伝送線路の他端と前記第2の伝送線路の一端とを接続する第2の導体ビアと、
前記第1の伝送線路または前記第2の伝送線路と平面視で一部交差するように前記第2の導体プレーン上に形成されたスリットと
を有する構造体を含むことを特徴とする配線基板。 - 前記第1の導体プレーン、前記第2の導体プレーン、前記第1の伝送線路、前記第2の伝送線路、前記第1の導体ビア、前記第2の導体ビア、および、前記スリットは、EBG(Electromagnetic Band Gap)構造を構成していることを特徴とする請求項9に記載の配線基板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/543,785 US10079415B2 (en) | 2015-02-12 | 2016-01-05 | Structure and wiring substrate |
JP2016574642A JP6565938B2 (ja) | 2015-02-12 | 2016-01-05 | 構造体および配線基板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015025092 | 2015-02-12 | ||
JP2015-025092 | 2015-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129199A1 true WO2016129199A1 (ja) | 2016-08-18 |
Family
ID=56614406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000018 WO2016129199A1 (ja) | 2015-02-12 | 2016-01-05 | 構造体および配線基板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10079415B2 (ja) |
JP (1) | JP6565938B2 (ja) |
WO (1) | WO2016129199A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6593350B2 (ja) * | 2015-02-12 | 2019-10-23 | 日本電気株式会社 | 構造体および配線基板 |
US20220084930A1 (en) * | 2019-01-30 | 2022-03-17 | Kyocera Corporation | Electronic component mounting base and electronic device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070090398A1 (en) * | 2005-10-21 | 2007-04-26 | Mckinzie William E Iii | Systems and methods for electromagnetic noise suppression using hybrid electromagnetic bandgap structures |
US20070176827A1 (en) * | 2005-12-21 | 2007-08-02 | The Regents Of The University Of California | Composite right/left-handed transmission line based compact resonant antenna for rf module integration |
US20090315648A1 (en) * | 2008-06-24 | 2009-12-24 | Nec Corporation | Waveguide structure and printed-circuit board |
EP2221923A1 (en) * | 2009-02-24 | 2010-08-25 | NEC Corporation | Antenna and printed-circuit board using waveguide structure |
US20120032865A1 (en) * | 2009-04-30 | 2012-02-09 | Hiroshi Toyao | Structural body, printed board, antenna, transmission line waveguide converter, array antenna, and electronic device |
US20130107491A1 (en) * | 2010-07-12 | 2013-05-02 | Masaharu Imazato | Electronic apparatus |
WO2013168377A1 (ja) * | 2012-05-10 | 2013-11-14 | 日本電気株式会社 | Ebg特性を有する導波路構造 |
JP2013255259A (ja) * | 2013-07-25 | 2013-12-19 | Nec Corp | 導波路構造、プリント配線板、及びそれを用いた電子装置 |
US20140028412A1 (en) * | 2012-07-27 | 2014-01-30 | Kabushiki Kaisha Toshiba | Ebg structure and circuit board |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3473516B2 (ja) * | 1999-09-20 | 2003-12-08 | 日本電気株式会社 | 半導体集積回路 |
US7215007B2 (en) | 2003-06-09 | 2007-05-08 | Wemtec, Inc. | Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards |
WO2011111314A1 (ja) * | 2010-03-08 | 2011-09-15 | 日本電気株式会社 | 配線基板、電子装置およびノイズ遮蔽方法 |
US8873246B2 (en) * | 2010-03-08 | 2014-10-28 | Nec Corporation | Electronic device, wiring board, and method of shielding noise |
US9000306B2 (en) * | 2010-06-02 | 2015-04-07 | Nec Corporation | Interconnect board and electronic apparatus |
US9456499B2 (en) * | 2010-09-28 | 2016-09-27 | Nec Corporation | Structural body and interconnect substrate |
WO2012042740A1 (ja) * | 2010-09-28 | 2012-04-05 | 日本電気株式会社 | 構造体及び配線基板 |
WO2012073917A1 (ja) * | 2010-12-01 | 2012-06-07 | 日本電気株式会社 | 配線チェック装置及び配線チェックシステム |
US9204533B2 (en) * | 2011-10-31 | 2015-12-01 | Samsung Electro-Mechanics Co., Ltd. | Asymmetrical multilayer substrate, RF module, and method for manufacturing asymmetrical multilayer substrate |
-
2016
- 2016-01-05 US US15/543,785 patent/US10079415B2/en active Active
- 2016-01-05 WO PCT/JP2016/000018 patent/WO2016129199A1/ja active Application Filing
- 2016-01-05 JP JP2016574642A patent/JP6565938B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070090398A1 (en) * | 2005-10-21 | 2007-04-26 | Mckinzie William E Iii | Systems and methods for electromagnetic noise suppression using hybrid electromagnetic bandgap structures |
US20070176827A1 (en) * | 2005-12-21 | 2007-08-02 | The Regents Of The University Of California | Composite right/left-handed transmission line based compact resonant antenna for rf module integration |
US20090315648A1 (en) * | 2008-06-24 | 2009-12-24 | Nec Corporation | Waveguide structure and printed-circuit board |
EP2221923A1 (en) * | 2009-02-24 | 2010-08-25 | NEC Corporation | Antenna and printed-circuit board using waveguide structure |
US20120032865A1 (en) * | 2009-04-30 | 2012-02-09 | Hiroshi Toyao | Structural body, printed board, antenna, transmission line waveguide converter, array antenna, and electronic device |
US20130107491A1 (en) * | 2010-07-12 | 2013-05-02 | Masaharu Imazato | Electronic apparatus |
WO2013168377A1 (ja) * | 2012-05-10 | 2013-11-14 | 日本電気株式会社 | Ebg特性を有する導波路構造 |
US20140028412A1 (en) * | 2012-07-27 | 2014-01-30 | Kabushiki Kaisha Toshiba | Ebg structure and circuit board |
JP2013255259A (ja) * | 2013-07-25 | 2013-12-19 | Nec Corp | 導波路構造、プリント配線板、及びそれを用いた電子装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016129199A1 (ja) | 2017-12-07 |
JP6565938B2 (ja) | 2019-08-28 |
US20180013187A1 (en) | 2018-01-11 |
US10079415B2 (en) | 2018-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5931851B2 (ja) | ノイズ抑制構造を有する回路基板 | |
US8354975B2 (en) | Electromagnetic band gap element, and antenna and filter using the same | |
JP5725013B2 (ja) | 構造体、配線基板および配線基板の製造方法 | |
JP6168943B2 (ja) | Ebg構造体、半導体デバイスおよび回路基板 | |
JP2010010183A (ja) | 導波路構造およびプリント配線板 | |
US10721821B2 (en) | Printed circuit board | |
JP6125274B2 (ja) | 電子回路および電子機器 | |
JP5674363B2 (ja) | ノイズ抑制構造を有する回路基板 | |
JP6565938B2 (ja) | 構造体および配線基板 | |
JP5669499B2 (ja) | プリント回路板 | |
JP6176242B2 (ja) | Ebg特性を有する導波路構造 | |
JP5556162B2 (ja) | 電子装置及びノイズ抑制方法 | |
JP5136131B2 (ja) | 構造、プリント基板 | |
WO2014136595A1 (ja) | 構造体、配線基板及び電子装置 | |
JP6593350B2 (ja) | 構造体および配線基板 | |
JP6479288B1 (ja) | プリント基板 | |
JP2012257084A (ja) | Ebg構造及びプリント基板 | |
US20200352024A1 (en) | Structure and wiring substrate | |
JP5716858B2 (ja) | プリント配線板 | |
JP2011171900A (ja) | 電磁バンドギャップ構造素子及び印刷回路基板 | |
JP2022147904A (ja) | 電子回路および回路基板 | |
JP2015057865A (ja) | ノイズ抑制構造を有する回路基板 | |
JPWO2011114944A1 (ja) | ノイズ抑制構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16748852 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016574642 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15543785 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16748852 Country of ref document: EP Kind code of ref document: A1 |