WO2016129158A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2016129158A1
WO2016129158A1 PCT/JP2015/082212 JP2015082212W WO2016129158A1 WO 2016129158 A1 WO2016129158 A1 WO 2016129158A1 JP 2015082212 W JP2015082212 W JP 2015082212W WO 2016129158 A1 WO2016129158 A1 WO 2016129158A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
light guide
illumination lens
endoscope
lens
Prior art date
Application number
PCT/JP2015/082212
Other languages
English (en)
French (fr)
Inventor
野口あずさ
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016550292A priority Critical patent/JP6043039B1/ja
Priority to EP15882032.4A priority patent/EP3257426A4/en
Priority to CN201580065940.1A priority patent/CN106998998B/zh
Publication of WO2016129158A1 publication Critical patent/WO2016129158A1/ja
Priority to US15/673,373 priority patent/US10111579B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2492Arrangements for use in a hostile environment, e.g. a very hot, cold or radioactive environment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope.
  • the endoscope is a device that is widely used in the medical field and the industrial field.
  • images of various parts in a body cavity can be obtained by an endoscope inserted into the body cavity.
  • An observation site is diagnosed using this image.
  • the endoscope is used for observation and diagnosis of various parts in the body cavity.
  • an imaging system and an illumination system are built into the distal end of an insertion portion inserted into the body.
  • the imaging system takes out the image information of the illuminated observation site as a video signal and displays the image on the monitor.
  • the illumination system illuminates the observation range.
  • the light guide is accommodated in the internal space penetrating from the distal end portion to the proximal end portion in the insertion portion.
  • the light guide is configured, for example, by bundling a large number of optical fibers. Illumination light is incident on one end (incident end) of the light guide from an external light source device, the illumination light is guided to the tip, and is emitted from the other end (exit end) of the light guide. Illumination light from the exit end is irradiated toward the observation site through the illumination optical system.
  • a medical endoscope Since a medical endoscope is used in the body, it needs to be configured so that the temperature of the outer surface of the insertion portion does not increase.
  • elements constituting the distal end portion of the endoscope examples of elements that contribute to heat generation at the distal end portion include an imaging element and an illumination system.
  • an illumination lens that spreads the light beam is disposed on the exit end side of the light guide.
  • the light emitted from the light guide has an NA (numerical aperture) determined according to the material of the light guide. Since the light emitted from the light guide is refracted according to the radius of curvature of the illumination lens, a light beam having a large angle out of the light emitted from the outer periphery of the light guide enters the side surface (rim portion) of the illumination lens.
  • the side surface of the illumination lens is processed into a grain shape, the light beam is scattered and absorbed on the side surface of the illumination lens. The absorbed light contributes to the temperature rise as energy.
  • the side surface of the illumination lens is processed into a mirror surface, the light beam is scattered and absorbed by the lens frame, and thus contributes to an increase in temperature. If the radius of curvature of the illumination lens is decreased in order to broaden the light distribution, the amount of light hitting the side surface increases, and the amount of heat generation increases.
  • Patent Documents 1 and 2 Such a configuration for reducing heat generation at the distal end portion of the endoscope is proposed in, for example, Patent Documents 1 and 2.
  • a rod rod is used as the illumination lens. This increases the lens diameter at the tip.
  • the lens surface on the exit side of the illumination lens has a shape having positive power, that is, a shape having a convex surface facing the object side.
  • Patent Document 1 has a disadvantage that the cost increases because a rod is used.
  • Patent Document 2 since the exit side surface of the illumination lens has a convex shape, foreign matter is likely to be attached, and removal of the attached foreign matter is difficult. Further, if the exit side of the illumination lens is convex, the tip of the lens is easily damaged. Therefore, there is a problem that the illumination light is scattered and absorbed by the scratch, thereby causing a loss of the illumination light and leading to heat generation at the tip.
  • the aspect ratio of the monitor screen has become the mainstream of 16: 9 landscape.
  • the screen shape of the endoscope displayed on the monitor is also 16: 9 or a horizontally long shape close thereto.
  • the endoscope screen is horizontally long, the difference between the vertical and horizontal angles of view increases.
  • the vertical angle of view which is the short side
  • the horizontal angle of view becomes wider than before.
  • the brightness of the entire screen needs to be uniform to some extent in order to observe without oversight with an endoscope.
  • the same illumination system having a conventional aspect ratio of 4: 3 is applied to an observation system with a horizontally long screen, the peripheral part in the horizontal direction with a wide angle of view becomes dark, which hinders observation.
  • Patent Documents 3 and 4 Such a configuration for appropriately illuminating a horizontally long region is proposed in Patent Documents 3 and 4, for example.
  • the illumination optical system for endoscopes of Patent Document 3 has two sets of illumination systems, and each decenters the illumination lens and the light guide in different directions. Thereby, a horizontally long light distribution characteristic is obtained.
  • the curvature radius of the illumination lens is anamorphic. Processing such a lens may be difficult and costly. Moreover, since it has an anamorphic shape, a structure for aligning the rotation direction when assembling the lens is required.
  • Patent Document 4 proposes a configuration in which the light guide has a different shape in order to make the imaging range of the observation optical system substantially coincide with the illumination range of the illumination optical system.
  • Patent Documents 3 and 4 make no mention of reducing the heat generation at the endoscope tip.
  • the present invention has been made in view of such problems, and an object thereof is to provide an endoscope in which heat generation at the distal end portion is reduced.
  • an endoscope includes: An imaging system and an illumination system;
  • the illumination system includes a light guide and at least one illumination lens,
  • the imaging system has an objective lens unit and an imaging device,
  • the direction along the long side of the image sensor is the first direction,
  • the illumination system is arranged at a position shifted in the second direction with respect to the imaging system, The following conditional expressions (1) and (2) are satisfied.
  • A H / V L H is a dimension corresponding to the first direction of the end surface of the light guide on the side of the illumination lens, L V, the dimensions corresponding to the second direction of the end face of the illumination lens side of the light guide, It is.
  • FIG. 1 It is a figure showing a schematic structure of an endoscope system which has an endoscope concerning an embodiment of the present invention. It is a figure showing the section composition of the tip part of the endoscope concerning a 1st embodiment of the present invention. It is a figure explaining the endoscope concerning a 1st embodiment of the present invention. It is a figure explaining the endoscope concerning a 2nd embodiment of the present invention. It is a figure explaining the endoscope concerning a 3rd embodiment of the present invention. It is a figure explaining the endoscope concerning a 4th embodiment of the present invention. It is a figure explaining the endoscope concerning a 5th embodiment of the present invention. It is a figure explaining the endoscope concerning a 6th embodiment of the present invention.
  • An endoscope includes: An imaging system and an illumination system;
  • the illumination system includes a light guide and at least one illumination lens,
  • the imaging system has an objective lens unit and an imaging device,
  • the direction along the long side of the image sensor is the first direction,
  • the illumination system is arranged at a position shifted in the second direction with respect to the imaging system, The following conditional expressions (1) and (2) are satisfied.
  • A H / V L H is a dimension corresponding to the first direction of the end surface of the light guide on the side of the illumination lens, L V, the dimensions corresponding to the second direction of the end face of the illumination lens side of the light guide, It is.
  • Conditional expression (1) defines an appropriate aspect ratio (aspect ratio) of the area of the image sensor corresponding to the display image range.
  • An image picked up by the image pickup device is displayed on the image display unit via the image processing unit.
  • An image displayed on the image display unit is referred to as a “display image”.
  • the following (1), (2), and (3) are mentioned.
  • (1) When an image obtained from the effective imaging area of the image sensor is displayed as it is on the image display unit, it is referred to as an “aspect ratio of the effective imaging area”.
  • H and V are described as parameters for defining the “screen aspect ratio”.
  • reference symbols H and V denote display images in the first direction (long side direction) and the second direction (short side direction), respectively.
  • the relative value (unit: none) of the area of the image sensor corresponding to the range is shown.
  • Conditional expression (2) defines an appropriate shape of the end surface of the light guide on the side of the illumination lens.
  • the second direction (short side direction) is larger than the first direction (long side direction) in the dimension of the light guide. Becomes smaller. For this reason, light does not enter the side surface of the illumination lens in the second direction (short-side direction).
  • tip part of an endoscope can be reduced.
  • the illumination system is preferably arranged at a position shifted in the second direction with respect to the imaging system. More preferably, the position of the illumination lens of the illumination system is shifted in the second direction with respect to the position of the objective lens unit of the imaging system. That is, when the endoscope is viewed from the distal direction, if the number of illumination systems is one set, the endoscope is disposed at one position in the second direction with respect to the imaging system. When the number of illumination systems is two sets, the illumination system includes a first position with respect to the imaging system and a second position on the opposite side with respect to the imaging system in the second direction. It is desirable that the illumination system is disposed only at any one of the positions, or the illumination system is disposed at both the first position and the second position.
  • the tip of the endoscope is generally composed of a frame made of a material such as metal. Since the illumination system is arranged in the second direction, which is the direction along the short side direction of the image display range, with respect to the imaging system, the thickness of the frame in the second direction is thinner than the illumination system. In this aspect, the heat generation in the second direction, which is the short side direction with respect to the screen of the imaging system, can be reduced. Therefore, with respect to the second direction, even if the frame is thin, the amount of heat generation is small, so the temperature does not rise easily, and as a result, the temperature rise on the outer surface of the endoscope can be reduced.
  • organs are often arranged in the lower direction of the screen and observed from obliquely upward.
  • the illumination system By disposing the illumination system with respect to the imaging system in the upward direction of the screen, for example, at the first position, the illumination system can be easily separated from the subject. As a result, insufficient brightness due to halation or dimming is less likely to occur.
  • L H is a dimension corresponding to the first direction of the end surface of the light guide on the side of the illumination lens
  • L V the dimensions corresponding to the second direction of the end face of the illumination lens side of the light guide
  • r H is the outer diameter dimension corresponding to the first direction of the illumination lens
  • r V is the outer diameter dimension corresponding to the second direction of the illumination lens
  • Conditional expression (3) defines an appropriate ratio of the difference between the outer diameter size of the illumination lens and the cross-sectional size of the light guide in the first direction and the second direction.
  • the conditional expression (3) is satisfied, the light incident on the side surface of the illumination lens can be reduced, and the heat generation amount can be effectively reduced.
  • the illumination lens is composed of a plurality of lenses, the outer dimension of the illumination lens is the outer dimension of the lens closest to the object (observed object).
  • L H is a dimension corresponding to the first direction of the end surface of the light guide on the side of the illumination lens
  • L V the dimensions corresponding to the second direction of the end face of the illumination lens side of the light guide
  • the light emitted from the periphery of the light guide has a direction toward the outer periphery of the light guide and a direction toward the center of the light guide.
  • the light beam directed toward the center of the light guide is refracted by the illumination lens to illuminate the vicinity of the center of the screen. For this reason, if the dimension in the second direction is too small, the amount of light in the central portion is reduced and the overall brightness is lowered. If the upper limit value of conditional expression (4) is exceeded, the central light quantity will be significantly reduced and the overall brightness will be reduced, degrading the observation performance.
  • FIG. 1 is a diagram showing a schematic configuration of an electronic endoscope system 10 having an endoscope according to an embodiment of the present invention.
  • the electronic endoscope system 10 includes an electronic endoscope 4 and an in vitro device 7.
  • the electronic endoscope 4 includes an insertion portion 3, an operation portion 2, a connection cord portion 5, and a connector portion 6.
  • the extracorporeal device 7 includes a power supply device, a video processor (not shown) that processes a video signal from the electronic endoscope 4, and a display unit 8 that monitors and displays the video signal from the video processor.
  • the insertion portion 3 is an elongated and flexible member that can be inserted into the body cavity of a patient, and the distal end portion is a rigid distal rigid portion 1.
  • a user (not shown) can perform various operations using an angle knob or the like provided in the operation unit 2.
  • connection cord portion 5 is extended from the operation portion 2.
  • the connection cord portion 5 is connected to the in vitro device 7 via the connector portion 6.
  • the connection cord unit 5 communicates a power supply voltage signal from a power supply device or a video processor, a drive signal from an image sensor, and the like to an imaging system (not shown) built in the distal end rigid unit 1 and from the imaging system.
  • the video signal is communicated to the video processor.
  • the video processor in the in-vitro device 7 can be connected to peripheral devices (not shown) such as a video printer and a recording device.
  • the video processor can perform predetermined signal processing on the video signal from the imaging system and display an endoscopic image on the display screen (monitor) of the display unit 8.
  • the electronic endoscope 4 of the present embodiment is not limited to the configuration in which the insertion portion 3 has flexibility.
  • a rigid endoscope in which the insertion portion 3 is not bent may be used.
  • FIG. 2 shows a cross-sectional configuration in the direction (z direction) along the optical axis of the distal end portion of the endoscope 100 according to the first embodiment.
  • This embodiment is an example suitable for a rigid endoscope, for example.
  • the endoscope 100 includes an imaging system 104 and an illumination system 103.
  • the present embodiment has two sets of illumination systems 103.
  • the first illumination system includes a light guide 102a and one illumination lens 101a.
  • the second illumination system includes a light guide 102b and one illumination lens 101b.
  • the imaging system 104 includes an objective lens unit LU and an imaging element 105.
  • the objective lens unit LU has four lenses LS1, LS2, LS3, and LS4.
  • the image sensor 105 is, for example, a CCD.
  • a signal for driving the image sensor 105 and a signal output from the image sensor 105 are input and output by a signal cable 106.
  • FIG. 3A shows a configuration of the endoscope 100 viewed from the distal direction (z direction).
  • FIG. 3B shows a configuration in which the light guide 102a and the illumination lens 101a are viewed from the front end direction (z direction).
  • FIGS. 3C and 3D respectively show cross-sectional configurations of the light guide 102a and the illumination lens 101a in two different directions along the central axis AX.
  • the endoscope 100 satisfies the following conditional expressions (1) and (2).
  • the direction along the long side of the image sensor 105 is the first direction
  • a direction along the short side of the image sensor 105 is defined as a second direction.
  • Dimensions L V is corresponding to the second direction of the end face of the illumination lens 101a (101b) side of the light guide 102a (102b) (y-direction), It is.
  • the area of the image sensor 105 corresponding to the display image range is rectangular.
  • the aspect ratio of the area of the image sensor 105 corresponding to the display image range satisfies the conditional expression (1). Thereby, it is possible to take an image of a horizontally long screen equivalent to the aspect ratio of the screen of the monitor which is the display unit 8 (FIG. 1).
  • the light guide 102a and the light guide 102b satisfy the conditional expression (2).
  • the end surfaces of the light guide 102a and the light guide 102b on the side of the illumination lens 101a and the illumination lens 101b are horizontally long.
  • FIG. 3E shows an observation area 107a and an illuminated area (range of light distribution characteristics) 108.
  • a horizontally elongated illumination range (range of light distribution characteristics) 108 can be obtained with respect to the horizontally long observation region 107a.
  • the dimensions H ′ and V ′ of the observation area 107a are approximately proportional to the relative dimensions H and V of the area of the image sensor 105 corresponding to the display image range.
  • the light A emitted from the light guide 102a (102b) in the second direction (y direction) may hit the side surface of the illumination lens 101a (101b), that is, the rim portion. Absent. Therefore, it is possible to reduce the generation of heat energy on the side surface of the illumination lens and prevent the temperature from rising.
  • the endoscope 100 is further described based on FIG.
  • the illumination lens 101a and the illumination lens 101b are each disposed at a position P1 shifted in the second direction (y direction) with respect to the imaging system 104. That is, the illumination lens 101a and the illumination lens 101b are a first position P1 with respect to the imaging system 104, and the first position P1 is a second position opposite to the imaging system 104 in the second direction (y direction). It is arranged only at one position P1 of P2 (not shown).
  • the two illumination lenses 101a and 101b are each arranged only at the first position P1. Since the first position P1 is the upward direction on the screen of the imaging system 104, the observation area can be illuminated from above the screen by this configuration.
  • the cross-sectional shape perpendicular to the central axis AX of the light guides 102a and 102b is an oval shape in which two portions in the second direction (y direction) are cut into a straight line out of a circular shape.
  • One of the cutting directions is opposed to the circumferential portion of the endoscope 100.
  • the illumination lenses 101a and 101b are plano-concave lenses having a circular outer diameter and a flat object side surface.
  • the concave surface has a rotationally symmetric shape.
  • two sets of illumination systems are arranged in the upper direction (second direction, y direction) of the screen of the imaging system 104.
  • the dimensions of the light guide are shorter in the short side direction (second direction, y direction) than in the long side direction (first direction, x direction). And small. Note that, in the cross section shown in FIG. 3 (d), a light ray hits the side surface of the illumination lens, as in the prior art.
  • light is not incident on the side surfaces of the illumination lenses 101a and 101b or the amount of incident light is small in a region of about 2/3 of the outer peripheral portion of the illumination lens in the short side direction (second direction, y direction). Because of the reduction, the amount of heat generated at the tip can be reduced.
  • the tip of the endoscope is made up of a metal frame. Since the illumination lens is disposed on the screen of the imaging system, the thickness of the metal frame in the upward direction of the illumination system is reduced. In the present embodiment, heat generation in the upper and lower directions (second direction) of the screen of the illumination system can be reduced. For this reason, it is difficult for the temperature of the metal frame to rise, and the temperature rise of the outer surface of the endoscope can be reduced.
  • an organ to be observed is often arranged in the lower direction of the screen and observed from an obliquely upward direction.
  • the illumination system 103 By disposing the illumination system 103 in the upward direction (first position P1) with respect to the imaging system, the illumination system 103 is often separated from the subject. Thereby, insufficient brightness due to halation or dimming can be prevented.
  • the illumination lens 101a and the illumination lens 101b are circular, workability is good.
  • the illumination lens 101a and the illumination lens 101b are made of sapphire. Thereby, autoclave (high temperature and high humidity sterilization) is possible.
  • the curved surface of the illumination lens is a rotationally symmetric spherical shape and the outer diameter is circular, processing is possible even with a hard glass material such as sapphire.
  • the first illumination system includes an illumination lens 101a and a light guide 102a.
  • the second illumination system includes an illumination lens 101b and a light guide 102b. Since the dimensions of the illumination lens 101a and the illumination lens 101b in the first direction and the second direction are the same, they are described as outer diameter dimensions.
  • FIG. 4 shows a cross-sectional configuration viewed from the direction (z direction) along the optical axis of the distal end portion of the endoscope 200 according to the second embodiment.
  • This embodiment is an example suitable for an endoscope having flexibility.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the endoscope 200 includes an imaging system 104 and an illumination system 103 (see FIG. 2).
  • the present embodiment has two sets of illumination systems 103.
  • the first illumination system includes a light guide 202a and one illumination lens 201a.
  • the second illumination system includes a light guide 202b and one illumination lens 201b.
  • the imaging system 104 includes an objective lens unit LU (see FIG. 2) and an imaging element 105.
  • the treatment instrument insertion channel passes through the endoscope from the distal end rigid portion 1 to the operation portion 2.
  • FIG. 4A shows a configuration of the endoscope 200 viewed from the distal direction (z direction).
  • FIG. 4B shows a configuration in which the light guide 202a and the illumination lens 201a are viewed from the front end direction (z direction).
  • 4C and 4D show cross-sectional configurations in two different directions along the central axis AX, respectively, for the light guide 202a and the illumination lens 201a.
  • the light guide 202a and the light guide 202b satisfy the conditional expression (2).
  • the shape of the end surface of each of the light guide 202a and the light guide 202b on the side of the illumination lens 201a and the illumination lens 201b is a horizontally long rectangular shape.
  • the endoscope 200 will be further described.
  • there are two sets of illumination systems a first illumination system and a second illumination system.
  • the illumination lens 201a and the illumination lens 201b are disposed at positions shifted in the second direction (y direction) with respect to the imaging system 104.
  • the illumination lens 201a and the illumination lens 201b are a first position P1 with respect to the imaging system 104, and a second position opposite to the imaging system 104 in the second direction (y direction) from the first position P1. It is arranged at both positions P1 and P2 of P2 (not shown).
  • the illumination lens 101a and the illumination lens 101b are disposed at the first position P1 and the second position P2, respectively. With this configuration, when observing, the observation area can be illuminated from above and below the screen.
  • the shape of the cross section perpendicular to the central axis AX of the light guides 202a and 202b is a rectangular shape.
  • the outer diameters of the illumination lenses 201a and 201b are circular.
  • the object side surfaces of the illumination lenses 201a and 201b are planoconvex lenses.
  • the convex surface has a rotationally symmetric shape.
  • the distal end layout of the endoscope 200 is such that the illumination system includes the first illumination system and the second illumination system in the upper and lower screen directions (second direction, y direction) of the imaging system 104. 2 sets are arranged.
  • the dimension of the light guide is smaller in the short side direction (second direction, y direction) than in the long side direction (first direction, x direction). For this reason, light does not enter the side surfaces of the illumination lens 201a and the illumination lens 201b. As a result, the calorific value can be reduced.
  • a light ray hits the side surface of the illumination lens, as in the prior art.
  • the distal end portion of the endoscope is composed of a metal frame. Since the illumination lens is arranged in the upper and lower directions (second direction, y direction) of the screen of the imaging system, the thickness of the metal frame in the upper direction of the illumination lens 201a and the lower direction of the illumination lens 201b is reduced. In the present embodiment, heat generation in the upper and lower directions of the illumination system can be reduced. For this reason, it is difficult for the temperature of the metal frame to rise, and the temperature rise of the outer surface of the endoscope can be reduced. Although heat is generated in the left and right directions (first direction, x direction) of the screen, the metal frame is thick, so that the temperature is not easily transmitted to the outside, which is not a problem.
  • the first illumination system includes an illumination lens 201a and a light guide 202a.
  • the second illumination system includes an illumination lens 201b and a light guide 202b. Since the dimensions of the illumination lens 201a and the illumination lens 201b in the first direction and the second direction are the same, they are described as outer diameter dimensions.
  • FIG. 5 shows a cross-sectional configuration as viewed from the direction (z direction) along the optical axis of the distal end portion of the endoscope 300 according to the third embodiment.
  • This embodiment is an example suitable for an endoscope having flexibility.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the endoscope 300 includes an imaging system 104 and an illumination system 103 (see FIG. 2).
  • the present embodiment has two sets of illumination systems 103.
  • the first illumination system includes a light guide 302a and an illumination lens 301a including three lenses.
  • the second illumination system includes a light guide 302b and an illumination lens 301b including three lenses. Note that the configuration of the illumination lens 301b including the three lenses is the same as that of the illumination lens 301a, and is not shown in the figure because it overlaps.
  • the imaging system 104 includes an objective lens unit LU (see FIG. 2) and an imaging element 105.
  • the treatment instrument insertion channel is an endoscope from the distal end rigid portion 1 to the operation portion 2, and an air / water feeding tube is disposed from the distal end rigid portion 1 to the connector portion 6. Is inserted.
  • FIG. 5A shows a configuration of the endoscope 300 viewed from the distal direction (z direction).
  • FIG. 5B shows a configuration in which the light guide 302a and the illumination lens 301a are viewed from the front end direction (z direction).
  • FIGS. 5D and 5E respectively show cross-sectional configurations of the light guide 302a and the illumination lens 301a in two different directions along the central axis AX.
  • the light guide 302a satisfies the conditional expression (2).
  • the shape of the end surface of the light guide 302a on the side of the illumination lens 301a is a horizontally long shape.
  • the shape of the light guide 302b on the side of the illumination lens 301b is a circular shape.
  • the endoscope 300 has a nozzle 303 for air supply / water supply.
  • the endoscope 300 will be further described based on FIG.
  • there are two sets of illumination systems a first illumination system and a second illumination system.
  • the illumination lens 301a is disposed at a position P2 shifted in the second direction (y direction) with respect to the imaging system 104.
  • the shape of the cross section perpendicular to the central axis AX of the light guide 302a is an oval shape in which two places in the second direction (y direction) are cut into a straight line out of a circular shape. One of the cutting directions is opposed to the circumference of the endoscope 300.
  • the illumination lens 301a and the illumination lens 301b each have a circular outer diameter.
  • the illumination lens 301a is composed of three lenses in order from the object side: a plano-convex positive lens, a biconvex positive lens, and a convex plano-positive lens.
  • the convex surface has a rotationally symmetric shape.
  • the illumination lens 301b also has the same lens configuration as the illumination lens 301a.
  • the first illumination system including the light guide 302a is arranged in the lower screen direction of the imaging system 104, and the second layout including the light guide 302b in the left direction of the screen.
  • An illumination system is arranged.
  • the dimension of the light guide 302a is smaller in the short side direction (second direction, y direction) than in the long side direction (first direction, x direction). For this reason, light does not enter the side surface of the illumination lens 301a. As a result, the amount of heat generated in this direction can be reduced.
  • the light ray strikes the side surface of the illumination lens, as in the prior art.
  • the distal end portion of the endoscope is composed of a metal frame. Since the illumination lens 301a is arranged in the lower direction of the screen of the imaging system, the thickness of the metal frame in the lower direction of the illumination system is reduced. In this aspect, the heat generation in the screen vertical direction (second direction) of the illumination system can be reduced. For this reason, it is difficult for the temperature of the metal frame to rise, and the temperature rise of the outer surface of the endoscope can be reduced. Although heat is generated in the left-right direction of the screen (first direction, x-direction), there is no problem because the metal frame is thick and the temperature is not easily transmitted to the outside.
  • the short side direction (second direction, y direction) in the cross section of the light guide 302a tip are smaller than the dimensions in the long side direction (first direction, x direction).
  • the light guide 302a having a larger diameter has a higher influence on heat generation than the diameter of the light guide 302b. For this reason, heat generation can be effectively reduced by making the diameter of the light guide 302a oval.
  • the cross-sectional shape of the light guide 302b having a small number of optical fibers is circular. Since the diameter of the light guide 302b is small, the amount of heat generated is also small.
  • the first illumination system includes an illumination lens 301a and a light guide 302a.
  • the second illumination system includes an illumination lens 301b and a light guide 302b. Since the dimensions of the illumination lens 301a and the illumination lens 301b in the first direction and the second direction are the same, they are described as outer diameter dimensions.
  • FIG. 6 shows a cross-sectional configuration as viewed from the direction (z direction) along the optical axis of the distal end portion of the endoscope 400 according to the fourth embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the endoscope 400 includes an imaging system 104 and an illumination system 103 (see FIG. 2).
  • the present embodiment has two sets of illumination systems 103.
  • the first illumination system includes a light guide 402a and an illumination lens 401a including three lenses.
  • the second illumination system includes a light guide 402b and an illumination lens 401b including three lenses.
  • FIG. 6A shows a configuration of the endoscope 400 viewed from the distal direction (z direction).
  • FIG. 6B shows a configuration in which the light guide 402a and the illumination lens 401a are viewed from the front end direction (z direction).
  • FIG. 6C shows a configuration in which the light guide 402b and the illumination lens 401b are viewed from the front end direction (z direction).
  • 6D and 6E show cross-sectional configurations of the light guide 402a and the illumination lens 401a in two different directions along the central axis AX.
  • the light guide 402a and the light guide 402b satisfy the conditional expression (2).
  • the shape of the end surface of each of the light guide 402a and the light guide 402b on the side of the illumination lens 401a and the illumination lens 401b is a so-called D-cut shape in which a part of the circle is notched.
  • the cutting direction is opposed to the circumference of the endoscope 400.
  • the endoscope 400 of the present embodiment has a nozzle 303 for air supply / water supply.
  • the endoscope 400 will be further described based on FIG.
  • there are two sets of illumination systems a first illumination system and a second illumination system.
  • the illumination lens 401a and the illumination lens 401b are disposed at positions P2 and P1 that are shifted in the second direction (y direction) with respect to the imaging system 104, respectively. That is, the illumination lens 401 a and the illumination lens 401 b are on the opposite side with respect to the imaging system 104 in the first position P 1 (not shown) with respect to the imaging system 104 and the first position P 1 in the second direction (y direction). They are arranged at both positions P1 and P2 of the second position P2 (not shown).
  • the shape of the cross section perpendicular to the central axis AX of the light guide 402a is a D-cut shape in which the lower direction is cut linearly with respect to the screen of the imaging system in the second direction (y direction) out of the circular shape.
  • the shape of the cross section perpendicular to the central axis AX of the light guide 402b is a D-cut shape in which the upper direction is linearly cut with respect to the screen of the imaging system in the second direction (y direction) among the circular shapes.
  • the configuration is advantageous in terms of brightness because heat generation can be reduced and a decrease in the overall light amount can be reduced.
  • the illumination lens 401a and the illumination lens 401b each have a circular outer diameter.
  • the illumination lens 401a is composed of three lenses in order from the object side: a plano-convex positive lens, a biconvex positive lens, and a convex plano-positive lens.
  • the convex surface has a rotationally symmetric shape.
  • the illumination lens 401b also has the same lens configuration as the illumination lens 401a.
  • two sets of illumination systems are arranged in the upper and lower directions (second direction, y direction) of the imaging system 104.
  • the dimension of the light guide 402a is smaller in the short side direction (second direction, y direction) than in the long side direction (first direction, x direction). For this reason, light does not enter the lower side of FIG. 6D among the side surfaces of the illumination lens 401a. As a result, the calorific value can be reduced.
  • the light ray hits the side surface of the illumination lens 401a as in the prior art.
  • the distal end portion of the endoscope is composed of a metal frame. Since the illumination lens is arranged on the screen of the imaging system, the thickness of the metal frame on the lower side of the illumination lens 401a and the upper side of the illumination lens 401b is reduced. In the illumination system of this embodiment, heat generation on the lower side of the illumination lens 401a and the upper side (second direction) of the illumination lens 401b can be reduced with the screen as a reference. For this reason, it is difficult for the temperature of the metal frame to rise, and the temperature rise of the outer surface of the endoscope can be reduced. In addition, although there is heat generation on the left / right direction (first direction, x direction) of the screen and the lens side on the side where the light guide is not D-cut, the temperature is difficult to be transmitted to the outside because the metal frame is thick. Must not.
  • the cross-sectional shape of the light guides 402a and 402b is a rectangular shape, a shape obtained by cutting the top and bottom of a circular shape, or a shape obtained by cutting one side, a horizontally long ellipse Any shape such as a shape or a horizontally long polygon may be used.
  • the outer diameter shape of the illumination lens can also be an elliptical shape or a rectangular shape in accordance with the cross-sectional layout of the endoscope 400.
  • the first illumination system includes an illumination lens 401a and a light guide 402a.
  • the second illumination system includes an illumination lens 401b and a light guide 402b. Since the dimensions of the illumination lens 401a and the illumination lens 401b in the first direction and the second direction are the same, they are described as outer diameter dimensions.
  • FIG. 7 shows a cross-sectional configuration viewed from the direction (z direction) along the optical axis of the distal end portion of the endoscope 500 according to the fifth embodiment.
  • this is an example suitable for a flexible endoscope.
  • the same parts as those in the fourth embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the light guide 502b is formed by cutting two portions facing the outer peripheral direction of the distal end of the endoscope 500 obliquely.
  • FIG. 7B shows the cross-sectional shape of the end face of the light guide 502b.
  • the endoscope 500 has the same configuration as the endoscope 400 of the fourth embodiment except that the shape of the light guide 502b is different.
  • the light guide 502b cuts a portion facing the outer peripheral direction of the distal end of the endoscope 500 obliquely. For this reason, the heat generation amount in the outer diameter direction is reduced, and the temperature rise at the distal end portion of the endoscope 500 can be further reduced.
  • the upper direction (second direction, y direction) is not cut with respect to the screen of the light guide 402a of the first illumination system. For this reason, the illumination light from the light guide 402a is illuminated in the upward direction (second direction, y direction) with respect to the screen. For this reason, the light distribution characteristics of the present embodiment can be obtained with no hindrance during observation with an endoscope.
  • the second illumination system includes an illumination lens 501b and a light guide 502b. Since the dimensions of the illumination lens 501b in the first direction and the second direction are the same, they are described as outer diameter dimensions.
  • FIG. 8 shows a cross-sectional configuration viewed from the direction (z direction) along the optical axis of the distal end portion of the endoscope 600 according to the sixth embodiment.
  • this is an example suitable for a flexible endoscope.
  • the same parts as those in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the endoscope 600 includes an imaging system 104 and an illumination system 103 (FIG. 2). This embodiment has one set of illumination systems 103.
  • One set of illumination systems includes a light guide 602 and one illumination lens 601.
  • the cross-sectional shape perpendicular to the central axis AX of the light guide 602 is an oval shape in which two locations in the second direction (y direction) are cut into a straight line out of a circular shape.
  • One of the cutting directions faces the circumferential portion of the endoscope 600.
  • the illumination lens 601 is a plano-convex lens having a circular outer diameter and a flat object side surface.
  • the convex surface has a rotationally symmetric shape.
  • the light guide 601 cuts a portion of the distal end of the endoscope 600 facing the outer periphery in a straight line. For this reason, the heat generation amount in the outer diameter direction is reduced, and the temperature rise at the distal end portion of the endoscope 600 can be reduced.
  • the metal frame is thick, so that it is difficult to transmit the temperature to the outside of the scope.
  • the number of illumination systems is one set or two sets.
  • the present invention is not limited to this, and the number of illumination systems may be three sets or more.
  • the present invention is useful for an endoscope in which heat generation at the distal end portion is reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

先端部における発熱を低減した内視鏡を提供する。撮像系(104)と、照明系(103)と、を有し、照明系(103)は、ライトガイド(102a、102b)と、少なくとも1つ以上の照明レンズ(101a、101b)と、を有し、撮像系(104)は、対物レンズユニット(LU)と、撮像素子(105)と、を有し、撮像素子(105)の長辺に沿った方向を第1方向とし、撮像素子(105)の短辺に沿った方向を第2方向としたとき、照明系(103)は、撮像系(104)に対して第2方向にシフトした位置に配置されており、条件式(1)、(2)を満足する。1.35<A (1)1<LH/LV (2)ここで、Aは、表示画像範囲に対応する撮像素子の領域のアスペクト比、LH は、ライトガイド(102a、102b)の照明レンズ(101a、101b)側の端面の第1方向に対応する寸法、LV は、ライトガイド(102a、102b)の照明レンズ(101a、101b)側の端面の第2方向に対応する寸法、である。

Description

内視鏡
 本発明は、内視鏡に関する。
 内視鏡は、医療用分野及び工業用分野で広く使用されている装置である。医療用分野においては、体腔内に挿入された内視鏡により、体腔内の様々な部位の画像が得られる。この画像を用いて観察部位の診断が行われる。このように、内視鏡は、体腔内の様々な部位の観察と診断に利用されている。
 医療用の内視鏡は、近年は電子内視鏡が主流となっており、体内に挿入される挿入部の先端に撮像系と照明系とが内蔵されている。撮像系は、照明された被観察部位の画像情報を映像信号として取り出し、モニターにその画像を表示する。照明系は、観察範囲を照明する。
 挿入部には、先端部から基端部へと貫通する内部空間にライトガイドが収容されている。ライトガイドは、例えば多数の光ファイバを束状にして構成されている。外部の光源装置から、ライトガイドの一端(入射端)に照明光を入射し、その照明光を先端部へと導いて、ライトガイドの他端(射出端)から射出する。射出端からの照明光は、照明光学系を通して被観察部位に向けて照射される。
 医療用の内視鏡は、体内で使用されるため、挿入部の外表面の温度が高くならない構成にする必要がある。内視鏡の先端部を構成する要素のうち、先端部分の発熱に寄与するものとして、撮像素子と、照明系とを挙げることができる。
 撮像素子に関しては、近年、多画素化・高速処理のために消費電力が増大し、温度上昇にともなう先端部での発熱も大きくなってきている。照明系は、被写体の観察範囲を均一な照度で照明するため、ライトガイドの射出端側に、光束を広げる照明レンズを配置している。
 ライトガイドから射出する光は、ライトガイドの材質に応じて決まるNA(開口数)を有する。ライトガイドから射出する光は照明レンズの曲率半径に応じて屈折するので、ライトガイド外周部から射出する光のうち角度が大きい光線は照明レンズの側面(縁肉部)に入射する。照明レンズの側面が砂目状に加工されている場合、光線は、照明レンズの側面において散乱及び吸収される。吸収された光線は、エネルギーとして温度上昇に寄与する。照明レンズの側面が鏡面に加工されている場合、光線はレンズの枠で散乱及び吸収されるため、同様に温度上昇に寄与する。配光を広げるために照明レンズの曲率半径を小さくすると、側面に当たる光量が増えるため、発熱量が増加する。
 このような、内視鏡の先端部における発熱を低減するための構成が、例えば、特許文献1、2に提案されている。特許文献1の構成では、照明レンズとしてロッド棒を用いている。これにより、先端部のレンズ径を大きくしている。
 また、特許文献2の構成では、照明レンズの射出側のレンズ面を、正パワーを有する形状、即ち物体側に凸面を向けた形状としている。
 特許文献1の構成は、ロッド棒を用いているため、コストが高くなってしまうという不具合がある。特許文献2の構成では、照明レンズの射出側面が凸形状であるため、異物が付着しやすく、付着した異物の除去も困難である。また、照明レンズの射出側面を凸面にすると、レンズの先端部に傷が付きやすくなる。そのため、傷により照明光が散乱・吸収されることで、照明光の損失が生ずると共に、先端部での発熱につながってしまうという不具合がある。
 このように、特許文献1、2の構成では、発熱を低減しようとするとき、種々の不具合を生じてしまう。
 また、近年フルハイビジョンの普及によりモニター画面のアスペクト比は、16:9の横長が主流となっている。このため、モニター上に表示する内視鏡の画面形状も16:9もしくはそれに近い横長になってきている。内視鏡の画面形状が横長になると、縦方向と横方向の画角の違いが大きくなる。
 そのため、従来機種で観察できていた範囲が観察できるように、短辺である縦方向の画角を同等にすると、横方向の画角は今までよりも広くなる。
 一方、内視鏡では見落としなく観察するためには画面全体の明るさがある程度均一になっている必要がある。しかしながら、横長画面の観察系に対して、従来のアスペクト比4:3と同じ照明系を適用してしまうと、画角が広い横方向の周辺部が暗くなり観察に支障をきたしてしまう。
 周辺部の明るさを適切にするために、調光により全体の明るさを高くすると、今度は中心部分が明るすぎて、やはり観察に支障をきたしてしまう。
 そのため、画面アスペクト比が横長の内視鏡では、横方向の画角に応じて配光を広くする必要がある。
 このような、横長の領域を適切に照明する構成は、例えば、特許文献3、4に提案されている。特許文献3の内視鏡用の照明光学系は、2セットの照明系を有し、それぞれ別方向に照明レンズとライトガイドを偏心させる。これにより、横長形状の配光特性を得ている。
 また、特許文献3の別の構成では、照明レンズの曲率半径をアナモルフィックにしている。このような形状のレンズの加工は、困難でコストが高くなる場合がある。また、アナモルフィックな形状であるため、レンズ組立て時に回転方向を合わせるための構造が必要となる。
 特許文献4は、観察光学系の撮像範囲と照明光学系の照明範囲とをほぼ一致させるため、ライトガイドを異型にする構成が提案されている。
 特許文献3、4において、内視鏡先端部の発熱を低減することに関しては、全く言及されていない。
特開2012-200480号公報 特開2011-215425号公報 特開平11-326786号公報 特開平8-254659号公報
 本発明は、このような問題点に鑑みてなされたものであり、先端部における発熱を低減した内視鏡を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る内視鏡は、
 撮像系と、照明系と、を有し、
 照明系は、ライトガイドと、少なくとも1つ以上の照明レンズと、を有し、
 撮像系は、対物レンズユニットと、撮像素子と、を有し、
 撮像素子の長辺に沿った方向を第1方向とし、
 撮像素子の短辺に沿った方向を第2方向としたとき、
 照明系は、撮像系に対して第2方向にシフトした位置に配置されており、
 以下の条件式(1)、(2)を満足することを特徴とする。
  1.35<A   (1)
  1<LH/LV   (2)
 ここで、
 Aは、表示画像範囲に対応する撮像素子の領域のアスペクト比を、長辺:短辺=H:Vとしたとき、以下の式で計算される値、
 A=H/V
 LHは、ライトガイドの照明レンズ側の端面の第1方向に対応する寸法、
 LVは、ライトガイドの照明レンズ側の端面の第2方向に対応する寸法、
である。
 本発明によれば、先端部における発熱を低減した内視鏡を提供できるという効果を奏する。
本発明の実施形態に係る内視鏡を有する内視鏡システムの概略構成を示す図である。 本発明の第1実施形態に係る内視鏡の先端部の断面構成を示す図である。 本発明の第1実施形態に係る内視鏡を説明する図である。 本発明の第2実施形態に係る内視鏡を説明する図である。 本発明の第3実施形態に係る内視鏡を説明する図である。 本発明の第4実施形態に係る内視鏡を説明する図である。 本発明の第5実施形態に係る内視鏡を説明する図である。 本発明の第6実施形態に係る内視鏡を説明する図である。
 以下、実施形態に係る内視鏡について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
 本発明の一態様に係る内視鏡は、
 撮像系と、照明系と、を有し、
 照明系は、ライトガイドと、少なくとも1つ以上の照明レンズと、を有し、
 撮像系は、対物レンズユニットと、撮像素子と、を有し、
 撮像素子の長辺に沿った方向を第1方向とし、
 撮像素子の短辺に沿った方向を第2方向としたとき、
 照明系は、撮像系に対して第2方向にシフトした位置に配置されており、
 以下の条件式(1)、(2)を満足することを特徴とする。
  1.35<A   (1)
  1<LH/LV   (2)
 ここで、
 Aは、表示画像範囲に対応する撮像素子の領域のアスペクト比を、長辺:短辺=H:Vとしたとき、以下の式で計算される値、
 A=H/V
 LHは、ライトガイドの照明レンズ側の端面の第1方向に対応する寸法、
 LVは、ライトガイドの照明レンズ側の端面の第2方向に対応する寸法、
である。
 条件式(1)は、表示画像範囲に対応する撮像素子の領域の適切なアスペクト比(横縦比)を規定している。
 撮像素子により撮像された画像は、画像処理部を介して、画像表示ユニットに表示される。画像表示ユニットに表示される画像を「表示画像」という。
 「表示画像範囲に対応する撮像素子の領域のアスペクト比」とは、長辺:短辺=H:Vとしたとき、A=H/Vで計算される値をいう。具体的には、以下の(1)、(2)、(3)をいう。
 (1)撮像素子の実効撮像領域から得られた画像を、そのまま画像表示ユニットに表示する場合は、「実効撮像領域のアスペクト比」をいう。
 (2)撮像素子の実効撮像領域から、電気的に矩形形状の画像を取り出す構成の場合、取り出された領域からの画像を、画像表示ユニットに表示する場合は、「取り出された画像領域のアスペクト比」をいう。
 (3)撮像素子の実効撮像領域に、開口部を有するマスク部材を配置することにより受光領域を制限する構成の場合、制限された領域からの画像を、画像表示ユニットに表示する場合は、「制限された領域のアスペクト比」をいう。
 条件式(1)を満足することで、観察者はモニターの画面に対して全領域もしくはそれに近い広いエリアに表示した画面を見ることができる。
 なお、後述する各実施形態の諸元値において、「画面アスペクト比」を規定するパラメータとして、H、Vの値を記載している。第1実施形態から第6実施形態の諸元値及び図3~8において、参照符号H、Vは、それぞれ第1方向(長辺方向)と第2方向(短辺方向)とにおける、表示画像範囲に対応する撮像素子の領域の相対的な値(単位:無し)を示している。
 条件式(2)は、ライトガイドの照明レンズ側の端面の適切な形状を規定している。条件式(2)を満足することで、ライトガイドの中心軸に垂直な断面形状において、第2方向(短辺方向)は、第1方向(長辺方向)に比較して、ライトガイドの寸法が小さくなる。このため、第2方向(短辺方向)において照明レンズの側面に光線は入射しない。この結果、例えば、照明レンズの外周部のうち、ライトガイドの第2方向(短辺方向)を含む約2/3の領域では、側面に光線を入射させないこと、または、入射光量を低減することができる。このため、内視鏡の先端部における発熱を低減できる。
 また、照明系は、撮像系に対して第2方向にシフトした位置に配置されていることが望ましい。
 より好ましくは、照明系の照明レンズの位置は、撮像系の対物レンズユニットの位置に関して、第2方向へシフトしている、換言すると、ずれていることが望ましい。
 すなわち、内視鏡を先端方向から見たとき、照明系の数が1セットであれば、撮像系に対して第2方向のいずれか一方の位置に配置されている。また、照明系の数が2セットの場合には、照明系は、撮像系に関して第1の位置と、第2方向において第1の位置とは撮像系に関して反対側の第2の位置とのうちの何れか一方の位置のみに配置されていること、または、照明系は、第1の位置と第2の位置との両方の位置に配置されていることが望ましい。
 内視鏡の先端部は、一般的に金属などの材質でできた枠で構成されている。照明系は撮像系に対して、画像表示範囲の短辺方向に沿った方向である第2方向に配置されるため、照明系に対して第2方向の枠の厚さが薄くなる。本態様では、撮像系の画面に対して短辺方向である第2方向の発熱を小さくできる。そのため、第2方向に関して、枠が薄くても発熱量が小さいため温度が上がりにくく、結果として内視鏡の外表面の温度上昇を低減できる。
 また、内視鏡では、臓器を画面の下方向に配置し、斜め上方向から観察することが多い。照明系を撮像系に対して、画面の上方向、例えば第1の位置に配置することで、照明系が被写体から離れやすくなる。これにより、ハレーションや調光による明るさ不足が生じにくくなる。
 また、本発明の好ましい態様によれば、
 以下の条件式(3)を満足することが望ましい。
  1.5<(rV-LV)/(rH-LH)   (3)
 ここで、
 LHは、ライトガイドの照明レンズ側の端面の第1方向に対応する寸法、
 LVは、ライトガイドの照明レンズ側の端面の第2方向に対応する寸法、
 rHは、照明レンズの第1方向に対応する外径寸法、
 rVは、照明レンズの第2方向に対応する外径寸法、
である。
 条件式(3)は、照明レンズの外径寸法とライトガイドの断面寸法との差の、第1方向と第2方向の適切な比を規定している。条件式(3)を満足すると、照明レンズの側面に入射する光を低減でき、発熱量を効果的に低減できる。
 照明レンズが複数のレンズで構成されている場合、照明レンズの外形寸法は、最も物体(被観察物)側のレンズの外形寸法をいう。
 また、本発明の好ましい態様によれば、
 以下の条件式(4)を満足することが望ましい。
  1<LH/LV<1.5   (4)
 ここで、
 LHは、ライトガイドの照明レンズ側の端面の第1方向に対応する寸法、
 LVは、ライトガイドの照明レンズ側の端面の第2方向に対応する寸法、
である。
 ライトガイドの周辺部から射出する光線には、ライトガイドの外周側に向かう方向とライトガイドの中心方向に向かう方向がある。このうち、ライトガイドの中心方向に向かう光線は、照明レンズにより屈折し、画面の中心付近を照明する。そのため、第2方向の寸法を小さくしすぎると、中心部分の光量が減少してしまい、全体の明るさが低下してしまう。条件式(4)の上限値を上回ると、中心光量の低下が著しくなり、全体の明るさが低下するため、観察性能を劣化させてしまう。
(全体システム説明)
 図1は、本発明の実施形態に係る内視鏡を有する電子内視鏡システム10の概略構成を示す図である。電子内視鏡システム10は、電子内視鏡4と生体外装置7とから構成されている。電子内視鏡4は、挿入部3、操作部2、接続コード部5及びコネクタ部6を有する。また、生体外装置7は、電源装置と、電子内視鏡4からの映像信号を処理するビデオプロセッサ(不図示)と、ビデオプロセッサからの映像信号をモニター表示する表示ユニット8とを有する。
 挿入部3は、細長で患者の体腔内へ挿入可能な可撓性を有する部材で構成されており、先端部は硬性の先端硬性部1となっている。使用者(不図示)は、操作部2に設けられているアングルノブ等により、諸操作を行うことができる。
 また、操作部2からは、接続コード部5が延設されている。接続コード部5は、コネクタ部6を介して生体外装置7に接続されている。
 また、接続コード部5は、電源装置やビデオプロセッサからの電源電圧信号及び撮像素子からの駆動信号等を先端硬性部1に内蔵される撮像系(不図示)に通信すると共に、撮像系からの映像信号をビデオプロセッサに通信する。なお、生体外装置7内のビデオプロセッサは、図示しないビデオプリンタ、記録装置等の周辺機器に接続可能である。ビデオプロセッサは、撮像系からの映像信号に対して所定の信号処理を施して、表示ユニット8の表示画面(モニター)上に内視鏡画像を表示できる。
 また、本実施形態の電子内視鏡4は、挿入部3が可撓性を有する構成に限られない。例えば、挿入部3が曲がらない硬性内視鏡でも良い。
(第1実施形態)
 図2は、第1実施形態に係る内視鏡100の先端部の光軸に沿った方向(z方向)における断面構成を示している。本実施形態は、例えば、硬性内視鏡に好適な例である。
 内視鏡100は、撮像系104と、照明系103と、を有する。
 本実施形態は、照明系103を2セット有する。第1照明系は、ライトガイド102aと1つの照明レンズ101aを有する。第2照明系は、ライトガイド102bと、1つの照明レンズ101bを有する。撮像系104は、対物レンズユニットLUと、撮像素子105と、を有する。対物レンズユニットLUは、4枚のレンズLS1、LS2、LS3、LS4を有する。
 撮像素子105は、例えば、CCDである。撮像素子105を駆動する信号及び撮像素子105から出力される信号は、信号ケーブル106により入出力される。
 図3(a)は、内視鏡100を先端方向(z方向)から見た構成を示している。図3(b)は、ライトガイド102aと照明レンズ101aとを先端方向(z方向)から見た構成を示している。図3(c)、(d)は、それぞれライトガイド102aと照明レンズ101aとを中心軸AXに沿った異なる2つの方向の断面構成を示している。
 内視鏡100は、以下の条件式(1)、(2)を満足する。
 ここで、
 撮像素子105の長辺に沿った方向を第1方向とし、 
 撮像素子105の短辺に沿った方向を第2方向とする。
  1.35<A   (1)
  1<LH/LV   (2)
 ここで、
 Aは、表示画像範囲に対応する撮像素子の領域のアスペクト比を、長辺:短辺=H:Vとしたとき、以下の式で計算される値、
 A=H/V
 LHは、ライトガイド102a(102b)の照明レンズ101a(101b)側の端面の第1方向(x方向)に対応する寸法、
 LVは、ライトガイド102a(102b)の照明レンズ101a(101b)側の端面の第2方向(y方向)に対応する寸法、
である。
 図3(a)に示すように、表示画像範囲に対応する撮像素子105の領域は、矩形形状である。そして、表示画像範囲に対応する撮像素子105の領域の横縦比は、条件式(1)を満足する。これにより、表示ユニット8(図1)であるモニターの画面の横縦比と同等の横長の画面の撮像を行うことができる。
 図3(b)に示すように、ライトガイド102a及びライトガイド102bは、条件式(2)を満足する。図示したようにライトガイド102a及びライトガイド102bの、それぞれの照明レンズ101a及び照明レンズ101b側の端面の形状は、横長となる。
 図3(e)は、観察領域107aと照明される範囲(配光特性の範囲)108とを示している。条件式(1)、(2)を満足することにより、横長に矩形の観察領域107aに対して、横長な形状の照明される範囲(配光特性の範囲)108を得ることができる。また、観察領域107aの寸法H´、V´は、表示画像範囲に対応する撮像素子105の領域の相対的な寸法H、Vに概略比例している。
 ここで、図3(c)に示すように、第2方向(y方向)にライトガイド102a(102b)から射出した光Aが、照明レンズ101a(101b)の側面、即ち縁肉部に当たることがない。従って、照明レンズ側面における熱エネルギーの発生を低減し、温度上昇を防止できる。
 図3(a)に基づいて、内視鏡100の説明をさらに行う。
 本実施形態では、上述したように、第1照明系と第2照明系との2セットの照明系を有する。
 内視鏡100を先端方向から見たとき、照明レンズ101a、照明レンズ101bは、それぞれ撮像系104に対して第2方向(y方向)にシフトした位置P1に配置されている。すなわち、照明レンズ101aと、照明レンズ101bとは、撮像系104に関して第1の位置P1と、第1の位置P1とは撮像系104に関して第2方向(y方向)において反対側の第2の位置P2(不図示)とのうちの何れか一方の位置P1のみに配置されている。
 このように、本実施形態では、2つの照明レンズ101a、照明レンズ101bは、それぞれ第1の位置P1のみに配置されている。第1の位置P1は、撮像系104の画面上での上方向であるため、この構成により、画面の上方向から観察領域を照明できる。
 ライトガイド102a、102bの中心軸AXに垂直な断面の形状は、円形状のうち、第2方向(y方向)の2ヶ所を直線状にカットした小判型である。そして、カットする方向の一方は、内視鏡100の円周部分に対向している。
 照明レンズ101a、101bは、外径は円形形状であり、物体側面は平面である平凹レンズである。ここで、凹面は回転対称な形状である。
 上述したように、本実施形態の内視鏡100の先端レイアウトは、撮像系104の画面の上方向(第2方向、y方向)に、照明系が2セット配置される。
 ここで、上述したように、図3(c)に示す断面では、ライトガイドの寸法が、短辺方向(第2方向、y方向)は、長辺方向(第1方向、x方向)に比較して小さい。
 なお、図3(d)に示す断面は、従来技術と同様に、照明レンズ側面に光線が当たる。
 本実施形態では、照明レンズの外周部のうち、短辺方向(第2方向、y方向)の約2/3の領域では、照明レンズ101a、101b側面に光線が入射しない、または、入射光量が低減するため、先端の発熱量を小さくできる。
 内視鏡の先端部は、金属枠で構成されている。照明レンズは撮像系の画面上方向に配置されるため、照明系の上方向の金属枠の厚さが薄くなる。本実施形態では、照明系の画面上・下方向(第2方向)の発熱を小さくできる。このため、金属枠の温度が上がりにくく、内視鏡の外表面の温度上昇を低減できる。
 また、内視鏡では、観察対象の臓器を画面下方向に配置し、斜め上方向から観察することが多い。照明系103を撮像系に対して上方向(第1の位置P1)に配置することで、照明系103が被写体から離れることが多くなる。これにより、ハレーションや調光による明るさ不足を防止できる。
 また、照明レンズ101a、照明レンズ101bは円形なので、加工性が良い。照明レンズ101a、照明レンズ101bはサファイアで構成している。これにより、オートクレーブ(高温高湿滅菌)が可能である。加えて、照明レンズの曲面が回転対称の球面形状、外径は円形状であるので、サファイアのように硬い硝材でも加工が可能である。
 上述したように、本実施形態では、画面の上・下方向(第2方向、y方向)の発熱量が少なくなるため、内視鏡の先端硬性部の側面の温度上昇を防止できる。ここで、画面の左・右方向(第1方向、x方向)の発熱は生ずるが、金属枠が厚いため、外側まで温度が伝わりにくいので問題ではない。
 以下に、本実施形態の諸元値、条件式対応値を示す。ここで、第1照明系は、照明レンズ101aとライトガイド102aとにより構成される。第2照明系は、照明レンズ101bとライトガイド102bとにより構成される。照明レンズ101a、照明レンズ101bの第1方向と第2方向の寸法は同じであるため、外径寸法として記載している。
(単位:mm)
 
 内視鏡先端外径   5.4
 
 撮像系
 対物レンズ径    2.5
 撮像素子画素数   約100万
 画面アスペクト比  H:V 16:10
 
 照明系
 第1照明系のライトガイド 第1方向の寸法 LH 0.77
              第2方向の寸法 LV 0.6
 第1照明レンズの外径寸法 r1H=r1V 1.1
 第1照明レンズの材質 サファイア
 
 第2照明系のライトガイド 第1方向の寸法 LH 0.77
              第2方向の寸法 LV 0.6
 第2照明レンズの外径寸法 r2H=r2V 1.1
 第2照明レンズの材質 サファイア
 
 レイアウト
 撮像系と第1照明系の中心間距離 2.2
 撮像系と第2照明系の中心間距離 2.2
 
(条件式対応値)
(1) A 1.60 
(2) 第1照明系: LH/LV 1.28 
    第2照明系: LH/LV 1.28 
(3) 第1照明系:(r1V-LV)/(r1H-LH) 1.52 
    第2照明系:(r2V-LV)/(r2H-LH) 1.52
 
(第2実施形態)
 図4は、第2実施形態に係る内視鏡200の先端部の光軸に沿った方向(z方向)から見た断面構成を示している。本実施形態は、可撓性を有する内視鏡に好適な例である。第1実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
 内視鏡200は、撮像系104と、照明系103(図2参照)と、を有する。
 本実施形態は、照明系103を2セット有する。第1照明系は、ライトガイド202aと1つの照明レンズ201aを有する。第2照明系は、ライトガイド202bと、1つの照明レンズ201bを有する。撮像系104は、対物レンズユニットLU(図2参照)と、撮像素子105と、を有する。また、図2には図示していないが、処置具挿入チャンネルが先端硬性部1から操作部2まで内視鏡を挿通している。
 図4(a)は、内視鏡200を先端方向(z方向)から見た構成を示している。図4(b)は、ライトガイド202aと照明レンズ201aとを先端方向(z方向)から見た構成を示している。図4(c)、(d)は、それぞれライトガイド202aと照明レンズ201aとを中心軸AXに沿った異なる2つの方向の断面構成を示している。
 図4(b)に示すように、ライトガイド202a及びライトガイド202bは、条件式(2)を満足する。これにより、ライトガイド202a及びライトガイド202bの、それぞれの照明レンズ201a及び照明レンズ201b側の端面の形状は、横長の矩形形状となる。
 図4(a)に基づいて、内視鏡200の説明をさらに行う。
 本実施形態では、第1照明系と第2照明系との2セットの照明系を有する。
 内視鏡200を先端方向から見たとき、照明レンズ201a、照明レンズ201bは撮像系104に対して第2方向(y方向)にシフトした位置に配置されている。すなわち、照明レンズ201aと、照明レンズ201bとは、撮像系104に関して第1の位置P1と、第1の位置P1とは第2方向(y方向)において撮像系104に関して反対側の第2の位置P2(不図示)とのうちの両方の位置P1、P2に配置されている。
 本実施形態では、上述したように2セットの照明系を有する。照明レンズ101aと照明レンズ101bは、それぞれ第1の位置P1と第2の位置P2に配置されている。この構成により、観察している時、画面の上方向と下方向とから観察領域を照明できる。
 ライトガイド202a、202bの中心軸AXに垂直な断面の形状は、矩形形状である。
 照明レンズ201a、201bの外径は円形形状である。照明レンズ201a、201bの物体側面は平凸レンズである。ここで、凸面は回転対称な形状である。
 上述したように、本実施形態の内視鏡200の先端レイアウトは、撮像系104の画面上・下方向(第2方向、y方向)に、照明系が第1照明系と第2照明系との2セット配置される。
 図4(c)に示す断面では、短辺方向(第2方向、y方向)は、ライトガイドの寸法が、長辺方向(第1方向、x方向)に比較して小さい。このため、照明レンズ201a、照明レンズ201bの側面に光線は入射しない。この結果、発熱量を低減できる。
 図4(d)に示す断面は、従来技術と同様に、照明レンズ側面に光線が当たる。
 内視鏡の先端部は、金属枠で構成されている。照明レンズは撮像系の画面上・下方向(第2方向、y方向)に配置されるため、照明レンズ201aの上方向及び照明レンズ201bの下方向の金属枠の厚さが薄くなる。本実施形態では、照明系の画面上・下方向の発熱を小さくできる。このため、金属枠の温度が上がりにくく、内視鏡の外表面の温度上昇を低減できる。
 なお、画面左・右方向(第1方向、x方向)の発熱はあるが、金属枠が厚いため、外側まで温度が伝わりにくいので問題とはならない。
 以下に、本実施形態の諸元値、条件式対応値を示す。ここで、第1照明系は、照明レンズ201aとライトガイド202aとにより構成される。第2照明系は、照明レンズ201bとライトガイド202bとにより構成される。照明レンズ201a、照明レンズ201bの第1方向と第2方向の寸法は同じであるため、外径寸法として記載している。
(単位:mm)
 
 内視鏡先端外径    5
 
 撮像系
 対物レンズ径     1.2
 撮像素子画素数    約50万
 画面アスペクト比 H:V 16:9 
 
 照明系
 第1照明系のライトガイド 第1方向の寸法 LH  0.8
              第2方向の寸法 LV  0.55
 第1照明レンズの外径寸法  r1H=r1V  1.1  
 第1照明レンズの材質 ガラス Nd=1.883  
 第2照明系のライトガイド 第1方向の寸法 LH  0.8
              第2方向の寸法 LV  0.55
 第2照明レンズの外径寸法 r2H=r2V 1.1
 第2照明レンズの材質 ガラス Nd=1.883
 
 レイアウト      
 撮像系と第1照明系の中心間距離  1.7
 撮像系と第2照明系の中心間距離  2.2
 
(条件式対応値)
(1) A 1.78
(2) 第1照明系:LH/LV  1.45
    第2照明系:LH/LV  1.45
(3) 第1照明系:(r1V-LV)/(r1H-LH) 1.83
    第2照明系:(r2V-LV)/(r2H-LH) 1.83
 
(第3実施形態)
 図5は、第3実施形態に係る内視鏡300の先端部の光軸に沿った方向(z方向)から見た断面構成を示している。本実施形態は、可撓性を有する内視鏡に好適な例である。第1実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
 内視鏡300は、撮像系104と、照明系103(図2参照)と、を有する。
 本実施形態は、照明系103を2セット有する。第1照明系は、ライトガイド302aと3つのレンズを備える照明レンズ301aを有する。第2照明系は、ライトガイド302bと、3つのレンズを備える照明レンズ301bを有する。なお、3つのレンズを備える照明レンズ301bの構成は、照明レンズ301aと同じであり、重複するため、図示は省略する。
 撮像系104は、対物レンズユニットLU(図2参照)と、撮像素子105と、を有する。また、図5(a)には図示していないが、処置具挿入チャンネルが先端硬性部1から操作部2まで、送気・送水用のチューブが先端硬性部1からコネクタ部6まで内視鏡を挿通している。
 図5(a)は、内視鏡300を先端方向(z方向)から見た構成を示している。図5(b)は、ライトガイド302aと照明レンズ301aとを先端方向(z方向)から見た構成を示している。図5(d)、(e)は、それぞれライトガイド302aと照明レンズ301aとを中心軸AXに沿った異なる2つの方向の断面構成を示している。
 図5(b)に示すように、ライトガイド302aは、条件式(2)を満足する。図示したように、ライトガイド302aの、照明レンズ301a側の端面の形状は、横長な形状となる。
 また、図5(c)に示すように、ライトガイド302bの照明レンズ301b側の形状は、円形形状である。
 また、内視鏡300は、送気・送水のためのノズル303を有する。
 図5(a)に基づいて、内視鏡300の説明をさらに行う。
 本実施形態では、第1照明系と第2照明系との2セットの照明系を有する。
 内視鏡300を先端方向から見たとき、照明レンズ301aは、撮像系104に対して第2方向(y方向)にシフトした位置P2に配置されている。
 ライトガイド302aの中心軸AXに垂直な断面の形状は、円形状のうち、第2方向(y方向)の2ヶ所を直線状にカットした小判型である。カットする方向の一方は、内視鏡300の円周に対向している。
 照明レンズ301a、照明レンズ301bは、それぞれ外径は円形形状である。照明レンズ301aは、物体側から順に、平凸正レンズと、両凸正レンズと、凸平正レンズとの3枚のレンズから構成される。ここで、凸面は回転対称な形状である。照明レンズ301bも照明レンズ301aと同じレンズ構成を有する。
 上述したように、本実施形態の内視鏡300の先端レイアウトは、撮像系104の画面下方向にライトガイド302aを含む第1照明系が配置され、画面左方向にライトガイド302bを含む第2照明系が配置される。
 ここで、図5(d)に示す断面では、ライトガイド302aの寸法は短辺方向(第2方向、y方向)は、長辺方向(第1方向、x方向)に比較して小さい。このため、照明レンズ301aの側面に光線は入射しない。この結果、この方向の発熱量を低減できる。
 図5(e)に示す断面は、従来技術と同様に、照明レンズ側面に光線が当たる。
 内視鏡の先端部は、金属枠で構成されている。照明レンズ301aは撮像系の画面下方向に配置されるため、照明系の下方向の金属枠の厚さが薄くなる。本態様では、照明系の画面上下方向(第2方向)の発熱を小さくできる。このため、金属枠の温度が上がりにくく、内視鏡の外表面の温度上昇を低減できる。
 なお、画面左右方向(第1方向、x方向)の発熱はあるが、金属枠が厚いため、外側まで温度が伝わりにくいので問題とはならない。
 本実施形態では、2セットの照明系のうち、ライトガイド302aを構成する光ファイバの本数が多い第1照明系のみ、ライトガイド302a先端の断面における、短辺方向(第2方向、y方向)の寸法を、長辺方向(第1方向、x方向)の寸法に比較して小さく構成している。
 ライトガイド302bの径に比較して、径が大きいライトガイド302aのほうが発熱への影響度が高い。このため、ライトガイド302aの径を小判型にすることで効果的に発熱を低減することができる。
 光ファイバ数の少ないライトガイド302bの断面形状は円形である。ライトガイド302bの径は小さいため、その発熱量も小さい。
 以下に、本実施形態の諸元値、条件式対応値を示す。ここで、第1照明系は、照明レンズ301aとライトガイド302aとにより構成される。第2照明系は、照明レンズ301bとライトガイド302bとにより構成される。照明レンズ301a、照明レンズ301bの第1方向と第2方向の寸法は同じであるため、外径寸法として記載している。
(単位:mm)
 
 内視鏡先端外径   10
 撮像系
 対物レンズ径     2.3
 撮像素子画素数   約50万
 画面アスペクト比  H:V 16:9
 
 照明系
 第1照明系のライトガイド 第1方向の寸法 LH 2
              第2方向の寸法 LV 1.35
 第1照明レンズの外径寸法 r1H=r1V 2.3
 第1照明レンズの材質 ガラス
 
 第2照明系のライトガイド 第1方向の寸法 LH 1.1
              第2方向の寸法 LV 1.1
 第2照明レンズの外径寸法 r2H=r2V 1.3
 第2照明レンズの材質 ガラス
 
 レイアウト
 撮像系と第1照明系の距離 4
 撮像系と第2照明系の距離 4.8
 
(条件式対応値)
(1) A 1.67 
(2) 第1照明系: LH/LV 1.48 
    第2照明系: LH/LV --
(3) 第1照明系:(r1V-LV)/(r1H-LH) 3.17 
    第2照明系:(r2V-LV)/(r2H-LH) --
 
 ここで、「--」は、条件式を満足しないことを示す。
 
(第4実施形態)
 図6は、第4実施形態に係る内視鏡400の先端部の光軸に沿った方向(z方向)から見た断面構成を示している。第1実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
 内視鏡400は、撮像系104と、照明系103(図2参照)と、を有する。
 本実施形態は、照明系103を2セット有する。第1照明系は、ライトガイド402aと3つのレンズを備える照明レンズ401aを有する。第2照明系は、ライトガイド402bと、3つのレンズを備える照明レンズ401bを有する。
 図6(a)は、内視鏡400を先端方向(z方向)から見た構成を示している。図6(b)は、ライトガイド402aと照明レンズ401aを先端方向(z方向)から見た構成を示している。図6(c)は、ライトガイド402bと照明レンズ401bを先端方向(z方向)から見た構成を示している。図6(d)、(e)は、ライトガイド402aと照明レンズ401aとを中心軸AXに沿った異なる2つの方向の断面構成を示している。
 図6(b)、(c)に示すように、ライトガイド402a及びライトガイド402bは、条件式(2)を満足する。ライトガイド402a及びライトガイド402bの、それぞれの照明レンズ401a及び照明レンズ401b側の端面の形状は、円形の一部が切欠きとなる、いわゆるDカット形状となる。カットする方向は、内視鏡400の円周に対向している。
 また、本実施形態の内視鏡400は、送気・送水のためのノズル303を有する。
 図6(a)に基づいて、内視鏡400の説明をさらに行う。
 本実施形態では、第1照明系と第2照明系との2セットの照明系を有する。
 内視鏡400を先端方向から見たとき、照明レンズ401a、照明レンズ401bは、それぞれ撮像系104に対して第2方向(y方向)にシフトした位置P2、P1に配置されている。すなわち、照明レンズ401aと、照明レンズ401bとは、撮像系104に関して第1の位置P1(不図示)と、第2方向(y方向)において第1の位置P1とは撮像系104に関して反対側の第2の位置P2(不図示)とのうちの両方の位置P1、P2に配置されている。
 ライトガイド402aの中心軸AXに垂直な断面の形状は、円形状のうち、第2方向(y方向)の撮像系の画面に対して下方向を直線状にカットしたDカット形状である。
 ライトガイド402bの中心軸AXに垂直な断面の形状は、円形状のうち、第2方向(y方向)の撮像系の画面に対して上方向を直線状にカットしたDカット形状である。
 このように、本実施形態では、内視鏡400の外表面に近い側のライトガイドの部分のみ寸法を小さくする、即ちDカットする。そのため、発熱を低減しつつ、かつ全体の光量の低下を少なくできるため、明るさ的に有利な構成となっている。
 照明レンズ401a、照明レンズ401bは、それぞれ外径は円形形状である。例えば、照明レンズ401aは、物体側から順に、平凸正レンズと、両凸正レンズと、凸平正レンズとの3枚のレンズから構成される。ここで、凸面は回転対称な形状である。照明レンズ401bも照明レンズ401aと同じレンズ構成を有する。
 上述したように、本実施形態の内視鏡400の先端レイアウトは、撮像系104の画面上・下方向(第2方向、y方向)に、照明系が2セット配置される。
 ここで、図6(d)に示す断面では、短辺方向(第2方向、y方向)は、ライトガイド402aの寸法が、長辺方向(第1方向、x方向)に比較して小さい。このため、照明レンズ401aの側面のうち、図6(d)の下側に光線は入射しない。この結果、発熱量を低減できる。
 図6(d)の上側、及び、図6(e)に示す断面は、従来技術と同様に、照明レンズ401aの側面に光線が当たる。
 内視鏡の先端部は、金属枠で構成されている。照明レンズは撮像系の画面上・下方向に配置されるため、照明レンズ401aの下側及び照明レンズ401bの上側の金属枠の厚さが薄くなる。本実施形態の照明系では、画面を基準として、照明レンズ401aの下側及び照明レンズ401bの上側(第2方向)の発熱を小さくできる。このため、金属枠の温度が上がりにくく、内視鏡の外表面の温度上昇を低減できる。
 なお、画面左・右方向(第1方向、x方向)及び、ライトガイドをDカットしていない側のレンズ側面の発熱はあるが、金属枠が厚いため、外側まで温度が伝わりにくいので問題とはならない。
(その他の構成)
 ライトガイド402a、402bは、条件式(2)、(3)を満足すれば、その断面形状は、矩形形状、円形状の上・下をカットした形状、または一方をカットした形状、横長の楕円形状、横長の多角形など、いずれの形状でも良い。
 また、この場合、照明レンズの外径形状も、内視鏡400の断面のレイアウトに合わせて、楕円形状や矩形形状にすることもできる。
 以下に、本実施形態の諸元値、条件式対応値を示す。ここで、第1照明系は、照明レンズ401aとライトガイド402aとにより構成される。第2照明系は、照明レンズ401bとライトガイド402bとにより構成される。照明レンズ401a、照明レンズ401bの第1方向と第2方向の寸法は同じであるため、外径寸法として記載している。
(単位:mm)
 
 内視鏡先端外径   9.8
 
 撮像系
 対物レンズ径     2.8
 撮像素子画素数   約100万
 画面アスペクト比   H:V 16:9
 
 照明系
 第1照明系ライトガイド 第1方向の寸法 LH 1.4
             第2方向の寸法 LV 1.1
 第1照明レンズの外径寸法 r1H=r1V 1.7
 第1照明レンズの材質 ガラス
 
 第2照明系のライトガイド 第1方向の寸法 LH 2.5
              第2方向の寸法 LV 2.1
 第2照明レンズの外径寸法 r2H=r2V 2.8
 第2照明レンズの材質 ガラス
 
 レイアウト
 撮像系と第1照明系の距離 3.7
 撮像系と第2照明系の距離 4.3
 
(条件式対応値)
(1) A 1.78 
(2) 第1照明系: LH/LV 1.27 
    第2照明系: LH/LV 1.19 
(3) 第1照明系:(r1V-LV)/(r1H-LH) 2.00 
    第2照明系:(r2V-LV)/(r2H-LH) 2.33 
 
(第5実施形態)
 図7は、第5実施形態に係る内視鏡500の先端部の光軸に沿った方向(z方向)から見た断面構成を示している。例えば、可撓性を有する内視鏡に好適な例である。第4実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
 ライトガイド502bは、内視鏡500先端の外周方向に面する部分を斜めに2か所カットしている。図7(b)は、ライトガイド502bの端面の断面形状を示している。内視鏡500は、ライトガイド502bの形状が異なる点を除いて、第4実施形態の内視鏡400と同じ構成を有する。
 本実施形態では、ライトガイド502bは、内視鏡500先端の外周方向に面する部分を斜めにカットしている。このため、外径方向の発熱量が小さくなり、内視鏡500の先端部の温度上昇を、さらに低減できる。
 なお、第1照明系のライトガイド402aの画面に対して上方向(第2方向、y方向)はカットされていない。このため、画面に対して上方向(第2方向、y方向)に関しては、ライトガイド402aからの照明光で照明される。このため、本実施形態の配光特性は、内視鏡による観察の際に、支障がなく、望ましい特性を得られる。
 以下に、本実施形態の諸元値を示す。第4実施形態と重複する数値の記載は省略する。ここで、第2照明系は、照明レンズ501bとライトガイド502bとにより構成される。照明レンズ501bの第1方向と第2方向の寸法は同じであるため、外径寸法として記載している。
(単位:mm)
 
 照明系
 第2照明系のライトガイド 第1方向の寸法 LH 2.5
              第2方向の寸法 LV 2.1
 第2照明レンズの径 r2H=r2V 2.8
 第2照明レンズの材質 ガラス
 
(第6実施形態)
 図8は、第6実施形態に係る内視鏡600の先端部の光軸に沿った方向(z方向)から見た断面構成を示している。例えば、可撓性を有する内視鏡に好適な例である。上述の各実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
 内視鏡600は、撮像系104と、照明系103(図2)と、を有する。
 本実施形態は、照明系103を1セット有する。1セットの照明系は、ライトガイド602と1つの照明レンズ601を有する。
 ライトガイド602の中心軸AXに垂直な断面の形状は、円形状のうち、第2方向(y方向)の2ヶ所を直線状にカットした小判型である。そして、カットする方向の一方は、内視鏡600の円周部分に対向している。
 照明レンズ601は、外径は円形形状であり、物体側面は平面である平凸レンズである。ここで、凸面は回転対称な形状である。
 本実施形態では、ライトガイド601は、内視鏡600先端の外周方向に面する部分を直線状にカットしている。このため、外径方向の発熱量が小さくなり、内視鏡600の先端部の温度上昇を、低減できる。また、左・右方向(第1方向、x方向)の発熱はあるが、金属枠が厚いため、スコープの外側まで温度が伝わりにくいので問題とはならない。
 以下に、本実施形態の諸元値、条件式対応値を示す。照明レンズ601の第1方向と第2方向の寸法は同じであるため、外径寸法として記載している。
(単位:mm)
 
 内視鏡先端外径   5.2
 
 撮像系
 対物レンズ径    1.3
 撮像素子画素数   約50万
 画面アスペクト比  H:V 1.36:1
 
 照明系
 照明系のライトガイド 第1方向の寸法 LH 0.9
            第2方向の寸法 LV 0.8
 照明レンズの外径寸法 r1H=r1V 1
 照明レンズの材質 ガラス
 
 レイアウト
 撮像系と照明系の中心間距離 1.7
 
(条件式対応値)
(1) A 1.36 
(2) 照明系: LH/LV 1.13 
(3) 照明系:(r1V-LV)/(r1H-LH) 2.00 
 
 上記各実施形態において、照明系の数量は1セットまたは2セットである。しかしながら、これに限られず、照明系の数量は3セット以上でも良い。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 以上のように、本発明は、先端部における発熱を低減した内視鏡に有用である。
 1 先端硬性部
 2 操作部
 3 挿入部
 4 電子内視鏡
 5 接続コード部
 6 コネクタ部
 7 生体外装置
 8 表示ユニット
 10 電子内視鏡システム
 100、200、300、400、500、600 内視鏡
 101a、101b 照明レンズ
 102a、102b ライトガイド
 103 照明系
 104 撮像系
 105 撮像素子
 106 信号ケーブル
 LU 対物レンズユニット
 LS1、LS2、LS3、LS4 レンズ
 

Claims (3)

  1.  撮像系と、照明系と、を有し、
     照明系は、ライトガイドと、少なくとも1つ以上の照明レンズと、を有し、
     撮像系は、対物レンズユニットと、撮像素子と、を有し、
     前記撮像素子の長辺に沿った方向を第1方向とし、 
     前記撮像素子の短辺に沿った方向を第2方向としたとき、
     前記照明系は、前記撮像系に対して前記第2方向にシフトした位置に配置されており、
     以下の条件式(1)、(2)を満足することを特徴とする内視鏡。
      1.35<A   (1)
      1<LH/LV   (2)
     ここで、
     Aは、表示画像範囲に対応する前記撮像素子の領域のアスペクト比を、長辺:短辺 = H:Vとしたとき、以下の式で計算される値、
     A=H/V
     LHは、前記ライトガイドの前記照明レンズ側の端面の前記第1方向に対応する寸法、
     LVは、前記ライトガイドの前記照明レンズ側の端面の前記第2方向に対応する寸法、
    である。
  2.  以下の条件式(3)を満足することを特徴とする請求項1に記載の内視鏡。
      1.5<(rV-LV)/(rH-LH)   (3)
     ここで、
     LHは、前記ライトガイドの前記照明レンズ側の端面の前記第1方向に対応する寸法、
     LVは、前記ライトガイドの前記照明レンズ側の端面の前記第2方向に対応する寸法、
     rHは、前記照明レンズの前記第1方向に対応する外径寸法、
     rVは、前記照明レンズの前記第2方向に対応する外径寸法、
    である。
  3.  以下の条件式(4)を満足することを特徴とする請求項1または2に記載の内視鏡。
      1<LH/LV<1.5   (4)
     ここで、
     LHは、前記ライトガイドの前記照明レンズ側の端面の前記第1方向に対応する寸法、
     LVは、前記ライトガイドの前記照明レンズ側の端面の前記第2方向に対応する寸法、
    である。
PCT/JP2015/082212 2015-02-09 2015-11-17 内視鏡 WO2016129158A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016550292A JP6043039B1 (ja) 2015-02-09 2015-11-17 内視鏡
EP15882032.4A EP3257426A4 (en) 2015-02-09 2015-11-17 Endoscope
CN201580065940.1A CN106998998B (zh) 2015-02-09 2015-11-17 内窥镜
US15/673,373 US10111579B2 (en) 2015-02-09 2017-08-09 Endoscope having an illumination system shifted with respect to an imaging system to reduce generation of heat at a front-end portion of the endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022961 2015-02-09
JP2015-022961 2015-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/673,373 Continuation US10111579B2 (en) 2015-02-09 2017-08-09 Endoscope having an illumination system shifted with respect to an imaging system to reduce generation of heat at a front-end portion of the endoscope

Publications (1)

Publication Number Publication Date
WO2016129158A1 true WO2016129158A1 (ja) 2016-08-18

Family

ID=56615148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082212 WO2016129158A1 (ja) 2015-02-09 2015-11-17 内視鏡

Country Status (5)

Country Link
US (1) US10111579B2 (ja)
EP (1) EP3257426A4 (ja)
JP (1) JP6043039B1 (ja)
CN (1) CN106998998B (ja)
WO (1) WO2016129158A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234910B1 (ko) * 2019-05-28 2021-04-01 김윤관 부동액 주입용 건

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292956A (ja) * 2000-04-17 2001-10-23 Olympus Optical Co Ltd 内視鏡照明光学系

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2544519C3 (de) * 1974-10-08 1981-03-12 Olympus Optical Co., Ltd., Tokyo Beleuchtungsvorrichtung für Endoskope
JPS62287215A (ja) * 1986-06-06 1987-12-14 Olympus Optical Co Ltd 内視鏡照明光学系装置
JPH08254659A (ja) 1995-03-17 1996-10-01 Olympus Optical Co Ltd 撮像装置
JPH11326786A (ja) * 1999-02-19 1999-11-26 Olympus Optical Co Ltd 電子内視鏡に用いられる照明光学系
JP2001166223A (ja) * 1999-12-03 2001-06-22 Olympus Optical Co Ltd 内視鏡
US7477458B2 (en) * 2004-07-15 2009-01-13 Olympus Corporation Illumination optical system
FR2923026B1 (fr) * 2007-10-31 2011-02-18 Tokendo Dispositif d'eclairage pour videoendoscope
JP5330180B2 (ja) * 2009-10-02 2013-10-30 オリンパス株式会社 内視鏡装置
JP2011215425A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 照明レンズ及び該照明レンズを備えた内視鏡
JP5345171B2 (ja) 2011-03-28 2013-11-20 富士フイルム株式会社 内視鏡
WO2013054753A1 (ja) * 2011-10-12 2013-04-18 オリンパスメディカルシステムズ株式会社 内視鏡
JP6280683B2 (ja) * 2012-01-23 2018-02-14 オリンパス株式会社 管状観察装置
JP5715308B2 (ja) * 2013-02-20 2015-05-07 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5891208B2 (ja) * 2013-08-13 2016-03-22 Hoya株式会社 内視鏡用照明光学系
EP3108793A1 (en) * 2014-02-13 2016-12-28 Olympus Corporation Insertion device
EP3243422A4 (en) * 2015-01-28 2018-10-31 Olympus Corporation Endoscope
US10357147B2 (en) * 2015-08-24 2019-07-23 Titan Medical Inc. Method and apparatus for illuminating an object field imaged by a rectangular image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292956A (ja) * 2000-04-17 2001-10-23 Olympus Optical Co Ltd 内視鏡照明光学系

Also Published As

Publication number Publication date
US10111579B2 (en) 2018-10-30
CN106998998B (zh) 2018-12-07
EP3257426A1 (en) 2017-12-20
CN106998998A (zh) 2017-08-01
EP3257426A4 (en) 2018-12-05
JP6043039B1 (ja) 2016-12-14
JPWO2016129158A1 (ja) 2017-04-27
US20170367568A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US11543646B2 (en) Optical systems for multi-sensor endoscopes
JP5274719B2 (ja) 内視鏡及び内視鏡用照明装置
JP4782900B2 (ja) 内視鏡
JPH10239594A (ja) 電子内視鏡
US20190086657A1 (en) Oblique viewing endoscope and imaging system
JP2009136387A (ja) 撮像レンズ及びカプセル内視鏡
JP6043039B1 (ja) 内視鏡
CN104224092B (zh) 内窥镜先端部结构
US10602041B2 (en) Image capturing device
JP5178991B2 (ja) カプセル型内視鏡
US11119306B2 (en) Image pickup optical system, endoscope, and image pickup apparatus
JPH10123411A (ja) ファイバースコープ光学系
JPH1176148A (ja) 内視鏡
WO2018143218A1 (ja) 内視鏡
CN218922543U (zh) 一种视角可变的电子关节镜组件
JP6501995B1 (ja) 撮像光学系及び内視鏡
CN210055965U (zh) 一种广角型电子膀胱镜照明镜头
WO2022176197A1 (ja) 内視鏡及び内視鏡システム
JP3477314B2 (ja) 内視鏡用照明系
WO2013035522A1 (ja) 内視鏡装置
US20220395167A1 (en) Front-end structure for insertion part of endoscope
JP2003167203A (ja) 内視鏡装置
CN116407060A (zh) 物镜模组、内窥镜及内窥镜成像设备
JP2013094259A (ja) 内視鏡
Mougenot et al. Endoscopic equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550292

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015882032

Country of ref document: EP