WO2016128323A1 - Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone - Google Patents

Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone Download PDF

Info

Publication number
WO2016128323A1
WO2016128323A1 PCT/EP2016/052516 EP2016052516W WO2016128323A1 WO 2016128323 A1 WO2016128323 A1 WO 2016128323A1 EP 2016052516 W EP2016052516 W EP 2016052516W WO 2016128323 A1 WO2016128323 A1 WO 2016128323A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
carbon dioxide
electrolysis system
reduction
complex
Prior art date
Application number
PCT/EP2016/052516
Other languages
German (de)
English (en)
Inventor
Michael GRÄTZEL
Christian Reller
Günter Schmid
Marcel Schreier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201680009432.6A priority Critical patent/CN107208284A/zh
Priority to EP16704413.0A priority patent/EP3234225A1/fr
Priority to JP2017541254A priority patent/JP2018510262A/ja
Priority to US15/549,778 priority patent/US20180023198A1/en
Publication of WO2016128323A1 publication Critical patent/WO2016128323A1/fr
Priority to ZA2017/05252A priority patent/ZA201705252B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a method and an electrolysis system for electrochemical carbon dioxide utilization. Carbon dioxide is introduced into an electrolytic cell and reduced at a cathode.
  • Electrochemical CO 2 reduction on metal electrodes from Y Electrochemical CO 2 reduction on metal electrodes from Y.
  • the table shows Faraday efficiencies [%] of products produced by carbon dioxide reduction on various metal electrodes. The values given apply to a 0.1 M potassium bicarbonate solution as electrolyte.
  • a complex generally composed of a central atom and one or more ligands, can pass through different oxidation states, giving cations, electrons, OH or CO groups in solution, or taking them up again.
  • An example of a catalytic reduction of carbon dioxide to carbon monoxide by means of a rhenium complex is also disclosed in the publication "Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO 2 Reduction by fac-Re (bpy) (CO) 3 Cl" by J ,
  • carbon dioxide is passed through a cathode space and brought into contact with a cathode, at least one first Ma ⁇ material provided in the cathode space or in this leads ⁇ , by means of which a reduction reaction of carbon dioxide to at least one Carbon water compound or to carbon monoxide is catalyzable and introduced at least one of the first material different second material in the cathode space, by means of which the reduction reaction is cocatalyzed, in which it promotes a charge transfer from the cathode to the first material.
  • the cathode compartment of an electrolytic cell thus serves as the reaction space for the carbon dioxide reduction, the cathode acting as the electron source.
  • an electrolyte solution in the system may further be.
  • the electrolyte used in ⁇ play a salt-containing aqueous electric ⁇ lyt, a salt-containing organic solvent, an ioni ⁇ specific liquid and it is also supercritical carbon dioxide ⁇ used as the electrolyte.
  • readily soluble salts of other cations can be used.
  • the first material is either dissolved in the electrolyte and accordingly conducted in the electrolyte circulation or introduced separately from the electrolyte for the reaction in the cathode compartment, or preferably directly provided in the cathode chamber, wherein ⁇ game example immobilized on an inner surface of the cathode compartment or in particular on the electrode that is the Katho ⁇ denober Design.
  • the second material may be introduced into the cathode compartment together with the electrolyte or an educt-electrolyte mixture, or separately from this into the cathode compartment
  • the method described has the advantage of ⁇ to ensure a high current density and correspondingly high yield in the carbon dioxide reduction, as well as low energy and thus to be competitive with other energy storage for volatile energy sources.
  • the first material is, for example, a complex, typically ⁇ , a metal complex in a low oxidation state to which a hydrogen atom can be coordinated as a ligand.
  • Complexes are preferably used which coordinate the water ⁇ material by protonation. This coordinated hydrogen then often has a hydridic character and can ago reduction reactions go.
  • the proton source represents the second material of the reduction system:
  • a protic solvent is used as the second material in the reduction process.
  • a protic solvent is when, if molecules can easily be split off from protons, these are called
  • Proton donors act.
  • Examples of protic solvents are water, alcohols, especially methanol and ethanol, mineral acids or carboxylic acids, and primary and secondary amines.
  • the resulting hydrides of the first material are co-catalysts in the sense of the invention.
  • the second material e.g. one
  • the first material used in the reduction process is in particular a metal complex.
  • a complex is to be understood as meaning a chemical compound which is composed of one or more central particles and one or more ligands.
  • a metal complex is used with a lower oxidation state preferable for the described Re ⁇ dutechnischs vide as the first material, which means that it has an electron-rich center, such as at ver ⁇ various transition metal complexes, for example with iron or cobalt as the central atom.
  • Particularly preferred are transition metal complexes with a heavy transition metal as the central atom, such as molybdenum or rhenium. From a heavy transition metal one speaks between an atomic number of between 42 and 104.
  • a metal carbonyl or metal carbonylate can also be used as the first material for reduction catalysis.
  • Metal carbonyls are complexes of transition metals with at least one ⁇ Kohlenstoffmonoxidliganden.
  • second and first material are chosen so that they react in-situ with each other as a precursor and form within the electrolysis system, respectively the cathode compartment, hydrido-metal complexes or metal carbonyl hydrides.
  • first and second materials which are stable even in an aqueous environment. These are, for example, many rhenium compounds, such as ReH 3 (OH) 3 (H 2 O) - , ReHg 2- , or those which form in situ.
  • stable it is meant that first and second materials do not break down into undesirable byproducts of the electrochemical reaction of carbon dioxide, or, for example, the stability of the electrode system Cincinnatiwir ⁇ ken or damage.
  • ions can be released from the surface of the electrode or it can even be destroyed over a large area by a corrosion attack in its morphology.
  • Undesirable by-products may be e.g. deposited on the cathode and thereby enforce this so that the charge exchange would be hindered.
  • the electrolysis system for carbon dioxide utilization comprises an electrolysis cell with an anode in an anode compartment and with a cathode in a cathode compartment.
  • the cathode compartment is designed such that carbon dioxide can be added ⁇ and brought into contact with the cathode.
  • the cathode compartment in this case has a first material, by means of which a reduction reaction of carbon dioxide oxide to at least one hydrocarbon compound or is catalysable to carbon monoxide.
  • the cathode space has a material access with a dosage unit, via which at least one second material different from the first material can be introduced into the cathode space.
  • the reduction reaction is co-catalyzable in that it promotes charge transfer from the cathode to the first material.
  • the cathode compartment has a second material access with a metering unit for the first material, or this is flowed into the cathode compartment together with the electrolyte or an educt-electrolyte mixture.
  • This electrolysis system has the advantage that it contains a catalyst and a precisely metered co-catalyst.
  • Catalyst can be worked, whereby a high current density and accordingly high yield from the carbon dioxide reduction process can be achieved.
  • the described Elektrolysesys ⁇ system for carbon dioxide recovery is characterized in that the cathode surface has a work function whose Ener ⁇ giemony leaves a charge transfer to the first material supplied and is particularly favorable for this charge transfer.
  • the cathode surface chemical properties accordingly be ⁇ low a charge transfer.
  • the first material is present, for example, in the cathode space in dissolved form, for example in the electrolyte, or it is immobilized on the cathode surface or another inner surface of the cathode space.
  • Particular preference is given to using electrodes which contain platinum, copper, zinc, nickel, iron, titanium, zirconium, molybdenum, tungsten or alloys thereof.
  • the charge transfer can also be interpreted as semiconductor technology or chemically.
  • the cathode may for example be oriented ⁇ staltet as a photocathode, bringing a photo-electrochemical process Reduktionspro- advertising operated for the recovery of carbon dioxide could be the, so-called Photoassisted C0 2 -Electrolysis.
  • this system can also work purely photocatalytically.
  • a surface protective layer is meant that a relatively thin compared to the Elektrodenge- berichtdicke layer separates the cathode from the cathode compartment.
  • the surface protection layer may for this purpose comprise a metal, a semiconductor or an organic material.
  • Particularly preferred according to the invention is a Titandio ⁇ oxide protective coating.
  • the protective effect is aimed primarily as meaning that the electrode is not attacked by the electrolyte or dissolved in Elect ⁇ rolyten reactants, products or catalysts and their dissociated ions and it comes, for example, to a triggering of ions from the electrode.
  • a suitable surface protective layer is of great importance for the Langle ⁇ bigkeit function and stability of the electrode in the process. Be ⁇ already by small changes in morphology, including onsangriffe by corrosion, can the overvoltages of hydrogen gas or carbon monoxide gas CO 2 H are influenced in aqueous electrolyte or water having electrolyte systems.
  • the cathode has a charge transfer layer whose surface has a work function whose energy level allows a charge transfer to the first material. That is, the cathode can resort to any other suitable material to ⁇ in their predominant composition and a customized with its work function of the first material charge transfer layer forms a ge ⁇ One suitable interface between cathode and electrolyte system with catalyst material. The focus is insbesonde ⁇ re on the charge transfer to hydrido complexes.
  • La ⁇ tion transfer layer from the cathode into the electrolyte or to the complex systems for example, thin precious metal coatings, semiconductor injection layers or organic injection layers are suitable.
  • the functions of the charge transfer layer and the surface protective layer are preferably integrated in a single layer. That is, the charge transfer layer is equally responsible for the surface protection of the cathode or the surface protective layer is chosen so that the charge transfer is not hindered by these or even favored.
  • FIG. 1 shows a schematic representation of an electrolysis system 10, shows a schematic representation of a two-chamber structure of an electrolytic cell, shows a schematic representation of an electrolytic cell with a gas diffusion electrode and shows a schematic representation of a PEM structure of an electrolytic cell
  • Figure 5 is a catalytic cycle for the Kohlenstoffdio- xidredulement to carbon monoxide by means of a complex catalyst
  • Figure 6 shows an example of the addition of methanol as per ⁇ diagram species to the catalyst of rhenium-bipyridine
  • FIG. 7 shows proton transfer using the example of the catalyst rhenium bipyridine.
  • Figure 8 shows the re-release of water as a source of hydrogen
  • Figure 9 shows the final reaction to return to the starting complex state.
  • FIG. 10 schematically shows the charge transfer from the cathode to a catalyst complex.
  • FIG. 11 shows a current-voltage diagram of an exemplary electrolysis system with different electrode surfaces.
  • Figure 12 shows another current-voltage diagram of an exemplary electrolysis system and the Auswir ⁇ effect of adding a protic species
  • Figure 13 shows a diagram in which the current density over the
  • Light intensity is plotted for a photoelectrochemical electrolysis system.
  • the electrolysis system 10 shown schematically in FIG. 1 initially has, as a central element, an electrolysis cell 1, which is shown here in a two-chamber design.
  • An anode A is arranged in an anode space AR, a cathode K in a cathode space KR.
  • Anode space AR and cathode space KR are separated by a membrane M.
  • the anode compartment AR is with its electrolyte inlet and outlet connected to an anolyte circuit AK.
  • the Katho ⁇ denraum KR is connected to its electrolytic and Elektrolyseedukteinlass and its electrolyte and Elektrolyse slaughterauslass to a catholyte KK.
  • Both circuits AK, KK WEI sen each case at least one pump 11, which optionally promote the electric ⁇ LYTEN and dissolved therein or mixed therewith reactants and products through the electrolytic cell.
  • this example includes an electrolyte container 130 with a Kohlenstoffdioxideinlass 131 and a Kohlenstoffdi- oxidreservoir 132. By means of this structure ensures Kohlenstoffdioxidsafft Trent of the electrolyte. Alterna tively ⁇ the carbon dioxide via a Gasdiffusionselekt ⁇ rode GDE is introduced into the electrolyte circulation.
  • the electrolyte flow directions are shown in both circuits AK, KK by means of arrows.
  • a further pump 11 is in the catholyte KK preferably comprises transpor- ted the gesnostitig ⁇ th electrolysis products with electrolyte in a container for gas separation 140th
  • a product gas container 141 and, correspondingly, a product gas outlet 142 is connected.
  • a container for gas separation 160 is integrated into the anolyte circuit AK, via which, for example, oxygen gas O 2 or chloride-containing electrolyte chlorine gas is separated from the electrolyte and can be removed from the system via a product gas container 161 and the product gas outlet 162 connected thereto.
  • the electrolysis system 10 may have an electrolysis cell structure, as shown in one of the FIGS. 2 to 4 described below.
  • the structure of the electrolysis system 10 with a gas diffusion electrode GDE, as shown in FIG. 3, is preferred.
  • GDE gas diffusion electrode
  • each embodiment of the electrolysis cells 2, 3, 4 shown schematically in FIGS. 2 to 4 comprises at least one anode A in an anode space AR and ei ⁇ ne Cathode K in a cathode compartment KR.
  • the anode space AR and the cathode space KR are separated from each other by at least one membrane M.
  • the membrane may be an ion-conducting membrane, for example an anion-conducting membrane or a cation-conducting membrane. It may be the membrane is a porous layer or a slide ⁇ phragma.
  • the membrane can also be understood to mean a spatial ion-conducting separator which separates electrolytes into anode and cathode chambers AR, KR.
  • Anode A and cathode K are each elekt ⁇ risch connected to a power supply E.
  • each anode chamber AR shown comprises a electrolyte outlet 23, 33, 43 via the electrolysis byproducts of the electrolyte and to the anode formed, for example, sour gas O2 ⁇ material can flow out of the anode space AR.
  • the respective cathode chambers KR each have at least one electrolyte and product outlet 24, 34, 44.
  • the total electrolytic product can be composed of a variety of electrolysis ⁇ products.
  • the electrodes While in the two-chamber structure 2 anode A and cathode K are separated by the anode space AR and cathode space KR of the membrane M, the electrodes are in a so-called polymer electrolyte structure (PEM) 4 with porous electrodes directly to the membrane M. As shown in FIG. 4, it is then a porous anode A and a porous cathode K.
  • PEM polymer electrolyte structure
  • the electric field lyt and the carbon dioxide CO 2 is preferably introduced via a ge ⁇ common Edukteinlass 22, 42 into the cathode compartment KR.
  • the porous cathode K is designed as a gas diffusion electrode GDE.
  • a gas diffusion electrode GDE is because ⁇ characterized by that a liquid component, such as an electrolyte, and a gaseous component, such as a Elektrolyseedukt, can be brought together in a pore system of the electrode, for example, the cathode K in contact.
  • the pore system of the electrode is designed so that the liquid and the gaseous phase can equally penetrate into the pore system and can be present in it at the same time.
  • a reaction catalyst is designed to be porous and takes over the electrode function, or a porous electrode has catalytically active components.
  • the gas diffusion electrode GDE comprises a carbon dioxide inlet 320.
  • FIG. 5 shows a reaction cycle known from the prior art:
  • a complex 51 composed of central atom M and one or more ligands L, can pass through different oxidation states 52, thereby giving a cation K + or anion in solution or resume it or arrange it at another location of the complex 53.
  • carbon dioxide CO 2 shown in the Fi gur ⁇ 5 by an arrow injected, can pass from this an oxygen molecule to the catalyst complex 56th
  • water H2O is then released before the complex 510 is released as a carbon atom by the release of its CO group.
  • lenstoffmonoxid CO is in the original state 53 back ⁇ can be by means of the carbon dioxide CO2 then again converted ⁇ sets.
  • the proton uptake H + at the one point or another in the circulation as well as the release of water H2O can be made according to the described reduction process advantageous for the Carbon Reduction to the Use ⁇ .
  • M may be the central atom of the complex, which is in particular a Me ⁇ tall or transition metal atom and L represents a ligand, which, for example, a bipyridine ligand as shown in Figures 6 to 9 ,
  • L represents a ligand, which, for example, a bipyridine ligand as shown in Figures 6 to 9 ,
  • the complex in state 53 reacts to complex 56 or 54 depends, for example, on external conditions, such as the environment in which the complex is located: the pH of the environment determines whether the hydrogen binds or dissociates to the complex before ⁇ lies.
  • a complex 55 tends to be more likely in a Conversely ⁇ bung having an acid constant pK s to 43 before, a complex 59 more in an environment of an acidity constant pK s for the 28, ie in water practically never.
  • FIGs 6 to 9 are various chemical Reaktio ⁇ NEN, which play a role in the described recycling process is illustrated.
  • a first catalyst material is a rhenium-bipyridine complex overall showing Re (tBu-bipy) (CO) 3 CL, which at the beginning of the recovery process in the electrolytic cell 1, as must be available starting material accordingly from ⁇ or this must be introduced.
  • the first reaction step 60 is the hydrogenation of this complex, ie the addition of hydrogen: In this example, methanol CH 3 OH is added as the protic species.
  • the hydrido complexes shown on the right in FIG. 6 are formed, which can merge into one another via an equilibrium reaction and thus can both be present in the electrolysis system 10.
  • the abbreviation Re could be replaced by any metal, preferably as an alternative to shown bipyridine ligands could also be used alternative ligands.
  • Rhenium central atom is again a suitable example, but could again be replaced by any metal atom M, preferably another transition metal atom.
  • the catalyst material is not consumed at this point, but is guided in a reaction cycle, ie it returns to the original form of the hydrido complex 6 back.
  • Is shown on the left in the figure 8 is a Gleichingsre ⁇ action between two oxidation states of the complex 80.
  • a reduction reaction 80 a water group is formed, the ge ⁇ shows in a further step 81, right in the figure 8, as water H 2 O are cleaved can. As shown in FIG. 9, this already leads to the starting hydrido complex 6.
  • the step of dehydration 81 thus provides a renewable source of hydrogen in the system.
  • the reaction speed of the Carbon Reduction can be increased, because the water H 2 O can be connected to the cathode K to hydrogen H +, H 2 Reverse ⁇ sets become.
  • the hydrogen H +, H 2 need not forced ⁇ provisionally as hydrogen gas H 2 present in the system, but may be physisorbed or chemisorbed on a surface present in the electrolysis cell. 1 This allows, for example, a carbon dioxide reduction process in non-aqueous electrolytes, which only so low Water or hydrogen content is added that hydrido complexes arise, the ben ⁇ the carbon dioxide catalysis.
  • FIG. 10 shows by way of example and schematically an off ⁇ cut of an electrolytic cell 1, namely the cathode compartment KR with the cathode K and the connected power supply E. Further, greatly simplified by looking into the cathode compartment KR in and out pointing arrows of Kohlenstoffdio- xideinlass and Kohlenstoffmonoxidauslass displayed, these are usually together with the electrolyte inlet and outlet.
  • the carbon dioxide CO 2 of an education could here again in accordance with the guide shape, as shown in Figure 3, be inserted through a Gasdiffusi ⁇ onselektrode GDE into the cathode compartment KR.
  • the cathode surface When an operating voltage E is applied to the electrodes K, A of the electrolysis cell 1, the cathode surface provides electrons e ⁇ to the reaction space.
  • the transfer of charge from the cathode K to the catalyst complex 110 is indicated by an arrow 60, which likewise stands for the hydrogenation reaction 60, as is shown in FIG. This is intended to make it clear that the transfer of charge from the cathode K to the catalyst complex 110 can only be achieved effectively with the aid of the addition of a protic species 60.
  • the protic species 60 may be present together with the catalyst complex 110 in the electrolytic cell 1, be conveyed through the electrolyte circuit through it or be added specifically, for example via a separate dosage unit, in the cathode compartment.
  • the catalyst complex 110 may be dissolved in the electrolyte in the cathode space KR or in particular immobilized on the cathode surface.
  • Diagrams are not shown with measuring resulting ⁇ Nissen in Figures 11 to 13, which are by way of example illustrate the effect of the described method.
  • FIGS. 11 and 12 each show current-voltage diagrams of a linear sweep Voltammetry measurement shown in which a current density i
  • FIG. 13 shows a further example in which a photoelectrode is used for the carbon dioxide reaction. production is used.
  • the measured current density is accordingly i depending on the incorporated radiating ⁇ th light intensity I h revealed v.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

L'invention concerne un procédé de réduction et un système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone. Selon ledit procédé, le dioxyde de carbone (CO2) est guidé à travers une chambre cathodique (KR) et amené en contact avec une cathode (K), au moins un premier matériau est mis à disposition dans la chambre cathodique (KR) ou introduit dans cette dernière, au moyen duquel une réaction de réduction entre le dioxyde de carbone (CO2) et au moins un composé d'hydrocarbure ou du monoxyde de carbone (CO) peut être catalysée et au moins un deuxième matériau est introduit dans la chambre cathodique (KR), au moyen duquel la réaction de réduction peut être co-catalysée par le fait que ce dernier favorise un transfert de charge de la cathode (K) sur le premier matériau. De préférence, le catalyseur et le co-catalyseur réagissent à cela pour obtenir un complexe hybride.
PCT/EP2016/052516 2015-02-09 2016-02-05 Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone WO2016128323A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680009432.6A CN107208284A (zh) 2015-02-09 2016-02-05 用于二氧化碳的电化学利用的还原方法和电解系统
EP16704413.0A EP3234225A1 (fr) 2015-02-09 2016-02-05 Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone
JP2017541254A JP2018510262A (ja) 2015-02-09 2016-02-05 二酸化炭素の電気化学的利用のための還元方法及び電気分解システム
US15/549,778 US20180023198A1 (en) 2015-02-09 2016-02-05 Reduction Method And Electrolysis System For Electrochemical Carbon Dioxide Utilization
ZA2017/05252A ZA201705252B (en) 2015-02-09 2017-08-03 Reduction method and electrolysis system for electrochemical carbon dioxide utilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202258.7 2015-02-09
DE102015202258.7A DE102015202258A1 (de) 2015-02-09 2015-02-09 Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung

Publications (1)

Publication Number Publication Date
WO2016128323A1 true WO2016128323A1 (fr) 2016-08-18

Family

ID=55357968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/052516 WO2016128323A1 (fr) 2015-02-09 2016-02-05 Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone

Country Status (7)

Country Link
US (1) US20180023198A1 (fr)
EP (1) EP3234225A1 (fr)
JP (1) JP2018510262A (fr)
CN (1) CN107208284A (fr)
DE (1) DE102015202258A1 (fr)
WO (1) WO2016128323A1 (fr)
ZA (1) ZA201705252B (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090838A (ja) * 2016-11-30 2018-06-14 昭和シェル石油株式会社 二酸化炭素還元装置
DE102017005680A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228717A1 (fr) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Procédé et installation pour fabriquer un produit gazeux contenant du monoxyde de carbone
DE102017005681A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2019091653A1 (fr) * 2017-11-09 2019-05-16 Siemens Aktiengesellschaft Préparation et séparation de phosgène par électrolyse combinées co2 et chlorure
WO2019158307A1 (fr) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Production électrochimique d'un gaz comprenant du co avec refroidissement intermédiaire du courant électrolytique
WO2019158305A1 (fr) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Fabrication électrochimique de monoxyde de carbone et/ou de gaz de synthèse
WO2021073769A1 (fr) 2019-10-18 2021-04-22 Linde Gmbh Procédé et installation pour la fabrication d'un produit gazeux riche en monoxyde de carbone
DE102020004630A1 (de) 2020-07-30 2022-02-03 Linde Gmbh Druckhaltung in einer Elektrolyseanlage
WO2022042877A1 (fr) 2020-08-27 2022-03-03 Linde Gmbh Procédé et système permettant de préparer du monoxyde de carbone
EP4050126A1 (fr) 2021-02-25 2022-08-31 Linde GmbH Électrolyse à partir du co2 à humidification de produit de départ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170268118A1 (en) * 2016-03-18 2017-09-21 Kabushiki Kaisha Toshiba Electrochemical reaction device
DE102018212409A1 (de) * 2017-11-16 2019-05-16 Siemens Aktiengesellschaft Kohlenwasserstoff-selektive Elektrode
DE102018201287A1 (de) * 2018-01-29 2019-08-01 Siemens Aktiengesellschaft Poröse Elektrode zur elektrochemischen Umsetzung organischer Verbindungen in zwei nicht mischbaren Phasen in einem elektrochemischen Flussreaktor
DE102018000672A1 (de) * 2018-01-29 2019-08-14 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Verfahren zur Übertragung eines Zielstoffs zwischen zwei flüssigen Phasen
JP6822998B2 (ja) * 2018-03-20 2021-01-27 株式会社東芝 電気化学反応装置
WO2020005482A1 (fr) * 2018-06-29 2020-01-02 Illinois Institute Of Technology Catalyseurs mxènes à base de métaux de transition pour la conversion de dioxyde de carbone en hydrocarbures
JP7262739B2 (ja) * 2018-11-29 2023-04-24 グローバル・リンク株式会社 電気分解装置の陽極及び陰極の製造方法
NO20190144A1 (en) 2019-01-31 2020-08-03 Norsk Hydro As A process for production of aluminium
CN110344071B (zh) * 2019-08-14 2020-11-17 碳能科技(北京)有限公司 电还原co2装置和方法
CN110983357A (zh) * 2019-12-04 2020-04-10 昆明理工大学 一种电解二氧化碳制一氧化碳同时副产氯气、碳酸氢盐的三室隔膜电解方法
JP7273346B2 (ja) * 2019-12-11 2023-05-15 日本電信電話株式会社 二酸化炭素の気相還元方法
CN111575732A (zh) * 2020-05-28 2020-08-25 昆明理工大学 一种光气合成原料的电化学制备方法
JP7459848B2 (ja) 2021-07-26 2024-04-02 株式会社豊田中央研究所 ガス拡散型電解フローセル用のカソード電極、及びガス拡散型電解フローセル
JP2023031928A (ja) * 2021-08-26 2023-03-09 三菱重工業株式会社 二酸化炭素吸収還元溶液、二酸化炭素吸収還元装置、及び二酸化炭素吸収還元方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668349A (en) * 1986-10-24 1987-05-26 The Standard Oil Company Acid promoted electrocatalytic reduction of carbon dioxide by square planar transition metal complexes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134331A (ja) * 1984-12-03 1986-06-21 Kotaro Ogura 二酸化炭素のアセトアルデヒドによる還元固定法
JPS62120489A (ja) * 1985-11-18 1987-06-01 Kotaro Ogura 常温・常圧における二酸化炭素の間接電気化学的還元
JPH01205088A (ja) * 1988-02-10 1989-08-17 Tanaka Kikinzoku Kogyo Kk 二酸化炭素の電解還元方法
JP5707773B2 (ja) * 2009-09-14 2015-04-30 株式会社豊田中央研究所 複合光電極および光電気化学反応システム
JP2013253270A (ja) * 2012-06-05 2013-12-19 Sharp Corp 二酸化炭素還元装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668349A (en) * 1986-10-24 1987-05-26 The Standard Oil Company Acid promoted electrocatalytic reduction of carbon dioxide by square planar transition metal complexes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARBARA J. FISHER ET AL: "Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 102, no. 24, 1 September 1980 (1980-09-01), pages 7361 - 7363, XP055000694, ISSN: 0002-7863, DOI: 10.1021/ja00544a035 *
C. VAYENAS, ET AL.: "Modern Aspects of Electrochemistry", 2008, SPRINGER, pages: 89 - 189
J. A. KEITH; K. A. GRICE; C. P. KUBIAK; E. A. CARTER: "Elucidation of the Selectivity of Proton-Dependent Electrocatalytic C0 Reduction by f ac-Re (bpy) (CO) 3Cl", J. AM. CHEM. SOC., vol. 135, 2013, pages 15823 - 15829, XP055257154, DOI: doi:10.1021/ja406456g
JOHN A. KEITH ET AL: "Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO2 Reduction by fac-Re(bpy)(CO)3Cl", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, no. 42, 23 October 2013 (2013-10-23), US, pages 15823 - 15829, XP055257154, ISSN: 0002-7863, DOI: 10.1021/ja406456g *
KWOK-YIN WONG ET AL: "The effect of weak Brönsted acids on the electrocatalytic reduction of carbon dioxide by a rhenium tricarbonyl bipyridyl complex", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 453, no. 1-2, 14 August 1998 (1998-08-14), AMSTERDAM, NL, pages 161 - 170, XP055257231, ISSN: 1572-6657 *
Y. JIANG; 0. BLACQUE; T. FOX; H. BERKE: "Catalytic C0 Activation Assisted by Rhenium Hydride/B(C F ) Frustrated Lewis Pairs - Metal Hydrides Functioning as FLP Bases", J. AM. CHEM. SOC., vol. 135, no. 20, 2013, pages 7751 - 7760, XP055257158, DOI: doi:10.1021/ja402381d

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090838A (ja) * 2016-11-30 2018-06-14 昭和シェル石油株式会社 二酸化炭素還元装置
DE102017005680A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228717A1 (fr) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Procédé et installation pour fabriquer un produit gazeux contenant du monoxyde de carbone
DE102017005681A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228718A1 (fr) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Procédé et installation pour la préparation d'un produit gazeux contenant du monoxyde de carbone
DE102017005678A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228716A1 (fr) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Procédé et installation pour la préparation d'un produit gazeux contenant du monoxyde de carbone
WO2019091653A1 (fr) * 2017-11-09 2019-05-16 Siemens Aktiengesellschaft Préparation et séparation de phosgène par électrolyse combinées co2 et chlorure
WO2019158307A1 (fr) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Production électrochimique d'un gaz comprenant du co avec refroidissement intermédiaire du courant électrolytique
WO2019158305A1 (fr) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Fabrication électrochimique de monoxyde de carbone et/ou de gaz de synthèse
DE102018202344A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische Herstellung von Kohlenstoffmonoxid und/oder Synthesegas
DE102018202337A1 (de) 2018-02-15 2019-08-22 Linde Aktiengesellschaft Elektrochemische Herstellung eines Gases umfassend CO mit Zwischenkühlung des Elektrolytstroms
US11560633B2 (en) 2018-02-15 2023-01-24 Siemens Energy Global GmbH & Co. KG Electrochemical production of carbon monoxide and/or syngas
WO2021073769A1 (fr) 2019-10-18 2021-04-22 Linde Gmbh Procédé et installation pour la fabrication d'un produit gazeux riche en monoxyde de carbone
DE102020004630A1 (de) 2020-07-30 2022-02-03 Linde Gmbh Druckhaltung in einer Elektrolyseanlage
WO2022022849A1 (fr) 2020-07-30 2022-02-03 Linde Gmbh Maintien de pression dans un système d'électrolyse
WO2022042877A1 (fr) 2020-08-27 2022-03-03 Linde Gmbh Procédé et système permettant de préparer du monoxyde de carbone
DE102020005254A1 (de) 2020-08-27 2022-03-03 Linde Gmbh Verfahren und Anlage zur Herstellung von Kohlenstoffmonoxid
EP4050126A1 (fr) 2021-02-25 2022-08-31 Linde GmbH Électrolyse à partir du co2 à humidification de produit de départ

Also Published As

Publication number Publication date
US20180023198A1 (en) 2018-01-25
DE102015202258A1 (de) 2016-08-25
ZA201705252B (en) 2019-06-26
CN107208284A (zh) 2017-09-26
EP3234225A1 (fr) 2017-10-25
JP2018510262A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2016128323A1 (fr) Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone
EP3234229A1 (fr) Procédé et système d'électrolyse pour le recyclage du dioxyde de carbone
DE102015203245A1 (de) Abscheidung eines kupferhaltigen, Kohlenwasserstoffe entwickelnden Elektrokatalysators auf Nicht-Kupfer-Substraten
EP3317435B1 (fr) Procédé de réduction et système d'électrolyse permettant le recyclage électrochimique du dioxyde de carbone
EP3408429A1 (fr) Procédé et dispositif pour l'utilisation électrochimique de dioxyde de carbone
WO2016188829A1 (fr) Système d'électrolyse destiné à une valorisation du dioxyde de carbone par voie électrochimique, et pourvu d'une unité donneur de protons, et procédé de réduction
DE102015201132A1 (de) Verfahren und Elektrolysesystem zur Kohlenstoffdioxid-Verwertung
DE2851225A1 (de) Verfahren zum speichern von sonnenenergie
EP3478878B1 (fr) Agencement et procédé pour l'électrolyse de dioxyde de carbone
EP3478879A1 (fr) Agencement et procédé pour l'électrolyse du dioxyde de carbone
WO2016083193A1 (fr) Électrolyseur et procédé de récupération du dioxyde de carbone
DE102013226357A1 (de) Pulsierende Elektrolytzufuhr in den Reaktionsraum einer Elektrolysezelle mit gasentwickelnden Elektroden
WO2020143970A1 (fr) Procédé d'électrolyse pour la réduction du dioxyde de carbone
WO2020001851A1 (fr) Rétroréaction électrochimique de conversion de gaz à l'eau à basse température
WO2017153082A1 (fr) Procédé et dispositif de fabrication de gaz de synthèse par voie électrochimique
WO2018162156A1 (fr) Électodes comprenant un métal incorporé dans des électrolytes solides
WO2020212139A1 (fr) Procédé et dispositif d'utilisation électrochimique de dioxyde de carbone
EP3783131A1 (fr) Électrolyseur et procédé de décomposition de l'eau
DE102016211151A1 (de) Anordnung und Verfahren für die Kohlendioxid-Elektrolyse
DE102019129071A1 (de) Elektrolyseur und Verfahren zum Aufspalten von Wasser
WO2015078784A1 (fr) Cellule d'électrolyse et procédé permettant de produire des produits chimiques au moyen d'une cellule d'électrolyse
DE102007029168A1 (de) Vorrichtung zum Erzeugen von Wasserstoff und diesen verwendendes Brennstoffzellensystem
WO2020156734A1 (fr) Procédé de fabrication de co à bon rendement énergétique
DE102013105605A1 (de) Verfahren und Vorrichtung zur elektrolytischen Synthese von Methanol und/oder Methan
DE102020207186A1 (de) CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16704413

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016704413

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017541254

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15549778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017130755

Country of ref document: RU

Kind code of ref document: A