WO2016127824A1 - 应用于单端sar adc的二进制电容阵列及其冗余校准方法 - Google Patents
应用于单端sar adc的二进制电容阵列及其冗余校准方法 Download PDFInfo
- Publication number
- WO2016127824A1 WO2016127824A1 PCT/CN2016/072559 CN2016072559W WO2016127824A1 WO 2016127824 A1 WO2016127824 A1 WO 2016127824A1 CN 2016072559 W CN2016072559 W CN 2016072559W WO 2016127824 A1 WO2016127824 A1 WO 2016127824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- redundancy
- cir
- calibration
- binary
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 217
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000005070 sampling Methods 0.000 claims description 15
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 16
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000003491 array Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
Definitions
- the invention relates to a binary capacitor array redundancy calibration method applied to a single-ended SAR ADC, belonging to a SAR ADC calibration technique.
- High-precision SAR ADCs Serial Approximation Register Type Analog-to-Digital Converters
- the establishment time is thus limited and difficult to improve.
- the comparator is misjudged to generate dynamic error, which affects the overall linearity of the SAR ADC.
- non-binary capacitor arrays can achieve redundant calibration, allowing the establishment of dynamic errors caused by incompleteness, increasing the speed of SAR ADCs, but requiring an additional number of conversion cycles, and non-binary capacitor arrays require ROM to record each bit.
- the weight, and the complex calculation of the final output code greatly increases the complexity of the system, and the non-binary capacitor array is difficult to achieve matching design on the layout.
- a binary-capacitor array redundancy algorithm with fully differential structure has been proposed, but its operation cannot be applied to a single-ended SAR ADC.
- the present invention provides a single-ended SAR ADC binary capacitor array and a redundancy calibration method thereof, which combines the small complexity and small area advantages of SAR ADC single-ended operation, and Redundant calibration improves its accuracy and linearity performance.
- the technical solution adopted by the present invention is: a binary capacitor array applied to a single-ended SAR ADC, including an addition redundancy calibration capacitor and a subtraction redundancy calibration capacitor; the addition redundancy calibration capacitor and subtraction redundancy The remaining calibration capacitor is inserted after a certain bit Ci of the binary capacitor array, and the capacitance values of the two are the same as the Ci capacitor value, and the calibration range is the same as the voltage weight represented by Ci, which is:
- Vref is the reference power supply voltage
- N is the total number of bits of the binary capacitor array
- the number of bits of Ci is the number of bits when the addition redundancy calibration capacitor and the subtraction redundancy calibration capacitor are not considered;
- the addition redundant calibration capacitor reference level reset state is connected in the same manner as the Ci reference level reset state, and the subtraction redundancy calibration capacitor reference level reset state connection mode and the addition redundancy calibration capacitance reference level reset
- the connection mode of the state is reversed, that is, the gnd of the subtractive redundancy calibration capacitor corresponds to the Vref of the addition redundancy calibration capacitor, and the subtraction method
- the Vref of the redundant calibration capacitor corresponds to the gnd of the additive redundancy calibration capacitor, and the subtraction operation is implemented by the opposite reference level operation.
- the invention also provides a redundancy calibration method implemented by a binary capacitor array applied to a single-ended SAR ADC, and the specific steps are as follows:
- Step 1 resetting the addition redundancy capacitor and the subtraction redundancy capacitor, that is, the lower plate of the addition redundancy capacitor is connected to the switch of the gnd, and the lower plate of the subtraction redundancy capacitor is connected to the switch of the Vref; Sampling of binary capacitors other than redundant capacitors and subtractive redundant capacitors;
- Step 2 Convert the capacitance of the binary capacitor array in order from the high level to the low level.
- Ci the output result of the Ci bit comparator
- the next conversion is switched to the addition redundancy calibration capacitor.
- the Ci lower plate is connected to gnd, the next conversion is switched to the subtractive redundant calibration capacitor, and no operation is performed on the subtractive redundant calibration capacitor, and the redundancy calibration is directly obtained.
- Step 3 Converting the capacitors at the i-1th position and after;
- Step 4 After all the conversion processes are finished, input the output of the comparator to the output code calculation module, perform calculation, and finally output the digital code of the ADC, where:
- Di is the total output result of the i-th Ci input to the output code calculation module
- bi is the comparator output of the i-th Ci
- biR is the comparison of the addition redundant calibration capacitor and the subtractive redundancy calibration capacitor inserted after Ci
- J is the compensation coefficient of the Ci bit.
- the binary capacitors other than the addition redundant capacitor and the subtractive redundant capacitor are sampled as described in the first step, as follows: the switch of the capacitor upper board is closed, that is, the reference level Vcm connected to the comparator, which needs to be sampled.
- the lower plate of the capacitor is connected to the input signal Vin for sampling; after the sampling is finished, the upper plate switch connected to the capacitor of Vcm is turned off, and all the switches of the lower plate of the sampling capacitor are switched from the input signal Vin to gnd.
- the conversion method of the binary capacitor Ck other than the additive redundant capacitor and the subtractive redundant capacitor in the binary capacitor array is as follows:
- the binary capacitor array redundancy calibration method applied to the single-ended SAR ADC provided by the present invention has the following advantages over the prior art:
- the redundant calibration algorithm enables digital calibration of the capacitance mismatch without the need to introduce additional capacitance mismatch calibration capacitors.
- Redundant calibration of capacitors using binary capacitor arrays saves conversions compared to traditional non-binary redundancy calibrations, and binary capacitor arrays are easy to match on the layout.
- the single-ended binary capacitor array redundancy calibration algorithm proposed by the present invention combines the small complexity and small area advantages of SAR ADC single-ended operation, and improves the accuracy and linearity performance through redundant calibration.
- the calibration algorithm is also compatible.
- FIG. 1 is a block diagram of a single-ended SAR ADC
- FIG. 2 is a structural diagram of a 4-bit DAC redundant capacitor array applied to a single-ended SAR ADC according to the present invention
- Figure 3 is a 4-bit schematic diagram of a single-ended SAR ADC with no redundant calibration conversion process.
- FIG. 4 is a schematic diagram of a 4 bit diagram of a binary capacitor array redundancy calibration conversion process applied to a single-ended SAR ADC according to the present invention.
- FIG. 5 is a flow chart of the binary capacitor array redundancy calibration operation applied to the single-ended SAR ADC of the present invention.
- FIG. 6 is a calculation diagram of a binary capacitor array redundancy calibration digital output applied to a single-ended SAR ADC according to the present invention.
- FIG. 7 is a schematic diagram of a binary capacitor array redundancy calibration structure applied to a single-ended SAR ADC according to the present invention.
- FIG. 1 Block diagram of a single-ended SAR ADC, including sample-and-hold circuits, comparators, SAR logic, and DAC capacitor arrays. This structure is easy to understand and the following operating instructions will explain this structure. Where DAC is a binary capacitor array, its high and low reference The levels are Vref and Gnd.
- FIG. 2 is a structural diagram of a 4-bit DAC redundant capacitor array applied to a single-ended SAR ADC of the present invention, after adding a complementary redundancy calibration capacitor C1R+ and a subtractive redundancy calibration capacitor C1R- after a capacitor C1 of a 4-bit binary capacitor array.
- Figure 3 is a 4-bit schematic diagram of a single-ended SAR ADC with no redundant calibration conversion process.
- the ordinate indicates the input analog signal of the comparator
- the line corresponding to Vi is the input signal, that is, the positive input of the comparator
- the bent connecting line indicates the output signal of the DAC, that is, the negative end signal of the comparator.
- the abscissa represents the conversion process, the timeline.
- the bar represents the operation of the DAC capacitor for each conversion process.
- the black number below the abscissa indicates the output code of the comparator.
- the top of the ordinate represents the last digital output code.
- (a) and (b) are the non-redundant calibration normal conversion when the highest bit ⁇ 0 and the highest bit>0, respectively.
- (c) and (d) indicate an error conversion in which the highest-order comparator output is misjudged as 0, and an error conversion in which the highest-order comparator output is misjudged as 0.
- the conversion process of (a) to (d) is the same. Taking (a) as an example, the input signal is sampled and held at the beginning of the conversion process, and the DAC capacitor is reset.
- the highest-order capacitor C3 is connected to Vref, so the DAC output is Vref/2 at this time, compared with the input signal, since Vi ⁇ Vdac(Vref/2), the comparator output is 0 at this time, the control is the highest.
- Bit capacitor C3 is connected back to Gnd, and the C2 capacitor is connected to Vref. At this time, the DAC output is Vref/4.
- the comparator output is 1, keeping the C2 capacitor state, and C1
- the capacitor is connected to Vref
- the DAC output is Vref/4+Vref/8
- the comparator output is 1, the C1 capacitor state is maintained, and the C0 capacitor is connected to Vref.
- the digital output code is 0111. As can be seen from the figure, once the misjudgment is caused by the incomplete DAC establishment, the error will continue until the wrong digital code is output.
- FIG. 7 is a schematic diagram of a binary capacitor array redundancy calibration structure applied to a single-ended SAR ADC according to the present invention, which is a schematic diagram of an algorithm for practical application.
- a redundant capacitor array, a comparator, a SAR logic control module, an output code calculation module wherein the redundantly calibrated binary capacitor array includes an addition redundancy calibration capacitor CiR+ and a subtraction redundancy calibration capacitor CiR-;
- the remaining calibration capacitor CiR+ and the subtractive redundancy calibration capacitor CiR- are inserted after a certain bit Ci of the binary capacitor array, and the capacitance values of the two are the same as the Ci capacitance value, and the calibration range is the same as the voltage weight represented by Ci, which is:
- Vref is the reference power supply voltage
- N is the total number of bits of the binary capacitor array
- the number of bits of Ci is the number of bits when the addition redundancy calibration capacitor and the subtraction redundancy calibration capacitor are not considered;
- connection redundancy reset capacitor CiR+ reference level reset state is connected in the same manner as the Ci reference level reset state, and the subtraction redundancy calibration capacitor CiR-reference level reset state connection mode and the addition redundancy calibration capacitor CiR+
- the reference level reset state is connected in the opposite way, that is, the gnd of the subtractive redundancy calibration capacitor CiR- corresponds to the Vref of the addition redundancy calibration capacitor CiR+, and the Vref of the subtraction redundancy calibration capacitor CiR- corresponds to the addition redundancy calibration capacitor CiR+ Gnd, through the opposite reference level operation to achieve the subtraction operation.
- the redundancy calibration method implemented by the binary capacitor array applied to the single-ended SAR ADC is as follows:
- Step 1 Reset the addition redundancy capacitor CiR+ and the subtraction redundancy capacitor CiR-, that is, the lower plate of the addition redundancy capacitor CiR+ is connected to the switch of gnd, and the lower plate of the subtraction redundancy capacitor CiR- is connected to the switch of Vref.
- Step 2 As shown in FIG. 5, the capacitance of the binary capacitor array is sequentially converted from the high level to the low level.
- the Ci lower plate is connected to gnd, the next conversion is switched to the subtractive redundant calibration capacitor CiR-, and the subtractive redundant calibration capacitor CiR- is not operated directly.
- Step 3 Converting the capacitors at the i-1th position and after;
- Step 4 After all the conversion processes are finished, input the output of the comparator to the output code calculation module, perform calculation, and finally output the digital code of the ADC, where:
- Di is the total output result of the i-th Ci input to the output code calculation module
- bi is the comparator output of the i-th Ci
- biR is the addition redundancy calibration capacitor CiR+ and the subtractive redundancy calibration capacitor CiR inserted after Ci - Comparator output
- J is the compensation coefficient of the Ci bit.
- FIG. 5 is a flow chart showing the operation of the present invention for redundant calibration of a binary capacitor array of a single-ended SAR ADC. Wherein: for this embodiment, i takes 1.
- the operation of the ordinary single-ended SAR ADC does not meet the requirements, so an additional detection phase needs to be introduced to judge whether the error occurs.
- the error in which the addition or subtraction is cancelled can be easily distinguished by the comparator output code bi of the Ci bit.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510069640.2A CN104639164B (zh) | 2015-02-10 | 2015-02-10 | 应用于单端sar adc的二进制电容阵列及其冗余校准方法 |
CN201510069640.2 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016127824A1 true WO2016127824A1 (zh) | 2016-08-18 |
Family
ID=53217548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/072559 WO2016127824A1 (zh) | 2015-02-10 | 2016-01-28 | 应用于单端sar adc的二进制电容阵列及其冗余校准方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104639164B (ar) |
WO (1) | WO2016127824A1 (ar) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110266312A (zh) * | 2019-05-30 | 2019-09-20 | 福建工程学院 | 一种应用于sar adc的dac开关方法 |
CN110572158A (zh) * | 2019-10-16 | 2019-12-13 | 合肥工业大学 | 逐次逼近型adc的电容阵列电路及其电容开关控制方法 |
CN110868216A (zh) * | 2019-11-29 | 2020-03-06 | 湖南国科微电子股份有限公司 | 一种sar adc的数据转换方法、装置、设备及介质 |
CN112290945A (zh) * | 2020-09-30 | 2021-01-29 | 西安电子科技大学 | 单通道高速高精度sar adc的数字后台自校准电路结构及方法 |
CN113922819A (zh) * | 2021-12-14 | 2022-01-11 | 之江实验室 | 基于后台校准的一步两位逐次逼近型模数转换器 |
CN114389609A (zh) * | 2021-12-14 | 2022-04-22 | 中国科学院微电子研究所 | 一种补偿电路及补偿方法 |
CN115021749A (zh) * | 2022-06-30 | 2022-09-06 | 天津大学合肥创新发展研究院 | 适用于一阶误差反馈式失配误差整形的动态范围补偿方法 |
CN116707527A (zh) * | 2023-05-30 | 2023-09-05 | 南京铭芯半导体科技有限公司 | 一种saradc电容阵列校准方法和电路 |
CN118337216A (zh) * | 2024-04-25 | 2024-07-12 | 成都士模微电子有限责任公司 | 模数转换器中电容翻转方法及逐次逼近型模数转换器 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104639164B (zh) * | 2015-02-10 | 2017-09-29 | 东南大学 | 应用于单端sar adc的二进制电容阵列及其冗余校准方法 |
CN104917527B (zh) * | 2015-06-30 | 2017-12-05 | 东南大学 | 应用于单端sar adc的电容失配校准电路及其校准方法 |
CN109937536A (zh) * | 2016-08-30 | 2019-06-25 | 华为技术有限公司 | 模数转换器 |
CN106788436B (zh) * | 2016-11-09 | 2020-05-22 | 上海芯圣电子股份有限公司 | 应用于saradc中的pip电容阵列的电压系数校准方法 |
CN106899300B (zh) * | 2017-02-15 | 2020-05-12 | 电子科技大学 | 一种用于逐次逼近模数转换器的冗余循环平均方法 |
CN108900195B (zh) * | 2018-07-03 | 2021-10-29 | 清华大学深圳研究生院 | 过采样模数转换器及其反馈数模转换器动态误差校准方法 |
CN111983328B (zh) * | 2020-06-30 | 2023-05-23 | 上海美仁半导体有限公司 | 一种电容误差测量电路、测量方法、芯片以及家用电器 |
CN114362751A (zh) * | 2022-01-11 | 2022-04-15 | 芯聚威科技(成都)有限公司 | 快速收敛高精度逐次渐进模数转换器数字校正电路及方法 |
WO2023173973A1 (zh) * | 2022-03-17 | 2023-09-21 | 上海美仁半导体有限公司 | 冗余校准的sar-adc电路和模数转换器 |
CN114598324A (zh) * | 2022-03-17 | 2022-06-07 | 上海美仁半导体有限公司 | 冗余校准的sar-adc电路和模数转换器 |
CN116505946B (zh) * | 2023-06-21 | 2023-10-13 | 江苏润石科技有限公司 | Sar adc的模拟域校准方法、装置及sar adc |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101764612A (zh) * | 2008-12-31 | 2010-06-30 | 香港应用科技研究院有限公司 | 多阶段比较器 |
CN101807923A (zh) * | 2009-06-12 | 2010-08-18 | 香港应用科技研究院有限公司 | 具有二进制加权电容器采样阵列和子采样电荷分配阵列的混合模数转换器(adc) |
CN102045067A (zh) * | 2011-01-13 | 2011-05-04 | 东南大学 | 提高逐次逼近adc输出信噪比的转换和校准算法及adc |
US20110304493A1 (en) * | 2010-06-11 | 2011-12-15 | Texas Instruments Incorporated | Ternary search sar adc |
CN102594353A (zh) * | 2011-01-13 | 2012-07-18 | 中兴通讯股份有限公司 | 一种数模转换器及逐次逼近存储转换器 |
CN203788271U (zh) * | 2014-04-02 | 2014-08-20 | 上海菱沃铂智能技术有限公司 | 用于sar型adc的小面积dac电容阵列 |
CN104639164A (zh) * | 2015-02-10 | 2015-05-20 | 东南大学 | 应用于单端sar adc的二进制电容阵列及其冗余校准方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103873059B (zh) * | 2014-03-10 | 2017-02-08 | 天津大学 | 一种应用于高精度逐次逼近模数转换器的数字校准方法 |
-
2015
- 2015-02-10 CN CN201510069640.2A patent/CN104639164B/zh not_active Expired - Fee Related
-
2016
- 2016-01-28 WO PCT/CN2016/072559 patent/WO2016127824A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101764612A (zh) * | 2008-12-31 | 2010-06-30 | 香港应用科技研究院有限公司 | 多阶段比较器 |
CN101807923A (zh) * | 2009-06-12 | 2010-08-18 | 香港应用科技研究院有限公司 | 具有二进制加权电容器采样阵列和子采样电荷分配阵列的混合模数转换器(adc) |
US20110304493A1 (en) * | 2010-06-11 | 2011-12-15 | Texas Instruments Incorporated | Ternary search sar adc |
CN102045067A (zh) * | 2011-01-13 | 2011-05-04 | 东南大学 | 提高逐次逼近adc输出信噪比的转换和校准算法及adc |
CN102594353A (zh) * | 2011-01-13 | 2012-07-18 | 中兴通讯股份有限公司 | 一种数模转换器及逐次逼近存储转换器 |
CN203788271U (zh) * | 2014-04-02 | 2014-08-20 | 上海菱沃铂智能技术有限公司 | 用于sar型adc的小面积dac电容阵列 |
CN104639164A (zh) * | 2015-02-10 | 2015-05-20 | 东南大学 | 应用于单端sar adc的二进制电容阵列及其冗余校准方法 |
Non-Patent Citations (1)
Title |
---|
WANG, PEI ET AL.: "Mismatch Calibration Techniques in Successive Approximation Analog-to-Digital Converters", CHINESE JOURNAL OF SEMICONDUCTORS, vol. 28, no. 9, 30 September 2007 (2007-09-30) * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110266312A (zh) * | 2019-05-30 | 2019-09-20 | 福建工程学院 | 一种应用于sar adc的dac开关方法 |
CN110266312B (zh) * | 2019-05-30 | 2022-09-13 | 福建工程学院 | 一种应用于sar adc的dac开关方法 |
CN110572158B (zh) * | 2019-10-16 | 2022-08-30 | 合肥工业大学 | 逐次逼近型adc的电容阵列电路及其电容开关控制方法 |
CN110572158A (zh) * | 2019-10-16 | 2019-12-13 | 合肥工业大学 | 逐次逼近型adc的电容阵列电路及其电容开关控制方法 |
CN110868216A (zh) * | 2019-11-29 | 2020-03-06 | 湖南国科微电子股份有限公司 | 一种sar adc的数据转换方法、装置、设备及介质 |
CN110868216B (zh) * | 2019-11-29 | 2024-05-07 | 湖南国科微电子股份有限公司 | 一种sar adc的数据转换方法、装置、设备及介质 |
CN112290945A (zh) * | 2020-09-30 | 2021-01-29 | 西安电子科技大学 | 单通道高速高精度sar adc的数字后台自校准电路结构及方法 |
CN112290945B (zh) * | 2020-09-30 | 2023-03-28 | 西安电子科技大学 | 单通道高速高精度sar adc的数字后台自校准电路结构及方法 |
CN114389609A (zh) * | 2021-12-14 | 2022-04-22 | 中国科学院微电子研究所 | 一种补偿电路及补偿方法 |
CN114389609B (zh) * | 2021-12-14 | 2022-11-11 | 中国科学院微电子研究所 | 一种补偿电路及补偿方法 |
CN113922819A (zh) * | 2021-12-14 | 2022-01-11 | 之江实验室 | 基于后台校准的一步两位逐次逼近型模数转换器 |
CN115021749A (zh) * | 2022-06-30 | 2022-09-06 | 天津大学合肥创新发展研究院 | 适用于一阶误差反馈式失配误差整形的动态范围补偿方法 |
CN116707527A (zh) * | 2023-05-30 | 2023-09-05 | 南京铭芯半导体科技有限公司 | 一种saradc电容阵列校准方法和电路 |
CN118337216A (zh) * | 2024-04-25 | 2024-07-12 | 成都士模微电子有限责任公司 | 模数转换器中电容翻转方法及逐次逼近型模数转换器 |
Also Published As
Publication number | Publication date |
---|---|
CN104639164B (zh) | 2017-09-29 |
CN104639164A (zh) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016127824A1 (zh) | 应用于单端sar adc的二进制电容阵列及其冗余校准方法 | |
JP6563349B2 (ja) | Adcにおけるdacのミスマッチエラーの検出と補正のための回路及び方法 | |
US10581443B2 (en) | Method and apparatus for offset correction in SAR ADC with reduced capacitor array DAC | |
CN104168020B (zh) | 一种逐位逼近型模数转换器的电容非线性校准电路及方法 | |
CN109347477B (zh) | 一种逐次逼近型模数转换器权重校准方法 | |
CN104363020B (zh) | 一种流水线模数转换器及其误差校准方法 | |
US9059730B2 (en) | Pipelined successive approximation analog-to-digital converter | |
US12224763B2 (en) | Calibration method of capacitor array type successive approximation register analog-to-digital converter | |
CN102970038B (zh) | 校正电容不匹配的逐渐逼近模拟至数字转换器及其方法 | |
CN104079298A (zh) | 自校准桥接电容结构的逐次逼近型模数转换器 | |
JP5657490B2 (ja) | 逐次比較型ad変換器および無線受信機 | |
CN106230439B (zh) | 一种提高流水线型逐次逼近模数转换器线性度的方法 | |
CN108988859B (zh) | 基于冗余位的比较器失调电压校准方法 | |
TWI653836B (zh) | 連續逼近式類比至數位轉換之校正裝置 | |
CN104092466B (zh) | 一种流水线逐次逼近模数转换器 | |
CN110350918A (zh) | 一种基于最小均方算法的数字后台校正方法 | |
US8749412B1 (en) | Anti-noise successive approximation analog to digital conversion method | |
CN106027051A (zh) | 一种适用于流水线模数转换器的后台校准电路及校准方法 | |
CN114050827B (zh) | 应用于电容三段式逐次逼近型模数转换器的数字校准方法 | |
CN106209106B (zh) | 一种提高混合电阻电容型模数转换器动态性能的位循环方法 | |
CN106899300B (zh) | 一种用于逐次逼近模数转换器的冗余循环平均方法 | |
CN104363019B (zh) | 一种流水线模数转换器及其电容失配误差校准方法 | |
CN109120263A (zh) | 一种基于数字调制校正的逐次逼近模数转换器 | |
CN105071811A (zh) | 一种提高逐次逼近模数转换器dnl/inl的位循环方法 | |
CN107786206B (zh) | 一种Pipeline SAR-ADC系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16748625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12/01/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16748625 Country of ref document: EP Kind code of ref document: A1 |