WO2016127355A1 - 氢化苯乙烯类嵌段共聚物及其制备方法和用途 - Google Patents

氢化苯乙烯类嵌段共聚物及其制备方法和用途 Download PDF

Info

Publication number
WO2016127355A1
WO2016127355A1 PCT/CN2015/072858 CN2015072858W WO2016127355A1 WO 2016127355 A1 WO2016127355 A1 WO 2016127355A1 CN 2015072858 W CN2015072858 W CN 2015072858W WO 2016127355 A1 WO2016127355 A1 WO 2016127355A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
polymerization
monomer
styrene
stage
Prior art date
Application number
PCT/CN2015/072858
Other languages
English (en)
French (fr)
Inventor
周赞斌
Original Assignee
浙江三博聚合物有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三博聚合物有限公司 filed Critical 浙江三博聚合物有限公司
Priority to PCT/CN2015/072858 priority Critical patent/WO2016127355A1/zh
Publication of WO2016127355A1 publication Critical patent/WO2016127355A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the invention relates to a novel hydrogenated styrene block copolymer, a preparation method thereof and use thereof, and belongs to the field of preparation of polymer materials.
  • the styrenic thermoplastic elastomer is a general term for styrene-conjugated diene-based copolymers and derivatives thereof.
  • the block copolymers (including diblocks and triblocks) in styrene-conjugated diene-based copolymers have thermoplastic elastomer properties and are the earliest and most widely studied varieties.
  • polystyrene-polybutadiene-polystyrene triblock copolymer SBS
  • polystyrene-polyisoprene-polystyrene triblock copolymer SIS
  • Polystyrene-hydrogenated polybutadiene-polystyrene triblock copolymer SEBS
  • SBS and SIS were the earliest products of research, and industrialized production was achieved by Phillips Petroleum and Shell Chemical in the 1960s. However, it was found that the aging resistance and chemical stability of SBS were not good. Therefore, researchers at Shell Chemical Company (now Kraton) have highly hydrogenated the soft segment of SBS to obtain a thermoplastic elastomer SEBS with better mechanical properties and better chemical stability. Shell Chemical also industrialized it in the 1970s. At present, the annual total output of SBS, SIS and SEBS in the world has exceeded 2 million tons, and it has been widely used in various fields.
  • the polystyrene block In commercial SEBS, the polystyrene block is generally the dispersed phase and the elastomer block is the continuous phase. Because of this microphase-separated structure, the polystyrene block is hard and strong at normal temperature, and the elastic block is locked into a physically crosslinked network, giving it the properties of an elastomer. When the temperature rises and the polystyrene begins to flow, it can be processed repeatedly like plastic. This gives SEBS a dual nature of plastics and rubber, in particular giving SEBS a similar elasticity to conventional vulcanized rubber.
  • the total content of polystyrene (PS) in the SEBS must be less than 40% by weight.
  • the content of polystyrene is higher than 40% by weight, the polystyrene-hydrogenated polybutadiene block copolymer SEBS will gradually become plastic and lose with the increase of PS. De-elastic properties.
  • CN101735419 A relates to a star-shaped high styrene rubber.
  • the star-type high styrene rubber comprises a polystyrene and a polybutadiene graded block copolymer and a random copolymer of polystyrene and polybutadiene, which are prepared by a stepwise addition of a monomer by anionic polymerization.
  • the star-type high styrene rubber does not include the end styrene block, but rather a mixture of styrene and butadiene monomers is added at the beginning of the reaction, and the natural distribution is formed due to the difference in the reactivity ratio of the two. Block form. This document also does not relate to hydrogenated block copolymers.
  • CN101735526A relates to a modified high impact polystyrene composition comprising a butylbenzene impact copolymer.
  • the styrene-butadiene impact copolymer is a K-resin well known in the art and is a typical styrenic plastic which is substantially different from thermoplastic elastomers.
  • this document does not relate to hydrogenated styrene-butadiene impact copolymers.
  • this document does not relate to the properties of the prepared styrene-butadiene impact copolymer itself.
  • CN101855294A discloses a curable rubber mixture comprising a block copolymer.
  • the block copolymer has an end block and a main chain portion, the two portions having different glass transition temperatures.
  • the content of polystyrene blocks in this document is relatively low, between 20-30%.
  • thermoplastic elastomer which has a high styrene monomer unit content and exhibits good dynamic mechanical properties, viscoelasticity and shock absorption.
  • the inventors of the present invention conducted intensive studies, and as a result, surprisingly found that by carefully controlling the polymerization conditions, the content of the styrene monomer unit in the block copolymer can be effectively improved, and good results can be obtained. Dynamic mechanical properties, viscoelasticity and shock absorption. Surprisingly, it has been found that when the total mass content of the styrenic monomer in the block copolymer reaches 40-80%, the polymer still exhibits the properties of a typical thermoplastic elastomer, which is completely contrary to conventional wisdom.
  • the present invention provides a novel hydrogenated styrenic block copolymer and a process for its preparation and use.
  • the hydrogenated styrenic block copolymer belongs to a high styrene thermoplastic Elastomer with good dynamic mechanical properties, good viscoelasticity and shock absorption.
  • the thermoplastic elastomer of the present invention can be used for chemical microcellular foaming, damping materials and soft transparent films.
  • One aspect of the invention relates to a block copolymer having the following structural formula:
  • S 1 and S 2 are independently a styrene monomer polymer block, and the weight of S 1 and S 2 respectively is 8.0-20.0% by weight of the total weight of the block copolymer;
  • D is a copolymer block of a styrene monomer and a hydrogenated conjugated diene monomer
  • p and q are each independently 0 or 1, but not simultaneously 0;
  • the styrenic monomer units in S 1 , S 2 and D may be the same or different;
  • the block copolymer thermoplastic elastomer was measured for its dynamic mechanical properties by dynamic mechanical thermal analysis.
  • the frequency was fixed at 1 Hz and the heating rate was 3 K/min, an internal friction peak (tan ⁇ ) appeared at -30-35 ° C, and the peak of the internal friction peak was observed.
  • tan ⁇ the peak of the internal friction peak was observed.
  • Another aspect of the invention relates to a method of preparing a block copolymer comprising:
  • a coupling agent is added to the polymerization vessel to couple the reaction product to obtain a star polymer
  • the styrene monomers in the first stage polymerization, the second stage polymerization, and the optional third stage polymerization may be the same or different, and the polymerization temperature is 50-100 °C.
  • Still another aspect of the invention relates to the use of the block copolymers of the invention in chemical microcellular foaming, damping materials and soft transparent films.
  • the special structure of the polymer of the invention imparts its special properties. It has been found that the block copolymer can be made into a film with excellent transparency and strength, and can be conveniently chemically microcellular foamed, subverting the styrene-hydrogenation.
  • the yoke-diene block copolymer does not have the conventional concept of microcellular foaming.
  • Structural studies have found that the novel styrene-hydrogenated conjugated diene block copolymer exhibits a large internal friction (tan ⁇ ) in the vicinity of room temperature and is very suitable as a damping damping material.
  • the polymer has a very special microscopic phase separation structure, which is completely different from the traditional SEBS.
  • the cost of styrene monomer is significantly lower than that of butadiene, the novel styrene-hydrogenated conjugated diene block copolymer has a significant cost advantage over conventional SEBS.
  • the novel styrene-hydrogenated conjugated diene block copolymer has many properties different from those of the conventional SEBS, and is expected to greatly expand the application field of the styrene-hydrogenated conjugated diene block copolymer.
  • Example 1 is a DSC heating curve of a hydrogenated styrene block copolymer thermoplastic elastomer of Example 1 of the present invention
  • Example 2 is a DMTA temperature scanning curve of a hydrogenated styrene block copolymer thermoplastic elastomer of Example 1 of the present invention
  • 3a and 3b are atomic force micrographs of a microphase-separated structure of a novel hydrogenated styrene block copolymer thermoplastic elastomer according to Example 1 of the present invention.
  • Figures 4a and 4b are atomic force micrographs of a microphase separation structure of the prior art SEBS G1652E (from Kraton).
  • microblock means a structural moiety composed of the same monomer unit in each copolymer block unless otherwise specified.
  • the present invention provides a block copolymer having the following structural formula:
  • S 1 and S 2 are independently a styrene monomer polymer block, and the weight of S 1 and S 2 respectively is 8.0-20.0% by weight of the total weight of the block copolymer;
  • D is a copolymer block of a styrene monomer and a hydrogenated conjugated diene monomer
  • p and q are each independently 0 or 1, but not simultaneously 0;
  • the styrenic monomer units in S 1 , S 2 and D may be the same or different;
  • the block copolymer thermoplastic elastomer was measured for its dynamic mechanical properties by dynamic mechanical thermal analysis.
  • the frequency was fixed at 1 Hz and the heating rate was 3 K/min, an internal friction peak (tan ⁇ ) appeared at -30-35 ° C, and the peak of the internal friction peak was observed.
  • tan ⁇ the peak of the internal friction peak was observed.
  • both ends of the molecular structure are ordinary polystyrene blocks, preferably formed by living polymerization, more preferably by living anionic polymerization.
  • the styrenic monomer units in the block copolymer of the invention are present in the block copolymer in an amount of from 50 to 80% by weight, preferably from 55 to 75% by weight.
  • the present invention obtains a thermoplastic elastomer having a high content of polystyrene structural units by molecularly designing the block copolymer, which is still obtainable at a styrene monomer unit content of up to 80%. Good dynamic mechanical properties, good viscoelasticity and shock absorption.
  • the copolymer block D in the block copolymer of the present invention is as shown in the following formula:
  • a x is a styrene monomer polymerization micro block
  • B y is a hydrogenated microblock which is polymerized and then hydrogenated by a conjugated diene monomer.
  • x is the number (average value) of styrene monomer units, and is 1-100, preferably 1-90, more preferably 1-70, and most preferably 1-30.
  • Y is the number (average value) of hydrogenated conjugated diene monomer units, and is 1-170, preferably 1-150, more preferably 1-90, most preferably 1-35,
  • n is 30-1100 (average value), preferably 300-1100, more preferably 650-1100, most preferably 900-1100, and each of the hydrogenated conjugated diolefins and styrenes in each of (A x -B y )
  • the kinds of the bodies may be the same or different from each other, and each of x may be the same or different from each other, and each of y may be the same or different from each other.
  • the weight percentage of the polymeric blocks S 1 and S 2 in the block copolymer of the present invention in the block copolymer is from 8.0 to 20.0%, preferably from 8.0 to 18.0%, more It is preferably 8.0-15.0%, most preferably 10.0-14.0%.
  • the weight percentage of the polymer blocks S 1 and S 2 respectively is less than 8.0%, the tensile strength and the modulus of elongation of the block copolymer will be significantly decreased, and the weight percentages of S 1 and S 2 respectively Above 20.0%, the hardness of the block copolymer will increase significantly and the elasticity will obviously disappear. Only at 8.0 to 20.0%, the block copolymer of the present invention can have a better overall performance to meet the application requirements.
  • the block copolymer of the present invention has a number average molecular weight of from 20,000 to 800,000 g/mol, preferably from 30,000 to 600,000 g/mol, more preferably from 40,000 to 400,000 g/mol, most preferably 50,000. -300000g/mol.
  • the molecular weight distribution index is from 1.01 to 1.5, more preferably from 1.01 to 1.3, most preferably from 1.01 to 1.25.
  • the styrenic monomer may be selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, and substituted ⁇ -alkylstyrene (for example, p-methyl- ⁇ -methylstyrene), Methylstyrene, vinyl toluene, vinyl naphthalene and p-tert-butylstyrene, or mixtures thereof. Among these, styrene, ⁇ -methylstyrene or a combination thereof is most preferred.
  • the conjugated diene used herein may be butadiene such as 1,3-butadiene or substituted butadiene such as isoprene, piperylene, 2,3-dimethyl-1,3 Butadiene and 1-phenyl-1,3-butadiene, or mixtures thereof. Among these, 1,3-butadiene and isoprene, or a combination thereof are most preferred.
  • the degree of hydrogenation of the hydrogenated conjugated diene block may be from 80 to 99.99%, preferably from 88 to 99.0%. Too low a degree of hydrogenation will significantly reduce the thermal stability of the polymer, but will have a negative impact on the hot working of the later application. Significantly increase the hydrogenation reaction time in the polymer synthesis process, increase production costs, and reduce production efficiency.
  • the block copolymer thermoplastic elastomer of the present invention is subjected to thermal conversion by DSC standard method, and a significant glass transition occurs at -35--10 ° C at a temperature rise of 10 K/min, that is, a Tg value of -35 to -10 ° C. between. That is, the block copolymer thermoplastic elastomer of the present invention has a Tg value lower than 0 ° C, and the thermodynamic properties of the product are uniform. As shown in the atomic force microscope photographs of Figs. 2 and 3, the microphase structure of the block copolymer thermoplastic elastomer of the present invention is small particles.
  • this Tg value represents a styrene monomer in the copolymer block D of the styrene monomer and the hydrogenated conjugated diene monomer in the block copolymer S 1 p -DS 2 q
  • the bulk polymerization microblock and the hydrogenated conjugated diene monomer microblock are uniformly alternately distributed, which is related to the manner in which the monomer mixture is added to the monomer mixture in the second stage polymerization of the present invention.
  • the block copolymer thermoplastic elastomer of the present invention has good damping properties.
  • the thermoplastic elastomer exhibited a significant internal friction peak (tan ⁇ ) at -30-35 ° C, and the peak of the internal friction peak was -5-10. °C, and the peak tan ⁇ ⁇ 0.7, preferably ⁇ 0.8, more preferably ⁇ 0.9, most preferably ⁇ 1.0.
  • the peak tan ⁇ of the internal friction peak is usually greater than 0.4, preferably greater than 0.7, more preferably greater than 0.8, and most preferably greater than 1.0.
  • the block copolymer of the present invention is a linear molecular structure having the formula S 1 -(A x -B y ) n -S 2 , wherein S 1 , S 2 , A, B, x, y and n are as defined above.
  • the block copolymer of the present invention is a star molecular structure having the formula [S 1 -(A x -B y ) n -S 2 ] m -R or [S 1 -(A x - B y ) n ] m -R, wherein S 1 , S 2 , A, B, x, y and n are as defined above, R is a coupling agent residue, and m is the number of arms of the star molecule, which is selected from An integer of from 3 to 55 is preferably an integer selected from 3 to 40, and more preferably an integer selected from 3 to 15.
  • the coupling agent is chosen from divinylbenzene, SiCl 4 or SnCl 4.
  • the block copolymer thermoplastic elastomer of the present invention is excellent in damping properties.
  • the temperature sweep test results of DMTA showed that (1 Hz, 3K/min), the thermoplastic elastomer exhibited an internal friction peak (tan ⁇ ) at -30-35 ° C, the peak value was -5-10 ° C, and tan ⁇ ⁇ 0.7. It is generally believed that under the usual four seasons temperature (-30-40 ° C), if the elastomer material has obvious internal friction, it will have good damping and Shock absorption performance. This is because the internal energy causes the mechanical energy applied to the elastomer to be dissipated by the frictional transformation of its molecular chain into thermal energy.
  • the positive benefit of -30-35 ° C is within the temperature range of the four seasons temperature, so the block copolymer thermoplastic elastomer of the present invention is particularly suitable as a shock absorbing material. .
  • the invention also provides a method of preparing a block copolymer comprising:
  • a coupling agent is added to the polymerization vessel to couple the reaction product to obtain a star polymer
  • the styrenic monomers in the first stage polymerization, the second stage polymerization, and the optional third stage polymerization may be the same or different.
  • the coupling agent is selected from the group consisting of divinylbenzene, SiCl 4 or SnCl 4 .
  • a mixture of conjugated diene/styrene monomers is added for the second stage polymerization, wherein the mixture of the monomers is divided into 3-60.
  • Batches preferably 5-55 batches, more preferably 8-40 batches, are added to the polymerization vessel, and the latter batch is added at a conversion of at least 95% of the previous batch.
  • Add styrene monomer and conjugated in batches The mixture of ethylenic monomers can produce microblocks of styrenic monomers and conjugated diene monomers in the polymer chain.
  • the batch of the monomer mixture added in portions is equal in weight per batch.
  • the mixture of monomers fed in batches also has the same monomer ratio per batch.
  • the weight percentage of styrenic monomer in the mixed monomer may range from 20.0 to 70.0%, preferably from 30.0 to 60.0%.
  • the styrene monomer may have a weight percentage of the styrene monomer of from 20.0 to 64.0%, preferably from 30.0 to 60.0%, more preferably from 40.0 to 60.0%.
  • the solvent used as the polymeric carrier can be any hydrocarbon that does not react with the living anionic chain ends of the formed polymer, is readily handled in commercial polymerization equipment, and provides suitable solubility characteristics to the product polymer.
  • non-polar aliphatic hydrocarbons which generally lack ionizable hydrogen constitute a particularly suitable solvent.
  • cyclic alkanes such as cyclopentane, cyclohexane, cycloheptane and cyclooctane, all of which are relatively non-polar.
  • Other suitable solvents will be known to those skilled in the art and can be selected to function effectively under the given set of process conditions, with temperature and water content being the most important factors to be considered.
  • the first stage is polymerized in a solvent selected from the group consisting of cyclohexane, n-hexane, benzene, toluene, xylene heptane, or a mixture thereof In progress.
  • a solvent selected from the group consisting of cyclohexane, n-hexane, benzene, toluene, xylene heptane, or a mixture thereof In progress.
  • the solvent has a total water content of less than 30 ppm.
  • the anionic polymerization initiator in the present invention includes, for example, an alkyllithium compound and other organolithium compounds such as sec-butyllithium, n-butyllithium, t-butyllithium, pentyllithium, etc., including a di-initiator such as m-diisopropylene. Di-sec-butyllithium adduct of benzene. Other such diinitiators are disclosed in U.S. Patent 6,492,469. Among various polymerization initiators, n-butyllithium or sec-butyllithium is preferred.
  • the initiator can be used in the polymerization mixture (including monomers and solvents) in an amount calculated based on one initiator molecule per desired polymer chain.
  • the lithium initiator process is well known and is disclosed, for example, in U.S. Patent 4,039,593, the disclosure of which is incorporated herein by reference.
  • the monomer conversion rate is determined by gas chromatography for the extract during the polymerization reaction, and the inventors have found that the molecular structure of the polymer of the present invention can satisfy the description of the invention when the monomer conversion rate is 95% or more. Design requirements.
  • a wide variety of coupling agents include, for example, dihaloalkanes, silicon halides, siloxanes, polyfunctional epoxides, polyalkenyl compounds including m-divinylbenzene, and the like.
  • a silica compound including an alkoxysilane, an alkylsilane, an alkyl-alkoxysilane, etc., an ester of a monohydric alcohol and a carboxylic acid, including dimethyl adipate, and the like, and an epoxidation Oil.
  • tetraalkoxysilanes such as tetraethoxysilane (TEOS) and tetramethoxysilane
  • alkyltrialkoxysilanes such as methyltrimethoxysilane (MTMQ)
  • MTMQ methyltrimethoxysilane
  • aliphatic diesters such as Dimethyl dicarboxylate and diethyl adipate
  • diglycidyl aromatic epoxy compounds such as diglycidyl ethers derived from the reaction of bisphenol A with epichlorohydrin.
  • the coupling agent is selected such that any residual unreacted coupling agent, coupling agent residues incorporated into the polymer chain or by-products of the coupling reaction do not affect the hydrogenation reaction.
  • the coupling agent is preferably selected from divinylbenzene, SiCl 4 or SnCl 4.
  • the coupling agent is added to the living polymer in a molar ratio to produce a coupled polymer having a desired arm number distribution.
  • the coupling agent may be added in the form of a pure compound or may be diluted in an inert solvent for ease of metering. The way of adding may have an effect on the number of arms.
  • the reaction is terminated as needed, for example, when divinylbenzene is used, the reaction needs to be terminated, and the use of silicon tetrachloride may not require termination of the reaction.
  • the star polymer obtained by the process for preparing the block copolymer of the present invention has from 3 to 5 arms, preferably from 3 to 40 arms, more preferably from 3 to 15 arms.
  • the polymerization is stopped by the addition of a terminator.
  • Anionic polymerization is often terminated by the addition of water to remove lithium from the end of the polymer chain in the form of lithium hydroxide (LiOH) or by the addition of alcohol (ROH) to remove lithium in the form of lithium alkoxide (LiOR).
  • the terminator is added in an amount relative to the molar excess of the end of the living chain.
  • the type and/or amount of terminator should be chosen such that residual terminator or termination reaction by-product does not affect hydrogenation.
  • Hydrogenation can be carried out by any of several hydrogenation or selective hydrogenation processes known in the art. Such hydrogenation has been accomplished, for example, using methods such as taught in, for example, USP 3,359,942, 3,634,549, 3,675, 054, 3,700, 633, the disclosure of which is incorporated herein by reference.
  • the catalyst used in the present invention comprises a titanium-based catalyst system, preferably a titanocene compound.
  • the hydrogenation reaction temperature of the step is 60-140 ° C
  • the pressure is 0.8-2.2 MPa
  • the time is 60-200 min.
  • the hydrogenation operation is carried out such that the hydrogenated degree of the hydrogenated conjugated diene block in the block copolymer thermoplastic elastomer of the present invention is from 80 to 99.99%, preferably from 88 to 99.0%. If the degree of hydrogenation is too low, the thermal stability of the polymer will be significantly reduced, which will have a negative impact on the hot working of the later application. The high degree of hydrogenation will significantly increase the hydrogenation reaction time in the polymer synthesis process, increase the production cost and reduce the production cost. Productivity.
  • the invention also provides the use of the block copolymers of the invention in chemical microcellular foaming, damping materials and soft transparent films.
  • novel hydrogenated styrenic block copolymer thermoplastic elastomers provided by the present invention still have typical thermoplastic elastomer properties at high styrene monomer content.
  • the novel hydrogenated styrene block copolymer thermoplastic elastomer has inestimable application prospects in the fields of chemical microcellular foaming, damping materials and soft transparent films, and is expected to greatly expand styrene-hydrogenated conjugated diene. The field of application of segment copolymers.
  • the tensile properties were tested in accordance with ASTM D412 at a draw rate of 250 mm/min and the test samples were coated with a polymer toluene solution.
  • the hardness (shore A) was tested in accordance with ASTM 2240 for a reading time of 10 s and the test sample was a polymer molded sheet of 177 ° C.
  • the melt index was tested in accordance with ASTM D 1238 under the conditions of 230 ° C, 5 kg.
  • the DIN abrasion test was tested in accordance with GB/T 9867.
  • the molecular weight and molecular weight distribution of the polymer were determined by Waters GPC and the mobile phase was four. Hydrofuran
  • the relative mass content of the polymer styrene monomer and the hydrogenated conjugated diene monomer and the hydrogenation degree of the hydrogenated conjugated diene block were measured by a Brucker 600 MHz nuclear magnetic resonance spectrometer using a hydrogen spectrum;
  • the thermal transition of the polymer was measured using NETZCH DSC 204F3 at a rate of 10 K/min and a temperature range of -90-150 ° C;
  • the dynamic mechanical behavior of the polymer was measured by TA DMTA, the frequency was fixed at 1 Hz, the heating rate was 3 K/min, and the temperature scanning range was -80-200 ° C;
  • the microscopic phase separation behavior of the polymer was measured by a NanoScope III AFM atomic force microscope.
  • the tapping mode was performed at a frequency of 1 Hz.
  • the test sample was formed by casting a film of a polymer toluene solution on a mica sheet.
  • a solvent cyclohexane (water content 22 ppm) and an activator were added to the polymerization vessel, and the temperature was raised to 70 ° C; then styrene monomer (12.5% by weight of the total monomer) was fed into the polymerization vessel, and the amount was measured.
  • Catalyst n-butyllithium is added for the first stage polymerization, when the first stage monomer conversion rate is at least 95%; the butadiene/styrene mixture (the weight content of styrene is 60% of the mixture) is added for the second
  • the mixed monomer is divided into 15 batches (the weight of each batch is equal) and added to the polymerization tank for reaction.
  • the next batch of mixed monomers is added.
  • the reaction is carried out until all the mixed monomers in the batch are completely reacted; after the second stage polymerization is completed, styrene (12.5% of the total weight of the monomers) is sent to the polymerization vessel for the third stage polymerization, and the third stage is to be carried out.
  • the monomer conversion rate reaches at least 95%
  • the aging is continued in the reactor for 60 min; then the obtained glue liquid product is all pumped into the autoclave to be inactivated, and the hydrogen block-block copolymer is used in the presence of the hydrogenation catalyst titanocene compound.
  • Butadiene microblock , Hydrogenation reaction temperature is 100 deg.] C, a pressure of 2.2MPa, time is 160min; linear molecular structure of the obtained product. Finally, the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • a solvent cyclohexane (water content 10 ppm) and an activator were added to the polymerization vessel, and the temperature was raised to 100 ° C; then styrene (20.0% by weight of the total monomer) was fed into the polymerization vessel, and the metered catalyst was added.
  • Butyllithium is added for the first stage polymerization, when the first stage monomer conversion rate is at least 95%; the butadiene/styrene mixture (the weight content of styrene is 50% of the mixture) is added for the second stage polymerization.
  • 25 batches of mixed monomers are added to the polymerization vessel for reaction.
  • the next batch of mixed monomers is added to carry out the reaction. Until all batches of mixed monomers are completely reacted in sequence; after the second stage of polymerization is completed, styrene (20.0% by weight of the total monomer) is sent to the polymerization vessel for the third stage polymerization, and the third stage monomer is to be After the conversion rate reaches at least 95%, the mixture is further matured in the reaction vessel for 120 min; then the polymer active molecular chain is coupled by SiCl 4 to obtain an equipotential long star molecule with a number of arms of 4; Pumped into the hydrogenator, in hydrogenation catalysis Hydrogenation of the conjugated diene microblock of the block copolymer by hydrogen gas in the presence of a titanocene compound, the hydrogenation reaction temperature is 60 ° C, the pressure is 1.0 MPa, and the time is 200 min; finally, a star block copolymer is finally obtained; The product is coagulated and
  • Catalyst n-butyllithium is added for the first stage of polymerization, when the first stage monomer conversion is at least 95%; the isoprene/styrene mixture (weight of styrene is 40% of the mixture)
  • the mixed monomers are divided into 5 batches (the weight of each batch is equal) and added to the polymerization tank for reaction. When the conversion rate of each stage reaches at least 95%, the next batch of the mixture is added.
  • the monomer is reacted until all batches of mixed monomers are completely reacted; after the second stage of polymerization is completed, ⁇ -methylstyrene (8.3% by weight of the total monomer) is sent to the polymerization vessel for the third stage.
  • the entire glue product is pumped into hydrogenation Inactivated in a kettle, in the presence of a hydrogenation catalyst titanocene compound, using hydrogen to align
  • the conjugated diene microblock of the segment copolymer is hydrogenated at a temperature of 80 ° C, a pressure of 0.8 MPa, and a time of 60 min; finally, a star block copolymer is obtained; finally, the product is coagulated and dried to obtain a thermoplastic elastomer. Finished product.
  • Comparative Example 1-3 Commercially available YH602, G1652E and G1654E were tested by the method described above.
  • a solvent cyclohexane (water content 22 ppm) and an activator were added to the polymerization vessel, and the temperature was raised to 70 ° C; then, the styrene monomer (12.5% of the total weight of the monomers in the entire polymerization process) was fed into the polymerization vessel.
  • the aging is continued in the reactor for 60 min; then the product glue is completely pumped into the hydrogenation vessel to be inactivated, and in the presence of the hydrogenation catalyst titanocene compound, hydrogen is used.
  • the butadiene microblock of the block copolymer was hydrogenated at a temperature of 100 ° C, a pressure of 2.2 MPa, and a time of 160 min; a product of a linear molecular structure was obtained. Finally, the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • Comparative Example 4 differs from Example 1 of the present invention in that the second stage polymerization process in Example 1 was controlled by a mixed monomer multi-batch addition method, and in Comparative Example 4, the mixed monomer in the second stage polymerization was added at one time.
  • the beneficial effects of the second stage polymerization special process of the present invention The results are shown in Table 2.
  • thermoplastic elastomer obtained in Example 1 was formed into a transparent soft film having a thickness of 40 ⁇ m by a casting method at 220 °C.
  • the film has a uniform thickness and good appearance.
  • the test (according to GB/T2410) found that the soft film has a light transmittance of 91% and a haze of 7%.
  • thermoplastic elastomer obtained in Example 2 was molded into a 2 mm damping shock absorbing sheet at 210 ° C, and then measured by a TA dynamic mechanical property tester (DMTA) at a frequency of 1 Hz, a heating rate of 3 K/min, and a temperature scan. Range -80-200 °C.
  • DMTA TA dynamic mechanical property tester
  • the tan ⁇ peak temperature was measured to be 3.7 ° C, and the tan ⁇ was 1.09.
  • the finished thermoplastic elastomer obtained in Example 3 was kneaded with a foaming agent, a co-blowing agent, a reinforcing agent, and the like, and then foamed to obtain a microcellular foamed material.
  • the specific formulation is 100 parts by weight of elastomer, 4 parts of foaming agent azodicarbonamide, peroxygen 0.15 parts of dicumyl, 1.2 parts of zinc oxide, 0.45 parts of zinc stearate, 0.45 parts of stearic acid, 2 parts of barium stearate, and 15 parts of talc.
  • the elastomer and the reinforcing agent talc powder are kneaded on a two-roll mill at 90 ° C, and after plasticization is uniform, zinc oxide, zinc stearate, stearic acid and stearic acid bismuth co-blowing agent are added to mix 8
  • the blowing agent azodicarbonamide, cross-linking agent, cross-linking agent were added, kneaded, and then kneaded for 8 minutes, the next piece was cut, and the cut piece was molded and foamed at 180 ° C by a molding method. After molding at 20 MPa for 8 min, the pressure relief was taken out and then foamed into a microporous material.
  • the obtained chemical microcellular foamed material was observed by scanning electron microscopy (SEM) on the cross section of the material, and it was found that the foam was fine and uniform, and the average diameter was 120 ⁇ m.
  • the micropore foamed material has a density test value of 0.17 g/cm 3 and a Shore A hardness of 51, which is soft and elastic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

一种嵌段共聚物,结构式为:S 1 p-D-S 2 q(I),其中:S 1和S 2独立地为苯乙烯类单体聚合嵌段,S 1和S 2的重量分别占所述嵌段共聚物总重量的8.0-20.0%;D为苯乙烯类单体与共轭二烯类单体的共聚嵌段;p和q各自独立地为0或1,但不能同时为0;S 1、S 2和D中的苯乙烯类单体单元可以相同或不同;所述嵌段共聚物热塑性弹性体通过动态力学热分析测定其动态机械性能,在频率固定为1Hz,升温速率3K/min时在-30-35℃出现一个内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.7。还提供了该嵌段共聚物的制备方法及其用途。

Description

新型氢化苯乙烯类嵌段共聚物及其制备方法和用途 技术领域
本发明涉及一种新型氢化苯乙烯类嵌段共聚物及其制备方法和用途,属于聚合物材料制备领域。
背景技术
苯乙烯类热塑性弹性体是苯乙烯-共轭二烯类共聚物及其衍生物的统称。苯乙烯-共轭二烯类共聚物中的嵌段共聚物(包括两嵌段和三嵌段)具有热塑性弹性体性质,是最早和最广泛研究的品种。其中产量最大的有三种:聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共聚物(SBS),聚苯乙烯-聚异戊二烯-聚苯乙烯三嵌段共聚物(SIS)和聚苯乙烯-氢化聚丁二烯-聚苯乙烯三嵌段共聚物(SEBS)。
SBS和SIS是研究的最早的产品,早在20世纪60年代Phillips石油公司和Shell化学公司就对其实现了工业化生产。但是却发现SBS的耐老化性和化学稳定性并不好。因此,Shell化学公司(现Kraton)的研究人员将SBS的软段进行了高度氢化,得到了力学性能更好,化学稳定性更优异的热塑性弹性体SEBS。Shell化学公司在20世纪70年代也对其进行了工业化生产。目前,全世界SBS,SIS和SEBS的年总产量已超过200万吨,在各个领域都有着广泛的应用。
在商业化的SEBS中一般聚苯乙烯嵌段为分散相,而弹性体嵌段为连续相。正是因为这种微相分离结构,在常温下聚苯乙烯嵌段硬而强,并将弹性嵌段锁接成物理交联的网络,使其拥有了弹性体的性质。而当温度升高,聚苯乙烯开始流动时,其又可以像塑料一样进行反复加工。这使得SEBS具有了塑料和橡胶的双重性质,特别是赋予了SEBS与传统硫化橡胶相似的弹性。
但是为了保证SEBS热塑性弹性体的性质,SEBS中聚苯乙烯(PS)的总含量必须低于40wt%。当聚苯乙烯的含量高于40wt%时,随着PS的增加,聚苯乙烯-氢化聚丁二烯嵌段共聚物SEBS会逐渐成为塑料而失 去弹性体的特性。
CN101735419 A涉及一种星型高苯乙烯橡胶。该星型高苯乙烯橡胶中包含聚苯乙烯和聚丁二烯渐变嵌段共聚物和聚苯乙烯和聚丁二烯无规共聚物,通过将单体分次加入通过阴离子聚合而制备。然而该星型高苯乙烯橡胶不包括端部苯乙烯嵌段,而是通过在反应一开始即加入苯乙烯和丁二烯单体的混合物,并且由于二者的竞聚率不同而形成自然分布的嵌段形态。该文献也不涉及氢化的嵌段共聚物。
CN101735526A涉及一种改性高抗冲聚苯乙烯组合物,其包含丁苯抗冲共聚物。该丁苯抗冲共聚物是本领域内熟知的一种K树脂(K-resin),属于一种典型的苯乙烯类塑料,与热塑性弹性体有本质区别。且该文献不涉及氢化的丁苯抗冲共聚物。另外,该文献并不涉及所制备的丁苯抗冲共聚物本身的性能。
CN101855294A公开了一种可固化的橡胶混合物,其含有嵌段共聚物。所述嵌段共聚物具有末端嵌段和主链部分,该两部分具有不同的玻璃化转变温度。但是,该文献中聚苯乙烯嵌段的含量较低,在20-30%之间。
因此,仍然需要开发一种苯乙烯-氢化共轭二烯嵌段共聚物热塑性弹性体,其具有较高的苯乙烯单体单元含量,并且表现出良好的动态机械性能、粘弹性和减震性。
发明内容
为了解决上述问题,本发明的发明人进行了深入细致的研究,结果出人意料地发现,通过精心控制聚合条件,可以有效地提高苯乙烯单体单元在嵌段共聚物中的含量,并且可以获得良好的动态机械性能、粘弹性和减震性。令人惊讶地发现,当该类嵌段共聚物中苯乙烯类单体的总质量含量达到40-80%时,该聚合物仍表现出典型热塑性弹性体的性质,这完全与传统常识相悖。
因此,本发明提供了一种新型氢化苯乙烯类嵌段共聚物及其制备方法和用途。该氢化苯乙烯类嵌段共聚物属于一种高苯乙烯含量的热塑性 弹性体,具有良好的动态机械性能,具备良好的粘弹性和减震性。特别地,本发明的热塑弹性体可以用于化学微孔发泡,阻尼材料和软质透明薄膜。
本发明的一个方面涉及一种嵌段共聚物,其具有如下结构式:
S1 p-D-S2 q       (I)
其中:
S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2分别的重量占所述嵌段共聚物总重量的8.0-20.0%;
D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
p和q各自独立地为0或1,但不能同时为0;
S1、S2和D中的苯乙烯类单体单元可以相同或不同;
所述嵌段共聚物热塑性弹性体通过动态力学热分析测定其动态机械性能,在频率固定为1Hz,升温速率3K/min时在-30-35℃出现一个内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.7。
本发明的另一个方面涉及一种制备嵌段共聚物的方法,包括:
(a)第一段聚合:使苯乙烯类单体在聚合釜中进行阴离子活性聚合;
(b)第二段聚合:待第一段聚合转化率至少达到95%时,向聚合釜中至少分3批加入共轭二烯烃与苯乙烯类单体的混合物进行所述第二段聚合,其中后一批次在前一批次的转化率至少达到95%时加入,每一批次的共轭二烯烃与苯乙烯类单体的种类和比例可以彼此相同或不同;
(c)任选的第三段聚合:向聚合釜中加入苯乙烯类单体进行第三段聚合;
(d)熟化:待第二段聚合或者在存在第三段聚合时待第三段聚合中单体转化率至少达到95%后,继续在反应釜内熟化,优选20-120min,得到线型聚合物;
(e)任选的偶联:向聚合釜中加入偶联剂使反应产物偶联,获得星型聚合物;
(f)氢化:将反应产物转移至氢化釜进行氢化;和
(g)后处理:经后处理获得成品;
其中,第一段聚合、第二段聚合、和任选的第三段聚合中的苯乙烯类单体可以相同或不同,聚合温度50-100℃。
本发明的再一个方面涉及本发明的嵌段共聚物在用于化学微孔发泡、阻尼材料和软质透明薄膜中的用途。
本发明聚合物的特殊结构赋予了其特殊性能,应用研究发现该嵌段共聚物可以制成透明度和强度极佳的薄膜,同时可以方便地进行化学微孔发泡,颠覆了苯乙烯-氢化共轭二烯嵌段共聚物不能微孔发泡的传统观念。结构研究发现,该新型苯乙烯-氢化共轭二烯嵌段共聚物在接近室温范围内表现出较大的内耗(tanδ),十分适合用作阻尼减振材料。同时该聚合物具有非常特殊的微观相分离结构,与传统SEBS完全不同。另一方面,由于苯乙烯单体的成本明显低于丁二烯,该新型苯乙烯-氢化共轭二烯嵌段共聚物相比传统SEBS有明显的成本优势。
应用研究进一步发现该聚合物的可印刷性和胶粘性明显优于传统SEBS,其耐磨能力也较普通SEBS高得多。在力学性能方面该新型聚合物的定伸模量也高于普通SEBS。
该新型苯乙烯-氢化共轭二烯嵌段共聚物诸多使用性能与传统SEBS完全不同,有望极大扩展苯乙烯-氢化共轭二烯嵌段共聚物的应用领域。
附图说明
图1是本发明实施例1的氢化苯乙烯类嵌段共聚物热塑性弹性体的DSC升温曲线;
图2是本发明实施例1的一种氢化苯乙烯类嵌段共聚物热塑性弹性体的DMTA温度扫描曲线;
图3a和图3b是本发明实施例1的一种新型氢化苯乙烯类嵌段共聚物热塑性弹性体的微相分离结构原子力显微镜照片。
图4a和图4b是现有技术中通用级SEBS G1652E(来自Kraton)的微相分离结构原子力显微镜照片。
具体实施方式
本发明中,除非特别指明,术语“微嵌段”是指每个共聚嵌段中由相同单体单元构成的结构部分。
本发明提供了一种嵌段共聚物,其具有如下结构式:
S1 p-D-S2 q    (I)
其中:
S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2分别的重量占所述嵌段共聚物总重量的8.0-20.0%;
D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
p和q各自独立地为0或1,但不能同时为0;
S1、S2和D中的苯乙烯类单体单元可以相同或不同;
所述嵌段共聚物热塑性弹性体通过动态力学热分析测定其动态机械性能,在频率固定为1Hz,升温速率3K/min时在-30-35℃出现一个内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.7。
在本发明的上述嵌段共聚物热塑性弹性体中,分子结构的两端为普通的聚苯乙烯嵌段,优选由活性聚合形成,更优选活性阴离子聚合形成。
根据一些优选的实施方案,本发明的嵌段共聚物中所述苯乙烯类单体单元在嵌段共聚物中的重量百分含量为50-80%,优选55-75%。一般情况下,苯乙烯类单体单元的含量越高,分子链的刚性越高,在含量高于40%的情况下,通常不能够获得理想的弹性体特征。然而本发明通过对嵌段共聚物进行分子结构上的设计,获得了具有高含量的聚苯乙烯类结构单元的热塑性弹性体,其在高达80%的苯乙烯单体单元含量下,仍能够获得良好的动态机械性能,具备良好的粘弹性和减震性。
根据一些优选的实施方案,本发明的嵌段共聚物中共聚嵌段D如下式所示:
-(Ax-By)n-     (II)
其中:
Ax为苯乙烯类单体聚合微嵌段,
By为共轭二烯类单体聚合后再经氢化的氢化微嵌段,
x为苯乙烯类单体单元个数(平均值),为1-100,优选1-90,更优选1-70,最优选1-30,
y为氢化共轭二烯类单体单元个数(平均值),为1-170,优选1-150,更优选1-90,最优选1-35,
n为30-1100(平均值),优选300-1100,更优选650-1100,最优选900-1100,并且各(Ax-By)中每个的氢化共轭二烯烃与苯乙烯类单体的种类可以彼此相同或不同,每个的x可以彼此相同或不同,每个的y可以彼此相同或不同。
根据一些优选的实施方案,本发明的嵌段共聚物中所述聚合嵌段S1和S2分别在嵌段共聚物中的重量百分含量为8.0-20.0%,优选8.0-18.0%,更优选8.0-15.0%,最优选10.0-14.0%。当聚合嵌段S1和S2分别的重量百分含量低于8.0%时,嵌段共聚物的拉伸强度和定伸模量将显著下降,而S1和S2分别的重量百分含量高于20.0%时,嵌段共聚物的硬度会显著升高,弹性明显消失。只有在8.0-20.0%时,本发明嵌段共聚物方能具有较佳的综合性能而满足应用需求。
根据一些优选的实施方案,本发明的嵌段共聚物中所述嵌段共聚物的数均分子量为20000-800000g/mol,优选30000-600000g/mol,更优选40000-400000g/mol,最优选50000-300000g/mol。分子量分布指数为1.01-1.5,更优选1.01-1.3,最优选1.01-1.25。
所述苯乙烯类单体可以选自苯乙烯、α-甲基苯乙烯、α-乙基苯乙烯和取代的α-烷基苯乙烯(例如对甲基-α-甲基苯乙烯)、对甲基苯乙烯、乙烯基甲苯、乙烯萘和对叔丁基苯乙烯,或它们的混合物。这些之中,苯乙烯、α-甲基苯乙烯或其组合物是最优选的。本文使用的共轭二烯可以是丁二烯,例如1,3-丁二烯,或取代丁二烯,例如异戊二烯、戊间二烯、2,3-二甲基-1,3-丁二烯和1-苯基-1,3-丁二烯,或它们的混合物。这些之中,1,3-丁二烯和异戊二烯,或其组合是最优选的。
本发明的嵌段共聚物热塑性弹性体中,氢化共轭二烯烃嵌段的氢化度可以为80-99.99%,优选88-99.0%。氢化度过低会明显降低聚合物的热稳定性,而对其后期应用的热加工成型带来负面影响,氢化度过高会 显著提高聚合物合成过程中的氢化反应时间,增加生产成本,降低生产效率。
本发明的嵌段共聚物热塑性弹性体利用DSC标准方法测定其热转变,10K/min升温时在-35--10℃出现一个明显的玻璃化转变,也即Tg值为-35至-10℃之间。也即说明本发明的嵌段共聚物热塑性弹性体具有一个低于0℃的Tg值,产品的热力学性质均匀。如图2和3的原子力显微镜照片所示,本发明的嵌段共聚物热塑性弹性体中微相结构为小颗粒状。不囿于任何理论,申请人认为,此Tg值代表嵌段共聚物S1 p-D-S2 q中苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段D内苯乙烯类单体聚合微嵌段和氢化共轭二烯类单体微嵌段均匀交替分布,其与本发明第二段聚合中分批加入单体混合物进行聚合的方式有关。
本发明的嵌段共聚物热塑性弹性体具有良好的阻尼性能。利用DMTA测定其动态机械性能时,在频率固定为1Hz,升温速率3K/min时,热塑性弹性体在-30-35℃出现一个明显的内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.7,优选≥0.8,更优选≥0.9,最优选≥1.0。内耗峰的峰值tanδ通常大于0.4,优选大于0.7,更优选大于0.8,最优选大于1.0。
根据一些优选的实施方案,本发明的嵌段共聚物为线型分子结构,结构式为S1-(Ax-By)n-S2,其中S1、S2、A、B、x、y和n如前所定义。
根据一些优选的实施方案,本发明的嵌段共聚物为星型分子结构,结构式为[S1-(Ax-By)n-S2]m-R或[S1-(Ax-By)n]m-R,其中S1、S2、A、B、x、y和n如前所定义,R为偶联剂残基,m为星形分子的臂数,为选自3-55的整数,优选为选自3-40的整数,更优选为选自3-15的整数。
根据一些优选的实施方案,所述偶联剂选自二乙烯基苯、SiCl4或SnCl4
本发明的嵌段共聚物热塑性弹性体阻尼性能优异。DMTA的温度扫描测试结果表明(1Hz,3K/min),热塑性弹性体在-30-35℃出现一个内耗峰(tanδ),峰值在-5-10℃,且tanδ≥0.7。一般认为在通常四季气温条件下(-30-40℃),若弹性体材料出现明显的内耗,将具有良好的阻尼和 减震性能。这是由于内耗使得施加于弹性体的机械能通过其分子链摩擦转化为热能而散失。-30-35℃正好处在四季气温的温度范围之内,因此本发明的嵌段共聚物热塑性弹性体特别适合作为减震材料。。
本发明还提供了一种制备嵌段共聚物的方法,包括:
(a)第一段聚合:使苯乙烯类单体在聚合釜中进行阴离子活性聚合;
(b)第二段聚合:待第一段聚合转化率至少达到95%时,向聚合釜中至少分3批加入共轭二烯烃与苯乙烯类单体的混合物进行所述第二段聚合,其中后一批次在前一批次的转化率至少达到95%时加入,每一批次的共轭二烯烃与苯乙烯类单体的种类和比例可以彼此相同或不同;
(c)任选的第三段聚合:向聚合釜中加入苯乙烯类单体进行第三段聚合;
(d)熟化:待第二段聚合或者在存在第三段聚合时待第三段聚合中单体转化率至少达到95%后,继续在反应釜内熟化,优选20-120min,得到线型聚合物;
(e)任选的偶联:向聚合釜中加入偶联剂使反应产物偶联,获得星型聚合物;
(f)氢化:将反应产物转移至氢化釜进行氢化;和
(g)后处理:经后处理获得成品;
其中,第一段聚合、第二段聚合、和任选的第三段聚合中的苯乙烯类单体可以相同或不同。
根据一些优选的实施方案,本发明的嵌段共聚物的制备方法中,所述偶联剂选自二乙烯基苯、SiCl4或SnCl4
在第二段聚合中,待第一段聚合转化率至少达到95%时,加入共轭二烯烃/苯乙烯类单体的混合物进行第二段聚合,其中所述单体的混合物分3-60批、优选5-55批、更优选8-40批加入聚合釜中,后一批次在前一批次的转化率至少达到95%时加入。分批加入苯乙烯类单体和共轭二 烯类单体的混合物可以使得聚合物链中产生苯乙烯类单体和共轭二烯类单体的微嵌段。优选地,分批加入的所述单体的混合物每一批的重量相等。优选地,分批加入的所述单体的混合物每一批的单体比例也相同。在每一批次中,混合单体中苯乙烯类单体重量百分含量可以为20.0-70.0%,优选30.0-60.0%。在第二段聚合中,所述混合单体中,苯乙烯类单体重量百分含量可以为20.0-64.0%,优选30.0-60.0%,更优选40.0-60.0%。
用作聚合载体的溶剂可以是不与形成的聚合物的活性阴离子链端反应、容易在商业聚合设备中处理并且为产物聚合物提供合适的溶解度特性的任何烃。例如,通常缺乏可电离的氢的非极性脂族烃构成特别合适的溶剂。通常使用的是环状烷烃,例如环戊烷、环己烷、环庚烷和环辛烷,所有这些是相对非极性的。其他合适的溶剂将是本领域技术人员已知的并且可被选择以在给定的工艺条件设置下有效地发挥作用,其中温度和含水量是被考虑的最主要的因素。根据一些优选的实施方案,本发明的嵌段共聚物的制备方法中,其中所述第一段聚合在选自环己烷、正己烷、苯、甲苯、二甲苯庚烷,或其混合物的溶剂中进行。优选地,所述溶剂的总水含量低于30ppm。
本发明中的阴离子聚合引发剂包括例如烷基锂化合物和其它有机锂化合物,例如仲丁基锂、正丁基锂、叔丁基锂、戊基锂等,包括二引发剂如间二异丙烯基苯的二仲丁基锂加合物。美国专利6492469中公开了其它此类二引发剂。在各种聚合引发剂中,正丁基锂或仲丁基锂是优选的。所述引发剂可以以基于每个希望的聚合物链一个引发剂分子计算的量用于聚合混合物(包括单体和溶剂)中。所述锂引发剂方法是公知的,并且被公开在例如美国专利4039593中,这些描述通过引用结合在本文中。
单体转化率通过对聚合反应过程中的提取物利用气相色谱法进行测定,本发明人发现,在单体转化率为95%以上时,本发明聚合物的分子结构方能满足发明所描述的设计要求。
多种偶联剂是本领域中已知的,并且包括例如二卤代烷烃,卤化硅, 硅氧烷,多官能的环氧化物,包括间-二乙烯基苯等在内的多链烯基化合物,包括烷氧基硅烷、烷基硅烷、烷基-烷氧基硅烷等在内的二氧化硅化合物,包括己二酸二甲酯等在内的一元醇与羧酸的酯,和环氧化的油。优选的是四烷氧基硅烷,例如四乙氧基硅烷(TEOS)和四甲氧基硅烷;烷基三烷氧基硅烷,例如甲基三甲氧基硅烷(MTMQ;脂肪族二酯,例如己二酸二甲酯和己二酸二乙酯;和二缩水甘油基芳族环氧化合物,例如得自双酚A与环氧氯丙烷的反应的二缩水甘油基醚。当希望随后进行加氢或选择性加氢时,偶联剂的选择应使得任何残留的未反应的偶联剂、结合到聚合物链中的偶联剂残基或偶联反应的副产物不影响所述加氢反应。在本发明的方法中,偶联剂优选地选自二乙烯基苯、SiCl4或SnCl4
在制备偶联的嵌段共聚物的本发明实施方案中,将偶联剂以产生具有希望的臂数分布的偶联聚合物的摩尔比加入到活性聚合物中。所述偶联剂可以以纯化合物的形式添加,或者为了便于计量,可以被稀释在惰性溶剂中。添加方式可能对臂数分布有影响。偶联之后,按需进行终止反应,例如使用二乙烯基苯时需要终止反应,而使用四氯化硅可以不需要终止反应。根据一些优选的实施方案,本发明的嵌段共聚物的制备方法得到的星型聚合物具有3-55个臂,优选3-40个臂,更优选3-15个臂。
在其中生产非偶联嵌段共聚物的本发明实施方案中,通过添加终止剂来停止聚合。阴离子聚合经常通过加入水以便以氢氧化锂(LiOH)的形式从聚合物链末端移除锂或者通过加入醇(ROH)以便以醇锂(LiOR)的形式移除锂来终止。以相对于活性链末端摩尔过量的量添加终止剂。当希望随后进行加氢或选择性加氢时,应该选择终止剂的类型和/或量,以使得残留的终止剂或终止反应副产物不影响加氢。
可以通过现有技术中已知的若干加氢或选择性加氢方法中的任何一种来进行加氢。例如,使用诸如在例如USP3595942,3634549,3670054,3700633等中教导的方法已经完成了这样的加氢,所述专利公开的内容通过引用结合在本文中。优选地,本发明中使用的催化剂包括钛基催化剂体系,优选为茂钛化合物。根据一些优选的实施方案,其中所述氢化 步骤的氢化反应温度为60-140℃,压力为0.8-2.2MPa,时间为60-200min。
优选地,加氢操作的进行应使得本发明的嵌段共聚物热塑性弹性体中,氢化共轭二烯烃嵌段的氢化度为80-99.99%,优选88-99.0%。氢化度过低会明显降低聚合物的热稳定性,而对其后期应用的热加工成型带来负面影响,氢化度过高会显著提高聚合物合成过程中的氢化反应时间,增加生产成本,降低生产效率。
本发明还提供了本发明的嵌段共聚物在用于化学微孔发泡、阻尼材料和软质透明薄膜中的用途。
本发明提供的新型氢化苯乙烯类嵌段共聚物热塑性弹性在高苯乙烯单体含量下仍具有典型的热塑性弹性体性质。该新型氢化苯乙烯类嵌段共聚物热塑性弹性体在化学微孔发泡、阻尼材料和软质透明薄膜等领域具有不可估量的应用前景,并有望极大扩展苯乙烯-氢化共轭二烯嵌段共聚物的应用领域。
实施例
以下通过具体实施例和比较例对本发明做进一步的说明,但本发明并不受以下实施例所限。
一、实施例和对比例中共聚物的基本物性按以下标准进行测定:
拉伸性能按照ASTM D412进行测试,拉伸速率250mm/min,测试样品为聚合物甲苯溶液涂布薄膜。
硬度(shore A)按照ASTM 2240进行测试,读数时间为10s,测试样品为聚合物177℃模压成型片材。
熔融指数按照ASTM D 1238进行测试,条件为230℃,5kg。
DIN磨耗实验按照GB/T 9867进行测试。
二、实施例和对比例中共聚物的结构表征按以下方法进行测定:
聚合物分子量和分子量分布利用Waters GPC进行测定,流动相为四 氢呋喃;
聚合物苯乙烯单体和氢化共轭二烯单体相对质量含量、氢化共轭二烯嵌段氢化度利用Brucker 600MHz核磁共振光谱仪进行测定,利用的是氢谱;
聚合物的热转变利用NETZCH DSC 204F3进行测定,速率为10K/min,温度范围为-90-150℃;
聚合物的动态机械行为利用TA DMTA进行测定,频率固定为1Hz,升温速率3K/min,温度扫描范围-80-200℃;
聚合物的微观相分离行为利用NanoScope III AFM原子力显微镜进行测定,敲击模式,扫描频率为1Hz,测试样品为聚合物甲苯稀溶液在云母片上铸膜而成。
实施例1
首先在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯单体(占单体总重量的12.5%)送入聚合釜内,并将计量的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的重量含量为混合物的60%)进行第二段聚合,在第二段聚合中混合单体分15批(每批的重量相等)加入到聚合釜内进行反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的12.5%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化60min;随后将所得的胶液产物全部泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气对嵌段共聚物的丁二烯微嵌段进行氢化,氢化反应温度为100℃,压力为2.2MPa,时间为160min;得到线形分子结构的产物。最后对产物进行凝聚和干燥得到热塑性弹性体成品。
实施例2
首先在聚合釜内加入溶剂环己烷(含水量10ppm)、活化剂,升温到100℃;然后将苯乙烯(占单体总重量的20.0%)送入聚合釜内,并将计量的催化剂仲丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的重量含量为混合物的50%)进行第二段聚合,在第二段聚合中混合单体分25批(每批的重量相等)加入到聚合釜内进行反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的20.0%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化120min;随后利用SiCl4对聚合物活性分子链进行偶联,得到臂数为4的等臂长星形分子;将所得的胶液产物全部泵入氢化釜,在加氢催化剂茂钛化合物存在下,利用氢气对嵌段共聚物的共轭二烯烃微嵌段进行氢化,氢化反应温度为60℃,压力为1.0MPa,时间为200min;最终得到星形嵌段共聚物;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
实施例3
首先在聚合釜内加入溶剂正己烷(含水量28ppm)、活化剂,升温到50℃;然后将α-甲基苯乙烯(占单体总重量的8.3%)送入聚合釜内,并将计量的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入异戊二烯/苯乙烯的混合物(苯乙烯的重量含量为混合物的40%)进行第二段聚合,在第二段聚合中混合单体分5批(每批的重量相等)加入到聚合釜内进行反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将α-甲基苯乙烯(占单体总重量的8.3%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化20min;随后利用二乙烯基苯对聚合物活性分子链进行偶联,得到臂数为10的等臂长星形分子;将所得的胶液产物全部泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气对嵌 段共聚物的共轭二烯烃微嵌段进行氢化,氢化反应温度为80℃,压力为0.8MPa,时间为60min;最终得到星形嵌段共聚物;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
对比例1-3:用上文描述的方法对市售的YH602、G1652E和G1654E进行测试。
利用本发明实施例1、2和3制备的氢化嵌段共聚物热塑性弹性体,对比市售的氢化苯乙烯类嵌段共聚物热塑性弹性体SEBS(见对比例1、2和3),以考察本发明的有益效果。结果见表1。
表1
Figure PCTCN2015072858-appb-000001
Figure PCTCN2015072858-appb-000002
对比例4
首先在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯单体(占整个聚合过程中单体总重量的12.5%)送入聚合釜内,并将计量的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的重量含量为混合物的60%)进行第二段聚合,混合单体一次性加入;待第一段单体转化率至少达到95%时,将苯乙烯(占单体总重量的12.5%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化60min;随后将产物胶液全部泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气对嵌段共聚物的丁二烯微嵌段进行氢化,氢化反应温度为100℃,压力为2.2MPa,时间为160min;得到线形分子结构的产物。最后对产物进行凝聚和干燥得到热塑性弹性体成品。
对比例4与本发明实施例1的差别在于:实施例1中第二段聚合过程采用混合单体多批加入方式进行控制,而对比例4中第二段聚合中混合单体一次性加入。以考察本发明中第二段聚合特殊工艺的有益效果。结果见表2。
表2
Figure PCTCN2015072858-appb-000003
Figure PCTCN2015072858-appb-000004
实施例5
将实施例1所得热塑性弹性体成品在220℃下利用流延法制成厚度为40μm的透明软质薄膜。该薄膜厚度均匀,外观佳,测试(根据GB/T2410)发现软质薄膜透光率达到91%,雾度为7%。
实施例6
将实施例2所得热塑性弹性体成品在210℃下模压成2mm阻尼减震片材,然后利用TA公司动态机械性能测试仪(DMTA)进行测定,频率固定为1Hz,升温速率3K/min,温度扫描范围-80-200℃。测得tanδ峰值温度为3.7℃,tanδ的大小为1.09。
实施例7
将实施例3所得热塑性弹性体成品与发泡剂、助发泡剂和补强剂等混炼后发泡制成微孔发泡材料。
具体配方为弹性体100份(重量),发泡剂偶氮二甲酰胺4份,过氧 化二异丙苯0.15份,氧化锌1.2份,硬脂酸锌0.45份,硬脂酸0.45份,硬脂酸钡2份,滑石粉15份。
将弹性体与补强剂滑石粉在90℃的双辊开炼上混炼,塑化均匀后,加入氧化锌,硬脂酸锌、硬脂酸和硬脂酸钡助发泡剂混炼8分钟后,加入发泡剂偶氮二甲酰胺,交联剂,交联剂,混炼,再混炼8分钟,下片,裁剪;将裁剪的样片利用模压法在180℃进行模压发泡,在20MPa下模压8min,取出泄压随即发泡成为微孔材料。
所得到的化学微孔发泡材料利用扫描电子显微镜(SEM)对材料切割截面观察计算后发现泡沫细微均匀,平均直径为120μm。微孔发泡材料密度测试值为0.17g/cm3,邵A硬度为51,质软而富有弹性。

Claims (30)

  1. 一种嵌段共聚物,其具有如下结构式:
    S1 p-D-S2 q  (I)
    其中:
    S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2重量分别占所述嵌段共聚物总重量的8.0-20.0%;
    D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
    p和q各自独立地为0或1,但不能同时为0;
    S1、S2和D中的苯乙烯类单体单元可以相同或不同;
    所述嵌段共聚物为热塑性弹性体,其通过动态力学热分析测定其动态机械性能,在频率固定为1Hz,升温速率3K/min时在-30-35℃出现一个内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.7。
  2. 权利要求1的嵌段共聚物,其中所述苯乙烯类单体单元在嵌段共聚物中的重量百分含量为50-80%。
  3. 权利要求1的嵌段共聚物,其中所述苯乙烯类单体单元在嵌段共聚物中的重量百分含量为55-75%。
  4. 权利要求1的嵌段共聚物,其中共聚嵌段D如下式所示:
    -(Ax-By)n-  (II)
    其中:
    Ax为苯乙烯类单体聚合微嵌段,其中x为苯乙烯类单体单元个数,为1-100,
    By为共轭二烯类单体聚合后再经氢化的氢化微嵌段,其中y为氢化共轭二烯类单体单元个数,为1-180,
    n为30-1100,并且各(Ax-By)中每个的氢化共轭二烯烃与苯乙烯类单体的种类可以彼此相同或不同,各个x可以彼此相同或不同,各个y可以彼此相同或不同。
  5. 权利要求1的嵌段共聚物,其中所述聚合嵌段S1和S2分别在嵌段共聚物中的重量百分含量为10.0-15.0%。
  6. 权利要求1的嵌段共聚物,其中所述嵌段共聚物的数均分子量为50000-300000g/mol。
  7. 权利要求1的嵌段共聚物,其中所述嵌段共聚物的分子量分布指数为1.01-1.25。
  8. 权利要求1的嵌段共聚物,其中所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯或其组合;所述共轭二烯烃单体选自丁二烯、异戊二烯或其组合。
  9. 权利要求4的嵌段共聚物,其中所述共轭二烯烃的氢化微嵌段的氢化度为80-99.99%。
  10. 权利要求4的嵌段共聚物,其中所述共轭二烯烃的氢化微嵌段的氢化度为88-99.0%。
  11. 权利要求1的嵌段共聚物,其中所述嵌段共聚物利用DSC方法测定其热转变,10K/min升温时低于0℃的Tg为-35至-10℃。
  12. 权利要求4的嵌段共聚物,其为线型分子结构,结构式为S1-(Ax-By)n-S2,其中S1、S2、A、B、x、y和n如权利要求1和4所定义。
  13. 权利要求4的嵌段共聚物,其为星型分子结构,结构式为[S1-(Ax-By)n-S2]m-R或[S1-(Ax-By)n]m-R,其中S1、S2、A、B、x、y和n如权利要求1和4所定义,R为偶联剂残基,m为星形分子的臂数,为选自3-55的整数。
  14. 权利要求13的嵌段共聚物,其中m为选自3-40的整数。
  15. 权利要求13的嵌段共聚物,其中m为选自3-15的整数。
  16. 权利要求13所述的嵌段共聚物,其中所述偶联剂选自二乙烯基苯、SiCl4或SnCl4
  17. 一种制备如权利要求1所述的嵌段共聚物的方法,包括:
    (a)第一段聚合:使苯乙烯类单体在聚合釜中进行阴离子活性聚合;
    (b)第二段聚合:待第一段聚合转化率至少达到95%时,向聚合釜中至少分3批加入共轭二烯烃与苯乙烯类单体的混合物进行所述第二段聚合,其中后一批次在前一批次的转化率至少达到 95%时加入,每一批次的共轭二烯烃与苯乙烯类单体可以彼此相同或不同;
    (c)任选的第三段聚合:向聚合釜中加入苯乙烯类单体进行第三段聚合;
    (d)熟化:待第二段聚合或者在存在第三段聚合时待第三段聚合中单体转化率至少达到95%后,继续在反应釜内熟化,得到线型聚合物;
    (e)任选的偶联:向聚合釜中加入偶联剂使反应产物偶联,获得星型聚合物;
    (f)氢化:将反应产物转移至氢化釜进行氢化;和
    (g)后处理:经后处理获得成品;
    其中,第一段聚合、第二段聚合、和任选的第三段聚合中的苯乙烯
    类单体可以相同或不同,聚合温度50-100℃。
  18. 权利要求17的方法,其中所述偶联剂选自二乙烯基苯、SiCl4或SnCl4
  19. 权利要求17的方法,其中所述单体的混合物分3-60批加入。
  20. 权利要求17的方法,其中所述单体的混合物分5-55批加入。
  21. 权利要求17的方法,其中所述单体的混合物分8-40批加入。
  22. 权利要求17的方法,其中所述溶剂的总水含量低于30ppm。
  23. 权利要求17的方法,其中所述星型聚合物具有3-55个臂。
  24. 权利要求17的方法,其中所述氢化步骤的氢化反应温度为60-140℃,压力为0.8-2.2MPa,时间为60-200min,氢化催化剂为茂钛化合物。
  25. 根据权利要求17的方法,其中在第二段聚合中,所述混合单体中,苯乙烯类单体重量百分含量为20.0-64.0%。
  26. 根据权利要求17的方法,其中在第二段聚合中,所述混合单体中,苯乙烯类单体重量百分含量为30.0-60.0%。
  27. 根据权利要求17的方法,其中在第二段聚合中,分批加入的所述单体的混合物每一批的重量相同。
  28. 一种热塑性弹性体,其具有线型分子结构或星形分子结构,据权利要求17-27中任一项所述的方法获得,其中苯乙烯类单体单元在嵌段共聚物中的重量百分含量为50-80%,利用DSC标准方法测定其热转变,10K/min升温时低于0℃的Tg为-35至-10℃。
  29. 根据权利要求28所述的热塑性弹性体,其中苯乙烯类单体选自苯乙烯、α-甲基苯乙烯或其组合;共轭二烯烃单体选自丁二烯、异戊二烯或其组合。
  30. 权利要求1-16中任一项的嵌段共聚物在用于化学微孔发泡、阻尼材料和软质透明薄膜中的用途。
PCT/CN2015/072858 2015-02-12 2015-02-12 氢化苯乙烯类嵌段共聚物及其制备方法和用途 WO2016127355A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072858 WO2016127355A1 (zh) 2015-02-12 2015-02-12 氢化苯乙烯类嵌段共聚物及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072858 WO2016127355A1 (zh) 2015-02-12 2015-02-12 氢化苯乙烯类嵌段共聚物及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2016127355A1 true WO2016127355A1 (zh) 2016-08-18

Family

ID=56614012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072858 WO2016127355A1 (zh) 2015-02-12 2015-02-12 氢化苯乙烯类嵌段共聚物及其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2016127355A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473638A (zh) * 2016-01-19 2018-08-31 旭化成株式会社 氢化共聚物、组合物和成型体
WO2021023502A1 (en) 2019-08-06 2021-02-11 Basf Se A polyphenylene sulfide/polyamide composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155845A (zh) * 2005-04-07 2008-04-02 旭化成化学株式会社 嵌段共聚物的氢化产物或其片材或膜
CN101616985A (zh) * 2007-02-20 2009-12-30 旭化成化学株式会社 冲击吸收体组合物
CN102725318A (zh) * 2010-01-27 2012-10-10 科腾聚合物美国有限责任公司 包含苯乙烯-异丁烯-苯乙烯和苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物的组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155845A (zh) * 2005-04-07 2008-04-02 旭化成化学株式会社 嵌段共聚物的氢化产物或其片材或膜
CN101616985A (zh) * 2007-02-20 2009-12-30 旭化成化学株式会社 冲击吸收体组合物
CN102725318A (zh) * 2010-01-27 2012-10-10 科腾聚合物美国有限责任公司 包含苯乙烯-异丁烯-苯乙烯和苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物的组合物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473638A (zh) * 2016-01-19 2018-08-31 旭化成株式会社 氢化共聚物、组合物和成型体
EP3406643A4 (en) * 2016-01-19 2019-01-02 Asahi Kasei Kabushiki Kaisha Hydrogenated copolymer, composition, and molded article
US20190016842A1 (en) * 2016-01-19 2019-01-17 Asahi Kasei Kabushiki Kaisha Hydrogenated Copolymer, Composition, and Molded Article
US10808066B2 (en) 2016-01-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Hydrogenated copolymer, composition, and molded article
CN108473638B (zh) * 2016-01-19 2021-08-20 旭化成株式会社 氢化共聚物、组合物和成型体
IL260363B1 (en) * 2016-01-19 2023-03-01 Asahi Chemical Ind Hydrogenated copolymer, formulation and molded article
IL260363B2 (en) * 2016-01-19 2023-07-01 Asahi Chemical Ind Hydrogenated copolymer, composition and molded article
WO2021023502A1 (en) 2019-08-06 2021-02-11 Basf Se A polyphenylene sulfide/polyamide composition

Similar Documents

Publication Publication Date Title
JP4989020B2 (ja) スチレンブタジエンブロック共重合体を基礎とした透明耐衝撃性改良ポリスチレン、これを含む重合体混合物、及びこれらの製造方法
KR101389643B1 (ko) 수소화된 블록 공중합체 조성물
TW200303320A (en) Novel block copolymers and method for making same
WO2016127353A1 (zh) 一种氢化苯乙烯类热塑性弹性体及其制备方法
KR20080112282A (ko) 고온 블록 공중합체 및 이의 제조방법
WO2016127354A1 (zh) 氢化苯乙烯类热塑性弹性体及其制备方法
US20090062457A1 (en) Styrenic block copolymers and compositions containing the same
JP4430546B2 (ja) ゲルを含まない透明フィルムの製造に使用するスチレンブロックコポリマー組成物
TW553965B (en) Hydrogenated block copolymers
JP2017517590A (ja) コポリマーミルセンブロックを含むブロックコポリマー
CN108779221B (zh) 半结晶嵌段共聚物和得自其的组合物
WO2017159800A1 (ja) 樹脂組成物、ヒートシール剤、液体包装容器用フィルム、液体包装容器、液体排出部材および医療容器
TW201102401A (en) Coupled polymers and manufacturing methods thereof
WO2016127355A1 (zh) 氢化苯乙烯类嵌段共聚物及其制备方法和用途
TW200804498A (en) High molecular weight coupled block copolymer compositions
JP3985293B2 (ja) ブロック共重合体及びその製造方法
WO2016127356A1 (zh) 氢化苯乙烯类嵌段共聚物及其制备方法和用途。
EP2042531B1 (en) Block copolymer, composition for resin modification, and modified resin composition
US8153727B2 (en) Block copolymer, resin composition comprising same, and process for producing the resin composition
TWI342881B (en) Process for making a coupled low vinyl block copolymer composition and the resulting composition
CN116003715A (zh) 一种单封端的二嵌段共聚物及其制备方法和应用
JP2001089543A (ja) 樹脂改質用ゴム、樹脂改質剤および樹脂組成物
JP2003138073A (ja) 熱可塑性樹脂組成物
JP2005298775A (ja) 熱可塑性樹脂組成物
JPH073111A (ja) 耐衝撃性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881517

Country of ref document: EP

Kind code of ref document: A1