WO2016127354A1 - 氢化苯乙烯类热塑性弹性体及其制备方法 - Google Patents

氢化苯乙烯类热塑性弹性体及其制备方法 Download PDF

Info

Publication number
WO2016127354A1
WO2016127354A1 PCT/CN2015/072853 CN2015072853W WO2016127354A1 WO 2016127354 A1 WO2016127354 A1 WO 2016127354A1 CN 2015072853 W CN2015072853 W CN 2015072853W WO 2016127354 A1 WO2016127354 A1 WO 2016127354A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
styrene
polymerization
hydrogenated
monomer
Prior art date
Application number
PCT/CN2015/072853
Other languages
English (en)
French (fr)
Inventor
周赞斌
Original Assignee
浙江三博聚合物有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三博聚合物有限公司 filed Critical 浙江三博聚合物有限公司
Priority to PCT/CN2015/072853 priority Critical patent/WO2016127354A1/zh
Publication of WO2016127354A1 publication Critical patent/WO2016127354A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex

Definitions

  • the invention relates to a hydrogenated styrene-based thermoplastic elastomer having a special micro-phase structure and a preparation method thereof, and belongs to the field of preparation of polymer materials.
  • the styrenic thermoplastic elastomer is a general term for styrene-conjugated diene-based copolymers and derivatives thereof.
  • the block copolymers (including diblocks and triblocks) in styrene-conjugated diene-based copolymers have thermoplastic elastomer properties and are the earliest and most widely studied varieties.
  • polystyrene-polybutadiene-polystyrene triblock copolymer SBS
  • polystyrene-polyisoprene-polystyrene triblock copolymer SIS
  • Polystyrene-hydrogenated polybutadiene-polystyrene triblock copolymer SEBS
  • SBS and SIS were the earliest products of research, and industrialized production was achieved by Phillips Petroleum and Shell Chemical in the 1960s. However, it was found that the aging resistance and chemical stability of SBS were not good. Therefore, researchers at Shell Chemical Company (now Kraton) have highly hydrogenated the soft segment of SBS to obtain a thermoplastic elastomer SEBS with better mechanical properties and better chemical stability. Shell Chemical also industrialized it in the 1970s. At present, the annual total output of SBS, SIS and SEBS in the world has exceeded 2 million tons, and it has been widely used in various fields.
  • the polystyrene block In commercial SEBS, the polystyrene block is generally the dispersed phase and the elastomer block is the continuous phase. Because of this microphase-separated structure, the polystyrene block is hard and strong at normal temperature, and the elastic block is locked into a physically crosslinked network, giving it the properties of an elastomer. When the temperature rises and the polystyrene begins to flow, it can be processed repeatedly like plastic. This gives SEBS a dual nature of plastics and rubber, in particular giving SEBS a similar elasticity to conventional vulcanized rubber.
  • the polymer in order to obtain a matte-effect polymer wire and sheet, etc., the polymer is generally blended with other certain amounts of additives (such as inorganic fillers), or with other amounts of incompatible copolymerization.
  • additives such as inorganic fillers
  • the blending of materials such as PA, PC
  • direct vulcanization of the polymer but these methods can achieve limited results.
  • thermoplastic elastomers for styrenic thermoplastic elastomers, in some cases, when the amount of the additive is particularly large (e.g., the amount of the inorganic filler SiO 2 is 60-70%), and the amount of other copolymers is particularly large (e.g., the amount of PA, PC) After achieving 50-60%) or deep dynamic vulcanization, a limited matte effect can also be obtained, but at this time the styrenic thermoplastic elastomer has substantially lost the properties of the thermoplastic elastomer, and various other properties, especially elasticity. , hardness, fluidity, strength, etc. also have essential changes.
  • the total content of polystyrene (PS) in the SEBS must be less than 40% by weight.
  • the content of polystyrene is higher than 40% by weight, as the PS increases, the polystyrene-hydrogenated polybutadiene block copolymer SEBS gradually becomes a plastic and loses the properties of an elastomer.
  • CN101735419A relates to a star-shaped high styrene rubber.
  • the star-type high styrene rubber comprises a polystyrene and a polybutadiene graded block copolymer and a random copolymer of polystyrene and polybutadiene, which are prepared by a stepwise addition of a monomer by anionic polymerization.
  • the star-type high styrene rubber does not include the end styrene block, but rather a mixture of styrene and butadiene monomers is added at the beginning of the reaction, and the natural distribution is formed due to the difference in the reactivity ratio of the two. Block form. This document also does not relate to hydrogenated block copolymers.
  • CN101735526A relates to a modified high impact polystyrene composition comprising a butylbenzene impact copolymer.
  • the styrene content in this document is low and does not have the properties of a thermoplastic elastomer.
  • this document does not relate to the properties of the prepared styrene-butadiene impact copolymer itself.
  • CN101855294A discloses a curable rubber mixture comprising a block copolymer.
  • the block copolymer has an end block and a main chain portion, the two portions having different glass transition temperatures.
  • the content of polystyrene blocks in this document is relatively low, between 20-30%.
  • thermoplastic elastomer which has a high styrene monomer unit content and exhibits good dynamic mechanical properties, viscoelasticity and shock absorption.
  • the inventors of the present invention have found that by controlling the polymerization conditions, the content of the styrene monomer unit in the block copolymer can be effectively increased. Surprisingly, the inventors of the present application have also discovered that the total mass content of styrenic monomers in such block copolymers At 40-80%, the polymer still exhibits the properties of a typical thermoplastic elastomer, which is completely contrary to conventional wisdom.
  • a hydrogenated styrene-based thermoplastic elastomer having a specific microphase-separated structure having a matt and matte surface effect can be obtained, and
  • the matte effect is very delicate, especially suitable for the production of high-end matte film, wire and sheet.
  • one aspect of the present invention provides a hydrogenated styrene-based thermoplastic elastomer comprising the following components, each based on the total weight of the thermoplastic elastomer:
  • S 1 and S 2 are independently a styrene monomer polymer block, and the weights of S 1 and S 2 are respectively 8.0 to 20.0% by weight of the total weight of the block copolymer;
  • D is a copolymer block of a styrene monomer and a hydrogenated conjugated diene monomer
  • p and q are each independently 0 or 1, but not simultaneously 0;
  • the styrenic monomer units in S 1 , S 2 and D may be the same or different;
  • the styrenic monomer is 50-80% by weight based on the total weight of the hydrogenated styrene-conjugated diene block copolymer;
  • Another aspect of the present invention provides a method of producing a hydrogenated styrene-based thermoplastic elastomer comprising the steps of:
  • the styrene monomer is fed into the polymerization vessel at 50-100 ° C for polymerization, and when the conversion rate is at least 95%, it is matured; inactivated;
  • the second stage of polymerization when the first stage polymerization conversion rate is at least 95%, The second stage polymerization is carried out by adding a mixture of a conjugated diene and a styrene monomer in at least three batches in a kettle, wherein the latter batch is added when the conversion rate of the previous batch reaches at least 95%, each The batch of the conjugated diene and the styrenic monomer may be the same or different from each other;
  • a coupling agent is added to the polymerization vessel to couple the reaction product to obtain a star polymer
  • the polystyrene gum obtained in the step (a) is added to the polymerization vessel of the step (b) for mixing, and then transferred to a hydrogenation reactor to hydrogenate the mixture in the presence of a hydrogenation catalyst; or the step (b) is first
  • the glue is pumped into the hydrogenation vessel to be inactivated, hydrogenated in the presence of a hydrogenation catalyst, and the polystyrene glue in step (a) is added to the hydrogenation vessel and mixed with the hydrogenated glue of step (b).
  • Example 1 is a DSC heating curve of a hydrogenated styrene-based thermoplastic elastomer having a specific microphase structure according to Example 1 of the present invention
  • Embodiment 2 is a DMTA temperature scanning curve of a hydrogenated styrene-based thermoplastic elastomer having a specific microphase structure according to Embodiment 1 of the present invention
  • Fig. 3 is a photomicrograph of a microphase-separated structure of a hydrogenated styrene-based thermoplastic elastomer having a specific microphase structure according to Example 1 of the present invention.
  • Example 4 is an atomic force microscope photograph of a component (1) hydrogenated styrene-conjugated diene block copolymer prepared in Example 1 of the present invention.
  • microblock means the phase in each copolymer block unless otherwise specified. A structural part composed of the same monomer unit.
  • microphase structure refers to a microstructure morphology of a phase having an average diameter of 10 nm or more which can be defined by microscopic observation.
  • the present invention provides a hydrogenated styrene-based thermoplastic elastomer having a special microphase structure.
  • polystyrene is present in a polymer matrix in the form of a dispersed phase, and a polystyrene dispersed phase having an average particle diameter of 400 to 900 nm and an average particle are observed by a microscope.
  • the hydrogenated styrene-based thermoplastic elastomer of the present invention comprises the following components:
  • S 1 and S 2 are independently a styrene monomer polymer block, and the weights of S 1 and S 2 are respectively 8.0 to 20.0% by weight of the total weight of the block copolymer;
  • D is a copolymer block of a styrene monomer and a hydrogenated conjugated diene monomer
  • p and q are each independently 0 or 1, but not simultaneously 0;
  • the styrenic monomer units in S 1 , S 2 and D may be the same or different;
  • the styrene monomer unit is 50 to 80% by weight based on the total weight of the hydrogenated styrene-conjugated diene block copolymer;
  • thermoplastic elastomer of the present invention has a high styrene content.
  • the inventors have found that when the thermoplastic elastomer of the present invention, especially the component (1) block copolymer therein, has a high content of styrene monomer, thereby making the content of styrene in the thermoplastic elastomer as high as 50-80 At the time of %, the block copolymer component (1) still exhibits the properties of a typical thermoplastic elastomer.
  • thermoplastic elastomer that is particularly suitable for use in the manufacture of films, wires and sheets that have excellent matte finish.
  • Component (1) hydrogenated styrene-conjugated diene block copolymer
  • the component (1) hydrogenated styrene-conjugated diene block copolymer of the present invention has the following structural formula:
  • S 1 and S 2 are independently a styrene monomer polymer block, and the weights of S 1 and S 2 are respectively 8.0 to 20.0% by weight of the total weight of the block copolymer;
  • D is a copolymer block of a styrene monomer and a hydrogenated conjugated diene monomer
  • p and q are each independently 0 or 1, but not simultaneously 0;
  • the styrenic monomer units in S 1 , S 2 and D may be the same or different.
  • S 1 or S 2 at both ends of the molecular structure is an ordinary polystyrene block, preferably formed by living polymerization, more preferably by living anionic polymerization.
  • the styrenic monomer units of component (1) are present in the block copolymer in an amount of from 50 to 80% by weight, preferably from 60 to 75% by weight.
  • the present invention obtains a thermoplastic elastomer having a high content of polystyrene structural units by molecularly designing the block copolymer, which is still obtainable at a styrene monomer unit content of up to 80%. The nature of thermoplastic elastomers.
  • the copolymer block D is represented by the formula:
  • a x is a styrene monomer polymerization micro block
  • B y is a hydrogenated microblock which is polymerized and then hydrogenated by a conjugated diene monomer.
  • x is 1-100 (average value), preferably 1-90, more preferably 1-70, most preferably 1-30,
  • y is 1-170 (average value), preferably 1-150, more preferably 1-90, most preferably 1-35,
  • n is 30-1100 (average value), preferably 300-1100, more preferably 650-1100, most preferably 900-1100, and each hydrogenated conjugated diene and styrene monomer in each (A x -B y )
  • the types and proportions may be the same or different from each other, and each of x may be the same or different from each other, and each of y may be the same or different from each other.
  • the weight percentage of the polymeric blocks S 1 and S 2 in component (1) in the block copolymer is from 8.0 to 20.0%, preferably from 8.0 to 18.0%, more preferably 8.0. -15.0%, most preferably 10.0-14.0%, when the weight percentage of the polymer blocks S 1 and S 2 is less than 8.0%, the tensile strength and modulus of the block copolymer will be significantly decreased, and S When the weight percentage of 1 and S 2 is more than 20.0%, the hardness of the block copolymer is remarkably increased, and the elasticity is remarkably disappeared. Only at 8.0-20.0%, the block copolymer can have better overall performance to meet the application needs.
  • the block copolymer of component (1) has a number average molecular weight of from 20,000 to 800,000 g/mol, preferably from 30,000 to 600,000 g/mol, more preferably from 40,000 to 400,000 g/mol, most preferably from 50,000 to 300,000 g/mol. .
  • the molecular weight distribution index is from 1.01 to 1.5, more preferably from 1.01 to 1.3, most preferably from 1.01 to 1.25.
  • the styrenic monomer usable in the present invention may be selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, and substituted ⁇ -alkylstyrene (for example, p-methyl- ⁇ -methylbenzene). Ethylene), p-methylstyrene, vinyl toluene, vinylnaphthalene and p-tert-butylstyrene, or mixtures thereof. Among these, styrene, ⁇ -methylstyrene or a combination thereof is most preferred.
  • the conjugated diene used herein may be butadiene such as 1,3-butadiene or substituted butadiene such as isoprene, piperylene, 2,3-dimethyl-1,3 Butadiene and 1-phenyl-1,3-butadiene, or mixtures thereof. Among these, 1,3-butadiene and isoprene, or a combination thereof are most preferred.
  • the degree of hydrogenation of the hydrogenated conjugated diene block (B y ) may be from 80 to 99.99%, preferably from 88 to 99.0%, and the degree of hydrogenation is too low to significantly lower the heat of the polymer. Stability, and negative impact on the hot processing of its later application, too high degree of hydrogenation will significantly increase the hydrogenation reaction time in the polymer synthesis process, increase production costs and reduce production efficiency.
  • component (1) is a linear molecular structure having the formula S 1 -(A x -B y ) n -S 2 , wherein S 1 , S 2 , A, B, x, y and n as defined before.
  • the component (1) block copolymer of the present invention has a star molecular structure and has the formula [S 1 -(A x -B y ) n -S 2 ] m -R or [S 1 -(A x -B y ) n ] m -R, wherein S 1 , S 2 , A, B, x, y and n are as defined above, R is a coupling agent residue, and m is an arm of a star molecule The number is an integer selected from 3 to 5, preferably an integer selected from 3 to 40, and more preferably an integer selected from 3 to 15.
  • the coupling agent is selected from divinylbenzene, SiCl 4 or SnCl 4.
  • Component (2) anionically polymerized monodisperse atactic polystyrene
  • the anionically polymerized monodisperse atactic polystyrene has a number average molecular weight of from 20,000 to 65,000 g/mol and a molecular weight distribution index of from 1.01 to 1.20.
  • the polymerization is carried out in a solvent, an activator and a catalyst using a conventional anionic method.
  • the hydrogenated styrene-based thermoplastic elastomer having a specific microphase structure of the present invention has two glass transition temperatures at less than 60 °C. More specifically, the thermal transition was measured using a DSC method at a heating rate of 10 K/min, and a significant glass transition occurred at -35 ° C to -10 ° C, and another glass transition occurred at 10 ° C to 30 ° C.
  • the Tg value of -35 ° C to -10 ° C represents the copolymerization block of the styrene monomer and the hydrogenated conjugated diene monomer in the block copolymer S 1 p -DS 2 q
  • the D-styrene monomer-polymerized micro-block and the hydrogenated conjugated diene-based monomer micro-block are uniformly and alternately distributed, and the second-stage polymerization group in the hydrogenated styrene-conjugated diene-based block copolymer of the present invention
  • the manner in which the monomer mixture is added in batches for polymerization is related; and the Tg value at 10 ° C to 30 ° C represents the block copolymer S 1 p -DS 2 q and the anionically polymerized monodisperse polystyrene by means of the invention (non-simple physics) When mixed, when a part of the copolymer block
  • the dynamic mechanical properties of the hydrogenated styrene-based thermoplastic elastomer of the present invention were measured by DMTA. It was found that the hydrogenated styrene-based thermoplastic elastomer of the present invention appeared at -30 ° C to 35 ° C when the frequency was fixed at 1 Hz and the heating rate was 3 K/min. An obvious internal friction peak (tan ⁇ ), the peak of the internal friction peak is -5 ° C to 10 ° C, and the peak tan ⁇ ⁇ 0.3.
  • Fig. 3 shows an atomic force microscope photograph of an embodiment of the hydrogenated styrene-based thermoplastic elastomer of the present invention.
  • Figure 4 shows an atomic force micrograph of a hydrogenated styrene-conjugated diene block copolymer of component (1) prepared separately from process step (b). It can be seen from the two photographs that the microphase separation structure of the thermoplastic elastomer is very special, and the polystyrene exists in the form of a dispersed phase in the polymer matrix, and there is a polystyrene dispersed phase having an average particle diameter of 400-900 nm. There is also a polystyrene dispersed phase having an average particle diameter of 10 to 95 nm. Not to be in any theory, it is precisely because of the large polystyrene dispersed phase that the visible light is heavily scattered, so that after the reflected light is cancelled or compensated, the effect of matt or matte is exhibited.
  • Another aspect of the invention relates to a process for the preparation of the above hydrogenated styrene-based thermoplastic elastomer.
  • the method includes the following steps:
  • the styrene monomer is fed into the polymerization vessel at 50-100 ° C for polymerization.
  • the conversion rate is at least 95%, the aging of the styrene is continued for 20-120 min; the glue is inactivated;
  • (b.ii) second stage polymerization when the first stage polymerization conversion rate is at least 95%, a mixture of a conjugated diene and a styrene monomer is added to the polymerization tank in at least three batches to carry out the second stage. Polymerization, wherein the latter batch is added when the conversion rate of the previous batch is at least 95%, and the type and ratio of each batch of the conjugated diene and the styrene monomer may be the same or different from each other;
  • a coupling agent is added to the polymerization vessel to couple the reaction product to obtain a star polymer
  • the polystyrene gum in step (a) is added to the polymerization vessel of step (b) for mixing, and then transferred to a hydrogenation vessel to hydrogenate the mixture in the presence of a hydrogenation catalyst; or the gum in step (b) is first introduced.
  • the liquid is pumped into the hydrogenation vessel to be inactivated, hydrogenated in the presence of a hydrogenation catalyst, and the polystyrene glue in the step (a) is added to the hydrogenation vessel and mixed with the hydrogenated glue of the step (b).
  • the coupling agent is selected from the group consisting of divinylbenzene, SiCl 4 or SnCl 4 .
  • a mixture of conjugated diene/styrene monomers is added for the second stage polymerization, wherein the mixture of the monomers is divided into 3-60.
  • Batches preferably 5-55 batches, more preferably 8-40 batches, are added to the polymerization vessel, and the latter batch is added at a conversion of at least 95% of the previous batch.
  • the addition of a mixture of a styrenic monomer and a conjugated diene monomer in portions allows the production of microblocks of styrenic monomers and conjugated diene monomers in the polymer chain.
  • the batch of the monomer mixture added in portions is equal in weight per batch.
  • the mixture of monomers fed in batches also has the same monomer ratio per batch.
  • the weight percentage of styrenic monomer in the mixed monomer may range from 20.0 to 70.0%, preferably from 30.0 to 60.0%.
  • the styrene monomer may have a weight percentage of the styrene monomer of from 20.0 to 64.0%, preferably from 30.0 to 60.0%, more preferably from 40.0 to 60.0%.
  • the solvent used as the polymeric carrier can be any hydrocarbon that does not react with the living anionic chain ends of the formed polymer, is readily handled in commercial polymerization equipment, and provides suitable solubility characteristics to the product polymer.
  • non-polar aliphatic hydrocarbons which generally lack ionizable hydrogen constitute a particularly suitable solvent.
  • cyclic alkanes such as cyclopentane, cyclohexane, cycloheptane and cyclooctane, all of which are relatively non-polar.
  • Other suitable solvents will be known to those skilled in the art and can be selected to function effectively under the given set of process conditions, with temperature and water content being the most important factors to be considered.
  • the first stage is polymerized in a solvent selected from the group consisting of cyclohexane, n-hexane, benzene, toluene, xylene heptane, or a mixture thereof In progress.
  • a solvent selected from the group consisting of cyclohexane, n-hexane, benzene, toluene, xylene heptane, or a mixture thereof In progress.
  • the solvent has a total water content of less than 30 ppm.
  • the anionic polymerization initiator in the present invention includes, for example, an alkyllithium compound and other organolithium compounds such as sec-butyllithium, n-butyllithium, t-butyllithium, pentyllithium, etc., including A hair agent such as di-sec-butyl lithium adduct of m-isopropenylbenzene.
  • a hair agent such as di-sec-butyl lithium adduct of m-isopropenylbenzene.
  • Other such diinitiators are disclosed in U.S. Patent 6,492,469.
  • n-butyllithium or sec-butyllithium is preferred.
  • the initiator can be used in the polymerization mixture (including monomers and solvents) in an amount calculated based on one initiator molecule per desired polymer chain.
  • the lithium initiator process is well known and is disclosed, for example, in U.S. Patent 4,039,593, the disclosure of which is incorporated here
  • the monomer conversion rate is determined by gas chromatography for the extract during the polymerization reaction, and the inventors have found that the molecular structure of the polymer of the present invention can satisfy the description of the invention when the monomer conversion rate is 95% or more. Design requirements.
  • a wide variety of coupling agents useful in the present invention include, for example, dihaloalkanes, silicon halides, siloxanes, polyfunctional epoxides, including m-divinylbenzene, and the like.
  • tetraalkoxysilanes such as tetraethoxysilane (TEOS) and tetramethoxysilane
  • alkyltrialkoxysilanes such as methyltrimethoxysilane (MTMQ)
  • MTMQ methyltrimethoxysilane
  • aliphatic diesters such as Dimethyl dicarboxylate and diethyl adipate
  • diglycidyl aromatic epoxy compounds such as diglycidyl ethers derived from the reaction of bisphenol A with epichlorohydrin.
  • the coupling agent is selected such that any residual unreacted coupling agent, coupling agent residues incorporated into the polymer chain or by-products of the coupling reaction do not affect the hydrogenation reaction.
  • the coupling agent is preferably selected from divinylbenzene, SiCl 4 or SnCl 4.
  • the coupling agent is added to the living polymer in a molar ratio to produce a coupled polymer having a desired arm number distribution.
  • the coupling agent may be added in the form of a pure compound or may be diluted in an inert solvent for ease of metering. The way of adding may have an effect on the number of arms. After coupling, it is usually not necessary to terminate the reaction.
  • the star polymer obtained by the process for producing the block copolymer of the present invention has from 3 to 5 arms, preferably from 3 to 40 arms, more preferably from 8 to 35 arms.
  • the polymerization is stopped by the addition of a terminator.
  • Anionic polymerization is often carried out by adding water to remove lithium from the end of the polymer chain in the form of lithium hydroxide (LiOH) or by adding alcohol (ROH) to the lithium alkoxide
  • the form of (LiOR) removes lithium to terminate.
  • the terminator is added in an amount relative to the molar excess of the end of the living chain.
  • the type and/or amount of terminator should be chosen such that residual terminator or termination reaction by-product does not affect hydrogenation.
  • Hydrogenation can be carried out by any of several hydrogenation or selective hydrogenation processes known in the art. Such hydrogenation has been accomplished, for example, using methods such as those taught in, for example, U.S. Patent Nos. 3,359,942, 3,634,549, 3,760, 054, 3,700, 633, the disclosure of which is incorporated herein by reference.
  • the catalyst used in the present invention comprises a titanium-based catalyst system, preferably a titanocene compound.
  • the hydrogenation step has a hydrogenation reaction temperature of from 60 to 140 ° C, a pressure of from 0.8 to 2.2 MPa, and a time of from 60 to 200 minutes.
  • the hydrogenation operation is carried out such that the hydrogenated degree of the hydrogenated conjugated diene block in the block copolymer thermoplastic elastomer of the present invention is from 80 to 99.99%, preferably from 88 to 99.0%. If the degree of hydrogenation is too low, the thermal stability of the polymer will be significantly reduced, which will have a negative impact on the hot working of the later application. The high degree of hydrogenation will significantly increase the hydrogenation reaction time in the polymer synthesis process, increase the production cost and reduce the production cost. Productivity.
  • a solvent and an activator are added to the polymerization vessel, and the temperature is raised to 50-100 ° C; then the styrene monomer is fed into the polymerization vessel, and the metered catalyst is added to carry out the first-stage polymerization until the first stage monomer When the conversion rate is at least 95%; a mixture of conjugated diene/styrene monomer is added for the second stage polymerization, and in the second stage polymerization, the mixed monomer is added to the polymerization tank for 3-40 batches to carry out the reaction, that is, In the second stage polymerization, the polymerization is further divided into 3-40 stages.
  • the next batch of mixed monomers is added to carry out the reaction until all the mixed monomers are completely reacted in sequence.
  • the styrene monomer is sent to the polymerization tank for the third stage polymerization, and after the third stage monomer conversion rate reaches at least 95%, the aging is continued in the reactor for 20-120 min;
  • the polymer active molecular chain is coupled with divinylbenzene to obtain an equipotential long star with a number of arms of 3-55; if a star with a number of arms of 3-4 is obtained, SiCl 4 and SnCl 4 couples polymer active molecular chains;
  • a star block copolymer having a molecular structure of [S-(A x -B y ) n -S] m -R To a star block copolymer having a molecular structure of [S-(A x -B y ) n -S] m -R; if the coupling is carried out directly
  • the component (1) and the component (2) obtained as described above are mixed as follows to prepare a hydrogenated styrene-based thermoplastic elastomer having a specific microphase structure of the present invention:
  • the component (2) polystyrene glue is pumped into the polymerization kettle of component (1) for mixing for 5-20 min, and then the mixed glue is pumped into the hydrogenation reactor, and the mixture is hydrogenized in the presence of a hydrogenation catalyst. Performing hydrogenation at a temperature of 60-140 ° C, a pressure of 0.8-2.2 MPa, and a time of 60-200 min;
  • the glue of component (1) is pumped into the hydrogenation vessel to be inactivated, and hydrogenation is carried out by using hydrogen gas in the presence of a hydrogenation catalyst.
  • the hydrogenation reaction temperature is 60-140 ° C
  • the pressure is 0.8-2.2 MPa
  • the time is 60-200 min.
  • the polystyrene glue of the component (2) is pumped into the hydrogenation kettle and mixed with the oxidized component (1) for 3-10 minutes; finally, the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • Component 1 which is a styrene-hydrogenated conjugated diene block copolymer, which is a special type of block SEB.
  • Component 1 a styrene-hydrogenated conjugated diene block copolymer, which is a special type of block SEB.
  • the novel hydrogenated styrene-conjugated diene block copolymer has a significant cost advantage over conventional SEBS.
  • component 1 the content of styrene monomer in the novel hydrogenated styrene-conjugated diene block copolymer (component 1) is very high (>50%), atomic force microscopy studies have found that the polystyrene phase (PS) still The form of the particles exists as a dispersed microphase having an average particle diameter of 12 to 90 nm.
  • an anionic polymeric polystyrene inactivating gum is blended with a novel styrenic block copolymer hydrogenation pre-melt, it is simultaneously hydrogenated, or an anionic polymeric polystyrene inactivated gum.
  • the obtained product is still an excellent thermoplastic elastomer, and its properties are comparable to those of the hydrogenated styrene-conjugated diene block copolymer.
  • Later structural studies have found that the microphase separation structure in the thermoplastic elastomer is very special.
  • Polystyrene exists in the form of a dispersed phase in the polymer matrix, but there are both polystyrene dispersed phases with an average particle diameter of 400-900 nm. There is a polystyrene dispersed phase having an average particle diameter of 10 to 95 nm.
  • thermoplastic elastomer has an excellent matte finish and the matte finish is very delicate.
  • the product also has an excellent matte effect in the production of films, wires and sheets, and achieves an unexpected application effect. Without being bound by any theory, we believe that a large polystyrene dispersion phase is the direct cause of the fine matte effect in the thermoplastic elastomer.
  • the amount of additives is particularly large (such as the amount of inorganic filler SiO 2 reaches 60-70%)
  • the amount of other copolymers is particularly large (such as the amount of PA, PC reaches 50-60%), or depth
  • a limited matte effect can also be obtained, but at this time the novel hydrogenated styrene-conjugated diene block copolymer has lost the properties of the thermoplastic elastomer, and various other properties such as elasticity, flow Sex, intensity, etc. have also changed a lot.
  • the inventors have found that it is also conceivable to directly combine anionically polymerized polystyrene or radically polymerized polystyrene of various molecular weights with the novel hydrogenated styrene-conjugated diene block copolymer (component 1) disclosed herein.
  • component 1 novel hydrogenated styrene-conjugated diene block copolymer
  • the hydrogenated styrene-based thermoplastic elastomer disclosed in the present invention having a special microphase structure has a matte effect by itself, and the effect is inherent, not by additives, blending with other copolymers, or by dynamic vulcanization. of.
  • the hydrogenated styrenic thermoplastic elastomer of this particular microphase structure has an excellent skin feel.
  • the main manifestation is that the skin is very dry when it comes into contact, and the common SEBS always gives a sticky and greasy feel when it comes into contact with the skin.
  • thermoplastic elastomer in the examples and comparative examples were determined according to the following criteria:
  • the tensile properties were tested in accordance with ASTM D412, the tensile rate was 250 mm/min, and the test sample was a polymer toluene solution coated film;
  • Hardness was tested in accordance with ASTM 2240 with a reading time of 10 s and the test sample was a polymer molded sheet of 177 ° C;
  • the melt index is tested in accordance with ASTM D 1238, at 230 ° C, 5 kg;
  • Sheet matte finish test test sample is polymer 177 ° C molded sheet, visual inspection;
  • Test sample is a cylindrical wire extruded directly from a round die with a single screw extruder, diameter 2.5-4mm, visual inspection;
  • Sheet touch test The human bare hand direct contact test, the test sample is a polymer molded sheet of 177 ° C.
  • the molecular weight and molecular weight distribution of the polymer were measured by Waters GPC, and the mobile phase was tetrahydrofuran;
  • the relative mass content of the polymer styrene monomer and the hydrogenated conjugated diene monomer and the hydrogenation degree of the hydrogenated conjugated diene block were measured by a Brucker 600 MHz nuclear magnetic resonance spectrometer using a hydrogen spectrum;
  • the thermal transition of the polymer was measured using NETZCH DSC 204 F3 at a rate of 10 K/min and a temperature range of -90-150 ° C;
  • the dynamic mechanical behavior of the polymer was measured by TA DMTA, the frequency was fixed at 1 Hz, the heating rate was 3 K/min, and the temperature scanning range was -80-200 ° C;
  • the microscopic phase separation behavior of the polymer was measured by a NanoScope III AFM atomic force microscope.
  • the tapping mode was performed at a frequency of 1 Hz.
  • the test sample was formed by casting a film of a polymer toluene solution on a mica sheet.
  • Step 1) Anionic solution polymerization of monodisperse atactic polystyrene:
  • Step 2) Anionic solution polymerization of hydrogenated styrene-conjugated diene block copolymer:
  • the solvent cyclohexane (water content 22 ppm) and the activator were added to the polymerization vessel, and the temperature was raised to 70 ° C; then styrene (12.5% by weight of the total monomer) was fed into the polymerization vessel, and the catalyst n-butyllithium was added.
  • styrene (12.5% by weight of the total monomer
  • the catalyst n-butyllithium was added.
  • Adding to the first stage of polymerization when the first stage monomer conversion rate is at least 95%; adding a butadiene/styrene mixture (the relative weight content of styrene is 60% of the mixture) for the second stage polymerization, In the second stage polymerization, 15 batches of mixed monomers (equal weight of each batch) are added to the polymerization vessel for reaction.
  • the polystyrene glue in step 1) is pumped into the polymerization vessel of step 2) for mixing for 5 min; then the mixed glue is pumped into the hydrogenation vessel, and the mixture is subjected to hydrogen in the presence of a hydrogenation catalyst titanocene compound. Hydrogenation, hydrogenation temperature of 100 ° C, pressure of 2.2 MPa, time of 160 min; finally the product was coagulated and dried to obtain a finished thermoplastic elastomer.
  • Step 2 Anionic solution polymerization of hydrogenated styrene-conjugated diene block copolymer:
  • the polymerization vessel Adding solvent cyclohexane (water content 22ppm) and activator to the polymerization vessel, heating to 70 ° C; then feeding styrene (12.5% of the total weight of the monomer) into the polymerization vessel, and metering the catalyst
  • the lithium is added for the first stage polymerization, and the first stage monomer conversion rate is at least 95%; the butadiene/styrene mixture (the relative weight content of styrene is 60% of the mixture) is added for the second stage polymerization.
  • the mixed monomer is divided into 15 batches (the weight of each batch is equal) and added to the polymerization tank for reaction.
  • the next batch of mixed monomers is added.
  • the reaction is completed until all the mixed monomers in the batch are completely reacted; after the second stage polymerization is completed, styrene (12.5% of the total weight of the monomers) is sent to the polymerization reactor for the third stage polymerization, and the third stage is to be
  • the aging was continued in the reactor for 60 min; the product of the linear molecular structure was obtained.
  • the glue in step 2) is pumped into the hydrogenation vessel to be inactivated, and hydrogenated by hydrogen in the presence of a hydrogenation catalyst titanocene compound, the hydrogenation reaction temperature is 100 ° C, the pressure is 2.2 MPa, the time is 160 min, and the steps are further 1)
  • the polystyrene glue is pumped into the hydrogenator and mixed with the hydrolyzed glue of step 2) for 5 min; finally, the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • the solvent cyclohexane (water content 10 ppm) and the activator were added to the polymerization vessel, and the temperature was raised to 100 ° C; then the styrene monomer was fed into the polymerization vessel, and the metered catalyst sec-butyllithium was added for polymerization. When the rate reaches at least 95%, it is matured in the reactor for 120 minutes; the glue is inactivated and used.
  • Step 2 Anionic solution polymerization of hydrogenated styrene-conjugated diene block copolymer:
  • a solvent cyclohexane (water content 10 ppm) and an activator were added to the polymerization vessel, and the temperature was raised to 100 ° C; then styrene (8.3% by weight of the total monomer) was fed into the polymerization vessel, and the catalyst was metered.
  • styrene 8.3% by weight of the total monomer
  • the catalyst was metered.
  • sec-butyllithium to the first stage of polymerization, when the first stage monomer conversion rate is at least 95%; adding a butadiene/styrene mixture (the relative weight content of styrene is 40% of the mixture) for the second
  • 25 batches of mixed monomers are added to the polymerization tank for reaction.
  • the polystyrene glue in step 1) is pumped into the polymerization vessel of step 2) for mixing for 20 min; then the mixed glue is pumped into the hydrogenation vessel, and the mixture is subjected to hydrogen in the presence of a hydrogenation catalyst titanocene compound. Hydrogenation, hydrogenation reaction temperature of 60 ° C, pressure of 1.0 MPa, time of 200 min; finally the product was coagulated and dried to obtain a thermoplastic elastomer finished product.
  • Step 2 Anionic solution polymerization of hydrogenated styrene-conjugated diene block copolymer:
  • the next step is added.
  • the batch of mixed monomers is reacted until all the mixed monomers in the batch are completely reacted; after the second stage of polymerization is completed, ⁇ -methylstyrene (12.2% of the total weight of the monomers) is sent to the polymerization vessel for the first
  • ⁇ -methylstyrene (12.2% of the total weight of the monomers) is sent to the polymerization vessel for the first
  • the third stage monomer conversion rate reaches at least 95%
  • the mixture is further matured in the reactor for 20 min; then the polymer active molecular chain is coupled with divinylbenzene to obtain an equipotential arm with a number of arms of 10. Long star molecule; the final molecular structure is [S-(Ax-By) a n-m-R star block copolymer;
  • the polystyrene glue in step 1) is pumped into the polymerization vessel of step 2) for mixing for 10 min; then the mixed glue is pumped into the hydrogenation vessel, and the mixture is subjected to hydrogen in the presence of a hydrogenation catalyst titanocene compound. Hydrogenation, hydrogenation reaction temperature of 80 ° C, pressure of 0.8 MPa, time of 60 min; finally the product was coagulated and dried to obtain a thermoplastic elastomer finished product.
  • a solvent cyclohexane (water content 22 ppm) and an activator were added to the polymerization vessel, and the temperature was raised to 70 ° C; then styrene monomer (12.5% by weight of the total monomer) was fed into the polymerization vessel, and the amount was measured.
  • the catalyst n-butyllithium is added for the first stage polymerization, when the first stage monomer conversion is at least 95%; the butadiene/styrene mixture (the relative weight content of styrene is 60% of the mixture) is added.
  • the mixed monomer is divided into 15 batches (the weight of each batch is equal) and added to the polymerization tank for reaction.
  • the conversion rate of each stage reaches at least 95%
  • the next batch of the mixture is added.
  • the monomer is reacted until all batches of mixed monomers are completely reacted in sequence; after the second stage of polymerization is completed, styrene (12.5% of the total weight of the monomers) It is sent to the polymerization vessel for the third stage polymerization.
  • the glue is pumped into the hydrogenation vessel to inactivate the titanium catalyst in the hydrogenation catalyst.
  • the butadiene microblock of the block polymer was hydrogenated using hydrogen gas at a hydrogenation temperature of 100 ° C, a pressure of 2.2 MPa, and a time of 160 min; a product of a linear molecular structure was obtained. Finally, the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • a solvent cyclohexane (water content 10 ppm) and an activator were added to the polymerization vessel, and the temperature was raised to 100 ° C; then styrene (8.3% by weight of the total monomer) was fed into the polymerization vessel, and the catalyst was metered.
  • styrene 8.3% by weight of the total monomer
  • the catalyst was metered.
  • sec-butyllithium to the first stage of polymerization, when the first stage monomer conversion rate is at least 95%; adding a butadiene/styrene mixture (the relative weight content of styrene is 40% of the mixture) for the second
  • 25 batches of mixed monomers are added to the polymerization tank for reaction.
  • the next batch of mixed monomers is added.
  • the reaction is carried out until all the mixed monomers in the batch are completely reacted; after the second stage polymerization is completed, styrene (8.3% of the total weight of the monomers) is sent to the polymerization vessel for the third stage polymerization, and the third stage is to be completed.
  • the monomer conversion rate reaches at least 95%, it is further matured in the reactor for 120 min; then the polymer active molecular chain is coupled by SiCl4 to obtain an equipotential long star molecule with a number of arms of 4; the glue is pumped into the hydrogenation Kettle inactivated, in the hydrogenation catalyst titanocene
  • the conjugated diene microblock of the block polymer is hydrogenated by hydrogen gas in the presence of a compound, the hydrogenation reaction temperature is 60 ° C, the pressure is 1.0 MPa, and the time is 200 min; finally, the molecular structure is [S-(Ax- By) nS]mR star block copolymer; finally the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • a good catalyst, n-butyllithium, is added for the first stage of polymerization, when the first stage monomer conversion is at least 95%; a mixture of isoprene/styrene is added (the weight of styrene is 30% of the mixture) Carrying out the second stage polymerization, in the second stage polymerization, mixing the monomers into 5 batches (the weight of each batch is equal) is added to the polymerization tank to carry out the reaction, and the conversion rate of each stage is at least 95%, and then the next batch is added.
  • the polymer active molecular chain is coupled with divinylbenzene to obtain an equipotential long star with a number of arms of 10; the glue is pumped into the hydrogenation vessel to inactivate,
  • the conjugated diene microblock of the block polymer is hydrogenated by hydrogen in the presence of a hydrogenation catalyst titanocene compound, the hydrogenation temperature is 80 ° C, the pressure is 0.8 MPa, and the time is 60 min; the molecular structure is finally obtained [ Star-block copolymer of S-(Ax-By)n]mR; finally, the product is coagulated and dried to obtain a finished thermoplastic elastomer.
  • thermoplastic elastomers having the specific microphase structure prepared by the inventive examples 1, 2, 3 and 4 were compared with Comparative Examples 1, 2 and 3 to examine the advantageous effects of the present invention. The results are shown in Table 1.
  • the novel hydrogenated block copolymer synthesized in the step 2) of Example 1 was hydrogenated under the same hydrogenation conditions and directly subjected to coagulation and drying.
  • the dry product was directly blended with dry anionic polymeric polystyrene using a twin screw extruder at a processing temperature of 170-200 °C.
  • the anionically polymerized polystyrene had a number average molecular weight of 20,000 g/mol and a molecular weight distribution of 1.02.
  • the anionically polymerized polystyrene had the same weight content as in Example 1.
  • the novel hydrogenated block copolymer synthesized in the step 2) of Example 1 was hydrogenated under the same hydrogenation conditions and directly subjected to coagulation and drying.
  • the dry product was directly dissolved in dry anionic polystyrene using cyclohexane (water content 22 ppm), and then stirred for 5-10 min, and then the blend solution was coagulated and dried.
  • the anionically polymerized polystyrene had a number average molecular weight of 20,000 g/mol and a molecular weight distribution of 1.01.
  • the anionically polymerized polystyrene had the same weight content as in Example 1.
  • the novel hydrogenated block copolymer synthesized in the step 2) of Example 1 was hydrogenated under the same hydrogenation conditions and directly subjected to coagulation and drying.
  • the obtained product was directly blended with a free-radically polymerized polystyrene (commercially available general grade) using a twin-screw extruder at a processing temperature of 170-200 °C.
  • the radically polymerized polystyrene had a number average molecular weight of 120,000 g/mol and a molecular weight distribution of 3.02.
  • the weight content of the radically polymerized polystyrene was the same as in Example 1.
  • Thermoplastic elastomers having specific microphase structures prepared in accordance with Inventive Examples 1 and 2 were compared with Comparative Examples 4, 5 and 6 to examine the beneficial effects of the polymerization process of the present invention. The results are shown in Table 2.
  • thermoplastic elastomer having a special microphase structure can be obtained by the embodiment following the polymerization scheme of the present invention, which is embodied in the presence of a polystyrene having a dispersed phase having an average particle diameter of 400-900 nm and an average particle diameter of A small dispersion phase of 10-95 nm, the thermoplastic elastomer has a significant internal friction peak (tan ⁇ ) at -30-35 ° C, a peak of internal friction peak at -5-10 ° C, and a peak tan ⁇ ⁇ 0.3.
  • the molded sheet prepared from the thermoplastic elastomer has an excellent fine matte effect and is dry to the touch.
  • the above hydrogenated styrene-conjugated diene block copolymer (component 1) cannot achieve the above advantageous effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

一种具有特殊微相结构的氢化苯乙烯类热塑性弹性体及其制备方法,该热塑弹性体包括氢化苯乙烯-共轭二烯类嵌段共聚物和阴离子聚合单分散无规聚苯乙烯。该嵌段共聚物中苯乙烯类单体的重量百分含量为50-80%,数均分子量为50000-300000g/mol。该热塑性弹性体中,聚苯乙烯在聚合物基体中以分散相形式存在,存在平均粒径为400-900nm大的聚苯乙烯分散相和10-95nm小的聚苯乙烯分散相,并在-30-35℃有一个明显的内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.3。该热塑性弹性体在生产薄膜、线材和片材等产品时具有极佳的雾面效果,且雾面效果十分细腻,同时手感干爽。

Description

氢化苯乙烯类热塑性弹性体及其制备方法 技术领域
本发明涉及一种具有特殊微相结构的氢化苯乙烯类热塑性弹性体及其制备方法,属于聚合物材料制备领域。
背景技术
苯乙烯类热塑性弹性体是苯乙烯-共轭二烯类共聚物及其衍生物的统称。苯乙烯-共轭二烯类共聚物中的嵌段共聚物(包括两嵌段和三嵌段)具有热塑性弹性体性质,是最早和最广泛研究的品种。其中产量最大的有三种:聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共聚物(SBS),聚苯乙烯-聚异戊二烯-聚苯乙烯三嵌段共聚物(SIS)和聚苯乙烯-氢化聚丁二烯-聚苯乙烯三嵌段共聚物(SEBS)。
SBS和SIS是研究的最早的产品,早在20世纪60年代Phillips石油公司和Shell化学公司就对其实现了工业化生产。但是却发现SBS的耐老化性和化学稳定性并不好。因此,Shell化学公司(现Kraton)的研究人员将SBS的软段进行了高度氢化,得到了力学性能更好,化学稳定性更优异的热塑性弹性体SEBS。Shell化学公司在20世纪70年代也对其进行了工业化生产。目前,全世界SBS,SIS和SEBS的年总产量已超过200万吨,在各个领域都有着广泛的应用。
在商业化的SEBS中一般聚苯乙烯嵌段为分散相,而弹性体嵌段为连续相。正是因为这种微相分离结构,在常温下聚苯乙烯嵌段硬而强,并将弹性嵌段锁接成物理交联的网络,使其拥有了弹性体的性质。而当温度升高,聚苯乙烯开始流动时,其又可以像塑料一样进行反复加工。这使得SEBS具有了塑料和橡胶的双重性质,特别是赋予了SEBS与传统硫化橡胶相似的弹性。
在现有技术中,为了得到雾面效果的聚合物线材和片材等产品,一般是采用将聚合物与其它一定量添加剂(如无机填料等)相配合,或与其它一定量不相容共聚物(如PA、PC)共混,或者直接对聚合物进行动态硫化等手段,但这些手段能够取得的效果有限。对于苯乙烯类热塑 性弹性体,在有些情况下,当添加剂的量特别大时(如无机填料SiO2的量达到60-70%)、其它共聚物的量特别大时(如PA、PC的量达到50-60%)、或者深度动态硫化后,也可以得到有限的雾面效果,但此时苯乙烯类热塑性弹性体已基本失去了热塑性弹性体的性质,且其它各种性能,特别是弹性、硬度、流动性、强度等也均有本质改变。
但是为了保证SEBS热塑性弹性体的性质,SEBS中聚苯乙烯(PS)的总含量必须低于40wt%。当聚苯乙烯的含量高于40wt%时,随着PS的增加,聚苯乙烯-氢化聚丁二烯嵌段共聚物SEBS会逐渐成为塑料而失去弹性体的特性。
CN101735419A涉及一种星型高苯乙烯橡胶。该星型高苯乙烯橡胶中包含聚苯乙烯和聚丁二烯渐变嵌段共聚物和聚苯乙烯和聚丁二烯无规共聚物,通过将单体分次加入通过阴离子聚合而制备。然而该星型高苯乙烯橡胶不包括端部苯乙烯嵌段,而是通过在反应一开始即加入苯乙烯和丁二烯单体的混合物,并且由于二者的竞聚率不同而形成自然分布的嵌段形态。该文献也不涉及氢化的嵌段共聚物。
CN101735526A涉及一种改性高抗冲聚苯乙烯组合物,其包含丁苯抗冲共聚物。但该文献中的苯乙烯含量低,不具有热塑性弹性体的性质。另外,该文献并不涉及所制备的丁苯抗冲共聚物本身的性能。
CN101855294A公开了一种可固化的橡胶混合物,其含有嵌段共聚物。所述嵌段共聚物具有末端嵌段和主链部分,该两部分具有不同的玻璃化转变温度。但是,该文献中聚苯乙烯嵌段的含量较低,在20-30%之间。
因此,仍然需要开发一种苯乙烯-氢化共轭二烯嵌段共聚物热塑性弹性体,其具有较高的苯乙烯单体单元含量,并且表现出良好的动态机械性能、粘弹性和减震性。
发明内容
为了解决上述问题,本发明的发明人发现,通过控制聚合条件,可以有效地提高苯乙烯单体单元在嵌段共聚物中的含量。令人惊讶地,本申请的发明人还发现,当该类嵌段共聚物中苯乙烯类单体的总质量含量 达到40-80%时,该聚合物仍表现出典型热塑性弹性体的性质,这完全与传统常识相悖。
另外,将如此获得的嵌段共聚物与阴离子聚合的聚苯乙烯混合后,可以获得具有特殊的微相分离结构的氢化苯乙烯类热塑性弹性体,其具有亚光和雾面的表面效果,且雾面的效果十分细腻,特别适用于制造高端雾面效果的薄膜、线材和片材等产品。
因此,本发明的一个方面提供了一种氢化苯乙烯类热塑性弹性体,包含以下组分,均基于热塑性弹性体的总重量计:
(1)55-92%的氢化苯乙烯-共轭二烯类嵌段共聚物,其具有如下结构式:
S1 p-D-S2 q  (I)
其中:
S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2重量分别占所述嵌段共聚物总重量的8.0-20.0%;
D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
p和q各自独立地为0或1,但不能同时为0;
S1、S2和D中的苯乙烯类单体单元可以相同或不同;
其中苯乙烯类单体为所述氢化苯乙烯-共轭二烯类嵌段共聚物总重量的50-80重量%;
(2)8-45%的阴离子聚合的单分散无规聚苯乙烯。
本发明的另一个方面提供了一种氢化苯乙烯类热塑性弹性体的制备方法,其包括以下步骤:
(a)单分散无规聚苯乙烯的阴离子溶液聚合:
在50-100℃下,将苯乙烯单体送入聚合釜内进行聚合,待转化率至少达到95%时,熟化;灭活;
(b)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
(b.i)第一段聚合:使苯乙烯类单体在聚合釜中进行阴离子活性聚合;
(b.ii)第二段聚合:待第一段聚合转化率至少达到95%时,向聚 合釜中至少分3批加入共轭二烯烃与苯乙烯类单体的混合物进行所述第二段聚合,其中后一批次在前一批次的转化率至少达到95%时加入,每一批次的共轭二烯烃与苯乙烯类单体可以彼此相同或不同;
(b.iii)任选的第三段聚合:向聚合釜中加入苯乙烯类单体进行第三段聚合;
(b.iv)熟化:待第二段聚合或者在存在第三段聚合时待第三段聚合中单体转化率至少达到95%后,继续在反应釜内熟化,得到线型聚合物;
(b.v)任选的偶联:向聚合釜中加入偶联剂使反应产物偶联,获得星型聚合物;
(c)在氢化釜中氢化苯乙烯类热塑性弹性体的制备:
将步骤(a)中得到的聚苯乙烯胶液加入到步骤(b)的聚合釜内混合,随后转入氢化釜在加氢催化剂存在下对混合物进行氢化;或者先将步骤(b)中的胶液泵入氢化釜灭活,在加氢催化剂存在下进行氢化,再将步骤(a)中的聚苯乙烯胶液加入氢化釜与步骤(b)氢化的胶液混合。
附图说明
图1是本发明实施例1的具有特殊微相结构的氢化苯乙烯类热塑性弹性体的DSC升温曲线;
图2是本发明实施例1的具有特殊微相结构的氢化苯乙烯类热塑性弹性体的DMTA温度扫描曲线;
图3是本发明实施例1的具有特殊微相结构的氢化苯乙烯类热塑性弹性体的微相分离结构原子力显微镜照片。
图4是本发明的实施例1中制备的组分(1)氢化苯乙烯-共轭二烯类嵌段共聚物的原子力显微镜照片。
具体实施方式
本发明中,除非特别指明,术语“微嵌段”是指每个共聚嵌段中由相 同单体单元构成的结构部分。
本文中使用的术语“微相结构”是指通过显微镜观察可以界定出的平均直径为10nm以上的相的微观结构形态。
本发明提供了一种具有特殊微相结构的氢化苯乙烯类热塑性弹性体。通过显微镜观察,在本发明的氢化苯乙烯类热塑性弹性体中,聚苯乙烯以分散相形式存在于聚合物基体中,并且存在平均粒径为400-900nm大的聚苯乙烯分散相以及平均粒径为10-95nm小的聚苯乙烯分散相。
本发明的氢化苯乙烯类热塑性弹性体包含以下组分:
(1)55-92%的氢化苯乙烯-共轭二烯类嵌段共聚物,其具有如下结构式:
S1 p-D-S2 q  (I)
其中:
S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2重量分别占所述嵌段共聚物总重量的8.0-20.0%;
D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
p和q各自独立地为0或1,但不能同时为0;
S1、S2和D中的苯乙烯类单体单元可以相同或不同;
其中苯乙烯类单体单元为所述氢化苯乙烯-共轭二烯类嵌段共聚物总重量的50-80重量%;
(2)8-45%的阴离子聚合的单分散无规聚苯乙烯。
本发明的氢化苯乙烯类热塑性弹性体的一个重要特征在于具有高苯乙烯含量。发明人发现,当本发明的热塑性弹性体,尤其是其中的组分(1)嵌段共聚物中苯乙烯类单体的含量高,由此使得热塑性弹性体中苯乙烯的含量高达50-80%时,该嵌段共聚物组分(1)仍表现出典型热塑性弹性体的性质。更出人意料的是,将这样的嵌段共聚物组分(1)与阴离子聚合的单分散聚苯乙烯通过非简单物理混合的方式结合在一起时,可以获得具有亚光和雾面的表面效果的热塑性弹性体,其特别适用于制造优异雾面效果的薄膜、线材和片材等产品。
以下将对各组分进行详细描述。
组分(1):氢化苯乙烯-共轭二烯类嵌段共聚物
本发明的组分(1)氢化苯乙烯-共轭二烯类嵌段共聚物具有如下结构式:
S1 p-D-S2 q  (I)
其中:
S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2重量分别占所述嵌段共聚物总重量的8.0-20.0%;
D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
p和q各自独立地为0或1,但不能同时为0;
S1、S2和D中的苯乙烯类单体单元可以相同或不同。
在本发明的上述嵌段共聚物热塑性弹性体中,分子结构两端的S1或S2为普通的聚苯乙烯类嵌段,优选由活性聚合形成,更优选由活性阴离子聚合形成。
根据一些优选的实施方案,组分(1)所述苯乙烯类单体单元在嵌段共聚物中的重量百分含量为50-80%,优选60-75%。一般情况下,苯乙烯类单体单元的含量越高,分子链的刚性越高,在含量高于40%的情况下,通常不能够获得理想的弹性体特征。然而本发明通过对嵌段共聚物进行分子结构上的设计,获得了具有高含量的聚苯乙烯类结构单元的热塑性弹性体,其在高达80%的苯乙烯单体单元含量下,仍能够获得热塑性弹性体的性质。
根据一些优选的实施方案,共聚嵌段D如下式所示:
-(Ax-By)n-  (II)
其中:
Ax为苯乙烯类单体聚合微嵌段,
By为共轭二烯类单体聚合后再经氢化的氢化微嵌段,
x为1-100(平均值),优选1-90,更优选1-70,最优选1-30,
y为1-170(平均值),优选1-150,更优选1-90,最优选1-35,
n为30-1100(平均值),优选300-1100,更优选650-1100,最优选900-1100,并且各(Ax-By)中每个氢化共轭二烯烃与苯乙烯类单体的种类和比例可以彼此相同或不同,每个的x可以彼此相同或不同,每个的y可以彼此相同或不同。
根据一些优选的实施方案,组分(1)中所述聚合嵌段S1和S2分别在嵌段共聚物中的重量百分含量为8.0-20.0%,优选8.0-18.0%,更优选8.0-15.0%,最优选10.0-14.0%,当聚合嵌段S1和S2的重量百分含量低于8.0%时,嵌段共聚物的拉伸强度和定伸模量将显著下降,而S1和S2的重量百分含量高于20.0%时,嵌段共聚物的硬度会显著升高,弹性明显消失。只有在8.0-20.0%时,嵌段共聚物方能具有较佳的综合性能而满足应用需求。
根据一些优选的实施方案,组分(1)的嵌段共聚物的数均分子量为20000-800000g/mol,优选30000-600000g/mol,更优选40000-400000g/mol,最优选50000-300000g/mol。分子量分布指数为1.01-1.5,更优选1.01-1.3,最优选1.01-1.25。
可用于本发明中的苯乙烯类单体可以选自苯乙烯、α-甲基苯乙烯、α-乙基苯乙烯和取代的α-烷基苯乙烯(例如对甲基-α-甲基苯乙烯)、对甲基苯乙烯、乙烯基甲苯、乙烯萘和对叔丁基苯乙烯,或它们的混合物。这些之中,苯乙烯、α-甲基苯乙烯或其组合物是最优选的。本文使用的共轭二烯可以是丁二烯,例如1,3-丁二烯,或取代丁二烯,例如异戊二烯、戊间二烯、2,3-二甲基-1,3-丁二烯和1-苯基-1,3-丁二烯,或它们的混合物。这些之中,1,3-丁二烯和异戊二烯,或其组合是最优选的。
本发明的嵌段共聚物热塑性弹性体中,氢化共轭二烯烃嵌段(By)的氢化度可以为80-99.99%,优选88-99.0%,氢化度过低会明显降低聚合物的热稳定性,而对其后期应用的热加工成型带来负面影响,氢化度过高会显著提高聚合物合成过程中的氢化反应时间,增加生产成本,降低生产效率。
根据一些优选的实施方案,组分(1)为线型分子结构,结构式为S1-(Ax-By)n-S2,其中S1、S2、A、B、x、y和n如前所定义。
根据一些优选的实施方案,本发明的组分(1)嵌段共聚物为星型 分子结构,结构式为[S1-(Ax-By)n-S2]m-R或[S1-(Ax-By)n]m-R,其中S1、S2、A、B、x、y和n如前所定义,R为偶联剂残基,m为星形分子的臂数,为选自3-55的整数,优选为选自3-40的整数,更优选为选自3-15的整数。
根据一些优选的实施方案,偶联剂选自二乙烯基苯、SiCl4或SnCl4
组分(2):阴离子聚合的单分散无规聚苯乙烯
在本发明的一个方案中,阴离子聚合单分散无规聚苯乙烯的数均分子量为20000-65000g/mol,分子量分布指数为1.01-1.20。聚合在使用常规的阴离子方法在溶剂、活化剂及催化剂中进行。
氢化苯乙烯类热塑性弹性体
本发明的具有特殊微相结构的氢化苯乙烯类热塑性弹性体在低于60℃具有两个玻璃化转变温度。更具体地,使用DSC方法以10K/min升温速度下测定其热转变,在-35℃至-10℃出现一个明显的玻璃化转变,在10℃至30℃出现另一个玻璃化转变。不囿于任何理论,申请人认为-35℃至-10℃的Tg值代表嵌段共聚物S1 p-D-S2 q中苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段D内苯乙烯类单体聚合微嵌段和氢化共轭二烯类单体微嵌段均匀交替分布,其与本发明氢化苯乙烯-共轭二烯类嵌段共聚物中第二段聚合分批加入单体混合物进行聚合的方式有关;而10℃至30℃的Tg值代表嵌段共聚物S1 p-D-S2 q与阴离子聚合的单分散聚苯乙烯通过本发明的方式(非简单物理混合)结合在一起时,其部分共聚嵌段D与单分散聚苯乙烯在相界面上互相作用后由于共聚嵌段D分子活动性降低而表现出来的玻璃化转变。
利用DMTA测定本发明的氢化苯乙烯类热塑性弹性体的动态机械性能可知,在频率固定为1Hz,升温速率3K/min时,本发明的氢化苯乙烯类热塑性弹性体在-30℃至35℃出现一个明显的内耗峰(tanδ),内耗峰的峰值在-5℃至10℃,且峰值tanδ≥0.3。
图3示出了本发明的氢化苯乙烯类热塑性弹性体的一种实施方式的原子力显微镜照片。图4示出了由方法步骤(b)单独制备的组分(1)的氢化苯乙烯-共轭二烯类嵌段共聚物的原子力显微镜照片。由两幅照片可以看出,热塑性弹性体的微相分离结构十分特殊,聚苯乙烯在聚合物基体中以分散相形式存在,既存在平均粒径为400-900nm大的聚苯乙烯分散相,又存在平均粒径为10-95nm小的聚苯乙烯分散相。不囿于任何理论,正是由于大的聚苯乙烯分散相使得可见光照射时严重散射,从而在反射光抵消或补偿后显示出亚光或磨砂的效果。
本发明的另一方面涉及上述氢化苯乙烯类热塑性弹性体的制备方法。该方法包括以下步骤:
(a)单分散无规聚苯乙烯的阴离子溶液聚合:
在50-100℃下,将苯乙烯单体送入聚合釜内进行聚合,待转化率至少达到95%时,继续在反应釜内熟化20-120min;胶液灭活;
(b)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
(b.i)第一段聚合:使苯乙烯类单体在聚合釜中进行阴离子活性聚合;
(b.ii)第二段聚合:待第一段聚合转化率至少达到95%时,向聚合釜中至少分3批加入共轭二烯烃与苯乙烯类单体的混合物进行所述第二段聚合,其中后一批次在前一批次的转化率至少达到95%时加入,每一批次的共轭二烯烃与苯乙烯类单体的种类和比例可以彼此相同或不同;
(b.iii)任选的第三段聚合:向聚合釜中加入苯乙烯类单体进行第三段聚合;
(b.iv)熟化:待第二段聚合或者在存在第三段聚合时待第三段聚合中单体转化率至少达到95%后,继续在反应釜内熟化20-120min,得到线型聚合物;
(b.v)任选的偶联:向聚合釜中加入偶联剂使反应产物偶联,获得星型聚合物;
(c)氢化苯乙烯类热塑性弹性体的制备:
将步骤(a)中的聚苯乙烯胶液加入到步骤(b)的聚合釜内混合,随后转入氢化釜在加氢催化剂存在下对混合物进行氢化;或者先将步骤(b)中的胶液泵入氢化釜灭活,在加氢催化剂存在下进行氢化,再将步骤(a)中的聚苯乙烯胶液加入氢化釜与步骤(b)氢化的胶液混合。
根据一些优选的实施方案,本发明的嵌段共聚物的制备方法中,所述偶联剂选自二乙烯基苯、SiCl4或SnCl4
在第二段聚合中,待第一段聚合转化率至少达到95%时,加入共轭二烯烃/苯乙烯类单体的混合物进行第二段聚合,其中所述单体的混合物分3-60批、优选5-55批、更优选8-40批加入聚合釜中,后一批次在前一批次的转化率至少达到95%时加入。分批加入苯乙烯类单体和共轭二烯类单体的混合物可以使得聚合物链中产生苯乙烯类单体和共轭二烯类单体的微嵌段。优选地,分批加入的所述单体的混合物每一批的重量相等。优选地,分批加入的所述单体的混合物每一批的单体比例也相同。在每一批次中,混合单体中苯乙烯类单体重量百分含量可以为20.0-70.0%,优选30.0-60.0%。在第二段聚合中,所述混合单体中,苯乙烯类单体重量百分含量可以为20.0-64.0%,优选30.0-60.0%,更优选40.0-60.0%。
用作聚合载体的溶剂可以是不与形成的聚合物的活性阴离子链端反应、容易在商业聚合设备中处理并且为产物聚合物提供合适的溶解度特性的任何烃。例如,通常缺乏可电离的氢的非极性脂族烃构成特别合适的溶剂。通常使用的是环状烷烃,例如环戊烷、环己烷、环庚烷和环辛烷,所有这些是相对非极性的。其他合适的溶剂将是本领域技术人员已知的并且可被选择以在给定的工艺条件设置下有效地发挥作用,其中温度和含水量是被考虑的最主要的因素。根据一些优选的实施方案,本发明的嵌段共聚物的制备方法中,其中所述第一段聚合在选自环己烷、正己烷、苯、甲苯、二甲苯庚烷,或其混合物的溶剂中进行。优选地,所述溶剂的总水含量低于30ppm。
本发明中的阴离子聚合引发剂包括例如烷基锂化合物和其它有机锂化合物,例如仲丁基锂、正丁基锂、叔丁基锂、戊基锂等,包括二引 发剂如间二异丙烯基苯的二仲丁基锂加合物。美国专利6492469中公开了其它此类二引发剂。在各种聚合引发剂中,正丁基锂或仲丁基锂是优选的。所述引发剂可以以基于每个希望的聚合物链一个引发剂分子计算的量用于聚合混合物(包括单体和溶剂)中。所述锂引发剂方法是公知的,并且被公开在例如美国专利4039593中,这些描述通过引用结合在本文中。
单体转化率通过对聚合反应过程中的提取物利用气相色谱法进行测定,本发明人发现,在单体转化率为95%以上时,本发明聚合物的分子结构方能满足发明所描述的设计要求。
可用于本发明中的多种偶联剂是本领域中已知的,并且包括例如二卤代烷烃,卤化硅,硅氧烷,多官能的环氧化物,包括间-二乙烯基苯等在内的多链烯基化合物,包括烷氧基硅烷、烷基硅烷、烷基-烷氧基硅烷等在内的二氧化硅化合物,包括己二酸二甲酯等在内的一元醇与羧酸的酯,和环氧化的油。优选的是四烷氧基硅烷,例如四乙氧基硅烷(TEOS)和四甲氧基硅烷;烷基三烷氧基硅烷,例如甲基三甲氧基硅烷(MTMQ;脂肪族二酯,例如己二酸二甲酯和己二酸二乙酯;和二缩水甘油基芳族环氧化合物,例如得自双酚A与环氧氯丙烷的反应的二缩水甘油基醚。当希望随后进行加氢或选择性加氢时,偶联剂的选择应使得任何残留的未反应的偶联剂、结合到聚合物链中的偶联剂残基或偶联反应的副产物不影响所述加氢反应。在本发明的方法中,偶联剂优选地选自二乙烯基苯、SiCl4或SnCl4
在制备偶联的嵌段共聚物的本发明实施方案中,将偶联剂以产生具有希望的臂数分布的偶联聚合物的摩尔比加入到活性聚合物中。所述偶联剂可以以纯化合物的形式添加,或者为了便于计量,可以被稀释在惰性溶剂中。添加方式可能对臂数分布有影响。偶联之后,通常不需要终止反应。根据一些优选的实施方案,本发明的嵌段共聚物的制备方法得到的星型聚合物具有3-55个臂,优选3-40个臂,更优选8-35个臂。
在其中生产非偶联嵌段共聚物的本发明实施方案中,通过添加终止剂来停止聚合。阴离子聚合经常通过加入水以便以氢氧化锂(LiOH)的形式从聚合物链末端移除锂或者通过加入醇(ROH)以便以醇锂 (LiOR)的形式移除锂来终止。以相对于活性链末端摩尔过量的量添加终止剂。当希望随后进行加氢或选择性加氢时,应该选择终止剂的类型和/或量,以使得残留的终止剂或终止反应副产物不影响加氢。
可以通过现有技术中已知的若干加氢或选择性加氢方法中的任何一种来进行加氢。例如,使用诸如在例如US专利No.3595942、3634549、3670054、3700633等中教导的方法已经完成了这样的加氢,所述专利公开的内容通过引用结合在本文中。优选地,本发明中使用的催化剂包括钛基催化剂体系,优选为茂钛化合物。根据一些优选的实施方案,其中所述氢化步骤的氢化反应温度为60-140℃,压力为0.8-2.2MPa,时间为60-200min。
优选地,加氢操作的进行应使得本发明的嵌段共聚物热塑性弹性体中,氢化共轭二烯烃嵌段的氢化度为80-99.99%,优选88-99.0%。氢化度过低会明显降低聚合物的热稳定性,而对其后期应用的热加工成型带来负面影响,氢化度过高会显著提高聚合物合成过程中的氢化反应时间,增加生产成本,降低生产效率。
示例性的制备本发明的氢化苯乙烯类热塑性弹性体的方案如下:
在聚合釜内加入溶剂、活化剂,升温到50-100℃;然后将苯乙烯单体送入聚合釜内,并将计量好的催化剂加入进行阴离子活性聚合,转化率至少达到95%时,继续在反应釜内熟化20-120min;胶液灭活,获得组分(2)的单分散无规聚苯乙烯。
组分(1)氢化苯乙烯-共轭二烯类嵌段共聚物的不同分子结构的聚合物分别按以下步骤进行阴离子活性聚合:
对于线形分子结构:
在聚合釜内加入溶剂、活化剂,升温到50-100℃;然后将苯乙烯类单体送入聚合釜内,并将计量好的催化剂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入共轭二烯烃/苯乙烯类单体的混合物进行第二段聚合,在第二段聚合中混合单体分3-40批加入到聚合釜内进行反应,即第二段聚合中又分为3-40段进行聚合反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯类单体 送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化20-120min;
对于星形分子结构:
首先在聚合釜内加入溶剂、活化剂,升温到50-100℃;然后将苯乙烯类单体送入聚合釜内,并将计量好的催化剂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入共轭二烯烃/苯乙烯类单体的混合物进行第二段聚合,在第二段聚合中混合单体分3-40批加入到聚合釜内进行反应,即第二段聚合中又分为3-40段进行聚合反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯类单体送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化20-120min;随后利用二乙烯基苯对聚合物活性分子链进行偶联,得到臂数为3-55的等臂长星形分子;若为了得到臂数为3-4的星形分子,也可以利用SiCl4和SnCl4对聚合物活性分子链进行偶联;得到分子结构为[S-(Ax-By)n-S]m-R的星形嵌段共聚物;若在第二段聚合结束后,直接进行偶联则得到分子结构为[S-(Ax-By)n]m-R的星形嵌段共聚物。
将如上所述获得的组分(1)和组分(2)如下混合制备本发明的具有特殊微相结构的氢化苯乙烯类热塑性弹性体:
将组分(2)聚苯乙烯胶液泵入到组分(1)的聚合釜内进行混合5-20min,随后将混合胶液泵入氢化釜,在加氢催化剂存在下,利用氢气对混合物进行氢化,氢化反应温度为60-140℃,压力为0.8-2.2MPa,时间为60-200min;或者
先将组分(1)的胶液泵入氢化釜灭活,在加氢催化剂存在下,利用氢气进行氢化,氢化反应温度为60-140℃,压力为0.8-2.2MPa,时间为60-200min,再将组分(2)的聚苯乙烯胶液泵入氢化釜与氧化后的组分(1)的胶液进行混合3-10min;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
发明人意外地发现了一类新型氢化苯乙烯-共轭二烯类嵌段共聚物 (组分1),它是一种苯乙烯-氢化共轭二烯嵌段共聚物,该聚合物为一类特殊结构的嵌段SEB。令人惊讶的是当该类嵌段SEB中苯乙烯类单体的总质量含量达到50-80%时,该聚合物仍表现出典型热塑性弹性体的性质,这完全与传统常识相悖。另一方面,由于苯乙烯单体的成本明显低于丁二烯,该新型氢化苯乙烯-共轭二烯类嵌段共聚物相比传统SEBS有明显的成本优势。虽然新型氢化苯乙烯-共轭二烯类嵌段共聚物(组分1)中苯乙烯单体的含量很高(>50%),但原子力显微镜的研究发现聚苯乙烯相(PS)仍以颗粒的形式作为分散微相存在,平均粒径为12-90nm。
另外,发明人意外地发现若将阴离子聚合聚苯乙烯灭活胶液与新型苯乙烯类嵌段共聚物氢化前胶液共混后再同时进行氢化,或者将阴离子聚合聚苯乙烯灭活胶液与新型苯乙烯类嵌段共聚物氢化后胶液共混后,得到的产物仍为优良的热塑性弹性体,其各方面性能与氢化苯乙烯-共轭二烯类嵌段共聚物相当。后期结构研究发现该热塑性弹性体中的微相分离结构十分特殊,聚苯乙烯在聚合物基体中以分散相形式存在,但既存在平均粒径为400-900nm大的聚苯乙烯分散相,又存在平均粒径为10-95nm小的聚苯乙烯分散相。
令人惊奇的这种特殊的相结构所带来的有益技术效果是,该热塑性弹性体表面具有极佳的雾面效果,且雾面的效果十分细腻。该产物在生产薄膜、线材和片材等产品时同样具有极佳的雾面效果,达到了一种意想不到的应用效果。不囿于任何理论,我们认为大的聚苯乙烯分散相是该热塑性弹性体中产生细腻雾面效果的直接原因。
应用研究发现,利用本发明所公开的新型氢化苯乙烯-共轭二烯类嵌段共聚物(组分1)制备薄膜、线材和片材等产品时,无论与其它一定量任何添加剂(各种无机填料,润滑剂,抗氧剂,增塑剂等)相配合,或与其它一定量共聚物共混,或者动态硫化,薄膜、线材和片材等产品均只能得到高光泽的表面效果。有些情况下,当添加剂的量特别大时(如无机填料SiO2的量达到60-70%)、其它共聚物的量特别大时(如PA、PC的量达到50-60%)、或者深度动态硫化后,也可以得到有限的雾面效果,但此时该新型氢化苯乙烯-共轭二烯类嵌段共聚物已失去了热塑 性弹性体的性质,且其它各种性能,如弹性,流动性,强度等也均有较大的改变。
发明人发现,同时考虑将各种分子量的阴离子聚合聚苯乙烯或自由基聚合聚苯乙烯与本发明所公开的新型氢化苯乙烯-共轭二烯类嵌段共聚物(组分1)直接共混,无论它们各自的比例如何改变,采用何种共混方法(双螺杆挤出,密炼和溶液混合后再凝聚干燥等),均无法得到雾面效果,而且始终表现为高光表面。
薄膜、线材和片材等产品在许数应用场合需要雾面的表面效果,给人一种柔和的视觉效果。本发明所公开具有特殊微相结构的氢化苯乙烯类热塑性弹性体本身就具有雾面效果,其效果是与生俱来的,不是由添加剂,与其它共聚物共混,或者动态硫化等方式产生的。
进一步的研究发现,该特殊微相结构的氢化苯乙烯类热塑性弹性体具有极佳的皮肤触感。主要表现为皮肤接触时十分干爽,而普通SEBS在皮肤接触时总会给人粘手和油腻感。
以下通过具体实施例和比较例对本发明做进一步的说明,但本发明并不受以下实施例所限。
一、实施例和对比例中热塑性弹性体的基本物性按以下标准进行测定:
拉伸性能按照ASTM D412进行测试,拉伸速率250mm/min,测试样品为聚合物甲苯溶液涂布薄膜;
硬度(shore A)按照ASTM 2240进行测试,读数时间为10s,测试样品为聚合物177℃模压成型片材;
熔融指数按照ASTM D 1238进行测试,条件为230℃,5kg;
片材雾面细腻程度测试:测试样品为聚合物177℃模压成型片材,目测;
线材雾面细腻程度测试:测试样品为单螺杆挤出机直接从圆口模挤出的圆柱状线材,直径2.5-4mm,目测;
片材触感测试:人裸手直接接触测试,测试样品为聚合物177℃模压成型片材。
二、实施例和对比例中热塑性弹性体的结构表征按以下方法进行测定:
聚合物分子量和分子量分布利用Waters GPC进行测定,流动相为四氢呋喃;
聚合物苯乙烯单体和氢化共轭二烯单体相对质量含量、氢化共轭二烯嵌段氢化度利用Brucker 600MHz核磁共振光谱仪进行测定,利用的是氢谱;
聚合物的热转变利用NETZCH DSC 204 F3进行测定,速率为10K/min,温度范围为-90-150℃;
聚合物的动态机械行为利用TA DMTA进行测定,频率固定为1Hz,升温速率3K/min,温度扫描范围-80-200℃;
聚合物的微观相分离行为利用NanoScope III AFM原子力显微镜进行测定,敲击模式,扫描频率为1Hz,测试样品为聚合物甲苯稀溶液在云母片上铸膜而成。
实施例1
步骤1):单分散无规聚苯乙烯的阴离子溶液聚合:
在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯单体送入聚合釜内,并将计量好的催化剂正丁基锂加入进行聚合,转化率至少达到95%时,继续在反应釜内熟化60min;胶液灭活,备用。
步骤2):氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯(占单体总重量的12.5%)送入聚合釜内,并将催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的相对重量含量为混合物的60%)进行第二段聚合,在第二段聚合中混合单体分15批(每批的重量相等)加入到聚合釜内进行反应,反应时每一批的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的12.5%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化60min;得到线形分子结构的产物。
步骤3)具有特殊微相结构的氢化苯乙烯类热塑性弹性体的制备:
将步骤1)中的聚苯乙烯胶液泵入到步骤2)的聚合釜内进行混合5min;随后将混合胶液泵入氢化釜,在加氢催化剂茂钛化合物存在下,利用氢气对混合物进行氢化,氢化反应温度为100℃,压力为2.2MPa,时间为160min;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
实施例2
步骤1)单分散无规聚苯乙烯的阴离子溶液聚合:
在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯单体送入聚合釜内,并将计量好的催化剂正丁基锂加入进行聚合,转化率至少达到95%时,继续在反应釜内熟化60min;胶液灭活,备用。
步骤2)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯(占单体总重量的12.5%)送入聚合釜内,并将计量的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的相对重量含量为混合物的60%)进行第二段聚合,在第二段聚合中混合单体分15批(每批的重量相等)加入到聚合釜内进行反应,反应时每一批的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的12.5%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化60min;得到线形分子结构的产物。
步骤3)具有特殊微相结构的氢化苯乙烯类热塑性弹性体的制备:
先将步骤2)中的胶液泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气进行氢化,氢化反应温度为100℃,压力为2.2MPa,时间为160min,再将步骤1)中的聚苯乙烯胶液泵入氢化釜与步骤2)氢化过后的胶液进行混合5min;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
实施例3
步骤1)单分散无规聚苯乙烯的阴离子溶液聚合:
在聚合釜内加入溶剂环己烷(含水量10ppm)、活化剂,升温到100℃;然后将苯乙烯单体送入聚合釜内,并将计量好的催化剂仲丁基锂加入进行聚合,转化率至少达到95%时,继续在反应釜内熟化120min;胶液灭活,备用。
步骤2)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
首先在聚合釜内加入溶剂环己烷(含水量10ppm)、活化剂,升温到100℃;然后将苯乙烯(占单体总重量的8.3%)送入聚合釜内,并将计量好的催化剂仲丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的相对重量含量为混合物的40%)进行第二段聚合,在第二段聚合中混合单体分25批(每批的重量相等)加入到聚合釜内进行反应,反应时每一批的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的8.3%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化120min;随后利用SiCl4对聚合物活性分子链进行偶联,得到臂数为4的等臂长星形分子;最终得到分子结构为[S-(Ax-By)n-S]m-R的星形嵌段共聚物;
步骤3)具有特殊微相结构的氢化苯乙烯类热塑性弹性体的制备:
将步骤1)中的聚苯乙烯胶液泵入到步骤2)的聚合釜内进行混合20min;随后将混合胶液泵入氢化釜,在加氢催化剂茂钛化合物存在下,利用氢气对混合物进行氢化,氢化反应温度为60℃,压力为1.0MPa,时间为200min;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
实施例4
步骤1)单分散无规聚苯乙烯的阴离子溶液聚合:
在聚合釜内加入溶剂正己烷(含水量28ppm)、活化剂,升温到50℃;然后将苯乙烯单体送入聚合釜内,并将计量好的催化剂正丁基锂加入进行聚合,转化率至少达到95%时,继续在反应釜内熟化100min;胶液 灭活,备用。
步骤2)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
在聚合釜内加入溶剂正己烷(含水量28ppm)、活化剂,升温到50℃;然后将α-甲基苯乙烯(占单体总重量的12.2%)送入聚合釜内,并将计量好的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入异戊二烯/苯乙烯的混合物(苯乙烯的相对重量含量为混合物的30%)进行第二段聚合,在第二段聚合中混合单体分5批(每批的重量相等)加入到聚合釜内进行反应,反应时每一批的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将α-甲基苯乙烯(占单体总重量的12.2%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化20min;随后利用二乙烯基苯对聚合物活性分子链进行偶联,得到臂数为10的等臂长星形分子;最终得到分子结构为[S-(Ax-By)n]m-R的星形嵌段共聚物;
步骤3)具有特殊微相结构的氢化苯乙烯类热塑性弹性体的制备:
将步骤1)中的聚苯乙烯胶液泵入到步骤2)的聚合釜内进行混合10min;随后将混合胶液泵入氢化釜,在加氢催化剂茂钛化合物存在下,利用氢气对混合物进行氢化,氢化反应温度为80℃,压力为0.8MPa,时间为60min;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
对比例1
首先在聚合釜内加入溶剂环己烷(含水量22ppm)、活化剂,升温到70℃;然后将苯乙烯单体(占单体总重量的12.5%)送入聚合釜内,并将计量好的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的相对重量含量为混合物的60%)进行第二段聚合,在第二段聚合中混合单体分15批(每批的重量相等)加入到聚合釜内进行反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的12.5%) 送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化60min;随后将胶液泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气对嵌段聚合物的丁二烯微嵌段进行氢化,氢化反应温度为100℃,压力为2.2MPa,时间为160min;得到线形分子结构的产物。最后对产物进行凝聚和干燥得到热塑性弹性体成品。
对比例2
首先在聚合釜内加入溶剂环己烷(含水量10ppm)、活化剂,升温到100℃;然后将苯乙烯(占单体总重量的8.3%)送入聚合釜内,并将计量好的催化剂仲丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入丁二烯烃/苯乙烯的混合物(苯乙烯的相对重量含量为混合物的40%)进行第二段聚合,在第二段聚合中混合单体分25批(每批的重量相等)加入到聚合釜内进行反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依次反应完全;第二段聚合完成后,将苯乙烯(占单体总重量的8.3%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化120min;随后利用SiCl4对聚合物活性分子链进行偶联,得到臂数为4的等臂长星形分子;将胶液泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气对嵌段聚合物的共轭二烯烃微嵌段进行氢化,氢化反应温度为60℃,压力为1.0MPa,时间为200min;最终得到分子结构为[S-(Ax-By)n-S]m-R的星形嵌段共聚物;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
对比例3
首先在聚合釜内加入溶剂正己烷(含水量28ppm)、活化剂,升温到50℃;然后将α-甲基苯乙烯(占单体总重量的12.2%)送入聚合釜内,并将计量好的催化剂正丁基锂加入进行第一段聚合,待第一段单体转化率至少达到95%时;加入异戊二烯/苯乙烯的混合物(苯乙烯的重量含量为混合物的30%)进行第二段聚合,在第二段聚合中混合单体分5批(每批的重量相等)加入到聚合釜内进行反应,反应时每一段的转化率至少达到95%时再加入下一批混合单体进行反应,直到所有批次的混合单体依 次反应完全;第二段聚合完成后,将α-甲基苯乙烯(占单体总重量的12.2%)送入聚合釜内进行第三段聚合,待第三段单体转化率至少达到95%后,继续在反应釜内熟化20min;随后利用二乙烯基苯对聚合物活性分子链进行偶联,得到臂数为10的等臂长星形分子;将胶液泵入氢化釜灭活,在加氢催化剂茂钛化合物存在下,利用氢气对嵌段聚合物的共轭二烯烃微嵌段进行氢化,氢化反应温度为80℃,压力为0.8MPa,时间为60min;最终得到分子结构为[S-(Ax-By)n]m-R的星形嵌段共聚物;最后对产物进行凝聚和干燥得到热塑性弹性体成品。
利用本发明实施例1、2、3和4制备的具有特殊微相结构的热塑性弹性体对比对比例1、2和3,以考察本发明的有益效果。结果见表1。
Figure PCTCN2015072853-appb-000001
Figure PCTCN2015072853-appb-000002
对比例4
将实施例1中步骤2)所合成新型氢化嵌段共聚物按相同氢化条件氢化后直接进行凝聚和干燥。将得到干态产物直接与干态阴离子聚合聚苯乙烯进行共混,利用双螺杆挤出机,加工温度为170-200℃。阴离子聚合聚苯乙烯数均分子量为20000g/mol,分子量分布为1.02。阴离子聚合聚苯乙烯的重量含量与实施例1中相同。
对比例5
将实施例1中步骤2)所合成新型氢化嵌段共聚物按相同氢化条件氢化后直接进行凝聚和干燥。将得到干态产物直接与干态阴离子聚合聚苯乙烯同时利用环己烷(含水量22ppm)进行溶解均匀后,再搅拌5-10min,然后将共混溶液进行凝聚和干燥。阴离子聚合聚苯乙烯数均分子量为20000g/mol,分子量分布为1.01。阴离子聚合聚苯乙烯的重量含量与实施例1中相同。
对比例6
将实施例1中步骤2)所合成新型氢化嵌段共聚物按相同氢化条件氢化后直接进行凝聚和干燥。将得到产物直接与自由基聚合聚苯乙烯进行共混(市售通用级),利用双螺杆挤出机,加工温度为170-200℃。自由基聚合聚苯乙烯数均分子量为120000g/mol,分子量分布为3.02。自由基聚合聚苯乙烯的重量含量与实施例1中相同。
利用本发明实施例1和2制备的具有特殊微相结构的热塑性弹性体对比对比例4、5和6,以考察本发明聚合工艺的有益效果。结果见表2。
表2
Figure PCTCN2015072853-appb-000003
Figure PCTCN2015072853-appb-000004
Figure PCTCN2015072853-appb-000005
上述结果表明:只有遵循本发明聚合方案的实施例才能得到具有特殊微相结构的热塑性弹性体,体现在聚苯乙烯既存在平均粒径为400-900nm大的分散相,又存在平均粒径为10-95nm小的分散相,热塑性弹性体在-30-35℃有一个明显的内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.3。该热塑性弹性体所制备的模压片材具有极佳的细腻雾面效果,且手感干爽。而单独的氢化苯乙烯-共轭二烯类嵌段共聚物(组分1)无法取得以上有益效果。
同时也说明,无论将何种阴离子或自由基聚合聚苯乙烯与本发明所公开的新型氢化苯乙烯类嵌段共聚物(组分1)直接共混,和无论采用何种共混方法(双螺杆挤出、溶液混合后再凝聚干燥),均无法得到本发明的雾面效果,而且始终表现为高光表面。

Claims (18)

  1. 一种氢化苯乙烯类热塑性弹性体,包含以下组分,均基于热塑性弹性体的总重量计:
    (1)55-92%的氢化苯乙烯-共轭二烯类嵌段共聚物,其具有如下结构式:
    S1 p-D-S2 q    (I)
    其中:
    S1和S2独立地为苯乙烯类单体聚合嵌段,S1和S2重量分别占所述嵌段共聚物总重量的8.0-20.0%;
    D为苯乙烯类单体与氢化共轭二烯类单体的共聚嵌段;
    p和q各自独立地为0或1,但不能同时为0;
    S1、S2和D中的苯乙烯类单体单元可以相同或不同;
    其中苯乙烯类单体为所述氢化苯乙烯-共轭二烯类嵌段共聚物总重量的50-80重量%;
    (2)8-45%的阴离子聚合的单分散无规聚苯乙烯。
  2. 权利要求1所述的氢化苯乙烯类热塑性弹性体,其中所述组分(1)中苯乙烯类单体单元为所述嵌段共聚物重量的60-75重量%。
  3. 权利要求1或2所述的氢化苯乙烯类热塑性弹性体,其特征在于:组分(1)氢化苯乙烯-共轭二烯类嵌段共聚物中,S1和S2各自独立地占该嵌段共聚物重量的8.0-15.0%,优选10.0-14.0%。
  4. 权利要求1所述的氢化苯乙烯类热塑性弹性体,其中共聚嵌段D如下式所示:
    -(Ax-By)n-    (II)
    其中:
    Ax为苯乙烯类单体聚合微嵌段,其中x为1-100,
    By为共轭二烯类单体聚合后再经氢化的氢化微嵌段,其中y为1-170,
    n为30-1100,并且n个(Ax-By)中每个的氢化共轭二烯烃与苯乙烯类单体的种类和比例可以彼此相同或不同。
  5. 权利要求4的氢化苯乙烯类热塑性弹性体,其中组分(1)为线型分子结构,结构式为S1-(Ax-By)n-S2,其中S1、S2、A、B、x、y和n如权利要求1和4所定义。
  6. 权利要求4的氢化苯乙烯类热塑性弹性体,其中组分(1)为星型分子结构,结构式为[S1-(Ax-By)n-S2]m-R或[S1-(Ax-By)n]m-R,其中S1、S2、A、B、x、y和n如权利要求1和4所定义,R为偶联剂残基,m为星形分子的臂数,为选自3-55的整数,优选为选自3-40的整数,更优选为选自3-15的整数。
  7. 根据权利要求1所述的氢化苯乙烯类热塑性弹性体,其特征在于:所述热塑性弹性体的数均分子量为50000-300000g/mol,分子量分布指数为1.01-1.25。
  8. 根据权利要求1所述的氢化苯乙烯类热塑性弹性体,其中所述组分(1)氢化苯乙烯-共轭二烯类嵌段共聚物中苯乙烯类单体选自苯乙烯、α-甲基苯乙烯或其组合;共轭二烯烃单体选自丁二烯、异戊二烯或其组合。
  9. 根据权利要求4所述的氢化苯乙烯类热塑性弹性体,其中所述热塑性弹性体中氢化共轭二烯烃嵌段的氢化度为80-99.99%,优选88-99.0%。
  10. 根据权利要求1所述的氢化苯乙烯类热塑性弹性体,其特征在 于:所述热塑性弹性体在低于60℃具有双Tg值,根据DSC方法测定其热转变,在10K/min升温时测得低Tg值在-35℃至-10℃之间,高Tg值在10℃至30℃之间。
  11. 根据权利要求1所述的氢化苯乙烯类热塑性弹性体,其具有微相分离结构:聚苯乙烯在聚合物基体中以分散相形式存在,存在平均粒径为400-900nm大的聚苯乙烯分散相以及平均粒径为10-95nm小的聚苯乙烯分散相。
  12. 根据权利要求1所述的氢化苯乙烯类热塑性弹性体,其特征在于:组分(2)阴离子聚合单分散无规聚苯乙烯的数均分子量为20000-65000g/mol,分子量分布指数为1.01-1.20。
  13. 一种氢化苯乙烯类热塑性弹性体,包含以下组分,均基于热塑性弹性体的总重量计:
    55-92%的氢化苯乙烯-共轭二烯类嵌段共聚物,其中苯乙烯类单体为所述氢化苯乙烯-共轭二烯类嵌段共聚物总重量的50-80重量%;
    8-45%的阴离子聚合的单分散无规聚苯乙烯;
    其中所述热塑性弹性体利用DMTA测定其动态机械性能,频率固定为1Hz,升温速率3K/min时在-30-35℃出现一个明显的内耗峰(tanδ),内耗峰的峰值在-5-10℃,且峰值tanδ≥0.3。
  14. 根据权利要求1所述的氢化苯乙烯类热塑性弹性体的制备方法,其特征在于,包括以下步骤:
    (a)单分散无规聚苯乙烯的阴离子溶液聚合:
    在50-100℃下,将苯乙烯单体送入聚合釜内进行聚合,待转化率至少达到95%时,熟化;灭活;
    (b)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合:
    (b.i)第一段聚合:使苯乙烯类单体在聚合釜中进行阴离子活性 聚合;
    (b.ii)第二段聚合:待第一段聚合转化率至少达到95%时,向聚合釜中至少分3批加入共轭二烯烃与苯乙烯类单体的混合物进行所述第二段聚合,其中后一批次在前一批次的转化率至少达到95%时加入,每一批次的共轭二烯烃与苯乙烯类单体可以彼此相同或不同;
    (b.iii)任选的第三段聚合:向聚合釜中加入苯乙烯类单体进行第三段聚合;
    (b.iv)熟化:待第二段聚合或者在存在第三段聚合时待第三段聚合中单体转化率至少达到95%后,继续在反应釜内熟化,得到线型聚合物;
    (b.v)任选的偶联:向聚合釜中加入偶联剂使反应产物偶联,获得星型聚合物;
    (c)在氢化釜中氢化苯乙烯类热塑性弹性体的制备:
    将步骤(a)中得到的聚苯乙烯胶液加入到步骤(b)的聚合釜内混合,随后转入氢化釜在加氢催化剂存在下对混合物进行氢化;或者先将步骤(b)中的胶液泵入氢化釜灭活,在加氢催化剂存在下进行氢化,再将步骤(a)中的聚苯乙烯胶液加入氢化釜与步骤(b)氢化的胶液混合。
  15. 根据权利要求14所述的制备方法,其中所述步骤(b)中第二段聚合期间单体的混合物分3-60批加入,优选分5-55批加入,更优选分6-40批加入。
  16. 根据权利要求14所述的氢化苯乙烯类热塑性弹性体的制备方法,其特征在于:步骤(b)氢化苯乙烯-共轭二烯类嵌段共聚物的阴离子溶液聚合中,第二段聚合的混合单体中,苯乙烯类单体重量百分含量为20.0-64.0%,优选30.0-60.0%。
  17. 根据权利要求14或15所述的氢化苯乙烯类热塑性弹性体的制 备方法,其中,第二段聚合的混合单体分批加入进行聚合时,每一批的重量相等。
  18. 一种氢化苯乙烯类热塑性弹性体,由权利要求14-20任一项所述的方法制备,具有如下微相分离结构:聚苯乙烯在聚合物基体中以分散相形式存在,存在平均粒径为400-900nm大的聚苯乙烯分散相以及平均粒径为10-95nm小的聚苯乙烯分散相。
PCT/CN2015/072853 2015-02-12 2015-02-12 氢化苯乙烯类热塑性弹性体及其制备方法 WO2016127354A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072853 WO2016127354A1 (zh) 2015-02-12 2015-02-12 氢化苯乙烯类热塑性弹性体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072853 WO2016127354A1 (zh) 2015-02-12 2015-02-12 氢化苯乙烯类热塑性弹性体及其制备方法

Publications (1)

Publication Number Publication Date
WO2016127354A1 true WO2016127354A1 (zh) 2016-08-18

Family

ID=56614023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072853 WO2016127354A1 (zh) 2015-02-12 2015-02-12 氢化苯乙烯类热塑性弹性体及其制备方法

Country Status (1)

Country Link
WO (1) WO2016127354A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718555A (zh) * 2019-03-20 2020-09-29 中国石油化工股份有限公司 一种基于部分氢化聚苯乙烯-b-共轭二烯/二乙烯苯无规共聚物的密封条材料及其制备
WO2021023502A1 (en) * 2019-08-06 2021-02-11 Basf Se A polyphenylene sulfide/polyamide composition
CN113117139A (zh) * 2020-01-16 2021-07-16 北京辉宇生物医学技术有限公司 一种加氢苯乙烯类热塑性弹性体在制备人工心脏瓣膜中的应用
CN113563548A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种氢化双组分聚苯乙烯-b-共轭二烯共聚物及其制备方法和应用
CN113736041A (zh) * 2020-05-28 2021-12-03 中国石油化工股份有限公司 一种苯乙烯类弹性体及其制备方法和作为耐磨止滑鞋底材料应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028965A1 (en) * 2000-10-04 2002-04-11 Kraton Polymers Research, B.V. An elastomeric film and fiber grade thermoplastic elastomer composition
EP1233028A1 (en) * 1999-09-28 2002-08-21 Teijin Limited Optical material comprising star-shaped hydrogenated polystyrene block copolymer, process for producing the same, and substrate for optical disk
CN1653102A (zh) * 2002-03-28 2005-08-10 克拉通聚合物研究有限公司 新型四嵌段共聚物以及含有它的组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233028A1 (en) * 1999-09-28 2002-08-21 Teijin Limited Optical material comprising star-shaped hydrogenated polystyrene block copolymer, process for producing the same, and substrate for optical disk
WO2002028965A1 (en) * 2000-10-04 2002-04-11 Kraton Polymers Research, B.V. An elastomeric film and fiber grade thermoplastic elastomer composition
CN1653102A (zh) * 2002-03-28 2005-08-10 克拉通聚合物研究有限公司 新型四嵌段共聚物以及含有它的组合物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718555A (zh) * 2019-03-20 2020-09-29 中国石油化工股份有限公司 一种基于部分氢化聚苯乙烯-b-共轭二烯/二乙烯苯无规共聚物的密封条材料及其制备
CN111718555B (zh) * 2019-03-20 2024-03-12 中国石油化工股份有限公司 一种基于部分氢化聚苯乙烯-b-共轭二烯/二乙烯苯无规共聚物的密封条材料及其制备
WO2021023502A1 (en) * 2019-08-06 2021-02-11 Basf Se A polyphenylene sulfide/polyamide composition
CN114207036A (zh) * 2019-08-06 2022-03-18 巴斯夫欧洲公司 聚苯硫醚/聚酰胺组合物
CN114207036B (zh) * 2019-08-06 2024-05-24 巴斯夫欧洲公司 聚苯硫醚/聚酰胺组合物
CN113117139A (zh) * 2020-01-16 2021-07-16 北京辉宇生物医学技术有限公司 一种加氢苯乙烯类热塑性弹性体在制备人工心脏瓣膜中的应用
CN113117139B (zh) * 2020-01-16 2023-02-03 四川大学 一种加氢苯乙烯类热塑性弹性体在制备人工心脏瓣膜中的应用
CN113563548A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种氢化双组分聚苯乙烯-b-共轭二烯共聚物及其制备方法和应用
CN113563548B (zh) * 2020-04-29 2024-01-30 中国石油化工股份有限公司 一种氢化双组分聚苯乙烯-b-共轭二烯共聚物及其制备方法和应用
CN113736041A (zh) * 2020-05-28 2021-12-03 中国石油化工股份有限公司 一种苯乙烯类弹性体及其制备方法和作为耐磨止滑鞋底材料应用

Similar Documents

Publication Publication Date Title
WO2016127353A1 (zh) 一种氢化苯乙烯类热塑性弹性体及其制备方法
WO2016127354A1 (zh) 氢化苯乙烯类热塑性弹性体及其制备方法
KR101389643B1 (ko) 수소화된 블록 공중합체 조성물
JP6435022B2 (ja) 水添ブロック共重合体およびそれを含む組成物
TW200303320A (en) Novel block copolymers and method for making same
JP5028470B2 (ja) 新規の水素付加されていないブロック共重合体組成物
EP2439218B1 (en) Process for producing hydrogenated block copolymer, hydrogenated block copolymer obtained by the process, and comosition thereof
JP2006526699A (ja) 水素化ブロックコポリマーから作製した物品
US20090062457A1 (en) Styrenic block copolymers and compositions containing the same
TW201102401A (en) Coupled polymers and manufacturing methods thereof
KR20120036815A (ko) 수소 첨가 블록 공중합체의 제조 방법, 그 제조 방법에 의해 얻어진 수소 첨가 블록 공중합체 및 그 조성물
JP4440931B2 (ja) カップリングしたブロックコポリマー組成物の製造方法及び得られた組成物
TW200804498A (en) High molecular weight coupled block copolymer compositions
CN106715501A (zh) 支化的宽 mwd 共轭二烯聚合物
WO2016127355A1 (zh) 氢化苯乙烯类嵌段共聚物及其制备方法和用途
JP2017008308A (ja) 伸縮性材料、フィルム及び不織布
EP2042531B1 (en) Block copolymer, composition for resin modification, and modified resin composition
JP7242540B2 (ja) アリル基末端スチレン-イソブチレンブロック共重合体、その組成物、およびそれらの製造方法
WO2016127356A1 (zh) 氢化苯乙烯类嵌段共聚物及其制备方法和用途。
TW201002776A (en) Miktopolymer composition
JP2004027206A (ja) 熱可塑性エラストマーと無機物の複合材料
JP4705595B2 (ja) カップリングされた低ビニルブロックコポリマー組成物の製造方法及び得られる組成物
CN115678470B (zh) 一种自粘膜用共聚物组合物、专用料及其制备和应用
JP5543805B2 (ja) 水性インク印刷性に優れた樹脂組成物
WO2023127896A1 (ja) 熱可塑性エラストマー組成物のペレット、樹脂組成物、熱可塑性エラストマー組成物のペレットの製造方法、及び樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881516

Country of ref document: EP

Kind code of ref document: A1