WO2016117652A1 - 光学系、この光学系を有する光学機器、及び、光学系の製造方法 - Google Patents

光学系、この光学系を有する光学機器、及び、光学系の製造方法 Download PDF

Info

Publication number
WO2016117652A1
WO2016117652A1 PCT/JP2016/051724 JP2016051724W WO2016117652A1 WO 2016117652 A1 WO2016117652 A1 WO 2016117652A1 JP 2016051724 W JP2016051724 W JP 2016051724W WO 2016117652 A1 WO2016117652 A1 WO 2016117652A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens group
lens
focal length
optical
Prior art date
Application number
PCT/JP2016/051724
Other languages
English (en)
French (fr)
Inventor
雅史 山下
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to EP16740259.3A priority Critical patent/EP3249437A4/en
Priority to US15/544,407 priority patent/US11150385B2/en
Priority to CN201680011705.0A priority patent/CN107250869B/zh
Publication of WO2016117652A1 publication Critical patent/WO2016117652A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/06Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an optical system, an optical apparatus having the optical system, and a method for manufacturing the optical system.
  • Patent Document 1 An optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (for example, see Patent Document 1).
  • the optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A third lens unit having a refractive power, and the second lens unit moves along the optical axis when focusing from an object at infinity to a short-distance object, and satisfies the following conditional expression.
  • the optical system of the first aspect satisfies the following conditional expression: It is preferable. 0.80 ⁇ f / f1 ⁇ 1.60
  • f focal length at the time of focusing on infinity of the optical system
  • f1 focal length of the first lens group
  • the optical system is positive in order from the object side along the optical axis.
  • the second lens group moves along the optical axis and satisfies the following conditional expression. 0.80 ⁇ f / f1 ⁇ 1.60
  • f focal length at the time of focusing on infinity of the optical system
  • f1 focal length of the first lens group
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • the following conditional expression is satisfied: It is preferable to satisfy. 1.11 ⁇ f1 / f3 ⁇ 1.50
  • f1 Focal length of the first lens group
  • f3 Focal length of the third lens group
  • the following conditional expression is It is preferable to satisfy.
  • the optical system of the first to seventh aspects of the present invention satisfies the following conditional expression: Is preferred.
  • the first lens group is preferably fixed.
  • the third lens group may be fixed when focusing from an object at infinity to a near object.
  • the first lens group includes a cemented lens, and the cemented lens is a positive lens in order from the object side. And a negative lens.
  • the third lens group has an aperture stop.
  • the optical system has an aperture stop, and the lens surface adjacent to the object side of the aperture stop is on the object side.
  • the lens surface has a convex shape
  • the lens surface adjacent to the image side of the aperture stop is a lens surface having a convex shape on the image side.
  • the third lens group includes a positive lens and a negative lens arranged adjacent to each other in order from the most object side. It is preferable to have.
  • the second lens group in the optical system according to any one of the first to fifteenth aspects, includes a cemented lens, and the cemented lens is a positive lens in order from the object side. It is preferable that the second lens group is composed of the cemented lens, or is composed of the negative lens and the cemented lens in order from the object side. According to the seventeenth aspect of the present invention, in the optical system according to any one of the first to sixteenth aspects, it is preferable that the third lens group has at least one aspheric surface.
  • an antireflection film is provided on at least one of the optical surfaces of the first lens group to the third lens group. It is preferable that the antireflection film includes at least one layer formed using a wet process.
  • an optical apparatus includes the optical system according to any one of the first to twentieth aspects.
  • the optical system manufacturing method includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, and a second lens group having a negative refractive power.
  • the first lens Preferably, an antireflection film is provided on at least one of the optical surfaces in the third lens group from the group, and the antireflection film preferably includes at least one layer formed by a wet process.
  • an optical system manufacturing method includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, and a second lens group having a negative refractive power. And a third lens group having a positive refractive power, the second lens group moving along the optical axis when focusing from an object at infinity to a near object. And satisfy the following conditional expression. 0.80 ⁇ f / f1 ⁇ 1.60 However, f: focal length of the optical system when focusing on infinity f1: focal length of the first lens group
  • FIG. 6 is a diagram illustrating various aberrations of the optical system according to Example 1 of the present application in a close-up shooting distance state. It is sectional drawing which shows the lens structure of the optical system which concerns on 2nd Example of this application. It is an aberration diagram in the infinite point focusing state of the optical system which concerns on 2nd Example of this application. It is an aberration diagram in the close-up shooting distance state of the optical system according to the second example of the present application. It is sectional drawing which shows the lens structure of the optical system which concerns on 3rd Example of this application.
  • the optical system of the present embodiment includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance.
  • the optical system of the present embodiment moves the second lens group as the focusing lens group in the optical axis direction to perform focusing from an object at infinity to an object at a short distance, so that aberration at the time of focusing Variation can be reduced. Further, the focusing lens group can be reduced in weight, thereby enabling high-speed focusing.
  • the optical system of the present embodiment satisfies the following conditional expression (1). 1.00 ⁇ f / ( ⁇ f2) ⁇ 2.40 (1)
  • f focal length of the optical system when focused at infinity
  • f2 focal length of the second lens group
  • conditional expression (1) defines the focal length of the optical system of the present embodiment at the time of focusing on infinity and the focal length of the second lens group.
  • the lower limit of conditional expression (1) If the lower limit of conditional expression (1) is not reached, the refractive power of the second lens group becomes small, so that the spherical aberration becomes insufficiently corrected, and it becomes difficult to sufficiently correct the field curvature. Further, the amount of movement during focusing of the second lens group, which is the focusing lens group, becomes large, and the total length of the optical system becomes large, which is not preferable.
  • the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (1) to 1.15. In addition, by setting the lower limit value of conditional expression (1) to 1.30, the effect of the present application can be further ensured.
  • the effect of this embodiment can be made more reliable by setting the upper limit value of conditional expression (1) to 2.20.
  • the effect of the present embodiment can be further ensured.
  • the optical system of the present embodiment satisfies the following conditional expression (2). 0.80 ⁇ f / f1 ⁇ 1.60 (2)
  • f focal length of the optical system when focusing on infinity
  • f1 focal length of the first lens group
  • Conditional expression (2) defines the focal length of the entire optical system and the focal length of the first lens group of the present embodiment.
  • the optical system of the present embodiment can prevent the total length of the optical system from increasing, and can favorably correct field curvature and coma.
  • the refractive power of the first lens group becomes small, so the total length of the optical system increases, and it becomes difficult to secure the amount of peripheral light. Further, if the refractive power of the third lens unit is increased in order to shorten the total length of the optical system, it is not preferable because it becomes difficult to correct spherical aberration and field curvature.
  • the effect of this embodiment can be made more reliable by setting the lower limit value of conditional expression (2) to 0.90. Further, by setting the lower limit value of conditional expression (2) to 1.00, the effect of the present embodiment can be further ensured.
  • conditional expression (2) if the upper limit of conditional expression (2) is exceeded, the refractive power of the first lens group will increase, which makes it difficult to correct spherical aberration, coma aberration, and field curvature, which is not preferable.
  • the effect of this embodiment can be made more reliable by setting the upper limit of conditional expression (2) to 1.50. Further, by setting the upper limit value of conditional expression (2) to 1.35, the effect of the present application can be further ensured.
  • the optical system of the present embodiment satisfies the following conditional expression (3). 0.80 ⁇ f1 / ( ⁇ f2) ⁇ 1.45 (3)
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (3) defines the focal length of the first lens group and the focal length of the second lens group of the present embodiment.
  • the effect of this embodiment can be made more reliable by setting the lower limit value of conditional expression (3) to 0.90. Further, by setting the lower limit value of conditional expression (3) to 1.00, the effect of the present embodiment can be further ensured.
  • the effect of this embodiment can be made more reliable by setting the upper limit of conditional expression (3) to 1.44. Moreover, the effect of this embodiment can be further ensured by setting the upper limit value of conditional expression (3) to 1.42.
  • the optical system of the present embodiment satisfies the following conditional expression (4). 1.11 ⁇ f1 / f3 ⁇ 1.50 (4)
  • f1 Focal length of the first lens group
  • f3 Focal length of the third lens group
  • Conditional expression (4) defines the focal length of the first lens group and the focal length of the third lens group in the present embodiment.
  • the refractive power of the first lens group becomes small, so the total length of the optical system increases, and it becomes difficult to secure the amount of peripheral light. Further, if the refractive power of the third lens unit is increased in order to shorten the total length of the optical system, it is not preferable because it becomes difficult to correct spherical aberration and field curvature.
  • the effect of this embodiment can be made more reliable by setting the upper limit of conditional expression (4) to 1.40. Further, by setting the upper limit value of conditional expression (4) to 1.30, the effect of the present embodiment can be further ensured.
  • conditional expression (4) If the lower limit of conditional expression (4) is not reached, the refractive power of the first lens group becomes large, which makes it difficult to correct spherical aberration, coma aberration, and field curvature, which is not preferable. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (4) to 1.115.
  • the optical system of the present embodiment satisfies the following conditional expression (5). 0.70 ⁇ ( ⁇ f2) / f3 ⁇ 1.50 (5)
  • f2 focal length of the second lens group
  • f3 focal length of the third lens group
  • Conditional expression (5) defines the focal length of the second lens group and the focal length of the third lens group of the present application.
  • the effect of this embodiment can be made more reliable by setting the upper limit value of conditional expression (5) to 1.35. Further, by setting the upper limit value of conditional expression (5) to 1.20, the effect of the present embodiment can be further ensured.
  • the effect of this embodiment can be made more reliable by setting the lower limit value of conditional expression (5) to 0.75. In addition, by setting the lower limit value of conditional expression (5) to 0.80, the effect of the present embodiment can be further ensured.
  • the optical system of the present embodiment satisfies the following conditional expression (6). 1.20 ⁇ TL / f1 ⁇ 2.05 (6)
  • TL Total length f1 of the optical system: Focal length of the first lens group
  • Conditional expression (6) defines the total length of the optical system of the present embodiment and the focal length of the first lens group. By satisfying conditional expression (6), the optical system of the present embodiment can prevent the total length of the optical system from increasing, and can correct field curvature and coma well.
  • the effect of this embodiment can be made more reliable by setting the lower limit value of conditional expression (6) to 1.40. In addition, by setting the lower limit value of conditional expression (6) to 1.60, the effect of the present embodiment can be further ensured.
  • conditional expression (6) if the upper limit of conditional expression (6) is exceeded, the refractive power of the first lens group will increase, making it difficult to correct spherical aberration, coma aberration, and field curvature.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (6) to 2.03. Further, by setting the upper limit value of conditional expression (6) to 2.00, the effect of the present application can be further ensured.
  • the optical system of the present embodiment satisfies the following conditional expression (7). 1.50 ⁇ TL / ( ⁇ f2) ⁇ 3.10 (7)
  • TL full length of the optical system
  • f2 focal length of the second lens group
  • Conditional expression (7) defines the total length of the optical system of the present embodiment and the focal length of the second lens group.
  • the optical system of the present embodiment can prevent the total length of the optical system from increasing, and can favorably correct field curvature and coma.
  • the refractive power of the second lens group becomes small, so the total length of the optical system increases, and it becomes difficult to secure the amount of peripheral light. Further, if the refractive power of the third lens unit is increased in order to shorten the total length of the optical system, it is not preferable because it becomes difficult to correct spherical aberration and field curvature.
  • the effect of this embodiment can be made more reliable by setting the lower limit value of the conditional expression (7) to 1.70. Further, by setting the lower limit value of conditional expression (7) to 1.90, the effect of the present application can be further ensured.
  • conditional expression (7) if the upper limit of conditional expression (7) is exceeded, the refractive power of the second lens group will increase, which makes it difficult to correct spherical aberration, coma aberration, and field curvature, which is not preferable.
  • the effect of this embodiment can be made more reliable by setting the upper limit value of conditional expression (7) to 3.00. Further, by setting the upper limit value of conditional expression (7) to 2.90, the effect of the present embodiment can be further ensured.
  • the optical system of the present embodiment satisfies the following conditional expression (8). 63.00 ⁇ p (8)
  • ⁇ p average value of Abbe numbers of all positive lenses included in the first lens group
  • conditional expression (8) defines the average value of the Abbe numbers of all the positive lenses included in the first lens group of the present embodiment.
  • the optical system of this embodiment can satisfactorily correct axial chromatic aberration by satisfying conditional expression (8).
  • conditional expression (8) If the lower limit of conditional expression (8) is not reached, it will be difficult to satisfactorily correct axial chromatic aberration, which is not preferable.
  • the effect of this embodiment can be made more reliable by setting the lower limit value of conditional expression (8) to 65.00. Moreover, the effect of this embodiment can be further ensured by setting the lower limit value of conditional expression (8) to 70.0.
  • the first lens group is fixed when focusing from an object at infinity to an object at a short distance.
  • this configuration it is possible to reduce the size of the focusing lens group as compared with the case where both the first lens group and the second lens group move, and coma aberration caused by errors when many focusing lens groups move. The occurrence of various aberrations such as these can be reduced.
  • the third lens group is fixed when focusing from an object at infinity to an object at a short distance.
  • the first lens group has a cemented lens, and the cemented lens is composed of a positive lens and a negative lens in order from the object side.
  • the cemented lens is composed of a positive lens and a negative lens in order from the object side.
  • the optical system of the present embodiment has an aperture stop in the third lens group. With this configuration, field curvature and astigmatism can be corrected well.
  • the optical system of the present embodiment has an aperture stop, and the lens surface adjacent to the object side of the aperture stop is a lens surface having a convex shape toward the object side, and is adjacent to the image side of the aperture stop.
  • the lens surface is preferably a lens surface having a convex shape on the image side.
  • the third lens group has a positive lens and a negative lens that are arranged adjacent to each other in order from the most object side.
  • the second lens group includes a cemented lens
  • the cemented lens includes a positive lens and a negative lens in order from the object side
  • the second lens group includes the cemented lens. It is desirable that the lens is composed of a lens or is composed of a negative lens and the cemented lens in order from the object side. With this configuration, it is possible to realize an optical system that is small and has excellent axial chromatic aberration correction. Also, with this configuration, it is possible to reduce the variation in spherical aberration during focusing.
  • the third lens group has at least one aspheric surface. With this configuration, coma can be corrected well.
  • the optical system of the present embodiment moves so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis.
  • an antireflection film is provided on at least one of the optical surfaces in the first lens group to the third lens group, and the antireflection film is formed using a wet process. It is desirable to include at least one layer formed. With this configuration, the optical system of the present embodiment can further reduce ghosts and flares caused by reflection of light from an object on an optical surface, and can achieve high imaging performance.
  • the antireflection film in the optical system of the present embodiment is not limited to a wet process, and may be formed by a dry process or the like.
  • the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained.
  • the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
  • the optical apparatus of the present embodiment includes the optical system having the above-described configuration. Thereby, it is possible to realize an optical apparatus that further reduces ghosts and flares and favorably suppresses aberration fluctuations during image blur correction.
  • the manufacturing method of the optical system of the present embodiment includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power in order from the object side along the optical axis.
  • a third lens group having an optical system When focusing from an object at infinity to an object at a short distance, the second lens group moves along the optical axis;
  • conditional expression (1) which is a predetermined conditional expression is satisfied. 1.00 ⁇ f / ( ⁇ f2) ⁇ 2.40 (1)
  • f focal length of the optical system when focused at infinity
  • f2 focal length of the second lens group
  • an optical system having excellent optical performance from an infinite object point to a short distance object point can be manufactured.
  • the method of manufacturing an optical system according to another embodiment of the present application includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, A method of manufacturing an optical system having a third lens group having a positive refractive power, When focusing from an object at infinity to an object at a short distance, the second lens group moves along the optical axis;
  • conditional expression (2) which is a predetermined conditional expression is satisfied. 0.80 ⁇ f / f1 ⁇ 1.60 (2)
  • f focal length of the optical system when focusing on infinity
  • f1 focal length of the first lens group
  • an optical system having excellent optical performance from an infinite object point to a short distance object point can be manufactured.
  • FIG. 1 is a diagram showing a lens configuration of an optical system according to Example 1 of the present application.
  • the optical system according to the present example has, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. And a third lens group G3.
  • the first lens group G1 having a positive refractive power includes, in order from the object side, a biconvex positive lens L11, a biconvex positive lens L12, a biconvex positive lens L13, and a biconcave negative lens. It consists of a cemented lens formed by cementing L14.
  • the second lens group G2 having negative refractive power is composed of a cemented lens formed by cementing, in order from the object side, a positive meniscus lens L21 having a concave surface facing the object side and a biconcave negative lens L22.
  • the third lens group G3 having positive refractive power includes, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a convex surface facing the object side, an aperture stop S, and a biconcave negative lens.
  • the most image side surface (surface number 22) of the third lens group G3 is aspheric.
  • the first lens group G1 and the third lens group G3 are fixed with respect to the image plane, and the entire second lens group G2 moves toward the image side along the optical axis, thereby infinitely. Focusing from a far object to a near object is performed.
  • a cemented lens including a negative lens L33 and a positive meniscus lens L34 and arranged adjacent to the image side of the aperture stop S is a component in a direction perpendicular to the optical axis as a vibration-proof lens group.
  • the image blur can be corrected.
  • a wet process is used on the most object side lens surface (surface number 19) among the cemented lenses that are composed of the positive lens L35, the negative lens L36, and the positive lens L37 and are arranged on the most image side.
  • An antireflection film configured to include at least one layer formed is formed.
  • Table 1 below lists values of specifications of the optical system according to the first example.
  • f is the focal length
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit: “°”)
  • Y is the image height
  • TL is The total length of the optical system
  • Bf represents the back focus. Note that the total length TL indicates the distance on the optical axis from the most object side lens surface (first surface) of the optical system to the image plane, and the back focus Bf is the most image side lens surface of the optical system ( This represents the distance on the optical axis from the (22nd surface) to the image plane.
  • surface number is the order of the optical surfaces counted from the object side along the optical axis
  • r is the radius of curvature of each optical surface
  • d is the surface spacing (nth surface ( n is an integer) and the distance between the (n + 1) th plane)
  • nd is the refractive index for the d-line
  • Object surface indicates an object surface
  • (Aperture S)” indicates an aperture stop S
  • Variable indicates a variable surface interval.
  • An aspherical surface is marked with “*” on the right side of the surface number.
  • [Lens group focal length] indicates the surface number (starting surface) of the surface closest to the object among the lens groups and the focal length of each lens group.
  • [Aspherical data] shows the conic constant and the aspherical coefficient when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation. “E ⁇ n” indicates “ ⁇ 10 ⁇ n ”, for example, “1.234E-05” indicates “1.234 ⁇ 10 ⁇ 5 ”. The secondary aspheric coefficient A2 is zero.
  • X (y) (y 2 / r) / [1+ [1- ⁇ (y 2 / r 2 )] 1/2 ] + A4 ⁇ y 4 + A6 ⁇ y 6 + A8 ⁇ y 8 + A10 ⁇ y 10
  • the height in the direction perpendicular to the optical axis is “y”
  • the distance (sag amount) along the optical axis from the tangent plane of each vertex of the aspheric surface to each aspheric surface at the height y is “S ( y) ”
  • the curvature radius (paraxial curvature radius) of the reference spherical surface is“ r ”
  • the conic constant is“ ⁇ ”
  • the n-th aspherical coefficient is“ An ”.
  • f is the focal length of the entire system
  • is the imaging magnification between the object and the image
  • Di (where i is an integer) is the variable of the i-th surface. The surface spacing is shown. “Infinity” indicates an infinite focus state, and “Close” indicates a close shooting distance state. D0 indicates the distance from the object to the first surface.
  • the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this.
  • the description of these symbols and the description of the specification table are the same in the following embodiments.
  • optical system according to the first example satisfies all the conditional expressions (1) to (8).
  • FIG. 2 shows various aberration diagrams of spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system according to the first example.
  • “FNO” indicates the F number
  • Y” indicates the image height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. The description of this aberration diagram is the same in the following examples.
  • the optical system according to the first example corrects various aberrations well and has high optical performance.
  • FIG. 4 is a diagram showing a lens configuration of an optical system according to the second example of the present application.
  • the optical system according to the present example has, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. And a third lens group G3.
  • the first lens group G1 having a positive refractive power includes, in order from the object side, a biconvex positive lens L11, a biconvex positive lens L12, a biconvex positive lens L13, and a biconcave negative lens. It consists of a cemented lens formed by cementing L14.
  • the second lens group G2 having negative refractive power is composed of a cemented lens formed by cementing, in order from the object side, a positive meniscus lens L21 having a concave surface facing the object side and a biconcave negative lens L22.
  • the third lens group G3 having positive refractive power includes, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a convex surface facing the object side, an aperture stop S, and a biconcave negative lens.
  • the most image side surface (surface number 23) of the third lens group G3 is an aspherical surface.
  • the first lens group G1 and the third lens group G3 are fixed with respect to the image plane, and the entire second lens group G2 moves toward the image side along the optical axis, thereby infinitely. Focusing from a far object to a near object is performed.
  • the cemented lens that is composed of the negative lens L33 and the positive lens L34 and is arranged adjacent to the image side of the aperture stop S has a component in a direction orthogonal to the optical axis as a vibration-proof lens group.
  • the image blur can be corrected by this movement.
  • Table 2 below lists the values of the specifications of the optical system according to the second example.
  • optical system according to the second example satisfies all the conditional expressions (1) to (8).
  • FIG. 5 shows various aberration diagrams of spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system according to the second example.
  • FIG. 7 is a diagram showing a lens configuration of an optical system according to the third example of the present application.
  • the optical system according to the present example has, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. And a third lens group G3.
  • the first lens group G1 having positive refractive power is a cemented lens formed by cementing, in order from the object side, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. And a positive meniscus lens L14 having a convex surface facing the object side.
  • a biconcave negative lens L21, a positive meniscus lens L22 having a concave surface facing the object side, and a biconcave negative lens L23 are cemented. It consists of a cemented lens.
  • the third lens group G3 having positive refractive power includes, in order from the object side, a cemented lens formed by cementing a biconvex positive lens L31 and a biconcave negative lens L32, an aperture stop S, and a biconcave.
  • the most image side surface (surface number 22) of the third lens group G3 is aspheric.
  • the first lens group G1 and the third lens group G3 are fixed with respect to the image plane, and the entire second lens group G2 moves toward the image side along the optical axis, thereby infinitely. Focusing from a far object to a near object is performed.
  • a cemented lens that is composed of a negative lens L33 and a positive lens L34 and is arranged adjacent to the image side of the aperture stop S includes a component in a direction orthogonal to the optical axis as a vibration-proof lens group. Accordingly, the image blur can be corrected.
  • An antireflection film configured to include at least one layer is formed.
  • Table 3 below lists values of specifications of the optical system according to the third example.
  • optical system according to the third example satisfies all the conditional expressions (1) to (8).
  • FIG. 8 shows various aberration diagrams of spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration in the infinitely focused state of the optical system according to the third example.
  • Table 4 shows, for reference, the values corresponding to the conditional expressions of the respective examples from the first example to the third example shown above.
  • FIG. 13 is a diagram illustrating an example of a film configuration of the antireflection film.
  • the antireflection film 101 is composed of seven layers and is formed on the optical surface of the optical member 102 such as a lens.
  • the first layer 101a is formed of aluminum oxide deposited by a vacuum deposition method.
  • a second layer 101b made of a mixture of titanium oxide and zirconium oxide deposited by a vacuum deposition method is further formed on the first layer 101a.
  • a third layer 101c made of aluminum oxide deposited by a vacuum deposition method is formed on the second layer 101b, and titanium oxide and zirconium oxide deposited by a vacuum deposition method are formed on the third layer 101c.
  • a fourth layer 101d made of the mixture is formed.
  • a fifth layer 101e made of aluminum oxide deposited by vacuum deposition is formed on the fourth layer 101d, and titanium oxide and zirconium oxide deposited by vacuum deposition on the fifth layer 101e.
  • a sixth layer 101f made of the mixture is formed.
  • a seventh layer 101g made of a mixture of magnesium fluoride and silica is formed by a wet process to form the antireflection film 101 of this embodiment.
  • a sol-gel method which is a kind of wet process is used.
  • the sol-gel method is a method in which a sol obtained by mixing raw materials is made into a non-flowable gel by hydrolysis / polycondensation reaction, etc., and the gel is heated and decomposed to obtain a product.
  • a film can be formed by applying an optical thin film material sol on the optical surface of an optical member and forming a gel film by drying and solidifying.
  • the wet process is not limited to the sol-gel method, and a method of obtaining a solid film without going through a gel state may be used.
  • the first layer 101a to the sixth layer 101f of the antireflection film 101 are formed by electron beam evaporation which is a dry process, and the seventh layer 101g which is the uppermost layer is prepared by a hydrofluoric acid / magnesium acetate method. It is formed by the following procedure by a wet process using the prepared sol solution.
  • An aluminum oxide layer to be the layer 101c, a titanium oxide-zirconium oxide mixed layer to be the fourth layer 101d, an aluminum oxide layer to be the fifth layer 101e, and a titanium oxide-zirconium oxide mixed layer to be the sixth layer 101f are formed in this order.
  • the magnesium fluoride used as the 7th layer 101g A layer made of a mixture of silica and silica is formed.
  • the reaction formula when prepared by the hydrofluoric acid / magnesium acetate method is shown in the following formula (b). 2HF + Mg (CH3COO) 2 ⁇ MgF2 + 2CH3COOH (b)
  • the sol solution used for the film formation is used for film formation after mixing raw materials and subjecting to an autoclave at 140 ° C. for 24 hours at a high temperature and pressure.
  • the optical member 102 is completed by heat treatment at 160 ° C. for 1 hour in the air after the seventh layer 101g is formed.
  • the seventh layer 101g is formed by depositing particles having a size of several nm to several tens of nm leaving a void.
  • optical performance of the optical member having the antireflection film 101 formed in this manner will be described using the spectral characteristics shown in FIG.
  • the optical member (lens) having the antireflection film according to this embodiment is formed under the conditions shown in Table 5 below.
  • Table 5 shows that the reference wavelength is ⁇ and the refractive index of the substrate (optical member) is 1.62, 1.74, and 1.85, the respective layers 101a (first layer) to 101g (seventh layer) of the antireflection film 101.
  • the optical film thickness of each layer is determined.
  • aluminum oxide is represented by Al2O3
  • a mixture of titanium oxide and zirconium oxide is represented by ZrO2 + TiO2
  • a mixture of magnesium fluoride and silica is represented by MgF2 + SiO2.
  • FIG. 14 shows spectral characteristics when a light beam is vertically incident on an optical member in which the reference wavelength ⁇ is set to 550 nm in Table 5 and the optical film thickness of each layer of the antireflection film 101 is designed.
  • FIG. 14 shows that the optical member having the antireflection film 101 designed with the reference wavelength ⁇ of 550 nm can suppress the reflectance to 0.2% or less over the entire wavelength range of 420 nm to 720 nm. Further, even in the optical member having the antireflection film 101 in which each optical film thickness is designed with the reference wavelength ⁇ as d line (wavelength 587.6 nm) in Table 5, the spectral characteristics are hardly affected, and the reference shown in FIG. Spectral characteristics substantially equivalent to those when the wavelength ⁇ is 550 nm.
  • This antireflection film consists of five layers, and similarly to Table 5, the optical film thickness of each layer with respect to the reference wavelength ⁇ is designed under the conditions shown in Table 6 below.
  • the above-described sol-gel method is used for forming the fifth layer.
  • FIG. 15 shows spectral characteristics in Table 6 when light rays are perpendicularly incident on an optical member having an antireflection film having a refractive index of 1.52 and a reference wavelength ⁇ of 550 nm and designed for each optical film thickness.
  • the antireflection film of this modification has a reflectance of 0.2% or less over the entire wavelength range of 420 nm to 720 nm.
  • Table 6 even an optical member having an antireflection film whose optical film thickness is designed with the reference wavelength ⁇ as the d-line (wavelength 587.6 nm) hardly affects the spectral characteristics, and the spectral characteristics shown in FIG. Has almost the same characteristics.
  • FIG. 16 shows the spectral characteristics when the incident angles of the light rays to the optical member having the spectral characteristics shown in FIG. 15 are 30, 45, and 60 degrees, respectively. 15 and 16 do not show the spectral characteristics of the optical member having the antireflection film with the refractive index of 1.46 shown in Table 6, but the refractive index of the substrate is almost equal to 1.52. Needless to say, it has the following spectral characteristics.
  • FIG. 17 shows an example of an antireflection film formed only by a dry process such as a conventional vacuum deposition method.
  • FIG. 17 shows the spectral characteristics when a light beam is perpendicularly incident on an optical member designed with an antireflection film configured under the conditions shown in Table 7 below with a refractive index of 1.52 of the same substrate as in Table 6.
  • FIG. 18 shows the spectral characteristics in the case where the incident angles of the light rays to the optical member having the spectral characteristics shown in FIG. 17 are 30, 45, and 60 degrees, respectively.
  • the antireflection film according to this embodiment is compared. It can be seen that has a lower reflectivity at any angle of incidence and a lower reflectivity over a wider band.
  • the antireflection film 101 see Table 5
  • reflected light from the lens surface can be reduced, and ghost and flare can be reduced.
  • an antireflection film see Table 6 corresponding to a substrate having a refractive index of 1.52 on the surface, reflected light from the lens surface can be reduced, and ghost and flare can be reduced.
  • an optical system having a three-group structure is shown, but the present invention can be applied to other group structures such as a four-group structure. Further, a configuration in which a lens or a lens group is added to the most object side or a configuration in which a lens or a lens group is added to the most image side may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during focusing.
  • a focusing lens group that performs focusing from an object at infinity to a short distance object by moving a single lens group, a plurality of lens groups, or a partial lens group in the optical axis direction may be used.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the second lens group is preferably a focusing lens group.
  • the aperture stop is preferably disposed in the third lens group, but the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.
  • the lens group or the partial lens group is moved so as to have a component in the direction perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis to prevent image blur caused by camera shake.
  • a vibration lens group may be used.
  • a lens component arranged adjacent to the image side of the aperture stop is a vibration-proof lens group.
  • the lens surface may be a spherical surface or a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface made of glass with an aspherical shape, or a composite with aspherical resin formed on the glass surface. An aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • Each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast optical performance.
  • FIG. 10 shows a schematic cross-sectional view of a single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an example of an optical apparatus including the above-described optical system.
  • a camera single-lens reflex camera 1
  • light from an object (subject) (not shown) is collected by a photographing lens 2 (optical system) and imaged on a focusing screen 4 via a quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6.
  • the photographer can observe the object (subject) image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 2 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1.
  • the camera 1 shown in FIG. 10 may hold the photographic lens 2 in a detachable manner, or may be formed integrally with the photographic lens 2. Further, the camera 1 may be a so-called single-lens reflex camera, or a compact camera without a quick return mirror or a mirrorless single-lens reflex camera.
  • the optical system described above as the photographing lens 2 of the camera 1 has a characteristic lens configuration that further reduces ghosts and flares and satisfactorily suppresses aberration fluctuations during image blur correction.
  • the present camera 1 realizes shooting in which ghosts and flares are further reduced and aberration fluctuations during image blur correction are satisfactorily suppressed.
  • a first lens group having a positive refractive power in order from the object side along the optical axis, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • a manufacturing method of an optical system having a lens group which includes the following steps S1 and S2.
  • the second lens group is moved along the optical axis (step S1).
  • conditional expression (1) which is a predetermined conditional expression is satisfied (step S2). 1.00 ⁇ f / ( ⁇ f2) ⁇ 2.40 (1)
  • f focal length of the optical system when focused at infinity
  • f2 focal length of the second lens group
  • an optical system having excellent optical performance from an infinite object point to a short-distance object point can be manufactured.
  • a first lens group having a positive refractive power in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • a manufacturing method of an optical system having a lens group which includes the following steps S1 and S2.
  • the second lens group is moved along the optical axis (step S1).
  • conditional expression (2) which is a predetermined conditional expression is satisfied (step S2). 0.80 ⁇ f / f1 ⁇ 1.60 (2)
  • f focal length of the optical system when focusing on infinity
  • f1 focal length of the first lens group
  • G1 1st lens group G2 2nd lens group G3 3rd lens group S Aperture stop I Image surface 1 Single-lens reflex camera 2 Shooting lens 3 Quick return mirror 4 Focus plate 5 Penta prism 6 Eyepiece 7 Imaging element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦に際し、第2レンズ群が光軸に沿って移動し、以下の条件式を満足する。1.00<f/(-f2)<2.40、但し、f :光学系の無限遠合焦時の焦点距離、f2:第2レンズ群の焦点距離。

Description

光学系、この光学系を有する光学機器、及び、光学系の製造方法
 本発明は、光学系、この光学系を有する光学機器、及び、光学系の製造方法に関する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した光学系が提案されている(例えば、特許文献1参照)。
日本国特開2013-033178号公報
 近年の撮像素子の高画素化に伴い、色収差をはじめとした諸収差が良好に補正された光学系が望まれている。
 本発明の第1の態様によると、光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動し、以下の条件式を満足する。
 1.00<f/(-f2)<2.40
但し、
f :前記光学系の無限遠合焦時の焦点距離
f2:前記第2レンズ群の焦点距離
 本発明の第2の態様によると、第1の態様の光学系において、以下の条件式を満足することが好ましい。 
 0.80<f/f1<1.60
但し、
f :前記光学系の無限遠合焦時の焦点距離
f1:前記第1レンズ群の焦点距離
 本発明の第3の態様によると、光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動し、以下の条件式を満足する。
 0.80<f/f1<1.60
但し、
f :前記光学系の無限遠合焦時の焦点距離
f1:前記第1レンズ群の焦点距離
 本発明の第4の態様によると、第1から第3のいずれかの態様の光学系において、以下の条件式を満足することが好ましい。
 0.80<f1/(-f2)<1.45
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
 本発明の第5の態様によると、第1から第4のいずれかの態様の光学系において、以下の条件式を満足することが好ましい。
 1.11<f1/f3<1.50
但し、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
 本発明の第6の態様によると、本発明の第1から第5の態様の光学系において、以下の条件式を満足することが好ましい。
 0.70<(-f2)/f3<1.50
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
 本発明の第7の態様によると、本発明の第1から第6の態様の光学系において、以下の条件式を満足することが好ましい。
 1.20<TL/f1<2.05
但し、
TL:前記光学系の全長
f1:前記第1レンズ群の焦点距離
本発明の第8の態様によると、本発明の第1から第7の態様の光学系において、以下の条件式を満足することが好ましい。
 1.50<TL/(-f2)<3.10
但し、
TL:前記光学系の全長
f2:前記第2レンズ群の焦点距離
 本発明の第9の態様によると、第1から第8の態様の光学系において、以下の条件式を満足することが好ましい。
 63.00<νp
但し、
νp:前記第1レンズ群に含まれる全ての正レンズのアッベ数の平均値
 本発明の第10の態様によると、第1から第9のいずれかの態様の光学系において、無限遠物体から近距離物体への合焦に際し、前記第1レンズ群は、固定であることが好ましい。
 本発明の第11の態様によると、第1から第10のいずれかの態様の光学系において、無限遠物体から近距離物体への合焦に際し、前記第3レンズ群は、固定であることが好ましい。
 本発明の第12の態様によると、第1から第11のいずれかの態様の光学系において、前記第1レンズ群は、接合レンズを有し、前記接合レンズは、物体側から順に、正レンズと負レンズからなることが好ましい。
 本発明の第13の態様によると、第1から第12のいずれかの態様の光学系において、前記第3レンズ群中に開口絞りを有することが好ましい。
 本発明の第14の態様によると、第1から第13のいずれかの態様の光学系において、光学系は、開口絞りを有し、前記開口絞りの物体側に隣り合うレンズ面は物体側に凸の形状をしたレンズ面であり、前記開口絞りの像側に隣り合うレンズ面は像側に凸の形状をしたレンズ面であることが好ましい。
 本発明の第15の態様によると、第1から第14のいずれかの態様の光学系において、前記第3レンズ群は、最も物体側から順に隣り合って配置された正レンズと負レンズとを有することが好ましい。 
 本発明の第16の態様によると、第1から第15のいずれかの態様の光学系において、前記第2レンズ群は、接合レンズを有し、前記接合レンズは、物体側から順に、正レンズと負レンズからなり、前記第2レンズ群は、前記接合レンズで構成されている、又は、物体側から順に、負レンズと前記接合レンズとで構成されていることが好ましい。 
 本発明の第17の態様によると、第1から第16のいずれかの態様の光学系において、前記第3レンズ群は、少なくとも一つの非球面を有することが好ましい。
 本発明の第18の態様によると、第1から第17のいずれかの態様の光学系において、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが好ましい。 
 本発明の第19の態様によると、第1から第18のいずれかの態様の光学系において、前記第1レンズ群から前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むことが好ましい。
 本発明の第20の態様によると、第19の態様の光学系において、前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下であることが好ましい。
 本発明の第21の態様によると、光学機器は、第1から第20のいずれかの態様の光学系を備える。
 本発明の第22の態様によると、光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにし、以下の条件式を満足するようにする。
 1.00<f/(-f2)<2.40
但し、
f :前記光学系の無限遠合焦時の焦点距離
f2:前記第2レンズ群の焦点距離
 本発明の第23の態様によると、第22の態様の光学系の製造方法において、前記第1レンズ群から前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けることを含み、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むことが好ましい。
 本発明の第24の態様によると、光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにし、以下の条件式を満足するようにする。
 0.80<f/f1<1.60
但し、
f :前記光学系の無限遠合焦時の焦点距離
f1:前記第1レンズ群の焦点距離
本願の第1実施例に係る光学系のレンズ構成を示す断面図である。 本願の第1実施例に係る光学系の無限遠合焦状態における諸収差図である。 本願の第1実施例に係る光学系の至近撮影距離状態における諸収差図である。 本願の第2実施例に係る光学系のレンズ構成を示す断面図である。 本願の第2実施例に係る光学系の無限遠合焦状態における諸収差図である。 本願の第2実施例に係る光学系の至近撮影距離状態における諸収差図である。 本願の第3実施例に係る光学系のレンズ構成を示す断面図である。 本願の第3実施例に係る光学系の無限遠合焦状態における諸収差図である。 本願の第3実施例に係る光学系の至近撮影距離状態における諸収差図である。 本願の光学系を搭載した一眼レフカメラの断面図である。 本願の光学系の製造方法を説明するためのフローチャートである。 本願の光学系の他の製造方法を説明するためのフローチャートである。 反射防止膜の層構造の一例を示す説明図である。 反射防止膜の分光特性を示すグラフである。 変形例に係る反射防止膜の分光特性を示すグラフである。 変形例に係る反射防止膜の分光特性の入射角度依存性を示すグラフである。 従来技術で作成した反射防止膜の分光特性を示すグラフである。 従来技術で作成した反射防止膜の分光特性の入射角度依存性を示すグラフである。
 以下、本願の実施形態に係る光学系、光学機器、光学系の製造方法について説明する。本実施形態の光学系は光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動する。
 上述のように本実施形態の光学系は、第2レンズ群を合焦レンズ群として光軸方向へ移動させて無限遠物体から近距離物体への合焦を行うことにより、合焦時の収差変動を小さくすることができる。また、合焦レンズ群の軽量化を図ることができ、これによって高速な合焦を行うことが可能となる。 
 本実施形態の光学系は、以下の条件式(1)を満足することが望ましい。
 1.00<f/(-f2)<2.40  (1)
但し、
f :前記光学系の無限遠合焦時の焦点距離
f2:前記第2レンズ群の焦点距離
 上記条件式(1)は、本実施形態の光学系の無限遠合焦時の焦点距離と、第2レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(1)を満足することにより、球面収差や像面湾曲を良好に補正し、光学系の全長が大きくなるのを防止することができる。
 条件式(1)の下限を下回ると、第2レンズ群の屈折力が小さくなるため、球面収差が補正不足になり、像面湾曲も十分に補正することが困難になり好ましくない。また、合焦レンズ群である第2レンズ群の合焦の際の移動量が大きくなり、光学系の全長が大きくなってしまうため好ましくない。なお、条件式(1)の下限値を1.15に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(1)の下限値を1.30に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(1)の上限を上回ると、第2レンズ群の屈折力が大きくなるため、球面収差が補正過剰になり、像面湾曲も補正することが困難になってしまい好ましくない。なお、条件式(1)の上限値を2.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(1)の上限値を2.00に設定することで、本実施形態の効果を更に確実なものとすることができる。
 以上の構成により、比較的焦点距離が長くFナンバーの小さい光学系において、無限遠から近距離物点まで優れた光学性能を実現することができる。
 また、本実施形態の光学系は、以下の条件式(2)を満足することが望ましい。
 0.80<f/f1<1.60  (2)
但し、
f :前記光学系の無限遠合焦時の焦点距離
f1:前記第1レンズ群の焦点距離
 上記条件式(2)は、本実施形態の光学系全体の焦点距離と第1レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(2)を満足することにより、光学系の全長が大きくなることを防止し、像面湾曲やコマ収差を良好に補正することができる。
 条件式(2)の下限を下回ると、第1レンズ群の屈折力が小さくなるため、光学系の全長が増大し、さらに、周辺光量を確保することが困難になってしまい好ましくない。また、光学系の全長を短縮するために第3レンズ群の屈折力を大きくすれば、球面収差や像面湾曲を補正することが困難になってしまうため好ましくない。なお、条件式(2)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(2)の下限値を1.00に設定することで、本実施形態の効果を更に確実なものとすることができる。
 一方、条件式(2)の上限を上回ると、第1レンズ群の屈折力が大きくなるため、球面収差やコマ収差や像面湾曲を補正することが困難になってしまい好ましくない。なお、条件式(2)の上限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(2)の上限値を1.35に設定することで、本願の効果を更に確実なものとすることができる。
 また、本実施形態の光学系は、以下の条件式(3)を満足することが望ましい。
 0.80<f1/(-f2)<1.45  (3)
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
 上記条件式(3)は、本実施形態の第1レンズ群の焦点距離と第2レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(3)を満足することにより、球面収差や像面湾曲を良好に補正し、光学系の全長が大きくなるのを防止することができる。
 条件式(3)の下限を下回ると、第2レンズ群の屈折力が小さくなるため、球面収差が補正不足になり、像面湾曲も十分に補正することが困難となってしまい好ましくない。また、合焦レンズ群である第2レンズ群の合焦時の移動量が大きくなり、光学系の全長が大きくなってしまうため好ましくない。なお、条件式(3)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(3)の下限値を1.00に設定することで、本実施形態の効果を更に確実なものとすることができる。
 一方、条件式(3)の上限を上回ると、第2レンズ群の屈折力が大きくなるため、球面収差が補正過剰になり、像面湾曲も補正することが困難になってしまい好ましくない。なお、条件式(3)の上限値を1.44に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(3)の上限値を1.42に設定することで、本実施形態の効果を更に確実なものとすることができる。
 また、本実施形態の光学系は、以下の条件式(4)を満足することが望ましい。
 1.11<f1/f3<1.50  (4)
但し、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
 上記条件式(4)は、本実施形態の第1レンズ群の焦点距離と第3レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(4)を満足することにより、光学系の全長が大きくなるのを防止し、像面湾曲やコマ収差を良好に補正することができる。
 条件式(4)の上限を上回ると、第1レンズ群の屈折力が小さくなるため、光学系の全長が増大し、さらに周辺光量を確保することが困難になってしまい好ましくない。また、光学系の全長を短縮するために第3レンズ群の屈折力を大きくすれば、球面収差や像面湾曲を補正することが困難になってしまうため好ましくない。なお、条件式(4)の上限値を1.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(4)の上限値を1.30に設定することで、本実施形態の効果を更に確実なものとすることができる。
 条件式(4)の下限を下回ると、第1レンズ群の屈折力が大きくなるため、球面収差やコマ収差や像面湾曲を補正することが困難になってしまい好ましくない。なお、条件式(4)の下限値を1.115に設定することで、本願の効果をより確実なものとすることができる。
 また、本実施形態の光学系は、以下の条件式(5)を満足することが望ましい。
 0.70<(-f2)/f3<1.50  (5)
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
 上記条件式(5)は、本願の第2レンズ群の焦点距離と第3レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(5)を満足することにより、球面収差や像面湾曲を良好に補正し、光学系の全長が大きくなることを防止することができる。
 条件式(5)の上限を上回ると、第2レンズ群の屈折力が小さくなるため、球面収差が補正不足になり、像面湾曲も十分に補正することが困難となってしまい好ましくない。また、合焦レンズ群である第2レンズ群の合焦時の移動量が大きくなり、光学系の全長が大きくなってしまうため好ましくない。なお、条件式(5)の上限値を1.35に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(5)の上限値を1.20に設定することで、本実施形態の効果を更に確実なものとすることができる。
 一方、条件式(5)の下限を下回ると、第2レンズ群の屈折力が大きくなるため、球面収差が補正過剰になり、像面湾曲も補正することが困難になってしまい好ましくない。なお、条件式(5)の下限値を0.75に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(5)の下限値を0.80に設定することで、本実施形態の効果を更に確実なものとすることができる。
 また、本実施形態の光学系は、以下の条件式(6)を満足することが望ましい。
 1.20<TL/f1<2.05  (6)
但し、
TL:前記光学系の全長
f1:前記第1レンズ群の焦点距離
 上記条件式(6)は、本実施形態の光学系の全長と第1レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(6)を満足することにより、光学系の全長が大きくなることを防止し、像面湾曲やコマ収差を良好に補正することができる。
 条件式(6)の下限を下回ると、第1レンズ群の屈折力が小さくなるため、光学系の全長が増大し、さらに、周辺光量を確保することが困難になってしまい好ましくない。また、光学系の全長を短縮するために第3レンズ群の屈折力を大きくすれば、球面収差や像面湾曲を補正することが困難になってしまうため好ましくない。なお、条件式(6)の下限値を1.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(6)の下限値を1.60に設定することで、本実施形態の効果を更に確実なものとすることができる。
 一方、条件式(6)の上限を上回ると、第1レンズ群の屈折力が大きくなるため、球面収差やコマ収差や像面湾曲を補正することが困難になってしまい好ましくない。なお、条件式(6)の上限値を2.03に設定することで、本願の効果をより確実なものとすることができる。また、条件式(6)の上限値を2.00に設定することで、本願の効果を更に確実なものとすることができる。
 また、本実施形態の光学系は、以下の条件式(7)を満足することが望ましい。
 1.50<TL/(-f2)<3.10  (7)
但し、
TL:前記光学系の全長
f2:前記第2レンズ群の焦点距離
 上記条件式(7)は、本実施形態の光学系の全長と第2レンズ群の焦点距離を規定するものである。本実施形態の光学系は、条件式(7)を満足することにより、光学系の全長が大きくなることを防止し、像面湾曲やコマ収差を良好に補正することができる。
 条件式(7)の下限を下回ると、第2レンズ群の屈折力が小さくなるため、光学系の全長が増大し、さらに、周辺光量を確保することが困難になってしまうため好ましくない。また、光学系の全長を短縮するために第3レンズ群の屈折力を大きくすれば、球面収差や像面湾曲を補正することが困難になってしまうため好ましくない。なお、条件式(7)の下限値を1.70に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(7)の下限値を1.90に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(7)の上限を上回ると、第2レンズ群の屈折力が大きくなるため、球面収差やコマ収差や像面湾曲を補正することが困難になってしまい好ましくない。なお、条件式(7)の上限値を3.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(7)の上限値を2.90に設定することで、本実施形態の効果を更に確実なものとすることができる。
 また、本実施形態の光学系は、以下の条件式(8)を満足することが望ましい。
 63.00<νp  (8)
但し、
νp:前記第1レンズ群に含まれる全ての正レンズのアッベ数の平均値
 上記条件式(8)は、本実施形態の第1レンズ群に含まれる全ての正レンズのアッベ数の平均値を規定するものである。本実施形態の光学系は、条件式(8)を満足することにより、軸上色収差を良好に補正することができる。
 条件式(8)の下限を下回ると、軸上色収差を良好に補正することが困難となってしまうため好ましくない。なお、条件式(8)の下限値を65.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(8)の下限値を70.0に設定することで、本実施形態の効果を更に確実なものとすることができる。
 また、本実施形態の光学系は、無限遠物体から近距離物体への合焦に際し、前記第1レンズ群が、固定であることが望ましい。この構成により、第1レンズ群と第2レンズ群の両方が移動する場合と比べて合焦レンズ群の小型化が図れ、また、多くの合焦レンズ群が移動する際の誤差によって生じるコマ収差等の諸収差の発生を少なくすることができる。
 また、本実施形態の光学系は、無限遠物体から近距離物体への合焦に際し、前記第3レンズ群が、固定であることが望ましい。この構成により、第2レンズ群と第3レンズ群の両方が移動する場合と比べて合焦レンズ群の小型化が図れ、また、多くの合焦レンズ群が移動する際の誤差によって生じるコマ収差等の諸収差の発生を少なくすることができる。
 また、本実施形態の光学系は、前記第1レンズ群が、接合レンズを有し、前記接合レンズが、物体側から順に、正レンズと負レンズからなることが望ましい。この構成により、球面収差並びに軸上色収差を良好に補正することができる。
 また、本実施形態の光学系は、前記第3レンズ群中に開口絞りを有することが望ましい。この構成により、像面湾曲や非点収差を良好に補正することができる。
 また、本実施形態の光学系は、開口絞りを有し、前記開口絞りの物体側に隣り合うレンズ面は物体側に凸の形状をしたレンズ面であり、前記開口絞りの像側に隣り合うレンズ面は像側に凸の形状をしたレンズ面であることが望ましい。この構成により、球面収差や像面湾曲や非点収差を良好に補正することができる。
 また、本実施形態の光学系は、前記第3レンズ群が、最も物体側から順に隣り合って配置された正レンズと負レンズとを有することが望ましい。この構成により、球面収差を良好に補正することができる。
 また、本実施形態の光学系は、前記第2レンズ群が、接合レンズを有し、前記接合レンズは、物体側から順に、正レンズと負レンズからなり、前記第2レンズ群は、前記接合レンズで構成されている、又は、物体側から順に、負レンズと前記接合レンズとで構成されていることが望ましい。この構成により、小型で軸上色収差を良好に補正した光学系を実現することができる。また、この構成により、合焦時の球面収差の変動を小さくすることができる。
 また、本実施形態の光学系は、前記第3レンズ群が、少なくとも一つの非球面を有することが望ましい。この構成により、コマ収差を良好に補正することができる。
 また、本実施形態の光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等によって生じる像ぶれの補正(防振)を行うことができる。そして、像ぶれ補正時の収差変動を小さくすることができる。
 また、本実施形態の光学系は、前記第1レンズ群から前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むことが望ましい。この構成により、本実施形態の光学系は、物体からの光が光学面で反射されることによって生じるゴーストやフレアをより低減させることができ、高い結像性能を達成することができる。
 また、本実施形態の光学系は、前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下であることが望ましい。この構成により、空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。
 なお、本実施形態の光学系における反射防止膜は、ウェットプロセスに限られず、ドライプロセス等によって形成してもよい。この場合、反射防止膜は屈折率が1.30以下となる層を少なくとも1層含むようにすることが好ましい。この構成により、反射防止膜をドライプロセス等によって形成した場合でも、反射防止膜をウェットプロセスによって形成した場合と同様の効果を得ることができる。なお、屈折率が1.30以下となる層は、多層膜を構成する層のうちの最も表面側の層であることが好ましい。
 本実施形態の光学機器は、上述した構成の光学系を備えている。これにより、ゴーストやフレアをより低減させ、像ぶれ補正時の収差変動を良好に抑えた光学機器を実現することができる。
 本実施形態の光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにし、
 所定の条件式である以下の条件式(1)を満足するようにする。
 1.00<f/(-f2)<2.40  (1)
但し、
f :前記光学系の無限遠合焦時の焦点距離
f2:前記第2レンズ群の焦点距離
 斯かる本実施形態の光学系の製造方法により、無限遠物点から近距離物点まで優れた光学性能を有する光学系を製造することができる。
 また、本願の別の実施形態の光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにし、
 所定の条件式である以下の条件式(2)を満足するようにする。
 0.80<f/f1<1.60  (2)
但し、
f :前記光学系の無限遠合焦時の焦点距離
f1:前記第1レンズ群の焦点距離
 斯かる本実施形態の光学系の製造方法により、無限遠物点から近距離物点まで優れた光学性能を有する光学系を製造することができる。
 以下、本願の数値実施例に係る光学系を添付図面に基づいて説明する。
(第1実施例)
 図1は、本願の第1実施例に係る光学系のレンズ構成を示す図である。
 本実施例に係る光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3から構成される。
 正の屈折力を有する第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とを接合してなる接合レンズからなる。
 負の屈折力を有する第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹形状の負レンズL22とを接合してなる接合レンズからなる。
 正の屈折力を有する第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、開口絞りSと、両凹形状の負レンズL33と物体側に凸面を向けた正メニスカスレンズL34との接合レンズと、両凸形状の正レンズL35と両凹形状の負レンズL36と両凸形状の正レンズL37とを接合してなる接合レンズとからなる。
 本実施例に係る光学系では、第3レンズ群G3の最も像側面(面番号22)が非球面である。
 本実施例に係る光学系では、第1レンズ群G1および第3レンズ群G3が像面に対して固定され、第2レンズ群G2全体が光軸に沿って像側へ移動し、これによって無限遠物体から近距離物体への合焦が行われる。
 本実施例に係る光学系では、負レンズL33と正メニスカスレンズL34からなり、開口絞りSの像側に隣り合って配置された接合レンズが、防振レンズ群として光軸と直交する方向の成分を含む様に移動し、これによって像ぶれの補正を行うことができる。
 本実施例に係る光学系では、正レンズL35と負レンズL36と正レンズL37とからなり最も像側に配置された接合レンズのうち最も物体側レンズ面(面番号19)にウエットプロセスを用いて形成された層を少なくとも1層含むように構成された反射防止膜が形成されている。
 下記の表1に、本第1実施例に係る光学系の諸元の値を掲げる。
 この表1の[全体諸元]において、「f」は焦点距離、「FNO」はFナンバー、「2ω」は画角(単位:「°」)、「Y」は像高、「TL」は光学系の全長、「Bf」はバックフォーカスを表している。なお、全長TLは、この光学系の最も物体側のレンズ面(第1面)から像面までの光軸上の距離を示し、バックフォーカスBfは、この光学系の最も像側のレンズ面(第22面)から像面までの光軸上の距離を表している。
 また、[面データ]において、「面番号」は光軸に沿った物体側から数えた光学面の順序、「r」は各光学面の曲率半径、「d」は面間隔(第n面(nは整数)と第n+1面との間隔)、「nd」はd線に対する屈折率、「νd」はd線(波長λ=587.6nm)に対するアッべ数を示している。また、「物面」は物体面、「(絞りS)」は開口絞りS、「可変」は可変の面間隔を示している。曲率半径r=∞は平面を示し、空気の屈折率nd=1.00000は省略してある。非球面には面番号の右側に「*」を付している。
 また、[レンズ群焦点距離]には、各レンズ群のうち最も物体側の面の面番号(始面)および各レンズ群の焦点距離を示している。
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の円錐定数と非球面係数を示す。なお、「E-n」は「×10-n」を示し、例えば、「1.234E-05」は、「1.234×10-5」を示す。2次の非球面係数A2は
0である。
X(y)=(y/r)/[1+[1-κ(y/r)]1/2
+A4×y+A6×y+A8×y+A10×y10
 ここで、光軸に垂直な方向の高さを「y」とし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)を「S(y)」とし、基準球面の曲率半径(近軸曲率半径)を「r」とし、円錐定数を「κ」とし、n次の非球面係数を「An」とする。
[可変間隔データ]において、「f」は全系の焦点距離を、「β」は物体と像間の結像倍率を、「Di」(但し、iは整数)は、第i面の可変の面間隔を示している。また、「無限遠」は無限遠合焦状態を、「至近」は至近撮影距離状態を示している。なお、D0は物体から第1面までの距離を示している。
 ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。
(表1)
[全体諸元]
f  = 102.128
FNO= 1.449 
2ω = 23.891
Y  = 21.60
TL = 146.818
Bf = 41.301 

[面データ]
面番号        r           d           nd         νd
物面          ∞          ∞ 
1             176.41170    7.081         1.59349      67.00 
2             -997.05190   0.100
3             96.85690     9.766         1.49782      82.57
4             -2499.53100  0.100
5             64.16290     13.758        1.49782      82.57 
6             -222.06850   3.500         1.73800      32.26 
7             171.04680    可変 
8             -136.08080   4.000         1.80809      22.74 
9             -85.91600    2.500         1.48749      70.32 
10            40.41360     可変 
11            121.43430    5.687         1.72916      54.61 
12            -106.55980   0.100 
13            97.96380     1.800         1.61505      35.73 
14            33.61330     6.326 
15(絞りS)    ∞           6.526
16            -52.40880    1.600         1.59238      35.86 
17            71.14860     3.733         1.72916      54.61 
18            478.61380    0.100 
19            80.79100     8.330         1.75596      49.76 
20            -33.83920    1.600         1.58128      37.40 
21            61.41580     4.724         1.89799      34.84 
22*           -225.35840   BF 
像面          ∞

[レンズ群焦点距離]
 群   始面   焦点距離
 1    1     81.118
 2    8     -69.336
 3    11    72.558

[非球面データ]
       κ    A4            A6           A8           A10
第22面 1      9.931E-07    -1.978E-09    8.134E-12     -1.116E-14

[可変間隔データ] 
              無限遠        至近
f又はβ       102.128      -0.136倍
D7            8.522        18.522
D10           15.664       5.664

[条件式対応値]
(1) f/(-f2)=1.47
(2) f/f1=1.26
(3) f1/(-f2)=1.17
(4) f1/f3=1.12
(5) (-f2)/f3=0.96
(6) TL/f1=1.81
(7) TL/(-f2)=2.12
(8) νP=77.38
 このように、第1実施例に係る光学系は、上記条件式(1)~(8)を全て満足している。
 図2に、第1実施例に係る光学系の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。また、図3に、撮影倍率β=-0.136で近距離合焦した状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。各収差図において、「FNO」はFナンバーを、「Y」は像高を、それぞれ示している。また、各収差図において、「d」はd線(波長λ=587.6nm)、及び、「g」はg線(波長λ=435.8nm)に対する収差を表している。また、非点収差図において、実線はサジタル像面を示し、破線はメリジオナル像面を示している。なお、この収差図の説明は以降の実施例においても同様である。
 この図2、図3に示す各収差図から明らかなように、第1実施例に係る光学系では諸収差が良好に補正されており、高い光学性能を有していることが分かる。
(第2実施例)
 図4は、本願の第2実施例に係る光学系のレンズ構成を示す図である。
 本実施例に係る光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3から構成される。
 正の屈折力を有する第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とを接合してなる接合レンズからなる。
 負の屈折力を有する第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹形状の負レンズL22とを接合してなる接合レンズからなる。
 正の屈折力を有する第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、開口絞りSと、両凹形状の負レンズL33と両凸形状の正レンズL34とを接合してなる接合レンズと、両凸形状の正レンズL35と両凹形状の負レンズとを接合してなる接合レンズと、両凸形状の正レンズL37からなる。
 本実施例に係る光学系では、第3レンズ群G3の最も像側面(面番号23)が非球面である。
 本実施例に係る光学系では、第1レンズ群G1および第3レンズ群G3が像面に対して固定され、第2レンズ群G2全体が光軸に沿って像側へ移動し、これによって無限遠物体から近距離物体への合焦が行われる。
 本実施例に係る光学系では、負レンズL33と正レンズL34からなり、開口絞りSの像側に隣り合って配置された接合レンズが、防振レンズ群として光軸と直交する方向の成分を含む様に移動し、これによって像ぶれの補正を行うことができる。
 本実施例に係る光学系では、最も像側の正レンズL37の物体側レンズ面(面番号22)と正レンズL37の物体側に隣り合って配置された負レンズL36の像側レンズ面(面番号21)とにウエットプロセスを用いて形成された層を少なくとも1層含むように構成された反射防止膜が形成されている。
 以下の表2に、本第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[全体諸元]
f  = 102.643
FNO= 1.441
2ω = 23.836
Y  = 21.60
TL = 156.819
Bf = 44.626

[面データ]
面番号        r             d             nd           νd   
物面          ∞           ∞
1             232.74460    5.460         1.59349      67.00 
2             -941.72040   0.100 
3             99.95980     9.402         1.49782      82.57 
4             -635.59410   0.100 
5             67.81170     13.106        1.49782      82.57 
6             -170.83160   3.500         1.64769      33.72 
7             136.65740    可変
8             -132.42720   4.400         1.80809      22.74 
9             -82.87930    2.500         1.48749      70.32 
10            43.90050     可変
11            76.67630     6.700         1.74397      44.85 
12            -145.75050   0.100 
13            365.29930    1.800         1.51742      52.20 
14            35.15610     7.500 
15(絞りS)    ∞          5.022
16            -52.41160    1.800         1.60482      34.33 
17            48.32170     8.500         1.76457      48.44 
18            -99.22310    0.100   
19            302.91470    7.000         1.72916      54.61 
20            -46.57540    1.800         1.61532      33.18 
21            63.20750     2.000 
22            63.50280     6.000         1.90265      35.72 
23*           -264.53160   BF
像面          ∞

[レンズ群焦点距離]
群    始面   焦点距離
1    1     87.792
2      8      -74.149
3      11     72.509

[非球面データ]
       κ    A4            A6           A8           A10
第23面 1      2.199E-07    -4.073E-11    -2.713E-13    4.702E-16

[可変間隔データ] 
              無限遠              至近
f又はβ       102.643      -0.141倍
D7            8.654        20.317
D10           16.649       4.986

[条件式対応値]
(1) f/(-f2)=1.38
(2) f/f1=1.17
(3) f1/(-f2)=1.18
(4) f1/f3=1.21
(5) (-f2)/f3=1.02
(6) TL/f1=1.79
(7) TL/(-f2)=2.11
(8) νP=77.38
 このように、第2実施例に係る光学系は、上記条件式(1)~(8)を全て満足している。
 図5に、第2実施例に係る光学系の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。また、図6に、撮影倍率β=-0.141で近距離合焦した状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。この図5、図6に示す各収差図から明らかなように、この第2実施例に係る光学系では、諸収差が良好に補正されており、高い光学性能を有していることが分かる。
(第3実施例)
 図7は、本願の第3実施例に係る光学系のレンズ構成を示す図である。
 本実施例に係る光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3から構成される。
 正の屈折力を有する第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13とを接合してなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL14からなる。
 負の屈折力を有する第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23とを接合してなる接合レンズからなる。
 正の屈折力を有する第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と両凹形状の負レンズL32とを接合してなる接合レンズと、開口絞りSと、両凹形状の負レンズL33と両凸形状の正レンズL34とを接合してなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL35と両凸形状の正レンズL36とを接合してなる接合レンズからなる。
 本実施例に係る光学系では、第3レンズ群G3の最も像側面(面番号22)が非球面である。
 本実施例に係る光学系では、第1レンズ群G1および第3レンズ群G3が像面に対して固定され、第2レンズ群G2全体が光軸に沿って像側へ移動し、これによって無限遠物体から近距離物体への合焦が行われる。
 本実施例に係る光学系では、負レンズL33と正レンズL34からなり、開口絞りSの像側に隣り合って配置された接合レンズが防振レンズ群として光軸と直交する方向の成分を含む様に移動し、これによって像ぶれの補正を行うことができる。
 本実施例に係る光学系では、負レンズL35と正レンズL36とからなり最も像側に配置された接合レンズの最も物体側レンズ面(面番号20)にウエットプロセスを用いて形成された層を少なくとも1層含むように構成された反射防止膜が形成されている。
 以下の表3に、本第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
f  = 102.618
FNO= 1.440
2ω = 23.596
Y  = 21.60
TL = 164.819
Bf = 47.774

[面データ]
面番号        r             d            nd           νd   
物面          ∞           ∞
1             198.29690    7.671         1.59349      67.00 
2             -268.67610   0.100 
3             91.70170     13.288        1.49782      82.57 
4             -128.83920   3.500         1.64769      33.72 
5             203.55460    0.100 
6             79.79810     8.164         1.49782      82.57 
7             1937.33200   可変 
8             -194.71540   2.500         1.71999      50.27 
9             117.67630    3.032 
10            -1433.39560  5.200         1.80809      22.74 
11            -76.31750    2.500         1.51742      52.20 
12            53.75550     可変 
13            49.94100     11.096        1.88462      36.82 
14            -83.51650    1.800         1.63199      34.05 
15            37.73780     7.500 
16(絞りS)   ∞           7.600
17            -40.81280    1.800         1.69044      27.44 
18            99.54650     8.500         1.72916      54.61 
19            -55.04360    0.100 
20            285.10750    1.800         1.55390      42.19 
21            41.90420     8.500         1.80733      43.13 
22*           -158.99830   BF
像面          ∞

[レンズ群焦点距離]
群     始面   焦点距離
1     1    83.797
2      8      -59.773
3      11     69.892

[非球面データ]
       κ    A4            A6           A8           A10
第22面 1      9.463E-07    3.760E-10     -7.363E-13    1.038E-15

[可変間隔データ] 
              無限遠        至近
f又はβ       102.643      -0.144倍
D7            7.857        17.857
D12           14.437       4.437

[条件式対応値]
(1) f/(-f2)=1.72
(2) f/f1=1.22
(3) f1/(-f2)=1.40
(4) f1/f3=1.20
(5) (-f2)/f3=0.86
(6) TL/f1=1.97
(7) TL/(-f2)=2.76
(8) νP=77.38
 このように、第3実施例に係る光学系は、上記条件式(1)~(8)を全て満たしている。
 図8に、第3実施例に係る光学系の無限遠合焦状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。また、図9に、撮影倍率β=-0.144で近距離合焦した状態における球面収差、非点収差、歪曲収差、倍率色収差、及び、コマ収差の諸収差図を示す。この図8、図9に示す各収差図から明らかなように、この第3実施例に係る光学系では、諸収差が良好に補正されており、高い光学性能を有していることが分かる。
 以上に示した第1実施例から第3実施例までの各実施例の条件式対応値を、参照のため、以下の表4に示す。
(表4)
       条件式               第1実施例    第2実施例    第3実施例
(1)f/(-f2)        1.47      1.38      1.72
(2)f/f1              1.26      1.17      1.22
(3)f1/(-f2)      1.17      1.18      1.40
(4)f1/f3            1.12      1.21      1.20
(5)(-f2)/f3      0.96      1.02      0.86
(6)TL/f1            1.81      1.79      1.97
(7)TL/(-f2)      2.12      2.11      2.76
(8)νP                  77.38    77.38    77.38
 ここで、本願の実施形態に係る光学系に用いられる反射防止膜(多層広帯域反射防止膜とも言う)について説明する。図13は、反射防止膜の膜構成の一例を示す図である。この反射防止膜101は7層からなり、レンズ等の光学部材102の光学面に形成される。第1層101aは真空蒸着法で蒸着された酸化アルミニウムで形成されている。また、この第1層101aの上に更に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第2層101bが形成される。さらに、この第2層101bの上に真空蒸着法で蒸着された酸化アルミニウムからなる第3層101cが形成され、この第3層101cの上に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第4層101dが形成される。またさらに、この第4層101dの上に真空蒸着法で蒸着された酸化アルミニウムからなる第5層101eが形成され、この第5層101eの上に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第6層101fが形成される。
 そして、このようにして形成された第6層101fの上に、ウェットプロセスによりフッ化マグネシウムとシリカの混合物からなる第7層101gが形成されて本実施形態の反射防止膜101が形成される。第7層101gの形成には、ウェットプロセスの一種であるゾル-ゲル法を用いている。ゾル-ゲル法とは、原料を混合することにより得られたゾルを、加水分解・重縮合反応などにより流動性のないゲルとし、このゲルを加熱・分解して生成物を得る方法であり、光学薄膜の作製においては、光学部材の光学面上に光学薄膜材料ゾルを塗布し、乾燥固化によりゲル膜とすることで膜を生成することができる。なお、ウェットプロセスとして、ゾル-ゲル法に限らず、ゲル状態を経ないで固体膜を得る方法を用いるようにしてもよい。
 このように、この反射防止膜101の第1層101a~第6層101fまではドライプロセスである電子ビーム蒸着により形成され、最上層である第7層101gは、フッ酸/酢酸マグネシウム法で調製したゾル液を用いるウェットプロセスにより以下の手順で形成されている。まず、予めレンズ成膜面(上述の光学部材102の光学面)に真空蒸着装置を用いて第1層101aとなる酸化アルミニウム層、第2層101bとなる酸化チタン-酸化ジルコニウム混合層、第3層101cとなる酸化アルミニウム層、第4層101dとなる酸化チタン-酸化ジルコニウム混合層、第5層101eとなる酸化アルミニウム層、第6層101fとなる酸化チタン-酸化ジルコニウム混合層を順に形成する。そして、蒸着装置より光学部材102を取り出した後、フッ酸/酢酸マグネシウム法により調製したゾル液にシリコンアルコキシドを加えたものをスピンコート法により塗布することにより、第7層101gとなるフッ化マグネシウムとシリカの混合物からなる層を形成する。フッ酸/酢酸マグネシウム法によって調製される際の反応式を以下の式(b)に示す。
 2HF+Mg(CH3COO)2→MgF2+2CH3COOH  (b)
 この成膜に用いたゾル液は、原料混合後、オートクレーブで140℃、24時間高温加圧熟成処理を施した後、成膜に用いられる。この光学部材102は、第7層101gの成膜終了後、大気中で160℃、1時間加熱処理して完成される。このようなゾル-ゲル法を用いることにより、大きさが数nmから数十nmの粒子が空隙を残して堆積することにより第7層101gが形成される。
 このようにして形成された反射防止膜101を有する光学部材の光学的性能について図14に示す分光特性を用いて説明する。
 本実施形態に係る反射防止膜を有する光学部材(レンズ)は、以下の表5に示す条件で形成されている。ここで表5は、基準波長をλとし、基板(光学部材)の屈折率が1.62、1.74及び1.85について反射防止膜101の各層101a(第1層)~101g(第7層)の光学膜厚をそれぞれ求めたものである。なお、表5では、酸化アルミニウムをAl2O3、酸化チタンと酸化ジルコニウム混合物をZrO2+TiO2、フッ化マグネシウムとシリカの混合物をMgF2+SiO2とそれぞれ表している。
(表5)
      物質   屈折率 光学膜厚 光学膜厚 光学膜厚 
  媒質  空気    1
  第7層 MgF2+SiO2 1.26 0.268λ  0.271λ  0.269λ
  第6層 ZrO2+TiO2 2.12 0.057λ  0.054λ  0.059λ
  第5層 Al2O3    1.65 0.171λ  0.178λ  0.162λ
  第4層 ZrO2+TiO2 2.12 0.127λ  0.13λ   0.158λ
  第3層 Al2O3    1.65 0.122λ  0.107λ  0.08λ
  第2層 ZrO2+TiO2 2.12 0.059λ  0.075λ  0.105λ
  第1層 Al2O3    1.65 0.257λ  0.03λ   0.03λ
  基板の屈折率       1.62    1.74    1.85
 図14は、表5において基準波長λを550nmとして反射防止膜101の各層の光学膜厚を設計した光学部材に光線が垂直入射する時の分光特性を表している。
 図14から、基準波長λを550nmで設計した反射防止膜101を有する光学部材は、光線の波長が420nm~720nmの全域で反射率を0.2%以下に抑えられることが判る。また、表5において基準波長λをd線(波長587.6nm)として各光学膜厚を設計した反射防止膜101を有する光学部材でも、その分光特性にはほとんど影響せず、図14に示す基準波長λが550nmの場合とほぼ同等の分光特性を有する。
 次に、本反射防止膜の変形例について説明する。この反射防止膜は5層からなり、表5と同様、以下の表6で示される条件で基準波長λに対する各層の光学膜厚が設計される。本変形例では、第5層の形成に前述のゾル-ゲル法を用いている。
(表6)
      物質   屈折率 光学膜厚 光学膜厚
  媒質  空気    1
  第5層 MgF2+SiO2 1.26 0.275λ 0.269λ  
  第4層 ZrO2+TiO2 2.12 0.045λ 0.043λ  
  第3層 Al2O3    1.65 0.212λ 0.217λ  
  第2層 ZrO2+TiO2 2.12 0.077λ 0.066λ  
  第1層 Al2O3    1.65 0.288λ 0.290λ  
  基板の屈折率       1.46   1.52   
 図15は、表6において、基板の屈折率が1.52及び基準波長λを550nmとして各光学膜厚を設計した反射防止膜を有する光学部材に光線が垂直入射する時の分光特性を示している。図15から本変形例の反射防止膜は、光線の波長が420nm~720nmの全域で反射率が0.2%以下に抑えられることがわかる。なお、表6において基準波長λをd線(波長587.6nm)として各光学膜厚を設計した反射防止膜を有する光学部材でも、その分光特性にはほとんど影響せず、図15に示す分光特性とほぼ同等の特性を有する。
 図16は、図15に示す分光特性を有する光学部材への光線の入射角が30度、45度、60度の場合の分光特性をそれぞれ示す。なお、図15、図16には表6に示す基板の屈折率が1.46の反射防止膜を有する光学部材の分光特性が図示されていないが、基板の屈折率が1.52とほぼ同等の分光特性を有していることは言うまでもない。
 また比較のため、図17に、従来の真空蒸着法などのドライプロセスのみで成膜した反射防止膜の一例を示す。図17は、表6と同じ基板の屈折率1.52に以下の表7で示される条件で構成される反射防止膜を設計した光学部材に光線が垂直入射する時の分光特性を示す。また、図18は、図17に示す分光特性を有する光学部材への光線の入射角が30度、45度、60度の場合の分光特性をそれぞれ示す。
(表7)
      物質   屈折率 光学膜厚
  媒質  空気    1
  第7層 MgF2       1.39 0.243λ  
  第6層 ZrO2+TiO2 2.12 0.119λ  
  第5層 Al2O3    1.65 0.057λ  
  第4層 ZrO2+TiO2 2.12 0.220λ  
  第3層 Al2O3    1.65 0.064λ  
  第2層 ZrO2+TiO2 2.12 0.057λ  
  第1層 Al2O3    1.65 0.193λ  
  基板の屈折率 1.52    
 図14~図16で示される本実施形態に係る反射防止膜を有する光学部材の分光特性を、図17および図18で示される従来例の分光特性と比較すると、本実施形態に係る反射防止膜はいずれの入射角においてもより低い反射率を有し、しかもより広い帯域で低い反射率を有することが良くわかる。
 次に、本願の第1実施例から第3実施例に、上記表5および表6に示す反射防止膜を適用した例について説明する。
 本第1実施例の光学系において、第3レンズ群G3の正レンズL35の屈折率は、表1に示すように、nd=1.75596であるため、正レンズL35における物体側のレンズ面に基板の屈折率が1.74に対応する反射防止膜101(表5参照)を用いることでレンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。
 本第2実施例の光学系において、第3レンズ群G3の負レンズL36の屈折率は、表1に示すように、nd=1.61532であり、第3レンズ群G3の正レンズL37の屈折率は、nd=1.90265あるため、負レンズL36における像面側のレンズ面に基板の屈折率が1.62に対応する反射防止膜101(表5参照)を用い、正レンズL37における物体側のレンズ面に、基板の屈折率が1.85に対応する反射防止膜101(表5参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。
 本第3実施例の光学系において、第3レンズ群G3の負メニスカスレンズL35の屈折率は、表7に示すように、nd=1.55390であるため、負メニスカスレンズL35における物体側のレンズ面に基板の屈折率が1.52に対応する反射防止膜(表6参照)を用いることでレンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。
 なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 実施例では、3群構成の光学系を示したが、4群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 単独又は複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に第2レンズ群を合焦レンズ群とするのが好ましい。
 開口絞りは第3レンズ群中に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としても良い。特に、第3レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。更に、開口絞りの像側に隣り合って配置されるレンズ成分を防振レンズ群とするのが好ましい。
 レンズ面は、球面または平面としても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモ-ルド非球面、又はガラスの表面に設けた樹脂を非球面形状に形成した複合型非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 各レンズ面には、フレアやゴーストを軽減しコントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 図10に、上述の光学系を備える光学機器の一例として、一眼レフカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2(光学系)で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を、接眼レンズ6を介して正立像として観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図10に記載のカメラ1は、撮影レンズ2を着脱可能に保持するものでも良く、撮影レンズ2と一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良く、クイックリターンミラー等を有さないコンパクトカメラ若しくはミラーレスの一眼レフカメラでも良い。
 ここで、本カメラ1の撮影レンズ2として上述した光学系は、その特徴的なレンズ構成によって、ゴーストやフレアをより低減させ、像ぶれ補正時の収差変動を良好に抑えている。これにより本カメラ1は、ゴーストやフレアをより低減させ、像ぶれ補正時の収差変動を良好に抑えた撮影を実現している。
 以下、本実施形態の光学系の製造方法の概略を、図11を参照して説明する。この光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS1とS2を含むものである。
 無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにする(ステップS1)。
 所定の条件式である以下の条件式(1)を満足するようにする(ステップS2)。
 1.00<f/(-f2)<2.40  (1)
但し、
f :前記光学系の無限遠合焦時の焦点距離
f2:前記第2レンズ群の焦点距離
 以上の製造方法によれば、無限遠物点から近距離物点まで優れた光学性能を有する光学系を製造することができる。
 以下、本実施形態に係る光学系の他の製造方法の概略を、図12を参照して説明する。この光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS1とS2を含むものである。
 無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにする(ステップS1)。
 所定の条件式である以下の条件式(2)を満足するようにする(ステップS2)。
 0.80<f/f1<1.60  (2)
但し、
f :前記光学系の無限遠合焦時の焦点距離
f1:前記第1レンズ群の焦点距離
 以上の製造方法によれば、無限遠から近距離物点まで優れた光学性能を有する光学系を製造することができる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2015年第011654号(2015年1月23日出願)
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
S  開口絞り
I  像面
1  一眼レフカメラ
2  撮影レンズ
3  クイックリターンミラー
4  焦点板
5  ペンタプリズム
6  接眼レンズ
7  撮像素子

Claims (24)

  1.  光軸に沿って物体側から順に、
     正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群とを有し、
     無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動し、
     以下の条件式を満足する光学系。
     1.00<f/(-f2)<2.40
    但し、
    f :前記光学系の無限遠合焦時の焦点距離
    f2:前記第2レンズ群の焦点距離
  2.  以下の条件式を満足する請求項1に記載の光学系。 
     0.80<f/f1<1.60
    但し、
    f :前記光学系の無限遠合焦時の焦点距離
    f1:前記第1レンズ群の焦点距離
  3.  光軸に沿って物体側から順に、
     正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群とを有し、
     無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動し、
     以下の条件式を満足する光学系。
     0.80<f/f1<1.60
    但し、
    f :前記光学系の無限遠合焦時の焦点距離
    f1:前記第1レンズ群の焦点距離
  4.  以下の条件式を満足する請求項1から3までのいずれか一項に記載の光学系。
     0.80<f1/(-f2)<1.45
    但し、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
  5.  以下の条件式を満足する請求項1から4までのいずれか一項に記載の光学系。
     1.11<f1/f3<1.50
    但し、
    f1:前記第1レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
  6.  以下の条件式を満足する請求項1から5までのいずれか一項に記載の光学系。
     0.70<(-f2)/f3<1.50
    但し、
    f2:前記第2レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
  7.  以下の条件式を満足する請求項1から6までのいずれか一項に記載の光学系。
     1.20<TL/f1<2.05
    但し、
    TL:前記光学系の全長
    f1:前記第1レンズ群の焦点距離
  8.  以下の条件式を満足する請求項1から7までのいずれか一項に記載の光学系。
     1.50<TL/(-f2)<3.10
    但し、
    TL:前記光学系の全長
    f2:前記第2レンズ群の焦点距離
  9.  以下の条件式を満足する請求項1から8までのいずれか一項に記載の光学系。
     63.00<νp
    但し、
    νp:前記第1レンズ群に含まれる全ての正レンズのアッベ数の平均値
  10.  請求項1から9までのいずれか一項に記載の光学系において、
     無限遠物体から近距離物体への合焦に際し、前記第1レンズ群は、固定である光学系。
  11.  請求項1から10までのいずれか一項に記載の光学系において、
     無限遠物体から近距離物体への合焦に際し、前記第3レンズ群は、固定である光学系。
  12.  請求項1から11までのいずれか一項に記載の光学系において、
     前記第1レンズ群は、接合レンズを有し、前記接合レンズは、物体側から順に、正レンズと負レンズからなる光学系。
  13.  請求項1から12までのいずれか一項に記載の光学系において、
     前記第3レンズ群中に開口絞りを有する光学系。
  14.  請求項1から13までのいずれか一項に記載の光学系において、
     開口絞りを有し、前記開口絞りの物体側に隣り合うレンズ面は物体側に凸の形状をしたレンズ面であり、前記開口絞りの像側に隣り合うレンズ面は像側に凸の形状をしたレンズ面である光学系。
  15.  請求項1から14までのいずれか一項に記載の光学系において、
     前記第3レンズ群は、最も物体側から順に隣り合って配置された正レンズと負レンズとを有する光学系。 
  16.  請求項1から15までのいずれか一項に記載の光学系において、
     前記第2レンズ群は、接合レンズを有し、前記接合レンズは、物体側から順に、正レンズと負レンズからなり、前記第2レンズ群は、前記接合レンズで構成されている、又は、物体側から順に、負レンズと前記接合レンズとで構成されている光学系。 
  17.  請求項1から16までのいずれか一項に記載の光学系において、
     前記第3レンズ群は、少なくとも一つの非球面を有する光学系。
  18.  請求項1から17までのいずれか一項に記載の光学系において、
     前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動する光学系。 
  19.  請求項1から18までのいずれか一項に記載の光学系において、
     前記第1レンズ群から前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含む光学系。
  20.  請求項19に記載の光学系において、
     前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下である光学系。
  21.  請求項1から20のいずれか一項に記載の光学系を備えた光学機器。
  22.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにし、
     以下の条件式を満足するようにする光学系の製造方法。
     1.00<f/(-f2)<2.40
    但し、
    f :前記光学系の無限遠合焦時の焦点距離
    f2:前記第2レンズ群の焦点距離
  23.  請求項22に記載の光学系の製造方法において、
     前記第1レンズ群から前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設けることを含み、
     前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含む光学系の製造方法。
  24.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     無限遠物体から近距離物体への合焦に際し、前記第2レンズ群が光軸に沿って移動するようにし、
     以下の条件式を満足するようにする光学系の製造方法。
     0.80<f/f1<1.60
    但し、
    f :前記光学系の無限遠合焦時の焦点距離
    f1:前記第1レンズ群の焦点距離
PCT/JP2016/051724 2015-01-23 2016-01-21 光学系、この光学系を有する光学機器、及び、光学系の製造方法 WO2016117652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16740259.3A EP3249437A4 (en) 2015-01-23 2016-01-21 Optical system, optical device comprising same, and method for producing optical system
US15/544,407 US11150385B2 (en) 2015-01-23 2016-01-21 Optical system, optical device comprising optical system, and method for manufacturing optical system
CN201680011705.0A CN107250869B (zh) 2015-01-23 2016-01-21 光学系统以及具备该光学系统的光学设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015011654A JP2016136213A (ja) 2015-01-23 2015-01-23 光学系、この光学系を有する光学機器、及び、光学系の製造方法
JP2015-011654 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016117652A1 true WO2016117652A1 (ja) 2016-07-28

Family

ID=56417182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051724 WO2016117652A1 (ja) 2015-01-23 2016-01-21 光学系、この光学系を有する光学機器、及び、光学系の製造方法

Country Status (5)

Country Link
US (1) US11150385B2 (ja)
EP (1) EP3249437A4 (ja)
JP (1) JP2016136213A (ja)
CN (1) CN107250869B (ja)
WO (1) WO2016117652A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136213A (ja) 2015-01-23 2016-07-28 株式会社ニコン 光学系、この光学系を有する光学機器、及び、光学系の製造方法
JP6991706B2 (ja) * 2016-11-30 2022-02-03 キヤノン株式会社 光学素子およびそれを有する光学系
US20210011256A1 (en) * 2017-12-20 2021-01-14 Nikon Corporation Optical system, optical equipment, and manufacturing method for optical system
JP6874206B2 (ja) * 2018-02-27 2021-05-19 オリンパス株式会社 内視鏡用対物光学系、及び内視鏡
JP7096065B2 (ja) * 2018-05-17 2022-07-05 株式会社タムロン 光学系及び撮像装置
CN109828353B (zh) * 2018-12-27 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
JP6780758B2 (ja) * 2019-10-11 2020-11-04 株式会社ニコン 光学系及びこの光学系を有する光学機器
JP2021086134A (ja) * 2019-11-29 2021-06-03 富士フイルム株式会社 撮像レンズおよび撮像装置
CN115542522B (zh) * 2021-06-30 2024-06-14 华为技术有限公司 一种变焦镜头、摄像头模组及移动终端

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134425A (en) * 1977-04-28 1978-11-24 Nippon Chemical Ind Large aperture ratio telescopic lens
JPH07325272A (ja) * 1994-05-31 1995-12-12 Nikon Corp 防振機能を備えたズームレンズ
JPH11119092A (ja) * 1997-10-16 1999-04-30 Canon Inc 防振機能を有したインナーフォーカス式の光学系
JP2003043348A (ja) * 2001-08-03 2003-02-13 Canon Inc 防振機能を有した光学系
JP2005321574A (ja) * 2004-05-07 2005-11-17 Nikon Corp 大口径比内焦望遠レンズ
WO2006030848A1 (ja) * 2004-09-16 2006-03-23 Nikon Corporation 非晶質酸化珪素バインダを有するMgF2光学薄膜、及びそれを備える光学素子、並びにそのMgF2光学薄膜の製造方法
JP2008145584A (ja) * 2006-12-07 2008-06-26 Canon Inc 光学系及びそれを有する撮像装置
US20090262439A1 (en) * 2008-04-21 2009-10-22 Samsung Digital Imaging Co., Ltd. Telephoto lens system
JP2013161076A (ja) * 2012-02-03 2013-08-19 Sigma Corp インナーフォーカス式望遠レンズ
JP2013246354A (ja) * 2012-05-28 2013-12-09 Sigma Corp 結像光学系
JP2014123018A (ja) * 2012-12-21 2014-07-03 Canon Inc 撮影光学系及びそれを有する撮像装置
US20140300804A1 (en) * 2013-04-08 2014-10-09 Samsung Electronics Co., Ltd. Telephoto lens system and electronic apparatus having the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852984A (en) * 1987-02-25 1989-08-01 Canon Kabushiki Kaisha Telephoto lens of large aperture ratio
JP3412964B2 (ja) * 1995-05-10 2003-06-03 キヤノン株式会社 防振機能を有した光学系
US6115188A (en) 1997-10-16 2000-09-05 Canon Kabushiki Kaisha Optical system and optical apparatus having the same
JP3505099B2 (ja) * 1999-02-04 2004-03-08 ペンタックス株式会社 中望遠レンズ
JP3746942B2 (ja) * 2000-08-09 2006-02-22 ペンタックス株式会社 望遠レンズ
JP4624534B2 (ja) * 2000-09-27 2011-02-02 富士フイルム株式会社 インナーフォーカス式のレンズ
CN100480736C (zh) * 2004-09-16 2009-04-22 尼康股份有限公司 MgF2光学薄膜和具备该薄膜的光学组件以及该薄膜的制造方法
JP5517546B2 (ja) 2009-10-05 2014-06-11 キヤノン株式会社 光学系及びそれを有する光学機器
JP5429244B2 (ja) 2011-06-27 2014-02-26 株式会社ニコン 光学系、光学装置
US8941921B2 (en) * 2010-08-30 2015-01-27 Nikon Corporation Optical system, optical apparatus, and method for manufacturing optical system
JP5628090B2 (ja) * 2011-05-20 2014-11-19 ソニー株式会社 インナーフォーカス式レンズ
JP6015333B2 (ja) * 2012-10-16 2016-10-26 リコーイメージング株式会社 大口径望遠レンズ系
JP6393029B2 (ja) * 2013-10-07 2018-09-19 株式会社タムロン 撮影レンズ及び撮影装置
JP2016009006A (ja) * 2014-06-23 2016-01-18 コニカミノルタ株式会社 撮像光学系,撮像光学装置及びデジタル機器
JP2016136213A (ja) 2015-01-23 2016-07-28 株式会社ニコン 光学系、この光学系を有する光学機器、及び、光学系の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134425A (en) * 1977-04-28 1978-11-24 Nippon Chemical Ind Large aperture ratio telescopic lens
JPH07325272A (ja) * 1994-05-31 1995-12-12 Nikon Corp 防振機能を備えたズームレンズ
JPH11119092A (ja) * 1997-10-16 1999-04-30 Canon Inc 防振機能を有したインナーフォーカス式の光学系
JP2003043348A (ja) * 2001-08-03 2003-02-13 Canon Inc 防振機能を有した光学系
JP2005321574A (ja) * 2004-05-07 2005-11-17 Nikon Corp 大口径比内焦望遠レンズ
WO2006030848A1 (ja) * 2004-09-16 2006-03-23 Nikon Corporation 非晶質酸化珪素バインダを有するMgF2光学薄膜、及びそれを備える光学素子、並びにそのMgF2光学薄膜の製造方法
JP2008145584A (ja) * 2006-12-07 2008-06-26 Canon Inc 光学系及びそれを有する撮像装置
US20090262439A1 (en) * 2008-04-21 2009-10-22 Samsung Digital Imaging Co., Ltd. Telephoto lens system
JP2013161076A (ja) * 2012-02-03 2013-08-19 Sigma Corp インナーフォーカス式望遠レンズ
JP2013246354A (ja) * 2012-05-28 2013-12-09 Sigma Corp 結像光学系
JP2014123018A (ja) * 2012-12-21 2014-07-03 Canon Inc 撮影光学系及びそれを有する撮像装置
US20140300804A1 (en) * 2013-04-08 2014-10-09 Samsung Electronics Co., Ltd. Telephoto lens system and electronic apparatus having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249437A4 *

Also Published As

Publication number Publication date
JP2016136213A (ja) 2016-07-28
EP3249437A1 (en) 2017-11-29
CN107250869A (zh) 2017-10-13
CN107250869B (zh) 2021-08-31
EP3249437A4 (en) 2019-01-02
US20180196168A1 (en) 2018-07-12
US11150385B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
JP5636668B2 (ja) レンズ系及び光学装置
WO2016117652A1 (ja) 光学系、この光学系を有する光学機器、及び、光学系の製造方法
JP5429244B2 (ja) 光学系、光学装置
JP5564959B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
US10459207B2 (en) Zooming optical system, optical apparatus, and manufacturing method for the zooming optical system
JP5403411B2 (ja) コンバータレンズ及びこれを有する光学装置
WO2016117651A1 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP5207121B2 (ja) 広角レンズ及びこれを有する撮像装置
JP5853715B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP6531402B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP5712749B2 (ja) ズームレンズ、撮像装置、ズームレンズの製造方法
JP2009198854A (ja) 広角レンズ、これを有する撮像装置及び結像方法
JP2015084037A (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5464380B2 (ja) 光学系、光学装置
JP5464379B2 (ja) 光学系、光学装置
JP2013083782A (ja) 光学系、光学装置、および光学系の製造方法
JP6780758B2 (ja) 光学系及びこの光学系を有する光学機器
JP2015212822A (ja) 光学系、該光学系を備えた撮像装置、光学系の製造方法
JP6435635B2 (ja) 光学系、光学装置
JP2012220804A (ja) レンズ系、光学機器及びレンズ系の製造方法
JP5861281B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
WO2012077278A1 (ja) ズームレンズ、撮像装置及びズームレンズの製造方法
JP6561478B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP5333955B2 (ja) ズームレンズ、撮像装置及びズームレンズの製造方法
JP5729099B2 (ja) ズームレンズ、撮像装置、ズームレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016740259

Country of ref document: EP