WO2016117571A1 - 転動疲労特性に優れた軸受用鋼材および軸受部品 - Google Patents

転動疲労特性に優れた軸受用鋼材および軸受部品 Download PDF

Info

Publication number
WO2016117571A1
WO2016117571A1 PCT/JP2016/051470 JP2016051470W WO2016117571A1 WO 2016117571 A1 WO2016117571 A1 WO 2016117571A1 JP 2016051470 W JP2016051470 W JP 2016051470W WO 2016117571 A1 WO2016117571 A1 WO 2016117571A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
oxide
rolling fatigue
content
oxide inclusions
Prior art date
Application number
PCT/JP2016/051470
Other languages
English (en)
French (fr)
Inventor
正樹 島本
木村 世意
裕己 太田
克浩 岩崎
章弘 大脇
杉村 朋子
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/545,357 priority Critical patent/US20180016653A1/en
Priority to EP16740178.5A priority patent/EP3249068A4/en
Priority to CN201680006179.9A priority patent/CN107208214A/zh
Priority to KR1020177020163A priority patent/KR20170096038A/ko
Priority to BR112017015350A priority patent/BR112017015350A2/pt
Publication of WO2016117571A1 publication Critical patent/WO2016117571A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/74Ferrous alloys, e.g. steel alloys with manganese as the next major constituent

Definitions

  • the present invention relates to a steel material for bearings and bearing parts having excellent rolling fatigue characteristics. Specifically, the present invention relates to a steel material for bearings that exhibits excellent rolling fatigue characteristics when used as a rolling element for bearings such as rollers, needles, balls, and races used in various industrial machines and automobiles. And a bearing component obtained from such a steel material for bearing.
  • the rolling fatigue characteristics are hard oxide inclusions such as Al 2 O 3 produced mainly when Al deoxidized steel is used, among oxide inclusions produced in steel. It was thought that rolling fatigue characteristics were improved by reducing the number density of the hard oxide inclusions. Therefore, attempts have been made to improve the rolling fatigue characteristics by reducing the oxygen content in the steel in the steelmaking process.
  • the composition of the generated oxide is mainly Al 2 O 3.
  • a method has been proposed.
  • Patent Document 1 discloses that the average composition of oxides is% by mass, CaO: 10 to 60%, Al 2 O 3 : 20% or less, MnO: 50% or less, and MgO: 15% or less, and the remaining SiO 2 and impurities.
  • the arithmetic average value of the maximum thickness of oxides and the arithmetic average value of the maximum thickness of sulfide existing in 10 areas of 100 mm 2 in the longitudinal direction of the longitudinal direction of the steel material are 8 respectively.
  • a bearing steel material having a diameter of 5 ⁇ m or less has been proposed.
  • Patent Document 2 discloses a high cleanliness Si deoxidized steel material in which the oxide inclusions described in Patent Document 1 contain a predetermined amount of ZrO 2 as an unprecedented oxide component.
  • Patent Document 3 discloses a spring steel having excellent fatigue resistance and a method for producing the same, by controlling the generation of REM inclusions to eliminate the harmful effects of harmful inclusions of alumina, TiN, and MnS.
  • alumina can be modified into REM-Al-O-S inclusions to prevent coarsening, and S can be immobilized as REM-Al-O-S inclusions.
  • a method is described in which coarse MnS is suppressed, and furthermore, the number density of harmful TiN is reduced by combining TiN with inclusions of REM-Al-OS.
  • Patent Document 4 is a technique disclosed by the present applicant. Specifically, in Patent Document 4, TiO 2 is contained in the oxide inclusions obtained by Si deoxidation, so that the crystallization of the oxide inclusions can be suppressed. It is described that a bearing steel material having extremely excellent rolling fatigue characteristics can be obtained by suppressing cavities generated at the interface with inclusions.
  • an oxide type inclusion is comprised from strong deoxidation elements like REM and Al, and does not mainly have weak deoxidation elements like Si, Separation generated at the interface with steel cannot be suppressed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel bearing steel material that is extremely excellent in rolling fatigue characteristics and can suppress early peeling.
  • the steel for bearings having excellent rolling fatigue characteristics according to the present invention that has solved the above-mentioned problems is, in mass%, C: 0.8 to 1.1%, Si: 0.15 to 0.8%, Mn: 0.1 to 1.0%, Cr: 1.3 to 1.8%, P: more than 0% to 0.05% or less, S: more than 0% to 0.015% or less, Al: 0.0002 to 0.005%, Ca: 0.0002 to 0.002%, Ti: 0.0005 to 0.010%, N: 0.0030 to 0.010%, O: more than 0% and 0.0030% or less
  • the balance is composed of iron and inevitable impurities, and the oxide inclusions having a minor axis of 1 ⁇ m or more contained in the steel have a gist where they satisfy the following requirements (1) and (2).
  • the average composition contains CaO: 10 to 50%, Al 2 O 3 : 10 to 50%, SiO 2 : 20 to 70%, TiO 2 : 1.0 to 40% by weight%, and the balance Consists of impurities and satisfies CaO + Al 2 O 3 + SiO 2 + TiO 2 ⁇ 60%.
  • the ratio of the number of oxide inclusions in which TiN is generated at the interface between the oxide inclusions and steel is 30% or more of the total oxide inclusions.
  • the average aspect ratio (major axis / minor axis) of the oxide inclusions present on the surface cut in parallel to the longitudinal direction of the steel material is suppressed to 3.0 or less. is there.
  • bearing parts obtained by using the above-described bearing steel are also included in the scope of the present invention.
  • the rolling fatigue characteristics are extremely excellent, and early peeling is suppressed. It was possible to provide a bearing steel material that can be used.
  • a steel material for bearings is not only useful as a material for bearing parts such as rollers, needles, balls, etc., in which radial loads are repeatedly applied, but is also repeatedly applied in struts, such as races. It is also useful as a material for bearing parts, and the rolling fatigue characteristics can be stably improved regardless of the direction in which the load is applied.
  • the inventors of the present invention have made further studies to provide a steel material for bearings having further excellent rolling fatigue characteristics after disclosing Patent Document 4 described above.
  • Patent Document 4 As a result, when TiN is generated at the interface between the oxide inclusions obtained by Si deoxidation and the steel, the adhesion at the interface is improved and the voids are suppressed, so that the rolling fatigue characteristics are further improved. There was found.
  • the holding time at the time of heating performed before, for example, partial rolling, partial forging, hot rolling, etc. may be controlled longer than before.
  • the headline and the present invention were completed.
  • the present inventors can stably improve the rolling fatigue characteristics regardless of the direction in which the load is applied without performing deoxidation treatment with Al.
  • the level of rolling fatigue characteristics has been studied from the viewpoint of providing a Si deoxidized steel material that is superior to the above-mentioned Patent Document 4.
  • oxide inclusions obtained by Si deoxidation are likely to be amorphous and easily stretched by hot rolling or the like. Therefore, anisotropy occurs in the oxide inclusions. As a result, anisotropy also occurs in the rolling fatigue characteristics of the steel material, which is not preferable.
  • by controlling the composition of the oxide inclusions it can be crystallized in a high temperature region such as hot working to obtain a polycrystal.
  • the oxide inclusions that have become polycrystalline have a higher deformation resistance than the parent phase steel, so the steel (matrix) and the oxide inclusions during hot working or cold working. It is easy to generate voids at the interface. The void generated at the interface is not preferable because it adversely affects the rolling fatigue characteristics.
  • the present inventors have intensively studied a method for suppressing the generation of voids by controlling not only the composition of the oxide inclusions obtained by Si deoxidation but also the state of TiN generation. As a result, when a predetermined amount of TiN is generated at the interface between the oxide inclusions obtained by Si deoxidation and the steel as the parent phase, it is possible to suppress peeling of the interface and to significantly improve rolling fatigue characteristics. I found it.
  • the composite inclusion composed of the above deoxidation product such as Al 2 O 3 and TiN tends to be coarsened, which is considered to adversely affect the rolling fatigue characteristics.
  • the coarsened Al 2 O 3 and the like it is necessary to generate a large amount of TiN, which rather causes coarsening of composite inclusions, which adversely affects rolling fatigue characteristics.
  • peeling occurs at the interface between the steel and an oxide inclusion such as Al 2 O 3 that could not be coated with TiN, the rolling fatigue characteristics of the steel material are degraded due to the peeling.
  • Patent Document 3 As described above, a number of techniques focusing on TiN generated at the interface between oxide inclusions and steel have been disclosed in the past, but all are directed to Al deoxidized steel as shown in Patent Document 3. However, only a technique for reducing the number density of harmful TiN and making it harmless is disclosed. The method of Patent Document 3 cannot suppress delamination generated at the interface between oxide inclusions and steel, which is harmful to rolling fatigue characteristics.
  • the present invention targets Si deoxidized steel, and does not produce a deoxidation product such as Al 2 O 3 that tends to be coarsened.
  • the steel material of the present invention produces a deoxidation product containing SiO 2 in a predetermined range and satisfying CaO + Al 2 O 3 + SiO 2 + TiO 2 ⁇ 60%.
  • These deoxidation products have a lower melting point than deoxidation products produced by Al deoxidation, such as Al 2 O 3 , and do not easily agglomerate in molten steel and tend to be coarse. Therefore, even if TiN is generated using a deoxidation product generated by Si deoxidation as a production nucleus to form a composite inclusion, the composite inclusion remains relatively fine.
  • TiN is excellent in lattice matching with ⁇ -Fe having a crystal structure of bcc. Therefore, it is considered that TiN improves the adhesion between the composite inclusion and the steel, and as a result, delamination at the interface between the composite inclusion and the steel is suppressed. As a result, it was found that the rolling fatigue characteristics tend to be dramatically improved.
  • Patent Document 4 in order to improve rolling fatigue characteristics, the main purpose is to maintain the oxide inclusions obtained by Si deoxidation in an amorphous body, and the holding time during the heating is described above. Was the same as before, and no special consideration was given.
  • the steel for bearings of the present invention having excellent rolling fatigue characteristics is in mass%, C: 0.8 to 1.1%, Si: 0.15 to 0.8%, Mn: 0.00.
  • the oxide inclusions having a minor axis of 1 ⁇ m or more, which are made of unavoidable impurities and are contained in the steel, are characterized by satisfying the following requirements (1) and (2).
  • the average composition contains CaO: 10 to 50%, Al 2 O 3 : 10 to 50%, SiO 2 : 20 to 70%, TiO 2 : 1.0 to 40% by weight%, and the balance Consists of impurities and satisfies CaO + Al 2 O 3 + SiO 2 + TiO 2 ⁇ 60%.
  • the number ratio of oxide inclusions in which TiN is generated at the interface between the oxide inclusions and steel is 30% or more.
  • C 0.8 to 1.1%
  • C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. In order to exert such effects, it is necessary to contain C at least 0.8% or more. However, if the C content exceeds 1.1% and becomes excessive, giant carbides are easily generated in the core of the bearing, which adversely affects rolling fatigue characteristics.
  • the minimum with preferable C content is 0.85% or more, More preferably, it is 0.90% or more.
  • the upper limit with preferable C content is 1.05% or less, More preferably, it is 1.0% or less.
  • Si 0.15 to 0.8%
  • Si has an effect of increasing hardness by increasing resistance to quenching and tempering.
  • the Si content needs to be 0.15% or more.
  • the minimum with preferable Si content is 0.20% or more, More preferably, it is 0.25% or more.
  • the upper limit with preferable Si content is 0.7% or less, More preferably, it is 0.6% or less.
  • Mn is an element that improves the solid solution strengthening and hardenability of the steel matrix. If the Mn content is less than 0.1%, the effect is not exhibited. If the Mn content is more than 1.0%, the content of MnO, which is a lower oxide, is increased and the rolling fatigue characteristics are deteriorated. Remarkably deteriorates.
  • the minimum with preferable Mn content is 0.2% or more, More preferably, it is 0.3% or more. Moreover, the upper limit with preferable Mn content is 0.8% or less, More preferably, it is 0.6% or less.
  • Cr 1.3-1.8%
  • Cr is an element effective in improving rolling fatigue characteristics by improving strength and wear resistance by improving hardenability and forming stable carbides.
  • the Cr content needs to be 1.3% or more.
  • the minimum with preferable Cr content is 1.35% or more, More preferably, it is 1.4% or more.
  • the upper limit with preferable Cr content is 1.7% or less, More preferably, it is 1.6% or less.
  • P is an impurity element that segregates at the grain boundaries and adversely affects the rolling fatigue characteristics.
  • P content exceeds 0.05%, the rolling fatigue characteristics are significantly deteriorated. Therefore, it is necessary to suppress the P content to 0.05% or less.
  • P is an impurity inevitably contained in the steel material, and it is difficult to make the amount 0% in industrial production.
  • S is an element that forms sulfides. If the content exceeds 0.015%, coarse sulfides remain, and therefore rolling fatigue characteristics deteriorate. Therefore, it is necessary to suppress the S content to 0.015% or less. From the viewpoint of improving rolling fatigue characteristics, the lower the S content, the more desirable, preferably 0.007% or less, and more preferably 0.005% or less. In addition, S is an impurity inevitably contained in the steel material, and it is difficult to make the amount 0% in industrial production.
  • Al 0.0002 to 0.005%
  • Al is a deoxidizing element, and it is necessary to control the Al content in order to control the average composition of oxide inclusions.
  • deoxidation treatment by addition of Al after oxidative refining is not performed unlike Al deoxidized steel.
  • the Al content increases and exceeds 0.005%, the amount of hard oxide mainly composed of Al 2 O 3 increases, and it remains as a coarse oxide even after the rolling down. Fatigue properties deteriorate. Therefore, the upper limit of the Al content is set to 0.005% or less.
  • the Al content is preferably 0.002% or less, and more preferably 0.0015% or less.
  • the Al content is less than 0.0002%, the Al 2 O 3 content in the oxide becomes too small, and oxide-based inclusions containing a large amount of SiO 2 are generated and rolling fatigue characteristics deteriorate. .
  • the lower limit of the Al content is set to 0.0002%. Preferably it is 0.0003% or more, More preferably, it is 0.0005% or more.
  • Ca 0.0002 to 0.002%
  • Ca is effective in controlling the CaO content in the oxide and improving the rolling fatigue characteristics.
  • the Ca content is set to 0.0002% or more.
  • the minimum with preferable Ca content is 0.0003% or more, More preferably, it is 0.0005% or more.
  • the upper limit with preferable Ca content is 0.0015% or less, More preferably, it is 0.0010% or less.
  • Ti is an element that characterizes the present invention.
  • a predetermined amount of Ti By adding a predetermined amount of Ti, a predetermined amount of TiN is generated at the interface between the oxide inclusions and the steel, and peeling of the interface can be suppressed.
  • the concentration of TiO 2 in the oxide inclusions can be controlled, and this effectively acts in reducing the aspect ratio (details will be described later), and the rolling fatigue characteristics are further improved.
  • the Ti content needs to be 0.0005% or more. However, if the Ti content increases and exceeds 0.010%, TiN coarsens and the TiO 2 oxide coarsens, which deteriorates rolling fatigue characteristics.
  • the upper limit of the Ti content is set to 0.010% or less.
  • the minimum with preferable Ti content is 0.0008% or more, More preferably, it is 0.0011% or more.
  • the upper limit with preferable Ti content is 0.0050% or less, More preferably, it is 0.0030% or less.
  • N is an element that characterizes the present invention.
  • TiN is generated at the interface between the oxide inclusions and the steel, and peeling at the interface can be suppressed.
  • the N content needs to be 0.0030% or more.
  • the upper limit of the N content is 0.010% or less.
  • the minimum with preferable N content is 0.0035% or more, More preferably, it is 0.004% or more.
  • the upper limit with preferable N content is 0.008% or less, More preferably, it is 0.007% or less.
  • O is an undesirable impurity element. If the O content increases and exceeds 0.0030%, coarse oxides are likely to be formed, and remain as coarse oxides even after hot rolling and cold rolling, adversely affecting rolling fatigue properties. Effect. Therefore, the upper limit of the O content is 0.0030% or less. In order to improve rolling fatigue characteristics, it is preferable to reduce the O content as much as possible. For example, the preferable upper limit of the O content is 0.0025% or less, more preferably 0.0020% or less.
  • the lower limit of the O content is not particularly limited from the viewpoint of improving rolling fatigue characteristics, but is preferably 0.0004% or more, more preferably 0.0008% or more in consideration of economy and the like. . In order to control the O content to less than 0.0004%, it is necessary to strictly remove O from the molten steel, but this is not economical because the treatment time for the molten steel becomes long.
  • the elements included in the present invention are as described above, and the balance is iron and inevitable impurities.
  • the inevitable impurities include elements brought in depending on conditions such as raw materials, materials, and manufacturing equipment. For example, mixing of As, H, Ni, or the like can be allowed.
  • oxide inclusions present in the steel material will be described.
  • the present invention is characterized in that the oxide inclusions having a minor axis of 1 ⁇ m or more contained in the steel satisfy the following requirements (1) and (2).
  • the average composition contains CaO: 10 to 50%, Al 2 O 3 : 10 to 50%, SiO 2 : 20 to 70%, TiO 2 : 1.0 to 40% by weight%, and the balance Consists of impurities and satisfies CaO + Al 2 O 3 + SiO 2 + TiO 2 ⁇ 60%.
  • the ratio of the number of oxide inclusions in which TiN is generated at the interface between the oxide inclusions and steel is 30% or more of the total oxide inclusions.
  • the reason for focusing attention on oxide inclusions having a minor axis of 1 ⁇ m or more is as follows. That is, the rolling fatigue characteristics are said to have a greater adverse effect as the size of oxide inclusions increases. Therefore, in order to evaluate large oxide inclusions that may adversely affect rolling fatigue characteristics, it was decided to control oxide inclusions of the above size.
  • CaO is effective in lowering the liquidus temperature of an oxide mainly composed of SiO 2 . Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusions and the steel. As a result, rolling fatigue characteristics are improved. CaO has an effect of crystallizing oxide inclusions. Therefore, it plays an important role in reducing the aspect ratio of oxide inclusions. Such an effect is obtained by controlling the CaO content in the average composition of oxide inclusions to 10% or more. However, if the CaO content is too high, the oxide inclusions become coarse and the rolling fatigue characteristics deteriorate, so the upper limit must be 50% or less. The minimum with preferable CaO content which occupies in an oxide type inclusion is 20% or more, More preferably, it is 25% or more. Moreover, the upper limit with preferable CaO content is 45% or less, More preferably, it is 40% or less.
  • Al 2 O 3 has an effect of lowering the liquidus temperature of an oxide mainly composed of SiO 2 . Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusion steel and the steel. As a result, rolling fatigue characteristics are improved.
  • Al 2 O 3 has an effect of crystallizing oxide inclusions. Therefore, it plays an important role in reducing the aspect ratio of oxide inclusions. Such an effect can be obtained by controlling the Al 2 O 3 content in the average composition of oxide inclusions to 10% or more.
  • the Al 2 O 3 content in the average composition of oxide inclusions exceeds 50%, an Al 2 O 3 (corundum) crystal phase is crystallized in the molten steel and in the solidification process, or together with MgO, MgO ⁇ Al 2
  • the O 3 (spinel) crystal phase crystallizes out.
  • These solid phases are hard and exist as coarse inclusions, and cavities are easily generated during processing, which deteriorates rolling fatigue characteristics.
  • the Al 2 O 3 content in the average composition of oxide inclusions needs to be 50% or less.
  • a preferable lower limit of the content of Al 2 O 3 in the oxide inclusions is 20% or more, more preferably 25% or more.
  • the preferable upper limit of the content of Al 2 O 3 is 45% or less, more preferably 40% or less.
  • SiO 2 has the effect of lowering the liquidus temperature of oxide inclusions. Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusions and the steel. As a result, rolling fatigue characteristics are improved. In order to exhibit such an effect effectively, it is necessary to contain 20% or more of SiO 2 in the oxide inclusions. However, if the SiO 2 content exceeds 70%, the oxide becomes coarse and the rolling fatigue characteristics deteriorate. Further, since the oxide is stretched to increase the aspect ratio, the rolling fatigue characteristics are deteriorated.
  • a preferable lower limit of the SiO 2 content in oxide-based inclusions is 25% or more, more preferably 30% or more. Also, a preferable upper limit of the SiO 2 content is 60% or less, more preferably 45% or less.
  • TiO 2 has an effect of lowering the liquidus temperature of an oxide mainly composed of SiO 2 . Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusions and the steel. As a result, rolling fatigue characteristics are improved. Such an effect is obtained by controlling the TiO 2 content in the average composition of the oxide inclusions to 1.0% or more. However, if the TiO 2 content is too high, the oxide becomes coarse and the rolling fatigue characteristics deteriorate, so the upper limit must be made 40% or less.
  • a preferable lower limit of the TiO 2 content in oxide-based inclusions is 3% or more, more preferably 5% or more. Also, a preferable upper limit of the TiO 2 content is 35% or less, more preferably 30% or less.
  • CaO + Al 2 O 3 + SiO 2 + TiO 2 ⁇ 60% As described above, CaO, Al 2 O 3 , SiO 2 , and TiO 2 are the main components of the oxide inclusions in the present invention, and the respective contents are controlled. The amount must also be controlled appropriately. Thereby, TiN of a predetermined ratio is produced
  • the preferable lower limit is 65% or more, and more preferably 70% or more. In addition, the upper limit is not specifically limited, For example, 100% may be sufficient.
  • the ratio of the number of oxide inclusions in which TiN is formed at the interface between the oxide inclusions and the parent phase steel (steel base phase) is 30% or more of the total oxide inclusions
  • the TiN generated at the interface means TiN generated at the interface between the oxide inclusions and the parent phase steel (steel base phase), as shown in the Examples section below. .
  • This TiN is extremely important for improving rolling fatigue characteristics, and the formation of TiN at the interface suppresses the separation of the interface between the oxide inclusions and the steel as the parent phase. As a result of interfacial delamination that is detrimental to rolling fatigue properties, rolling fatigue properties are improved.
  • the proportion of TiN generated at the interface is set to 30% or more. The larger the number ratio of TiN, the better.
  • the preferred lower limit is 40% or more, and more preferably 50% or more.
  • the upper limit is not specifically limited, For example, 100% may be sufficient.
  • the oxide contained in the steel of the present invention is composed of CaO, Al 2 O 3 , SiO 2 , and TiO 2 , and the balance is impurities.
  • the impurities in the oxide inclusions include impurities inevitably contained in the manufacturing process. Impurities do not adversely affect the crystallization state and aspect ratio of oxide inclusions and can be included as long as desired characteristics can be obtained. However, the total impurities (total amount) are generally controlled to 20% or less. It is preferable that Specifically, for example, REM 2 O 3 , MgO, MnO, ZrO 2 , Na 2 O, K 2 O, Li 2 O, Cr 2 O 3 , NbO, FeO, Fe 3 O 4 , and Fe 2 O 3 are respectively used.
  • REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
  • the aspect ratio (major axis / short axis) of the oxide inclusions existing on the plane cut in parallel to the longitudinal direction of the steel material is obtained.
  • (Average diameter) (hereinafter, sometimes simply referred to as an aspect ratio) is reduced to 3.0 or less.
  • the aspect ratio is preferably 2.5 or less, and more preferably 2.0 or less.
  • a preferable melting method for obtaining the oxide composition is as follows.
  • the preferable control method of TiN is as follows. First, during melting in accordance with a conventional method, the Ti content contained in the steel is controlled within the range of 0.0005 to 0.010% as described above, and the N content is controlled within the range of 0.0030 to 0.010% as described above. Ti and N may be added as described above.
  • the addition method of Ti is not specifically limited, For example, you may adjust by adding the iron-type alloy containing Ti, or you may control Ti concentration in molten steel by control of a slag composition.
  • the method of adding N is not particularly limited, and may be adjusted by adding an alloy containing N, or may be controlled using nitrogen when the molten steel is gas-stirred, or brought into contact with the molten steel. The nitrogen partial pressure in the gas phase may be controlled.
  • heating (about 700) is performed before at least one of the steps of crack rolling, crack forging, or hot rolling. (1300 ° C.), it is effective to control the holding time above a certain level. For example, it is effective to control the holding time at the time of heating performed before crack rolling or cracking forging to be longer than the conventional one (approximately 1 to 1.5 hours) to about 2.0 hours or more. The longer the holding time, the better, for example, preferably 2.5 hours or more, and more preferably 3.0 hours or more.
  • the upper limit is not specifically limited, when manufacturing efficiency etc. are considered, it is preferable to control to about 20.0 hours or less in general.
  • the holding temperature is different depending on each step, it is recommended to set a preferable holding time corresponding to the holding temperature.
  • control method of TiO 2 is not particularly limited, and based on a method usually used in the technical field, the Ti content contained in the steel at the time of melting is 0.0005 to 0.010% as described above. Ti may be added so as to be controlled within the range.
  • the addition method of Ti is not specifically limited, For example, you may adjust by adding the iron-type alloy containing Ti, or you may control Ti concentration in molten steel by control of a slag composition.
  • SiO 2 is obtained by controlling other oxides as described above.
  • the steel material controlled to the chemical composition as described above is subjected to hot working or cold working after rolling and spheroidizing annealing according to a conventional method.
  • the shape of the steel material stage includes both a linear shape and a rod shape applicable to such production, and the size can be appropriately determined according to the final product.
  • bearing parts examples include rollers, needles, balls, and races.
  • Ni—Ca alloy was used as the Ca source
  • Fe—Ti alloy was used as the Ti source.
  • N was adjusted by controlling the nitrogen partial pressure in the atmosphere and adding manganese nitride before adding the Ti source.
  • test piece for measuring average composition of oxide inclusion and determination of average composition The hot rolled material is heated at a temperature of 760 to 800 ° C. for 2 to 8 hours, and then cooled to a temperature of (Ar 1 transformation point ⁇ 60 ° C.) at an average cooling rate of 10 to 15 ° C./hour, and then the atmosphere
  • a spheroidizing annealing material in which spheroidizing cementite was dispersed was obtained.
  • a test piece having a diameter of 60 mm and a thickness of 30 mm was cut out from the spheroidized annealing material thus obtained, heated at a temperature of 840 ° C. for 30 minutes, then oil-quenched, and then tempered at a temperature of 160 ° C. for 120 minutes.
  • a test piece for measuring the average composition of oxide inclusions was prepared.
  • the analysis target elements are Ca, Al, Si, Ti, Ce, La, Mg, Mn, Zr, Na, K, Cr, and O (oxygen), and the X-ray intensity and element concentration of each element are measured using known substances.
  • the relationship is obtained in advance as a calibration curve, the amount of elements contained in each micro sample is quantified from the X-ray intensity obtained from the oxide inclusions to be analyzed and the calibration curve, and the result is arithmetically averaged. Thus, the average composition of inclusions was obtained.
  • inclusions having an oxygen content of 5% or more were defined as oxides.
  • the composition of the oxide was calculated in terms of the X-ray intensity ratio indicating the presence of these elements and converted into a single oxide of each element.
  • what was converted into mass as said single oxide was averaged, and it was set as the average composition of the oxide.
  • the oxide of REM exists in the form of M 2 O 3 , M 3 O 5 , MO 2, etc. in the steel material. The product was converted to M 2 O 3 and the average composition of the REM oxide was calculated.
  • the average aspect ratio of the oxide inclusions was obtained by arithmetically averaging the results.
  • oxide inclusions having a minor axis of 1 ⁇ m or more were selected.
  • oxide inclusions having a minor axis of 1 ⁇ m or more were selected.
  • selection criteria for the five oxide inclusions five oxide inclusions in the observation area of 100 mm 2 were selected in order from the largest in size.
  • the reason why the oxide inclusions having the largest size is selected is that the rolling fatigue characteristics are said to have a greater adverse effect as the size of the oxide inclusions increases.
  • the size of the oxide inclusions was compared by the area of the oxide inclusions appearing on the observation surface. Thereafter, the oxide inclusions were thinned to a thickness at which the oxide inclusions could be observed with a TEM by FIB method (Focused Ion Beam, focused ion beam processing method).
  • a focused ion beam processing observation apparatus FB2000A manufactured by Hitachi, Ltd. was used, an acceleration voltage of 30 kV, and Ga as an ion source. Thereafter, the flaked oxide inclusions were observed by TEM.
  • the apparatus uses a JEM-2010F field emission transmission electron microscope manufactured by JEOL, and an EDX with respect to the interface between oxide inclusions and steel in a Noran EDX (Energy dispersive X-ray spectroscopy) analyzer Vantage. Analysis was performed.
  • the analysis target elements are Ca, Al, Si, Ti, Ce, La, Mg, Mn, Zr, Na, K, and Cr.
  • a phase having a Ti concentration of 30% or more is selected, and electron diffraction is performed on the phase.
  • the identification analysis by was carried out, and the one showing the cubic crystal structure was judged to be TiN.
  • TiN is generated at the interface between the target oxide inclusions and steel (the interface between the oxide inclusions and the steel (base phase of the steel material)) (that is, TiN).
  • TiN is generated at the interface between the target oxide inclusions and steel (the interface between the oxide inclusions and the steel (base phase of the steel material))
  • it is determined that TiN is present) and it is determined that there are oxide inclusions in which TiN is formed at the interface between the oxide inclusions and the steel, and five oxidations measured.
  • the ratio of the number of oxide inclusions that are present in the above-mentioned TiN and present in the inclusions was measured.
  • thrust rolling fatigue test piece obtained in this way, with a thrust fatigue testing machine (thrust type rolling fatigue testing machine “FJ-5T”, manufactured by Fuji Testing Machine Co., Ltd.), a load speed of 1200 rpm and the number of steel balls A thrust rolling fatigue test was performed under the conditions of three, a surface pressure of 5.24 GPa, and a stop count of 200 million.
  • a thrust fatigue testing machine thrust type rolling fatigue testing machine “FJ-5T”, manufactured by Fuji Testing Machine Co., Ltd.
  • L 10 life As a rolling fatigue life scale, fatigue life L 10 (the number of stress repetitions until fatigue failure at a cumulative failure probability of 10%, hereinafter may be referred to as “L 10 life”) is usually used. Specifically, L 10 means the number of repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting the test results on Weibull probability paper ("Bearing", Iwanami Zensho, Nobunori Hamada reference). For each steel, it was determined L 10 life tested above using the 16 samples. Next, the conventional steel material No. They determined the life ratio of the L 10 life of each steel material for 49 L 10 life (1.2 ⁇ 10 7 times), and evaluated according to the following criteria.
  • the life ratio of “OK” (4.5 times or more), which is the lowest level of the above acceptance criteria, is the test No. in Table 2 in which the highest life ratio was obtained in the example of Patent Document 4 described above. 11, Test No. 35 (lifetime ratio 3.5 times), and in this example, a higher acceptance standard than that of Patent Document 4 is set.
  • test no. 8 to 12, 15 to 19, 22 to 24, 27 to 29, 32 to 35, 38 to 46, and 48 are all chemical component compositions (chemical component composition and oxide composition of steel) and TiN defined in the present invention. It can be seen that the ratio of the number of oxides is satisfied, and the aspect ratio of the oxide inclusions is appropriately controlled, so that the rolling fatigue life is excellent.
  • the rolling fatigue characteristics in the thrust direction are measured.
  • the steel material of the present invention has a small aspect ratio, it is presumed that the rolling fatigue characteristics in the radial direction are also good.
  • Test No. No. 1 is steel No. 1 in Table 1 with a large amount of C in steel.
  • Example No. 1 shows the steel No. in Table 1 with a large amount of Mn in steel.
  • Example No. 2 shows the steel No. in Table 1 with a large amount of Mn in steel.
  • Example No. 3 is a steel No. of Table 1 with a large amount of Cr in the steel.
  • Example No. 3 is a steel No. of Table 1 with a large amount of Cr in the steel.
  • test no. No. 4 is a steel No. in Table 1 with a small amount of Cr in the steel.
  • Example No. 4 shows the steel No. in Table 1 with a large amount of P in steel.
  • Example No. 5 test no. No. 6 is a steel No. in Table 1 with a large amount of S in steel. No. 6 was used, and in all cases, the rolling fatigue characteristics decreased.
  • Test No. No. 7 is a steel No. 1 in Table 1 having an excessive Al content.
  • the content of Al2O3 in the oxide was increased, and the rolling fatigue characteristics were lowered.
  • test no. No. 13 is a steel No. in Table 1 with insufficient Al content, Ca content, and Ti content. 13 is an example. Test No. above. In No. 13, the oxides of Al, Ca, and Ti are all out of the range defined in the present invention, TiN is not generated, and the aspect ratio of the oxide inclusions is also outside, so that the rolling fatigue characteristics are deteriorated. .
  • Test No. No. 14 is a steel No. of Table 1 having a large Ca content.
  • the CaO content in the oxide was large, and the rolling fatigue characteristics were reduced.
  • test no. No. 20 is a steel No. of Table 1 with a low Ca content.
  • the CaO content in the oxide was small and the rolling fatigue characteristics were reduced.
  • Test No. No. 21 is a steel No. of Table 1 having a large Ti content.
  • the content of TiO 2 in the oxide was large, and the rolling fatigue characteristics deteriorated.
  • test no. No. 25 is a steel No. in Table 1 having a low Ti content.
  • the TiO 2 content in the oxide is small, and TiN is not generated.
  • Test No. No. 26 is a steel No. in Table 1 having a large N content. In this example, the rolling fatigue characteristics were reduced.
  • Test No. 30 is a steel No. in Table 1 having a low N content. In this example, rolling fatigue characteristics were deteriorated because predetermined TiN was not generated.
  • Test No. No. 31 is a steel No. 1 in Table 1 having a large O content. In this example, the rolling fatigue characteristics were reduced.
  • Test No. No. 36 is the steel No. of Table 1 with a small total amount of (CaO + Al 2 O 3 + SiO 2 + TiO 2 ). In this example, rolling fatigue characteristics were deteriorated because predetermined TiN was not generated.
  • Test No. No. 37 is an example in which the holding time of the heating furnace is short, and since predetermined TiN is not generated, the rolling fatigue characteristics deteriorated.
  • Test No. No. 49 is a steel No. 49 in Table 1 obtained by Al deoxidation treatment. 49 (conventional aluminum killed steel), the Al content becomes excessive, the Al 2 O 3 content in the oxide becomes very high, and the desired TiO 2 and the like are not produced at all. In addition, since the predetermined TiN was not generated, the rolling fatigue characteristics were deteriorated.
  • the bearing steel of the present invention has excellent rolling fatigue characteristics and is useful as a rolling element for bearings such as rollers, needles, balls, and races.

Abstract

 本発明の軸受用鋼材は、所定の鋼中成分を含み、鋼中に含まれる短径1μm以上の酸化物系介在物が、下記(1)および(2)を満足する。 (1)平均組成がCaO、Al、SiO、TiOをそれぞれ特定量含有し、CaO+Al+SiO+TiO≧60% (2)酸化物系介在物と鋼との界面における、TiNが生成している酸化物系介在物の個数割合が酸化物系介在物全体の30%以上

Description

転動疲労特性に優れた軸受用鋼材および軸受部品
 本発明は、転動疲労特性に優れた軸受用鋼材および軸受部品に関する。詳細には本発明は、各種産業機械や自動車等に使用される、コロ、ニードル、玉、レース等の軸受用の転動体として用いたときに、優れた転動疲労特性を発揮する軸受用鋼材、およびこのような軸受用鋼材から得られる軸受部品に関する。
 各種産業機械や自動車等の分野に使用される軸受用の転動体には、ラジアル方向(回転体の軸と垂直方向)から高い繰り返し応力が付与される。そのため、軸受用の転動体には転動疲労特性に優れることが求められている。転動疲労特性への要求は、産業機械類の高性能化、軽量化に対応して、年々厳しくなっており、軸受部品の更なる耐久性向上のため、軸受用鋼材にはより一層良好な転動疲労特性が求められている。
 従来、転動疲労特性は、鋼中に生成する酸化物系介在物のなかでも、主にAl脱酸鋼を用いたときに生成するAl等のような、硬質酸化物系介在物の個数密度と深く相関しており、上記硬質酸化物系介在物の個数密度を低減することによって転動疲労特性が改善すると考えられていた。そのため、製鋼プロセスにおいて、鋼中の酸素含有量を低減して転動疲労特性を改善する試みがなされてきた。
 しかしながら近年では、転動疲労特性と、酸化物系介在物に代表される非金属系介在物の関係に関する研究が進み、酸化物系介在物の個数密度と転動疲労特性とは必ずしも相関関係がないことが判明している。即ち、転動疲労特性は、非金属系介在物のサイズ、例えば非金属系介在物の面積の平方根と密接な相関関係があり、転動疲労特性を改善するには、非金属系介在物の個数密度を低減するよりも、非金属系介在物のサイズを小さくすることが有効であることが明らかになっている。
 そこで、従来のようなAl脱酸鋼を用いるのではなく、鋼中のAl含有量を極力抑えると共に、Si脱酸鋼にすることで、生成する酸化物の組成を、Al主体ではなくSiO、CaOなどを主体とする組成に制御し、これにより、圧延工程で非金属系介在物を延伸、分断させて非金属系介在物のサイズを低減し、転動疲労特性を改善する方法が提案されている。
 例えば特許文献1には、酸化物の平均組成を質量%で、CaO:10~60%、Al:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO及び不純物からなると共に、鋼材の長手方向縦断面の10箇所の100mmの面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする軸受鋼材が提案されている。
 また、特許文献2には、上記特許文献1に記載の酸化物系介在物に、従来にない酸化物成分としてZrOを所定量含む高清浄度Si脱酸鋼材が開示されている。
 また、特許文献3には、REM介在物の生成を制御して、アルミナ、TiN、及びMnSの有害な介在物の悪影響を解消し、優れた耐疲労特性を有するばね用鋼とその製造方法が記載されている。詳細には上記特許文献3には、アルミナをREM-Al-O-S介在物へと改質して粗大化を防止でき、かつ、SをREM-Al-O-S介在物として固定化して粗大MnSを抑制し、さらに、REM-Al-O-Sの介在物にTiNを複合させることにより有害なTiNの個数密度を減らす方法が記載されている。
 また、特許文献4は本願出願人によって開示された技術である。詳細には上記特許文献4には、Si脱酸で得られる酸化物系介在物中にTiOを含むことで上記酸化物系介在物の結晶化を抑制でき、母相の鋼と酸化物系介在物との界面に発生する空洞を抑制することで転動疲労特性に極めて優れた軸受用鋼材が得られることが記載されている。
日本国特開2009-30145号公報 日本国特開2010-202905号公報 日本国特開2013-108171号公報 日本国特開2014-25083号公報
 しかしながら、上記特許文献1では、鋼と酸化物系介在物の界面の空洞に関して、空洞を抑制する取組みが行われていないため、充分な転動疲労特性が得られているとはいえない。 
 上記特許文献2にも、上記界面の剥離によって生じる空洞に関する記載は一切ない。そもそも非金属系介在物全体の微細化のみに主眼を置いた技術であり、実施例の評価においても、ASTM E 45法のC系介在物評点の算術平均値で評価されているに過ぎない。従って、このようにして製造された鋼材が、必ずしも優れた転動疲労特性を発揮するとは限らない。
 また、上記特許文献3では、酸化物系介在物がREMやAlのような強脱酸元素から構成されており、Siのような弱脱酸元素を主体としていないため、酸化物系介在物と鋼との界面に生成する剥離を抑制することはできない。
 軸受用鋼材における耐転動疲労特性の改善要求は強く、上記特許文献4の軸受用鋼材においても、転動疲労特性の更なる向上が望まれている。
 本発明は上記事情に鑑みてなされたものであり、その目的は、転動疲労特性に極めて優れており、早期剥離を抑制することのできる新規な軸受用鋼材を提供することにある。
 上記課題を解決することのできた本発明に係る転動疲労特性に優れた軸受用鋼材は、質量%で、C:0.8~1.1%、Si:0.15~0.8%、Mn:0.1~1.0%、Cr:1.3~1.8%、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002~0.005%、Ca:0.0002~0.002%、Ti:0.0005~0.010%、N:0.0030~0.010%、O:0%超0.0030%以下を含有し、残部は鉄及び不可避的不純物からなり、鋼中に含まれる短径1μm以上の酸化物系介在物が、下記(1)および(2)の要件を満足するところに要旨を有する。
(1)平均組成が、質量%で、CaO:10~50%、Al:10~50%、SiO:20~70%、TiO:1.0~40%を含有し、残部は不純物からなると共に、CaO+Al+SiO+TiO≧60%を満足する。
(2)前記酸化物系介在物と鋼との界面にTiNが生成している酸化物系介在物の個数割合が酸化物系介在物全体の30%以上である。 
 本発明の好ましい実施例において、上記鋼材の長手方向に平行に切断した面に存在する前記酸化物系介在物のアスペクト比(長径/短径)の平均が3.0以下に抑制されたものである。 
 本発明には、上記の軸受用鋼材を用いて得られる軸受部品も本発明の範囲内に包含される。
 本発明によれば、鋼材の化学成分組成および鋼中に含まれる酸化物系介在物の組成が適切に制御されているため、転動疲労特性に極めて優れており、早期剥離を抑制することができる軸受用鋼材を提供することができた。このような軸受用鋼材は、コロ、ニードル、玉等、主にラジアル方向の荷重が繰り返し付与される軸受部品の素材として有用であるのみならず、レース等、ストラス方向の荷重も繰り返し付与される軸受部品の素材としても有用であり、荷重の付与される方向にかかわらず転動疲労特性を安定的に改善することができる。
 本発明者らは、前述した特許文献4を開示した後も、転動疲労特性に一層優れた軸受用鋼材を提供するため、更に検討を重ねてきた。その結果、Si脱酸で得られる酸化物系介在物と鋼の界面にTiNが生成すると、当該界面の密着性が向上して空隙が抑制される結果、転動疲労特性がより一層改善することが判明した。更に上記所定割合のTiNを生成させるためには、例えば分塊圧延、分塊鍛造、熱間圧延などの前に行われる加熱時の保持時間を、従来よりも長目に制御すれば良いことを見出し、本発明を完成した。
 以下、本発明に到達した経緯を、上記特許文献4、更には上記特許文献3との関係で詳しく説明する。
 本発明者らは上記特許文献4と同様、「Alによる脱酸処理を行なわなくても、荷重の付与される方向にかかわらず転動疲労特性を安定的に改善することができ、早期剥離を抑制できる軸受用のSi脱酸鋼材の提供」を目的とし、転動疲労特性のレベルは、上記特許文献4よりも一層優れたSi脱酸鋼材を提供するとの観点から検討を重ねてきた。
 Si脱酸で得られる酸化物系介在物は非晶質となり易く、熱間圧延などで延伸し易いことが知られている。そのため、酸化物系介在物に異方性が生じてしまう。その結果、鋼材の転動疲労特性においても異方性が生じてしまうため、好ましくない。その一方で、酸化物系介在物の組成を制御することで熱間加工などの高温域で結晶化し、多結晶体とすることも可能である。しかしながら、多結晶体となった酸化物系介在物は、母相である鋼に比べて変形抵抗が高いため、熱間加工や冷間加工時に鋼(母相)と酸化物系介在物との界面に空隙を発生し易い。界面に発生した空隙は、転動疲労特性に悪影響を及ぼすため、好ましくない。
 そこで本発明者らは、Si脱酸で得られる上記酸化物系介在物の組成のみならずTiNの生成状況を制御することによって空隙の発生を抑制する方法について鋭意検討した。その結果、Si脱酸で得られる上記酸化物系介在物と母相である鋼の界面に所定量のTiNを生成させると上記界面の剥離を抑制でき、転動疲労特性が著しく向上することを見出した。
 なお、TiNに関しては、前述した特許文献3に示すように、疲労特性に有害であるとの報告が多数行われている。しかしながら、上記報告は全て、特許文献3のようにAl脱酸鋼において生成するTiNに関するものである。つまり、Al脱酸鋼の場合、Alなど[その他、MgO・Al、(Ca,Al)系酸化物なども含む]の脱酸生成物が溶鋼中に固相で生成するため、上記脱酸生成物を生成核としてTiNが生成し易い。また、Alなどは溶鋼中で凝集して粗大化し易いため、Alなどに生成したTiNも粗大化する傾向にある。その結果、Alなどの上記脱酸生成物とTiNからなる複合介在物は粗大化する傾向にあり、転動疲労特性に悪影響を及ぼすと考えられる。また、粗大化したAlなどの大部分をTiNで被覆するためには、多量のTiNを生成させる必要があり、かえって複合介在物の粗大化を招き、転動疲労特性に悪影響を及ぼす。更に、TiNで被覆できなかったAlなどの酸化物系介在物と鋼との界面には剥離が生じるため、その剥離が原因となって鋼材の転動疲労特性が低下してしまう。
 このように従来においても、酸化物系介在物と鋼との界面に生成するTiNに着目した技術は多数開示されているが、いずれも特許文献3に示すようにAl脱酸鋼を対象とするものであり、有害なTiNの個数密度を低減して無害化する技術が開示されているに過ぎない。上記特許文献3の方法では、転動疲労特性に有害な酸化物系介在物と鋼との界面に生成する剥離を抑制することはできない。
 これに対して、本発明ではSi脱酸鋼を対象とし、Alなどのような粗大化し易い脱酸生成物は生成しない。詳細は後述するが本発明の鋼材は、SiOを所定範囲含み、CaO+Al+SiO+TiO≧60%を満足する脱酸生成物が生成する。これらの脱酸生成物は、AlなどのAl脱酸で生成する脱酸生成物に比べて低融点であり、溶鋼中で凝集し難く、粗大化し難い傾向にある。そのため、Si脱酸で生成した脱酸生成物を生成核としてTiNが生成して複合介在物が形成されても、当該複合介在物は比較的微細なままである。また、TiNは、結晶構造がbccであるα-Feとの格子整合性に優れていることは良く知られている。そのため、TiNにより、上記複合介在物と鋼との密着性が良好となり、その結果、上記複合介在物と鋼の界面の剥離が抑制されると考えられる。その結果、転動疲労特性が飛躍的に改善される傾向にあることが判明した。
 なお、所定量のTiNを確保するためには、前述したように分解圧延などの前に行われる加熱時の保持時間を従来よりも長く行うことが必要である。この点、上記特許文献4では、転動疲労特性を改善するために、Si脱酸で得られる酸化物系介在物を非晶質体に維持することに主眼を置き、上記加熱時の保持時間は従来と同様であり、特段の配慮は全く行っていなかった。上記特許文献4における転動疲労特性のレベルを高めるに当たって、本発明者らが検討した結果、これまで留意していなかった、上記加熱時の保持時間を従来よりも長く行うと、上記酸化物系介在物と鋼の界面にTiNが生成し、酸化物系介在物と鋼の界面の密着性が向上して空隙が抑制され、転動疲労特性がより一層改善することが判明して、本発明を完成した。
 以下、本発明の軸受用鋼材について詳しく説明する。上述したように本発明に係る転動疲労特性に優れた軸受用鋼材は、質量%で、C:0.8~1.1%、Si:0.15~0.8%、Mn:0.1~1.0%、Cr:1.3~1.8%、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002~0.005%、Ca:0.0002~0.002%、Ti:0.0005~0.010%、N:0.0030~0.010%O:0%超0.0030%以下を含有し、残部は鉄及び不可避的不純物からなり、鋼中に含まれる短径1μm以上の酸化物系介在物が、下記(1)および(2)の要件を満足するところに特徴がある。
(1)平均組成が、質量%で、CaO:10~50%、Al:10~50%、SiO:20~70%、TiO:1.0~40%を含有し、残部は不純物からなると共に、CaO+Al+SiO+TiO≧60%を満足する。
(2)前記酸化物系介在物と鋼との界面にTiNが生成している酸化物系介在物の個数割合が30%以上である。 
 まず、鋼中成分について説明する。 
[C:0.8~1.1%]
 Cは、焼入硬さを増大させ、室温、高温における強度を維持して耐磨耗性を付与するための必須の元素である。こうした効果を発揮させるためには、Cは少なくとも、0.8%以上含有させる必要がある。しかしながら、C含有量が1.1%を超えて過剰になると、軸受の芯部に巨大炭化物が生成し易くなり、転動疲労特性に悪影響を及ぼすようになる。C含有量の好ましい下限は0.85%以上、より好ましくは0.90%以上である。また、C含有量の好ましい上限は1.05%以下、より好ましくは1.0%以下である。
[Si:0.15~0.8%]
 Siは、脱酸元素として有効に作用する他、焼入れ・焼戻し軟化抵抗を高めて硬さを高める作用を有している。こうした効果を有効に発揮させるためには、Si含有量は、0.15%以上とする必要がある。しかしながら、Si含有量が過剰になって0.8%を超えると、鍛造時に金型寿命が低下するばかりか、コスト増加を招くことになる。Si含有量の好ましい下限は0.20%以上、より好ましくは0.25%以上である。また、Si含有量の好ましい上限は0.7%以下、より好ましくは0.6%以下である。
[Mn:0.1~1.0%]
 Mnは、鋼材マトリックスの固溶強化および焼入れ性を向上させる元素である。Mn含有量が0.1%を下回るとその効果が発揮されず、1.0%を上回ると低級酸化物であるMnO含有量が増加し、転動疲労特性を悪化させる他、加工性や切削性が著しく低下する。Mn含有量の好ましい下限は0.2%以上、より好ましくは0.3%以上である。また、Mn含有量の好ましい上限は0.8%以下、より好ましくは0.6%以下である。
[Cr:1.3~1.8%]
 Crは、焼入れ性の向上と安定な炭化物の形成によって、強度および耐磨耗性を向上させ、これによって転動疲労特性の改善に有効な元素である。こうした効果を発揮させるためには、Cr含有量は、1.3%以上とする必要がある。しかしながら、Cr含有量が過剰になって1.8%を超えると、炭化物が粗大化して、転動疲労特性および切削性を低下させる。Cr含有量の好ましい下限は1.35%以上、より好ましくは1.4%以上である。また、Cr含有量の好ましい上限は1.7%以下、より好ましくは1.6%以下である。
[P:0%超0.05%以下] 
 Pは、結晶粒界に偏析して転動疲労特性に悪影響を及ぼす不純物元素である。特に、P含有量が0.05%を超えると、転動疲労特性の低下が著しくなる。従って、P含有量は0.05%以下に抑制する必要がある。好ましくは0.03%以下、より好ましくは0.02%以下とするのが良い。尚、Pは鋼材に不可避的に含まれる不純物であり、その量を0%にすることは、工業生産上、困難である。 
[S:0%超0.015%以下] 
 Sは、硫化物を形成する元素であり、その含有量が0.015%を超えると、粗大な硫化物が残存するため、転動疲労特性が劣化する。従って、Sの含有量は0.015%以下に抑制する必要がある。転動疲労特性の向上という観点からは、S含有量は低ければ低いほど望ましく、好ましくは0.007%以下、より好ましくは0.005%以下とするのが良い。尚、Sは鋼材に不可避的に含まれる不純物であり、その量を0%にすることは、工業生産上、困難である。
[Al:0.0002~0.005%]
 Alは脱酸元素であり、酸化物系介在物の平均組成を制御するためにAlの含有量を制御する必要がある。本発明ではSiによる脱酸を行うため、Al脱酸鋼のように酸化精錬後のAl添加による脱酸処理は行わない。Al含有量が多くなり、0.005%を超えると、Alを主体とする硬質な酸化物の生成量が多くなり、しかも圧下した後も粗大な酸化物として残存するので、転動疲労特性が劣化する。従って、Al含有量の上限を0.005%以下とする。Al含有量は、好ましくは0.002%以下であり、より好ましくは0.0015%以下である。但し、Al含有量を0.0002%未満にすると、酸化物中のAl含有量が少なくなり過ぎ、SiOを多く含む酸化物系介在物が生成して転動疲労特性が劣化する。また、Al含有量を0.0002%未満に制御するためには、Alの混入を抑制するために、鋼中成分のみならず、フラックス中のAl含有量も少なくする必要があるが、高炭素鋼である軸受鋼においてAl含有量の少ないフラックスは非常に高価であり、経済的でない。従って、Al含有量の下限を0.0002%とする。好ましくは0.0003%以上であり、より好ましくは0.0005%以上である。
[Ca:0.0002~0.002%]
 Caは、酸化物中のCaO含有量を制御し、転動疲労特性を改善するのに有効である。このような効果を発揮させるため、Ca含有量は0.0002%以上とする。しかしながら、Ca含有量が過剰になって0.002%を超えると、酸化物組成におけるCaOの割合が高くなり過ぎてしまい、酸化物が粗大化して転動疲労特性が低下する。従って、Ca含有量は0.002%以下とする。Ca含有量の好ましい下限は0.0003%以上であり、より好ましくは0.0005%以上である。また、Ca含有量の好ましい上限は0.0015%以下であり、より好ましくは0.0010%以下である。
[Ti:0.0005~0.010%]
 Tiは、本発明を特徴付ける元素である。所定量のTiを添加することで、酸化物系介在物と鋼との界面に所定量のTiNが生成され、上記界面の剥離を抑制できる。その結果、転動疲労特性が改善する。更に、酸化物系介在物中のTiO濃度を制御することができ、アスペクト比の低減化(詳細は後述する。)にも有効に作用し、転動疲労特性が一層向上する。このような効果を得るためには、Ti含有量は0.0005%以上とする必要がある。ただし、Tiの含有量が多くなって0.010%を超えると、TiNが粗大化すると共に、TiO系酸化物の粗大化を招き、転動疲労特性が悪化する。よって、Ti含有量の上限を0.010%以下とする。Ti含有量の好ましい下限は0.0008%以上であり、より好ましくは0.0011%以上である。また、Ti含有量の好ましい上限は0.0050%以下であり、より好ましくは0.0030%以下である。 
[N:0.0030~0.010%] 
 Nも上記Tiと同様、本発明を特徴付ける元素である。所定量のNを添加することで、酸化物系介在物と鋼との界面にTiNが生成され、上記界面の剥離を抑制できる。その結果、転動疲労特性が改善する。このような効果を得るためには、N含有量は0.0030%以上とする必要がある。ただし、Nの含有量が多くなって0.010%を超えると、TiNが粗大化するため、転動疲労特性が悪化する。よって、N含有量の上限は0.010%以下とする。N含有量の好ましい下限は0.0035%以上であり、より好ましくは0.004%以上である。また、N含有量の好ましい上限は0.008%以下であり、より好ましくは0.007%以下である。
[O:0%超0.0030%以下] 
 Oは、好ましくない不純物元素である。Oの含有量が多くなって0.0030%を超えると、粗大な酸化物が生成し易くなり、熱間圧延および冷間圧延後においても粗大な酸化物として残存し、転動疲労特性に悪影響を及ぼす。そのため、O含有量の上限を0.0030%以下とする。転動疲労特性を改善するためにはO含有量をできる限り低減することが良く、例えばO含有量の好ましい上限は0.0025%以下であり、より好ましくは0.0020%以下である。なお、O含有量の下限は、転動疲労特性改善の観点からは特に限定されないが、経済性などを考慮すると、好ましくは0.0004%以上であり、より好ましくは0.0008%以上である。O含有量を0.0004%未満に制御するためには溶鋼からのO除去を厳密に行う必要があるが、溶鋼処理時間が長くなるなど経済的でないからである。
 本発明に含まれる元素は上記の通りであって、残部は鉄および不可避不純物である。上記不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素が挙げられ、例えば、As、H、Ni等の混入が許容され得る。
 次に、鋼材中に存在する酸化物系介在物について説明する。前述したように本発明では、鋼中に含まれる短径1μm以上の酸化物系介在物が、下記(1)および(2)の要件を満足するところに特徴がある。
(1)平均組成が、質量%で、CaO:10~50%、Al:10~50%、SiO:20~70%、TiO:1.0~40%を含有し、残部は不純物からなると共に、CaO+Al+SiO+TiO≧60%を満足する。
(2)前記酸化物系介在物と鋼との界面にTiNが生成している酸化物系介在物の個数割合が酸化物系介在物全体の30%以上である。
 本発明において、特に短径1μm以上の酸化物系介在物に着目した理由は以下のとおりである。すなわち、転動疲労特性は、酸化物系介在物の寸法が大きい程、悪影響度が大きいと言われている。そこで、転動疲労特性に悪影響を及ぼす可能性がある、寸法の大きな酸化物系介在物を評価するため、上記サイズの酸化物系介在物を制御することにした。
 以下、順に説明する。
[CaO:10~50%]
 CaOは、SiOを主体とした酸化物の液相線温度低下に効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物と鋼との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。また、CaOには、酸化物系介在物を結晶化する効果がある。そのため、酸化物系介在物のアスペクト比低減に重要な役割を果たす。このような効果は、酸化物系介在物の平均組成におけるCaO含有量を10%以上に制御することによって得られる。しかしながら、CaO含有量が高過ぎると、酸化物系介在物が粗大化して転動疲労特性が悪化してしまうため、その上限を50%以下とする必要がある。酸化物系介在物中に占めるCaO含有量の好ましい下限は20%以上であり、より好ましくは25%以上である。また、CaO含有量の好ましい上限は45%以下であり、より好ましくは40%以下である。
[Al:10~50%]
 Alは、SiOを主体とした酸化物の液相線温度を下げる効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物鋼と鋼との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。また、Alには、酸化物系介在物を結晶化する効果がある。そのため、酸化物系介在物のアスペクト比低減に重要な役割を果たす。このような効果は、酸化物系介在物の平均組成におけるAl含有量を10%以上に制御することによって得られる。一方、酸化物系介在物の平均組成におけるAl含有量が50%を超えると、溶鋼中および凝固過程でAl(コランダム)結晶相が晶出したり、MgOと共にMgO・Al(スピネル)結晶相が晶出する。これらの固相は硬質であり、粗大な介在物として存在し、加工中に空洞が生成し易くなり、転動疲労特性を悪化させる。こうした観点から、酸化物系介在物の平均組成におけるAl含有量は50%以下とする必要がある。酸化物系介在物におけるAl含有量の好ましい下限は20%以上であり、より好ましくは25%以上である。また、Al含有量の好ましい上限は45%以下であり、より好ましくは40%以下である。
[SiO:20~70%]
 SiOは、酸化物系介在物の液相線温度を下げる効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物と鋼との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。このような効果を有効に発揮させるためには、酸化物系介在物中にSiOを20%以上含有させる必要がある。しかしながら、SiO含有量が70%を超えると酸化物が粗大化して転動疲労特性が悪化する。また、酸化物が延伸してアスペクト比が大きくなるため、転動疲労特性が悪化する。酸化物系介在物中におけるSiO含有量の好ましい下限は25%以上であり、より好ましくは30%以上である。また、SiO含有量の好ましい上限は60%以下であり、より好ましくは45%以下である。
[TiO:1.0~40%]
 TiOは、SiOを主体とした酸化物の液相線温度を下げる効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物と鋼との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。このような効果は、酸化物系介在物の平均組成におけるTiO含有量を1.0%以上に制御することによって得られる。しかしながら、TiO含有量が高すぎると、酸化物が粗大化して転動疲労特性が悪化してしまうため、その上限を40%以下とする必要がある。酸化物系介在物中におけるTiO含有量の好ましい下限は3%以上であり、より好ましくは5%以上である。また、TiO含有量の好ましい上限は35%以下であり、より好ましくは30%以下である。
[CaO+Al+SiO+TiO≧60%]
 上述したようにCaO、Al、SiO、およびTiOは、本発明における酸化物系介在物の主要成分であり、それぞれの含有量を制御するが、本発明では、更にこれらの合計量も適切に制御する必要がある。これにより、酸化物系介在物と鋼との界面に所定割合のTiNを生成させて界面の剥離を抑制し、転動疲労特性を改善することができる。上記の合計量が60%未満では、酸化物が粗大化してしまい、TiNによる上記界面制御が十分に得られず、転動疲労特性が悪化する。上記合計量は多い程良く、好ましい下限は65%以上であり、より好ましくは70%以上である。なお、その上限は特に限定されず、例えば100%であっても良い。
[酸化物系介在物と母相である鋼(鋼材の基地相)との界面にTiNが生成している酸化物系介在物の個数割合が酸化物系介在物全体の30%以上]
 上記界面に生成するTiNとは、後記する実施例の欄に示すように、当該酸化物系介在物と、母相である鋼(鋼材の基地相)との界面に生成されるTiNを意味する。このTiNは転動疲労特性の改善に極めて重要であり、上記界面にTiNが生成することで、酸化物系介在物と母相である鋼との界面の剥離が抑制される。転動疲労特性に有害な界面剥離が抑制される結果、転動疲労特性が改善する。このような効果を得るには、上記界面に生成するTiNの個数割合を30%以上とする。上記TiNの個数割合は多い程良く、好ましい下限は40%以上であり、より好ましくは50%以上である。なお、その上限は特に限定されず、例えば、100%であっても良い。
 TiNが生成している上記酸化物系介在物の個数割合の測定方法は、後記する実施例の欄で詳述する。
 本発明鋼材に含まれる酸化物は、CaO、Al、SiO、およびTiOで構成され、残部は不純物である。酸化物系介在物における不純物としては、製造過程などで不可避的に含まれる不純物が挙げられる。不純物は、酸化物系介在物の結晶化状態やアスペクト比などに悪影響を及ぼさず、所望の特性が得られる限度において含まれ得るが、不純物全体(合計量)として、おおむね、20%以下に制御されていることが好ましい。具体的には、例えばREM、MgO、MnO、ZrO、NaO、KO、LiO、Cr、NbO、FeO、Fe、Feをそれぞれ約10%以下の範囲で含有することができる。なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。
 更に本発明では、上記のように鋼中成分および酸化物組成を適切に制御することによって、上記鋼材の長手方向に平行に切断した面に存在する酸化物系介在物のアスペクト比(長径/短径)の平均(以下、単にアスペクト比と呼ぶ場合がある。)が3.0以下に低減されたものとなる。これにより、荷重の付与される方向にかかわらず転動疲労特性を安定的に改善することができる。上記アスペクト比は小さい程良く、おおむね、2.5以下であることが好ましく、2.0以下であることが更に好ましい。
 アスペクト比の測定方法は、後記する実施例の欄で詳述する。
 次に、上記鋼材を製造する方法について説明する。本発明では、特に所定の酸化物組成が得られるように、特に溶製工程、更には熱間加工の各工程に留意して製造すれば良く、それ以外の工程は、軸受用鋼の製造に通常用いられる方法を適宜選択して用いることができる。
 上記酸化物組成を得るための好ましい溶製方法は以下のとおりである。
 まず鋼材を溶製する際に、通常実施されるAl添加での脱酸処理を行なわずに、Si添加による脱酸を実施する。この溶製時には、CaO、およびAlの各含有量を制御するために、鋼中に含まれるAl含有量を上記のとおり、0.0002~0.005%、Ca含有量を上記のとおり0.0002~0.002%に夫々制御する。
 また、TiNの好ましい制御方法は以下のとおりである。まず、常法に従って溶製時に、鋼中に含まれるTi含有量が上記のとおり0.0005~0.010%、N含有量が上記の通り0.0030~0.010%の範囲内に制御されるようにTi、Nを添加すれば良い。Tiの添加方法は特に限定されず、例えば、Tiを含有する鉄系合金を添加して調整しても良いし、あるいは、スラグ組成の制御によって溶鋼中のTi濃度を制御しても良い。Nの添加方法も特に限定されず、Nを含有する合金を添加して調整しても良いし、あるいは、溶鋼をガス攪拌する際に窒素を用いて制御しても良いし、溶鋼と接触するガス相中の窒素分圧を制御しても良い。
 更に、酸化物系介在物と鋼との界面に所定量のTiNを生成させるためには、分解圧延、分解鍛造、または熱間圧延の、少なくともいずれかの工程の前に行われる加熱(約700~1300℃)の際、保持時間を一定以上制御することが有効である。例えば、分解圧延または分解鍛造の前に行われる加熱時の保持時間を従来(おおむね1~1.5時間程度)よりも長く、約2.0時間以上に制御することが有効である。保持時間は長い程良く、例えば2.5時間以上であることが好ましく、3.0時間以上であることがより好ましい。なお、その上限は特に限定されないが、製造効率などを考慮すると、おおむね、20.0時間以下に制御することが好ましい。なお、上記保持時間の範囲は、各工程によって保持温度が相違するため、保持温度の応じた好ましい保持時間を設定することが推奨される。
 また、TiOの制御方法としては特に限定されず、当該技術分野で通常用いられる方法に基づき、溶製時に、鋼中に含まれるTi含有量が上記のとおり、0.0005~0.010%の範囲内に制御されるようにTiを添加すれば良い。Tiの添加方法は特に限定されず、例えば、Tiを含有する鉄系合金を添加して調整しても良いし、あるいは、スラグ組成の制御によって溶鋼中のTi濃度を制御しても良い。
 なお、SiOは、他の酸化物を上記のようにコントロールすることによって得られるものである。
 本発明では、上記のように化学成分組成に制御した鋼材に対して、常法に従い、圧延および球状化焼鈍を行った後、熱間加工または冷間加工を行う。
 このようにして本発明の鋼材を得た後、所定の部品形状にし、焼入れ・焼戻しすると、本発明の軸受部品が得られる。鋼材段階の形状については、こうした製造に適用できるような線状・棒状のいずれも含むものであり、そのサイズも、最終製品に応じて適宜決めることができる。
 上記軸受部品としては、例えば、コロ、ニードル、玉、レース等が挙げられる。
 以下、実施例によって本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは可能であり、それらはいずれも本発明の技術的範囲に包含される。
(1)鋳片の製造 
 小型溶解炉(容量170kg/1ch)を用い、下記表1に示す各種化学成分組成の供試鋼(残部は鉄および不可避的不純物)を溶製し、鋳片(鋳片上部の直径がφ245mm、鋳片下部の直径がφ210mmであり、鋳片の高さが480mm)を作製した。溶製時にはMgO系耐火物の取鍋を用い、通常実施されるAl脱酸処理を行わず、C、Si、MnおよびCrを用いて溶鋼の溶存酸素量を調整した後、下記一部の例を除き、Ti源、Ca源をこの順序で投入し、Ti含有量、Ca含有量を制御した。
 鋼材No.49は、比較のため、Al添加による脱酸処理を実施した。また、鋼材No36は、Ca源を添加すると同時にMg合金を添加した。その結果、鋼材No.36では酸化物系介在物のMgO濃度が高くなり、表2に示すようにCaO+Al+SiO+TiOの合計量が低くなった。このとき、酸化物系介在物中のMgOの含有量は、溶製時にMgOを含む耐火物を溶解炉や精錬容器、搬送容器などに用いることによって調整た。例えば、合金投入後の溶製時間を調整することで酸化物系介在物中のMgO含有量を調整した。
 なお、本実施例では、前記Ca源としてNi-Ca合金を、前記Ti源としてFe-Ti合金を、それぞれ用いた。また、Nは雰囲気中の窒素分圧を制御すると共に、Ti源添加前に窒化マンガンを添加することで調整した。
(2)圧延材の製造 
 このようにして得られた鋳片を、加熱炉において1100~1300℃の温度に加熱し、この温度域(保持温度域)で、表2に記載の「加熱炉保持時間」保持した後、900~1200℃の温度で分塊圧延した。本実施例では、酸化物系介在物と鋼との界面に所定量のTiNを生成させるために、鋳片を加熱する上記加熱炉において鋳片を2.0時間以上加熱保持した。その後、加熱炉において830~1200℃の温度に加熱し、鋼材を1.0時間保持した後、830~1100℃の温度で熱間圧延を実施し、φ65mmの熱間圧延材を得た。 
(3)酸化物系介在物の平均組成測定用試験片の作製と平均組成の決定 
 上記熱間圧延材を、760~800℃の温度で2~8時間加熱した後、10~15℃/時の平均冷却速度で(Ar変態点-60℃)の温度まで冷却してから大気放冷する(球状化焼鈍)ことにより、球状化セメンタイトを分散させた球状化焼鈍材を得た。このようにして得られた球状化焼鈍材からφ60mm、厚さ30mmの試験片を切り出し、840℃の温度で30分間加熱した後、油焼入れし、次いで160℃の温度で120分間焼戻しを行って、酸化物系介在物の平均組成測定用試験片を作製した。
 このようにして得られた各試験片について、直径Dの1/4の位置で圧延方向に平行に切断した面から、20mm×20mmのミクロ試料を1個切り出し、断面を研磨した。研磨面を日本電子データム社製の電子線マイクロプローブX線分析計(Electron Probe X-ray Micro Analyzer:EPMA、商品名「JXA8500F」)を用いて観察し、短径が1μm以上の酸化物系介在物について成分組成を定量分析した。このとき、観察面積を100mm(研磨面)とし、酸化物系介在物の中央部での成分組成を特性X線の波長分散分光により定量分析した。分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Cr、O(酸素)とし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする上記酸化物系介在物から得られたX線強度と上記検量線から、各ミクロ試料に含まれる元素量を定量し、その結果を算術平均することで介在物の平均組成を求めた。このようにして得られた定量結果のうち、酸素含量が5%以上の介在物を酸化物とした。このとき、一つの介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に換算して酸化物の組成を算出した。本発明では、上記単独酸化物として質量換算したものを平均して、酸化物の平均組成とした。なお、REMの酸化物は、金属元素をMで表すと、鋼材中にM、M,MOなどの形態で存在するが、本実施例では、観測される全ての酸化物をMに換算してREM酸化物の平均組成を算出した。
(4)酸化物系介在物のアスペクト比の決定 
 上記酸化物系介在物平均組成測定用試験片を用い、短径が1μm以上の任意の酸化物系介在物(分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Cr、O(酸素))を100個選び、各々の長径と短径を測定し、各々の酸化物系介在物のアスペクト比(=長径/短径)を算出した。その結果を算術平均することで酸化物系介在物の平均のアスペクト比を求めた。
(5)酸化物系介在物と鋼との界面にTiNが生成している酸化物系介在物の個数割合の測定
 上記酸化物系介在物平均組成測定用試験片を用い、観察面積を100mm(研磨面)について、まず、電子線マイクロプローブX線分析計を用いて、短径が1μm以上の酸化物系介在物(分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Cr、O(酸素)で、酸素含量が5%以上の介在物)を5個選んだ。5個の酸化物系介在物の選定基準については、観察面積100mmの中に存在する酸化物系介在物のうち、そのサイズが最も大きいものから順番に5個を選んだ。酸化物系介在物のサイズが最も大きいものを選定した理由は、転動疲労特性は、酸化物系介在物の寸法が大きい程悪影響度が大きいと言われているからである。なお、酸化物系介在物のサイズは、上記観察面に現れている酸化物系介在物の面積で大小を比較した。その後、対象の酸化物系介在物について、FIB法(Focused Ion Beam、集束イオンビーム加工法)により酸化物系介在物がTEM観察可能な厚さまで薄片化した。装置は、日立製作所製の集束イオンビーム加工観察装置FB2000Aを用いて、加速電圧30kV、イオン源にはGaを用いた。その後、薄片化した酸化物系介在物をTEM観察した。装置は、日本電子製の電界放出形透過電子顕微鏡JEM-2010Fを用い、Noran製EDX(Energy dispersive X-ray spectrometry)分析装置Vantageにて、酸化物系介在物と鋼との界面に対してEDX分析を実施した。分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Crとし、Ti濃度が30%以上の相を選定し、その相に対して電子線回折による同定解析を行い、立方晶の結晶構造を示すものをTiNと判断した。このとき、対象の酸化物系介在物と鋼との界面(酸化物系介在物と、母相である鋼(鋼材の基地相)との界面)にTiNが生成している場合(つまり、TiNとして判断する上記方法でTiNが存在すると認められた場合)、酸化物系介在物と鋼との界面にTiNが生成している酸化物系介在物があると判断し、測定した5個の酸化物系介在物中に存在する、上記TiNが生成している酸化物系介在物の個数割合を測定した。
(6)スラスト転動疲労試験片の製造と転動疲労試験 
 上記(3)で得られた球状化焼鈍材からφ60mm、厚さ6mmの試験片を切り出し、840℃の温度で30分間加熱した後、油焼入れをし、次いで160℃の温度で120分間焼戻しを行った。最後に仕上げ研磨を施して、表面粗さRa0.04μm以下のスラスト転動疲労試験片を作製した。このようにして得られたスラスト転動疲労試験片を用い、スラスト疲労試験機(スラスト型転動疲労試験機「FJ-5T」、富士試験機製作所製)にて、負荷速度1200rpm、鋼球数3個、面圧5.24GPa、中止回数2億回の条件でスラスト転動疲労試験を実施した。
 転動疲労寿命の尺度として、通常、疲労寿命L10(累積破損確率10%における疲労破壊までの応力繰り返し数、以下「L10寿命」と呼ぶ場合がある。)が用いられる。詳細には、L10とは、試験結果をワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの繰り返し数の意味である(「軸受」、岩波全書、曽田範宗著を参照)。各鋼材につき、16個の試料を用いて上記の試験を行ってL10寿命を決定した。次いで、従来鋼の鋼材No.49のL10寿命(1.2×10回)に対する各鋼材のL10寿命の寿命比を求め、下記基準で評価した。
・不可(転動疲労寿命に劣る):L10寿命5.4×10回未満(4.5倍未満の寿命比)
・可(転動疲労寿命に優れる):L10寿命5.4×10回以上6.0×10回未満(45倍以上5.0倍未満の寿命比)
・良(転動疲労寿命に特に優れる):L10寿命6.0×10回以上6.5×10回未満(5.0倍以上5.4倍未満の寿命比)を
・優(転動疲労寿命に特段に優れる):L10寿命6.5×10回以上(5.4倍以上の寿命比)
 なお、上記合格基準の最低レベルである「可」の寿命比(4.5倍以上)は、前述した特許文献4の実施例で最も高い寿命比が得られた表2の試験No.11、試験No.35(寿命比3.5倍)を超えるものであり、本実施例では、上記特許文献4よりも高い合格基準を設定している。
 これらの結果を表2に記載する。なお、表2の試験No.は、同じ数字の表1の鋼材No.を用いたことを示す。また表中、「E+07」は「×10」の意味であり、「E+06」は「×10」の意味である。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、次のように考察することができる。 
 まず、表2の試験No.8~12、15~19、22~24、27~29、32~35、38~46、48は、いずれも本発明で規定する化学成分組成(鋼材の化学成分組成および酸化物組成)およびTiNの個数割合を満足する例であり、酸化物系介在物のアスペクト比も適切に制御されているため、転動疲労寿命に優れていることが分かる。
 なお、本実施例では、スラスト方向での転動疲労特性を測定しているが、本発明の鋼材はアスペクト比が小さいため、ラジアル方向の転動疲労特性も良好であると推察される。
 これに対し、以下の試験No.は、本発明のいずれかの要件を満足しないため、転動疲労特性が低下した。 
 試験No.1は鋼中C量が多い表1の鋼材No.1を用いた例、試験No.2は鋼中Mn量が多い表1の鋼材No.2を用いた例、試験No.3は鋼中Cr量が多い表1の鋼材No.3を用いた例、試験No.4は鋼中Cr量が少ない表1の鋼材No.4を用いた例、試験No.5は鋼中P量が多い表1の鋼材No.5を用いた例、試験No.6は鋼中S量が多い表1の鋼材No.6を用いた例であり、いずれも転動疲労特性が低下した。
 試験No.7は、Al含有量が過剰の表1の鋼材No.7を用いた例であり、酸化物中のAl2O3含有量が高くなり、転動疲労特性が低下した。 
 一方、試験No.13は、Al含有量、Ca含有量、Ti含有量が不足した表1の鋼材No.13を用いた例である。上記試験No.13では、Al、Ca、Tiの各酸化物が全て、本発明で規定する範囲を外れると共に、TiNも生成せず、酸化物系介在物のアスペクト比も外れるため、転動疲労特性が低下した。
 試験No.14は、Ca含有量が多い表1の鋼材No.14を用いた例であり、酸化物中のCaO含有量が多く、転動疲労特性が低下した。 
 一方、試験No.20は、Ca含有量が少ない表1の鋼材No.20を用いた例であり、酸化物中のCaO含有量が少なく、転動疲労特性が低下した。 
 試験No.21は、Ti含有量が多い表1の鋼材No.21を用いた例であり、酸化物中のTiO含有量が多く、転動疲労特性が低下した。 
 一方、試験No.25は、Ti含有量が少ない表1の鋼材No.25を用いた例であり、酸化物中のTiO含有量が少なく、TiNも生成しないため、転動疲労特性が低下した。 
 試験No.26は、N含有量が多い表1の鋼材No.26を用いた例であり、転動疲労特性が低下した。 
 試験No.30は、N含有量が少ない表1の鋼材No.30を用いた例であり、所定のTiNが生成しないため、転動疲労特性が低下した。 
 試験No.31は、O含有量が多い表1の鋼材No.30を用いた例であり、転動疲労特性が低下した。 
 試験No.36は、(CaO+Al+SiO+TiO)の合計量が少ない表1の鋼材No.36を用いた例であり、所定のTiNが生成しないため、転動疲労特性が低下した。 
 試験No.37は、加熱炉の保持時間が短い例であり、所定のTiNが生成しないため、転動疲労特性が低下した。 
 試験No.47は、Al濃度が比較的高い状態で溶製時間が長時間であったため、溶鋼中のAlと酸化物介在物中のSiOの酸化還元反応が進み、SiO含有量が不足し、転動疲労特性が低下した。 
 試験No.49は、Al脱酸処理によって得られた表1の鋼材No.49(従来のアルミキルド鋼)を用いた例であり、Al含有量が過剰になって酸化物中のAl含有量が非常に高くなっており、所望とするTiOなども全く生成せず、且つ、所定のTiNも生成しないため、転動疲労特性が低下した。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年1月23日出願の日本特許出願(特願2015-011560)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の軸受用鋼材は優れた転動疲労特性を有し、コロやニードル、玉、レース等の軸受用の転動体として有用である。

Claims (3)

  1.  質量%で、
     C :0.8~1.1%、 
     Si:0.15~0.8%、 
     Mn:0.1~1.0%、 
     Cr:1.3~1.8%、 
     P :0%超0.05%以下、 
     S :0%超0.015%以下、 
     Al:0.0002~0.005%、 
     Ca:0.0002~0.002%、 
     Ti:0.0005~0.010%、 
     N :0.0030~0.010%、 
     O :0%超0.0030%以下
    を含有し、残部は鉄及び不可避的不純物からなり、 
     鋼中に含まれる短径1μm以上の酸化物系介在物が、下記(1)および(2)の要件を満足することを特徴とする転動疲労特性に優れた軸受用鋼材。
    (1)平均組成が、質量%で、CaO:10~50%、Al:10~50%、SiO:20~70%、TiO:1.0~40%を含有し、残部は不純物からなると共に、CaO+Al+SiO+TiO≧60%を満足する。
    (2)前記酸化物系介在物と鋼との界面にTiNが生成している酸化物系介在物の個数割合が酸化物系介在物全体の30%以上である。
  2.  前記鋼材の長手方向に平行に切断した面に存在する前記酸化物系介在物のアスペクト比(長径/短径)の平均が3.0以下に抑制されたものである請求項1に記載の軸受用鋼材。
  3.  請求項1または2に記載の軸受用鋼材からなる軸受部品。
PCT/JP2016/051470 2015-01-23 2016-01-19 転動疲労特性に優れた軸受用鋼材および軸受部品 WO2016117571A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/545,357 US20180016653A1 (en) 2015-01-23 2016-01-19 Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part
EP16740178.5A EP3249068A4 (en) 2015-01-23 2016-01-19 Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part
CN201680006179.9A CN107208214A (zh) 2015-01-23 2016-01-19 滚动疲劳特性优异的轴承用钢材和轴承零件
KR1020177020163A KR20170096038A (ko) 2015-01-23 2016-01-19 전동 피로 특성이 우수한 베어링용 강재 및 베어링 부품
BR112017015350A BR112017015350A2 (pt) 2015-01-23 2016-01-19 material de aço para mancais que tem excelente característica de fadiga de laminação, e peça de mancal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015011560A JP6462376B2 (ja) 2015-01-23 2015-01-23 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2015-011560 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016117571A1 true WO2016117571A1 (ja) 2016-07-28

Family

ID=56417112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051470 WO2016117571A1 (ja) 2015-01-23 2016-01-19 転動疲労特性に優れた軸受用鋼材および軸受部品

Country Status (8)

Country Link
US (1) US20180016653A1 (ja)
EP (1) EP3249068A4 (ja)
JP (1) JP6462376B2 (ja)
KR (1) KR20170096038A (ja)
CN (1) CN107208214A (ja)
BR (1) BR112017015350A2 (ja)
TW (1) TW201631180A (ja)
WO (1) WO2016117571A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172916A (ja) * 2015-03-18 2016-09-29 株式会社神戸製鋼所 転動疲労特性および冷間鍛造性に優れた軸受用鋼材、および軸受部品
EP3647451A4 (en) * 2017-09-13 2020-11-04 Nippon Steel Corporation STEEL MATERIAL WITH EXCELLENT BEARING FATIGUE CHARACTERISTICS
CN114941101B (zh) * 2022-04-18 2023-06-16 江阴兴澄特种钢铁有限公司 一种汽车发动机轴承轴套用钢及其生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (ja) * 1986-11-27 1988-06-08 Daido Steel Co Ltd 転動寿命のすぐれた軸受鋼
JP2003226934A (ja) * 2001-11-28 2003-08-15 Daido Steel Co Ltd 被削性にすぐれた機械構造用鋼
JP2009007643A (ja) * 2007-06-28 2009-01-15 Kobe Steel Ltd 被削性に優れた機械構造用鋼
JP2009174033A (ja) * 2008-01-28 2009-08-06 Kobe Steel Ltd 被削性に優れた機械構造用鋼
JP2010007092A (ja) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd 軸受鋼鋼材およびその製造方法
JP2011117010A (ja) * 2009-11-30 2011-06-16 Kobe Steel Ltd 冷間加工性に優れた軸受用鋼
JP2012172218A (ja) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd 低Al鋼の溶製方法
JP2013112861A (ja) * 2011-11-29 2013-06-10 Nippon Steel & Sumitomo Metal Corp 軸受用棒鋼
JP2014025083A (ja) * 2012-07-24 2014-02-06 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2014136810A (ja) * 2013-01-15 2014-07-28 Kobe Steel Ltd 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね
JP2014189860A (ja) * 2013-03-28 2014-10-06 Aichi Steel Works Ltd 疲労強度に優れる鋼板及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349A (ja) * 1990-04-16 1992-01-06 Kobe Steel Ltd 加工性および転動疲労性に優れた軸受用鋼
JPH06145883A (ja) * 1992-11-02 1994-05-27 Daido Steel Co Ltd 高清浄度軸受鋼およびその製造方法
JP2002060887A (ja) * 2000-08-21 2002-02-28 Daido Steel Co Ltd 超清浄軸受鋼の製造方法
JP4630075B2 (ja) * 2005-01-24 2011-02-09 新日本製鐵株式会社 高炭素クロム軸受鋼およびその製造方法
JP5266686B2 (ja) * 2007-07-05 2013-08-21 新日鐵住金株式会社 軸受鋼鋼材及びその製造方法
JP5206500B2 (ja) * 2009-03-02 2013-06-12 新日鐵住金株式会社 高清浄度Si脱酸鋼およびその製造方法
EP2770077B1 (en) * 2011-10-20 2019-07-10 Nippon Steel Corporation Bearing steel and method for producing same
JP5824434B2 (ja) * 2011-11-14 2015-11-25 株式会社神戸製鋼所 溶接熱影響部の靭性に優れた厚鋼板
US8770222B2 (en) * 2012-06-29 2014-07-08 Autogrip Machinery Co., Ltd. Air pump assembly for a power chuck

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (ja) * 1986-11-27 1988-06-08 Daido Steel Co Ltd 転動寿命のすぐれた軸受鋼
JP2003226934A (ja) * 2001-11-28 2003-08-15 Daido Steel Co Ltd 被削性にすぐれた機械構造用鋼
JP2009007643A (ja) * 2007-06-28 2009-01-15 Kobe Steel Ltd 被削性に優れた機械構造用鋼
JP2009174033A (ja) * 2008-01-28 2009-08-06 Kobe Steel Ltd 被削性に優れた機械構造用鋼
JP2010007092A (ja) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd 軸受鋼鋼材およびその製造方法
JP2011117010A (ja) * 2009-11-30 2011-06-16 Kobe Steel Ltd 冷間加工性に優れた軸受用鋼
JP2012172218A (ja) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd 低Al鋼の溶製方法
JP2013112861A (ja) * 2011-11-29 2013-06-10 Nippon Steel & Sumitomo Metal Corp 軸受用棒鋼
JP2014025083A (ja) * 2012-07-24 2014-02-06 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2014136810A (ja) * 2013-01-15 2014-07-28 Kobe Steel Ltd 疲労特性に優れたSiキルド鋼線材、およびそれを用いたばね
JP2014189860A (ja) * 2013-03-28 2014-10-06 Aichi Steel Works Ltd 疲労強度に優れる鋼板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249068A4 *

Also Published As

Publication number Publication date
EP3249068A4 (en) 2018-08-22
TW201631180A (zh) 2016-09-01
BR112017015350A2 (pt) 2018-01-09
US20180016653A1 (en) 2018-01-18
JP6462376B2 (ja) 2019-01-30
EP3249068A1 (en) 2017-11-29
TWI561646B (ja) 2016-12-11
JP2016135901A (ja) 2016-07-28
KR20170096038A (ko) 2017-08-23
CN107208214A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP5433111B2 (ja) 軸受用造塊材および製造方法
KR101520208B1 (ko) 기소강 및 그의 제조 방법, 및 기소강을 이용한 기계 구조 부품
WO2011065592A1 (ja) 軸受鋼
JP5400089B2 (ja) 転動疲労寿命特性に優れた軸受鋼、軸受用造塊材並びにそれらの製造方法
TWI485267B (zh) 轉動疲勞特性優異之軸承用鋼材及其製造方法
JP6248026B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
WO2012160675A1 (ja) 転動疲労特性に優れた鋼材
JP6881613B2 (ja) 浸炭軸受鋼部品、および浸炭軸受鋼部品用棒鋼
WO2011065593A1 (ja) 軸受用造塊材および軸受用鋼の製造方法
JPWO2019054448A1 (ja) 転動疲労特性に優れた鋼材
JP6462376B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
WO2012132771A1 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP5833984B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP6801782B2 (ja) 鋼及び部品
JP4280923B2 (ja) 浸炭部品又は浸炭窒化部品用の鋼材
JP6881612B2 (ja) 軸受鋼部品、および軸受鋼部品用棒鋼
JP5976581B2 (ja) 転動疲労特性に優れた軸受用鋼材、および軸受部品
JP5976584B2 (ja) 転動疲労特性と切削加工性に優れた軸受用鋼材、および軸受部品
JP6073200B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
WO2017154652A1 (ja) 転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品
JP2016172916A (ja) 転動疲労特性および冷間鍛造性に優れた軸受用鋼材、および軸受部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740178

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016740178

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020163

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015350

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017015350

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170718