JP5433111B2 - 軸受用造塊材および製造方法 - Google Patents

軸受用造塊材および製造方法 Download PDF

Info

Publication number
JP5433111B2
JP5433111B2 JP2013527809A JP2013527809A JP5433111B2 JP 5433111 B2 JP5433111 B2 JP 5433111B2 JP 2013527809 A JP2013527809 A JP 2013527809A JP 2013527809 A JP2013527809 A JP 2013527809A JP 5433111 B2 JP5433111 B2 JP 5433111B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
segregation
rolling fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013527809A
Other languages
English (en)
Other versions
JPWO2013046678A1 (ja
Inventor
稔 本庄
清史 上井
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
JFE Steel Corp
Original Assignee
NTN Corp
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, JFE Steel Corp filed Critical NTN Corp
Priority to JP2013527809A priority Critical patent/JP5433111B2/ja
Application granted granted Critical
Publication of JP5433111B2 publication Critical patent/JP5433111B2/ja
Publication of JPWO2013046678A1 publication Critical patent/JPWO2013046678A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、自動車、風力発電、輸送機械、電気機械および精密機械や、その他一般産業機械などに用いられる軸受の素材として好適な、優れた転動疲労寿命特性を有する軸受用造塊材とその製造方法に関するものである。
この種の軸受に供する鋼としては、高炭素クロム鋼(JIS G4805規格 SUJ2)が多く利用されている。一般に、軸受鋼は、転動疲労寿命特性に優れることが重要な性質の一つであるが、この転動疲労寿命は、鋼中の非金属介在物あるいは共晶炭化物によって低下するものと考えられている。
最近の研究では、転動疲労寿命の低下に及ぼす影響として、鋼中の非金属介在物の影響が最も大きいと考えられており、鋼中酸素量の低減を通じて非金属介在物の量および大きさを制御することによって、軸受寿命を向上させる方策がとられてきた。
例えば、特許文献1および2などに提案があり、これらは、鋼中の酸化物系非金属介在物の組成、形状あるいは分布状態をコントロールする技術であるが、非金属介在物の少ない軸受鋼を製造するには、高価な溶製設備あるいは従来設備の大幅な改造が必要であり、経済的な負担が大きいという問題がある。
さらに、特許文献3には、炭素の中心偏析率並びに鋼中の酸素量および硫黄含有量を制御することによって、転動疲労寿命特性を向上させようとする技術が提案されているが、前述したように、酸素含有量を更に減少させ、更なる非金属介在物の少ない軸受鋼を製造するためには、高価な溶製設備あるいは従来設備の大幅な改造が必要であり、経済的な負担が大きいことが問題になる。
そこで、鋼中の非金属介在物の低減のみならず、鋼中の共晶炭化物を低減することについても注目されてきている。例えば、高炭素クロム鋼は、0.95質量%以上のCを含有し非常に硬質であり、鋼の耐摩耗性は良好ではあるものの、鋳片中心部に発生する偏析(以下、中心偏析と略す)の程度が高くなり、さらには鋳片中に巨大な共晶炭化物が生成するため、転動疲労寿命を低下させる問題があった。そのため、鋳片中央部を打ち抜いて廃材とするか、長時間の拡散処理(以下、ソーキングと略す)を実施し、これらを十分に消散させてから用いられている。
このような偏析の問題に関して、特許文献4では、C:0.6〜1.2質量%など特定の成分組成を有し、線状または棒状圧延材における軸心を通る縦断面の中心線において、該縦断面の軸心を含み該軸心線から片側に夫々D/8(D:該縦断面の幅)以内の中心領域に現れる、厚さ2μm以上の炭化物の総断面積を、前記縦断面積に対して0.3%以下とする方法が開示されている。さらに、同文献には、転動疲労寿命特性に及ぼす巨大炭化物量の影響が定量的に明らかにされ、転動疲労寿命を低下させる巨大共晶炭化物が鋼中に残存することを示している。
特許文献5には、C:0.50〜1.50質量%およびSb:0.0010〜0.0150質量%などの特定の成分組成を有し、脱炭層の形成が少なく、熱処理生産性に優れた軸受鋼が開示されている。同文献に記載の技術では、Sbを添加することで、鋼の脱炭層の形成が少なく、熱処理後の切削あるいは研削工程の省略による熱処理生産性の向上を目的としているが、Sbは人体に対して強い毒性の疑いがあるため適用には慎重さが求められる。また、Sbを添加すると中心偏析部にSbが濃化し、中心偏析を悪化させる。Sbが濃化した部分では、局所的な硬化を生じるため、母材との硬度差が生じ、転動疲労破壊の起点となり、転動疲労寿命の低下をもたらす可能性がある。
ここで、高炭素クロム軸受鋼の鋳造時に生じる中心偏析および該中心偏析部に生じる巨大共晶炭化物を消散するため、例えば、特許文献6には、鋳造材をいったん圧延してビレットにし、このビレットをソーキングする方法が開示されている。
しかしながら、ソーキング中の鋼中温度は不均一であるため、部分的にソーキング温度が固相線を超える温度になった場合、再び部分的に溶解が始まり、共晶反応を起こして更なる巨大共晶炭化物が生成するという問題点もあった。
そのため、軸受の用途によっては、上述した高炭素クロム鋼ではなく、低炭素合金鋼を使用する場合がある。例えば、肌焼き鋼は、高炭素クロム鋼に次いで多く利用されている。しかし、肌焼き鋼は、C量を0.23質量%以下とし、必要な焼入れ性と機械的強度を得るために適量のMn、Cr、MoおよびNiなどが添加され、疲労強度向上の観点から、浸炭または浸炭窒化処理により表面を硬化させている。
例えば、特許文献7には、C:0.10〜0.35%などの、特定の化学組成を有し、Q=34140−605[%Si]+183[%Mn]+136[%Cr]+122[%Mo]で定義される、鋼中の炭素拡散の活性化エネルギーを34000kcal以下とすることにより、短時間で浸炭可能な肌焼鋼が開示されている。
同様に、特許文献8には、C:0.1〜0.45%などの、特定の化学組成を有し、浸炭層のオーステナイト結晶粒度が7番以上、表面の炭素含有量が0.9〜1.5%であり、表面の残留オーステナイト量が25〜40%である転動疲労特性に優れた浸炭材に関する技術が開示されている。
しかしながら、上述した浸炭あるいは浸炭窒化を行うことによって、転動疲労寿命特性が向上するものの、製造コストの上昇を招いたり、歪や寸法変化が大きくて歩留まりが低下するため、製品コストの上昇を招くことが問題であった。
また、軸受鋼の用途によっては大断面化が必要になるため、浸炭あるいは浸炭窒化を行う設備の大幅な改造が必要であり、経済的な負担が大きいことも問題となる。
特開平1−306542号公報 特開平3−126839号公報 特開平7−127643号公報 特許第3007834号公報 特開平5−271866号公報 特開平3−75312号公報 特許第4066903号公報 特許第4050829号公報
さて、風力発電、輸送機械、その他一般産業機械は年々大型化しており、これらに用いる軸受鋼の更なる大断面化が急務となっていた。この軸受鋼の大断面化には、従来、連続鋳造で製造されていた素材を造塊法にて製造することによって、小断面から大断面まで対応することが可能となるが、この造塊法で製造された鋼(以下、造塊材と言う)では、V偏析部や逆V偏析部のような偏析部が軸受鋼の転走面に現出すると、却って転動疲労寿命特性が低下することが、特に問題となる。なぜなら、造塊材は、連続鋳造材の場合と比較して偏析度合いが高く、従って、偏析度や非金属介在物の大きさも大きくなるため、これらを抑制することが重要になる。
そこで、本発明は、造塊材による軸受鋼にあっても、上記した偏析部における偏析度や粗大な非金属介在物の生成を抑制する方途について提供することを目的とする。
発明者らは、前記課題を解決する手段について鋭意究明したところ、従来の軸受鋼に対して、C、Si、Mn、CrおよびAlの添加量を適正化するとともに、製造条件を最適化することで、偏析度の低減、粗大な非金属介在物の生成の抑制が可能であることを見出した。特に造塊材で問題となっていた、V偏析部や逆V偏析部での偏析度の低減、粗大な非金属介在物の生成を抑制することができ、転動寿命特性に優れた軸受鋼を提供可能であることを知見した。
すなわち、発明者らは、C、Si、Mn、Cr、AlおよびMo量を変化させ、かつ後述の(1)式で表される偏析度を変化させた軸受鋼を造塊材で製作し、その組織および転動疲労寿命特性を鋭意調査した結果、造塊材であっても成分組成および偏析度が所定の範囲を満足する鋼であれば、転動疲労寿命特性が向上することを見出した。また、鍛造時の鍛錬成形比を変化させた軸受鋼を造塊材で製作し、その組織および転動疲労寿命特性を鋭意調査した結果、造塊材であっても鍛錬成形比が所定の範囲を満足する鋼であれば、転動疲労寿命特性が向上することを見出し、本発明を完成するに至った。
本発明の要旨構成は、次のとおりである。
1.C:0.56質量%以上0.70質量%以下、
Si:0.15質量%以上0.50質量%未満、
Mn:0.60質量%以上1.50質量%以下、
Cr:0.50質量%以上1.10質量%以下、
Mo:0.05質量%以上0.5質量%以下、
P:0.025質量%以下、
S:0.025質量%以下、
Al:0.005質量%以上0.500質量%以下、
O:0.0015質量%以下および
N:0.0030質量%以上0.015質量%以下
を含み、残部Feおよび不可避的不純物の成分組成を有し、下記(1)式にて定義される偏析度が2.8以下であり、さらに極値統計によって算出される30000mmにおける最大介在物径の予測値が60μm以下であることを特徴とする軸受用造塊材。

Mo(max)/CMo(ave)≦2.8 …(1)
但し、CMo(max)はMoの強度値の最大値、並びにCMo(ave)はMoの強度値の平均値
2.上記成分組成に加えて、さらに、
Cu:0.005質量%以上0.5質量%以下および
Ni:0.005質量%以上1.00質量%以下
のうちから選ばれる1種または2種を含有することを特徴とする前記1に記載の軸受用造塊材。
3.上記成分組成に加えて、さらに、
W:0.001質量%以上0.5質量%以下、
Nb:0.001質量%以上0.1質量%以下、
Ti:0.001質量%以上0.1質量%以下、
Zr:0.001質量%以上0.1質量%以下および
V:0.002質量%以上0.5質量%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする前記1または2のいずれかに記載の軸受用造塊材。
4.上記成分組成に加えて、さらに、
B:0.0002質量%以上0.005質量%以下
を含有することを特徴とする前記1から3のいずれかに記載の軸受用造塊材。
5.前記1から4のいずれかに記載の成分組成を有する鋼を、造塊法にて鋳片とし、その後、鍛錬成形比が2.0以上になる鍛造、および、1150℃以上1350℃未満の温度域で10時間超加熱する加熱処理を行う、下記(1)式にて定義される偏析度が2.8以下であり、さらに極値統計によって算出される30000mm における最大介在物径の予測値が60μm以下である軸受用造塊材の製造方法。

Mo(max) /C Mo(ave) ≦2.8 …(1)
但し、C Mo(max) はMoの強度値の最大値、並びにC Mo(ave) はMoの強度値の平均値
ここで、上記鍛錬成形比は、JIS G0701に記載の実体鍛錬とする。
本発明によれば、従来の軸受鋼に比べて遥かに優れた耐転動疲労寿命特性を有する軸受用造塊材を安定して製造することが可能となる。また、このため、小断面から大断面の軸受鋼の製造を実現することができ、風力発電機や輸送機械、その他一般産業機械の大型化にも寄与し、産業上有益な効果がもたらされる。
角鍛造後の鋼片からミクロ組織観察用サンプルを採取する際の採取位置と被検面サイズを示す図である。 丸鍛造後の鋼片からミクロ組織観察用サンプルを採取する際の採取位置と被検面サイズを示す図である。 EPMAでの被検面積を示す図である。 EPMAにおいてライン分析を実施する位置を示す図である。 角鍛造後の鋼片から転動疲労寿命評価用サンプルを採取する際の採取位置と試験片サイズを示す図である。 丸鍛造後の鋼片から転動疲労寿命評価用サンプルを採取する際の採取位置と被検面サイズを示す図である。
次に、本発明の軸受鋼について詳細に説明する。
まず、本発明の軸受鋼における成分組成の各成分含有量の限定理由から順に説明する。
C:0.56質量%以上0.70質量%以下
Cは、鋼の強度を高め、鋼の転動疲労寿命特性を向上するのに有効な元素であり、本発明では0.56質量%以上含有させる。一方、0.70質量%を超えて含有すると、素材の鋳造中に巨大共晶炭化物が生成し、転動疲労寿命の低下を招く。以上のことから、C量は0.56質量%以上0.70質量%以下とする。好ましくは、0.56質量%以上0.67質量%以下である。
Si:0.15質量%以上0.50質量%未満
Siは、脱酸剤として、また、固溶強化により鋼の強度を高め、鋼の耐転動疲労寿命特性を向上するために添加される元素であり、本発明では、0.15質量%以上添加する。しかし、0.50質量%以上の添加は、鋼中の酸素と結合し、酸化物として鋼中に残存して転動疲労寿命特性の劣化を招く。さらに、偏析部に濃化した場合には、共晶炭化物を生成し易くする。以上のことから、Siの上限は0.50質量%未満とする。好ましくは、0.15質量%以上0.45質量%以下である。
Mn:0.60質量%以上1.50質量%以下
Mnは、焼入れ性を向上し、鋼の強靭性を高め、鋼材の耐転動疲労寿命特性を向上するために添加される元素であり、本発明では、0.60質量%以上添加する。しかし、1.50質量%を超える添加は、転動疲労寿命特性を低下させる。また、偏析部に濃化した場合には、非金属介在物を生成し易くする。以上のことから、Mnの上限は1.50質量%とする。好ましくは、0.60質量%以上1.45質量%以下である。
Cr:0.50質量%以上1.10質量%以下
Crは、Mnと同様に鋼の強靭性を高め、鋼材の耐転動疲労寿命特性を向上するために添加される元素であり、本発明では、0.50質量%以上添加する。しかし、1.10質量%を超える添加は、共晶炭化物を生成させ易くして、転動疲労寿命特性を低下させるため、Crの上限は1.10質量%とする。好ましくは、0.60質量%以上1.10質量%以下である。
Mo:0.05質量%以上0.5質量%以下
Moは、焼入れ性や焼戻し後の強度を高め、鋼の転動疲労寿命特性を向上する元素であり、0.05質量%以上添加する。しかし、0.5質量%を超える添加は、V偏析、逆V偏析あるいは中心偏析部にMoの濃化層を形成し、Moの偏析度を悪化させ、鋼材の耐転動疲労寿命特性の低下をまねくため、Moの上限は0.5質量%とする。好ましくは、0.05質量%以上0.40質量%以下である。
P:0.025質量%以下
Pは、鋼の母材靭性、転動疲労寿命を低下させる有害な元素であり、できるかぎり低減することが好ましい。特に、Pの含有量が0.025質量%を超えると、母材靭性および転動疲労寿命の低下が大きくなる。よって、Pは0.025質量%以下とする。好ましくは、0.020質量%以下である。なお、工業的にはP含有量を0%とすることは困難であり、0.002質量%以上含有されることが多い。
S:0.025質量%以下
Sは、非金属介在物であるMnSとして鋼中に存在する。軸受鋼は転動疲労の起点となり易い酸化物が少ないため、酸化物に次いで転動疲労の起点となり易いMnSが鋼中に多量に存在すると転動疲労寿命の低下を招く。従って、できるかぎり低減することが好ましく、本発明では、0.025質量%以下とする。好ましくは、0.020質量%以下である。なお、工業的にはS含有量を0%とすることは困難であり、0.0001質量%以上含有されることが多い。
Al:0.005質量%以上0.500質量%以下
Alは、脱酸剤として、また、窒化物として生成させオーステナイト粒を微細化し、靭性並びに転動疲労寿命特性を向上させるために添加される元素であり、0.005質量%以上添加する必要がある。しかし、0.500質量%を超えて添加すると、粗大な酸化物系介在物が鋼中に存在するようになり、鋼の転動疲労寿命特性の低下を招く。以上のことから、Al含有量の上限は0.500質量%とする。好ましくは、0.450質量%以下である。
O:0.0015質量%以下
Oは、SiやAlと結合し、硬質な酸化物系非金属介在物を形成するため、転動疲労寿命の低下を招く。従って、Oは可能な限り低い方が良く、0.0015質量%以下とする。好ましくは、0.0012質量%以下である。なお、工業的にはO含有量を0%とすることは困難であり、0.0003質量%以上含有されることが多い。
N:0.0030質量%以上0.015質量%以下
Nは、Alと結合して窒化物系非金属介在物を形成し、オーステナイト粒を微細化し、靭性並びに転動疲労寿命特性を向上させるため、0.0030質量%以上添加する。しかし、0.015質量%を超えて添加すると、窒化物系介在物が鋼中に多量に存在するため、転動疲労寿命特性の低下を招く。また、鋼中で窒化物として生成しないN(フリーN)が多量に存在するようになり、靭性の低下を招くため、N含有量の上限は0.015質量%とする。好ましくは、0.010質量%以下とする。
極値統計によって算出される30000mmにおける最大介在物径の予測値が60μm以下
次に、発明者らは、表1に示す成分組成、表2に示す製造条件に従って造塊材を作製し、上記した式(1)に従うMoの偏析度(以下、単に偏析度ともいう)、最大介在物径および転動疲労寿命特性を調査した。なお、基準鋼A−1は軸受鋼として非常に一般的に使用されている、JIS SUJ2相当鋼である。偏析度、最大介在物径および転動疲労寿命特性は、後述の実施例と同様の試験方法で実施した。鍛造後の鋼片から、図1に示すように非金属介在物観察用およびEPMAマッピング用の試験片を、ならびに図5に示すように転動疲労試験片を、それぞれ採取し、後述する試験法で偏析度、非金属介在物径ならびに転動疲労寿命特性をそれぞれ調査した。
ここで、試験片は、それぞれ鍛造後の鋼片の、造塊材のボトム側に相当する部分から採取した。
Figure 0005433111
Figure 0005433111
これらの評価結果を、表3に示す。鍛錬成形比(ボトム側)が2.0未満の条件No.1-2および1-3によって得られた造塊材は、最大介在物径が大きくなるため、転動疲労寿命特性が基準のNo.1-1(鋼No.A-1)に比べてほとんど改善していない。鍛錬成形比が2.0以上で製造され、最大介在物径が60μm以下であるNo.1-4〜1-8の造塊材は、No.1-1(鋼No.A-1)に比べて優れた転動疲労寿命特性を有していることが分かる。以上のことから、鍛錬成形比を2.0以上に制御して、鋼中に粗大な非金属介在物が生成するのを抑制することによって、転動疲労寿命特性が向上することが判明した。
Figure 0005433111
従って、造塊材における非金属介在物の最大径を60μm以下に規制することが、転動疲労寿命特性の向上に有効である。ここで、非金属介在物の最大径を規制するに当たっては、極値統計によって算出される30000mmにおける最大介在物径の予測値を60μm以下とする。なぜなら、実施している転動疲労試験での危険体積が面積にして30000mm相当であるため、ここでは30000mmにおける最大介在物径の予測値とした。
偏析度(CMo(max)/CMo(ave))≦2.8
また、発明者らは、表4に示す成分組成並びに表5に示す製造方法に従って軸受鋼を作製し、偏析度、最大介在物径および転動疲労寿命特性を調査した。なお、表5における加熱温度1は、鍛造を行うため、かつ偏析度低減のための造塊材の加熱処理時の温度であり、加熱温度2は、偏析度をさらに低減するために鍛造後に行った加熱処理時の温度である。偏析度、最大介在物径および転動疲労寿命特性は、後述の実施例と同様の試験方法で実施した。この鍛造後の鋼片から、図1に示すように非金属介在物観察用およびEPMAマッピング用試験片を、ならびに図5に示すように転動疲労試験片を、それぞれ採取し、後述する試験法で偏析度、非金属介在物径ならびに転動疲労寿命特性をそれぞれ調査した。
ここで、試験片は、それぞれ鍛造後の鋼片の、造塊材のボトム側に相当する部分から採取した。
Figure 0005433111
Figure 0005433111
これらの評価結果を、表6に示す。鍛錬成形比が2.0未満の条件No.2-2および2-3によって得られた造塊材は、偏析度が大きくなって、転動疲労寿命特性が基準のNo.2-1(鋼No.A-1)に比べてほとんど改善していない。鍛錬成形比が2.0以上で製造され、偏析度が2.8以下であるNo.2-4〜2-8の造塊材は、No.2-1(鋼No.A-1)に比べて優れた転動疲労寿命特性を有していることが分かる。以上のことから、鍛錬成形比を2.0以上に制御して偏析度を2.8以下にすれば、転動疲労寿命特性は向上することが判明した。
Figure 0005433111
さらに、発明者らは、表7に示す成分組成に従って軸受鋼を作製し、偏析度、最大介在物径および転動疲労寿命特性を調査した。偏析度、最大介在物径および転動疲労寿命特性は、後述の実施例と同様の試験方法で実施した。転動疲労寿命特性に及ぼす偏析度の影響を調査するため、製造条件は同じにして、Mo量を変化することで偏析度を変化させた。すなわち、転炉で溶製した後、造塊法で1350mm×1250mm断面(トップ側)、1280×830mm断面(ボトム側)の造塊材(インゴット)とし、得られた造塊材を800mm角断面に鍛造し、1270℃で48時間の均熱処理を実施した。その後、650mmの角断面に鍛造した。鍛造後の鋼片から、図1に示すように非金属介在物観察用およびEPMAマッピング用の試験片を、ならびに図5に示すように転動疲労試験片を、それぞれ採取し、後述する試験法でMo偏析度、非金属介在物の径ならびに転動疲労寿命特性をそれぞれ調査した。ここで、試験片は、それぞれ鍛造後の鋼片の、造塊材のボトム側に相当する部分から採取した。
Figure 0005433111
上記した調査結果を、表8に示す。同表から、Mo偏析度が2.8以下になると、転動疲労寿命特性が改善されることがわかる。一方、偏析度が2.8超となると、転動疲労寿命特性がほとんど改善していない。以上のことから、偏析度を2.8以下とすることによって、転動疲労寿命特性が向上することが判明した。なお、鋼中のMoの偏析がなくなる場合には、偏析度が1.0となるため、偏析度の下限は1.0であることが好ましい。
ここで、転動疲労寿命に悪影響を及ぼす偏析が生じる元素として、Mo以外ではCr,P,Sが挙げられる。これらも偏析度を2.8以下とする必要があるが、これら元素はMoに比べて拡散速度が大きい。そのため、Moの偏析度を2.8以下とすれば、これら元素の偏析度は2.8よりも小さい値となる。したがってMoの偏析度のみに注目しこの値を特定した。
Figure 0005433111
なお、本発明では、造塊法によって製造した造塊材であっても、共晶炭化物の生成を抑制することが可能であるから、造塊法によって製造される造塊材に適用すると特に効果がある。そして、軸受鋼の素材を造塊材とすることで、小断面から大断面までの軸受製品に対応することが可能となる。
さらに、上記した基本成分に加えて、以下に示す各成分を適宜添加することが可能である。
Cu:0.005〜0.5質量%およびNi:0.005〜1.00質量%のうちから選ばれる1種または2種
CuおよびNiは、焼入れ性や焼戻し後の強度を高め、鋼の転動疲労寿命特性を向上する元素であり、必要とする強度に応じて選択して添加することができる。このような効果を得るためには、CuおよびNiは0.005質量%以上添加することが好ましい。しかし、Cuは0.5質量%、Niは1.00質量%を超えて添加すると、却って鋼の被削性が低下するため、CuおよびNiは0.5質量%および1.00質量%をそれぞれ上限として添加することが好ましい。
同様に、本発明の軸受鋼では、強度を高めたり、鋼の転動疲労寿命特性を向上させたりするため、上記成分に加えてさらに、以下の成分を添加することができる。
W:0.001〜0.5質量%、Nb:0.001〜0.1質量%、Ti:0.001〜0.1質量%、Zr:0.001〜0.1質量%およびV:0.002〜0.5質量%のうちの1種または2種以上
W、Nb、Ti、ZrおよびVは、いずれも焼入れ性や焼戻し後の鋼の強度を高め、鋼の転動疲労寿命特性を向上する元素であり、必要とする強度に応じて選択して添加することができる。このような効果を得るためには、W、Nb、TiおよびZrは、それぞれ0.001質量%以上、Vは0.002質量%以上で添加することが好ましい。しかし、WおよびVは0.5質量%、Nb、Ti、Zrは0.1質量%を超えて添加すると、却って鋼の被削性が低下するため、これらの値を上限として添加することが好ましい。
B:0.0002〜0.005質量%
Bは、焼入れ性の増大により焼戻し後の鋼の強度を高め、鋼の転動疲労寿命特性を向上する元素であり、必要に応じて添加することができる。この効果を得るためには、0.0002質量%以上で添加することが好ましい。しかし、0.005質量%を超えて添加すると、加工性が劣化するため、Bは0.0002〜0.005質量%の範囲で添加することが好ましい。
本発明の軸受用造塊材においては、上記以外の成分は、Feおよび不可避的不純物である。ここに、不可避的不純物としては、Sb、Sn、AsおよびHf等が挙げられる。
次に、本発明の軸受用造塊材を製造する条件について説明する。
上記の成分組成を有する軸受用造塊材は、真空溶解炉または転炉、さらには脱ガス工程などの公知の精錬法にて溶製し、次いで、造塊法によって鋳片とされる。鋳片は、さらに圧延、鍛造等の成形工程を経て軸受部品とされる。
得られた鋳片の中心部にはMoの偏析が生じているので、上述したMoの偏析度を2.8以下にまで低減させるための処理を行う必要がある。この処理として、以下に示す加熱処理が必要である。
加熱温度:1150℃以上1350℃未満
鋼の転動疲労寿命特性向上のために、中心偏析部でのMoの偏析度を低減する必要がある。また、造塊法にて鋳造した場合には、鋳片の中央付近には、鋳造方向の偏析(V偏析)、鋳造方向と逆方向の偏析(逆V偏析)が生じやすいが、所定条件で加熱を行うことにより、この偏析を低減させることもできる。加熱温度が1150℃未満の場合、偏析度の低減が小さく、上記効果を得ることができない。加熱温度が1350℃以上になると、偏析度が大きい部分で溶融が起こり、鋼材に割れが発生する。以上のことから加熱温度は1150℃以上1350℃未満とする。好ましくは、1150℃以上1300℃以下である。
加熱保持時間:10時間超
前述したとおり、鋼の転動疲労寿命特性向上のためには、Moの偏析度および、V偏析、逆V偏析を低減する必要がある。偏析度の低減のためには、加熱温度を高くすることが効果的であるが限界がある。したがって、10時間超の加熱保持を行い、偏析度を低減する。加熱保持時間が10時間以下の場合、偏析度の低減が小さく、上記した効果を得ることができない。そのために、本発明では、加熱保持時間を10時間超に限定した。上限はとくに定める必要はないが、現実的には100時間である。
なお、加熱処理を複数回に分けて行ってもよく、この場合、各加熱処理における1150℃以上1350℃未満での保持時間の合計時間が10時間超となればよい。また、鋳片には熱間鍛造を行って所望の断面形状とされるが、上記した加熱処理は熱間鍛造を行うにあたっての鋳片の加熱段階(鍛造前加熱)で行ってもよいし、また、鍛造前加熱とは別に鋳片に加熱処理を行ってもよい。さらに、熱間鍛造後に上記の条件で加熱処理を行うようにしてもよい。
さらに、鍛造時には、鍛錬成形比が2.0以上となる延伸を行う必要がある。上述したように、造塊法により製造された鋳片の内部には、粗大なポロシティの集まりであるザクなどの内部欠陥が発生し易いため、熱間鍛造により低減させる。また、鋼中に存在する非金属介在物を分断し微細化する。この効果を得るためには、鍛錬成形比を2.0以上とすることが好ましい。鍛錬成形比が2.0未満の場合、粗大なザクなどの欠陥および粗大な非金属介在物が存在するようになり、軸受鋼に加工中に内部割れが発生したり、転動疲労寿命特性が低下するようになる。以上のことから、鍛錬成形比は2.0以上とする実体鍛錬を行う必要がある。さらに、好ましい鍛錬成形比は2.5以上である。上限はとくに定める必要はないが、現実的には8.0未満である。
なお、鍛錬成形比とは、JISG 0701に記載の実体鍛錬における鍛錬成形比のことを指す。すなわち、鍛造前の断面積Aと鍛造後の断面積aとの比A/aを意味する。
表9に示す成分組成を有する鋼を転炉により溶製し、次いで造塊法により表10に示す条件にて鍛造および加熱を施し、軸受用造塊材とした。なお、表10における加熱1および2は、鍛造を行うための加熱であるが、偏析を低減する目的も兼ねている。加熱3は、鍛造後に偏析度を低減するための加熱である。この鍛造品について、Moの偏析度、非金属介在物径および転動疲労寿命特性を、以下のように調査した。
Figure 0005433111
Figure 0005433111
[最大介在物径]
最大介在物径は、鍛造した鋼片の(T/2,T/2)部(中心部)および(T/2,T/4)部(T=Tは角鍛造した鋼片の辺の長さ:図1)、あるいはD/4部およびD/2部(Dは丸鍛造した鋼片の直径:図2)から延伸方向断面が観察面になるようにミクロ組織観察用サンプルを採取し、光学顕微鏡にて倍率200倍で100mmの観察(図3の被検面10mm×10mm)を30個行って、それぞれにおける非金属介在物の短軸および長軸の長さを測定し、{(短軸長さ)×(長軸長さ)}1/2により介在物径に換算し、これら測定値に基づいて、極値統計により30000mm中の最大介在物径を予測し、これを採用した。ここで、極値統計による最大介在物径の予測は、日本トライポロジー学会第2種研究会による「軸受鋼における非金属介在物の評価法研究会フェーズII報告書」に記載されている、極値統計法を用いた。また、試験片はそれぞれ、鍛造後の鋼片の、造塊材のボトム側に相当する部分から採取した。
[偏析度]
偏析度は、上記した非金属介在物を評価したサンプルを用いて、電子線マイクロアナライザ(以下、EPMAと示す)を利用して求めた。EPMAの測定条件は、ビーム径:30μmφ、加速電圧:20kV、電流:4×10−7Aにて、図3に示すように、サンプルの中央部6mm×6mmの面分析を行い、面分析を行った領域のうち、Mo強度値が高い部分を含む線上にて図4に示すようにライン分析を実施し、Moの強度の最大値CMo(max)と平均値CMo(ave)とを求めた。また、その強度の最大値と平均値との比CMo(max)/CMo(ave)をもって、偏析度と定義した。
[耐転動疲労寿命特性]
転動疲労寿命特性は、実際に鍛造、切削、焼入れ・焼戻しを行い、実際に使用して評価するのが好ましいが、これでは、評価に長時間を有する。そのため、転動疲労寿命特性の評価は、ラジアル型の転動疲労寿命試験機により評価した。鍛造後の鋼片の(T/2,T/4)部(T=Tは角鍛造した鋼片の辺の長さ:図5)、あるいはD/4部(Dは丸鍛造した鋼片の直径:図6)より、60mmφ×5.3mmの円盤を切り出し、950℃に加熱後20分保持し、25℃の油にて焼入れを行い、その後、170℃に加熱後1.5時間保持する焼戻しを行い、60mmφ×5mmの円盤に平面研磨を行い試験面を鏡面に仕上げた。かくして得られた試験片は、スラスト転動疲労試験機を用いて、直径約38mmの円周上を鋼球が転がるようにし、5.8GPaのヘルツ最大接触応力がかかるようにして転動疲労試験に供した。ここで、試験片は、それぞれ鍛造後の鋼片の、造塊材のボトム側に相当する部分から採取した。
その評価は、試験片に剥離が発生するまでの応力負荷回数を10枚〜15枚の試験片に対して求め、ワイブル紙を用いて累積破損確率と応力負荷回数との関係で整理した後、累積破損確率10%(以下、B10寿命と示す)を求めた。このB10寿命が基準鋼(A−1:SUJ2相当鋼)に対して、10%以上向上した場合に、転動疲労寿命特性が向上したと判断した。
表11に、偏析度、非金属介在物径および転動疲労寿命特性試験の結果を示す。本発明に従う成分組成、偏析度CMo(max)/CMo(ave)を満たす、No.D−1〜D−7、D−12〜D−16およびD−26〜D−31の鋼は、偏析度、非金属介在物も本発明の範囲内に制御され、良好な転動疲労寿命特性を有していることが分かる。これに対して、成分組成が本発明の範囲内であっても、製造条件が本発明の範囲を満足しないNo.D−23〜D−25の鋼は、偏析度または非金属介在物が大きくなり、耐転動疲労寿命特性がほとんど改善していないことがわかる。また、成分組成が本発明の範囲を満たさないNo.D−8〜D−11およびD−17〜D−22の鋼は、製造条件が本発明の範囲内であっても、耐転動疲労寿命特性がほとんど改善していないことがわかる。
Figure 0005433111
本発明の造塊材を用いれば、転動疲労寿命特性に優れた軸受鋼を造塊法による安価な手法にて製造することができ、産業上非常に価値の高い軸受鋼を提供できる。

Claims (5)

  1. C:0.56質量%以上0.70質量%以下、
    Si:0.15質量%以上0.50質量%未満、
    Mn:0.60質量%以上1.50質量%以下、
    Cr:0.50質量%以上1.10質量%以下、
    Mo:0.05質量%以上0.5質量%以下、
    P:0.025質量%以下、
    S:0.025質量%以下、
    Al:0.005質量%以上0.500質量%以下、
    O:0.0015質量%以下および
    N:0.0030質量%以上0.015質量%以下
    を含み、残部Feおよび不可避的不純物の成分組成を有し、下記(1)式にて定義される偏析度が2.8以下であり、さらに極値統計によって算出される30000mmにおける最大介在物径の予測値が60μm以下であることを特徴とする軸受用造塊材。

    Mo(max)/CMo(ave)≦2.8 …(1)
    但し、CMo(max)はMoの強度値の最大値、並びにCMo(ave)はMoの強度値の平均値
  2. 上記成分組成に加えて、さらに、
    Cu:0.005質量%以上0.5質量%以下および
    Ni:0.005質量%以上1.00質量%以下
    のうちから選ばれる1種または2種を含有することを特徴とする請求項1に記載の軸受用造塊材。
  3. 上記成分組成に加えて、さらに、
    W:0.001質量%以上0.5質量%以下、
    Nb:0.001質量%以上0.1質量%以下、
    Ti:0.001質量%以上0.1質量%以下、
    Zr:0.001質量%以上0.1質量%以下および
    V:0.002質量%以上0.5質量%以下
    のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2のいずれかに記載の軸受用造塊材。
  4. 上記成分組成に加えて、さらに、
    B:0.0002質量%以上0.005質量%以下
    を含有することを特徴とする請求項1から3のいずれかに記載の軸受用造塊材。
  5. 請求項1から4のいずれかに記載の成分組成を有する鋼を、造塊法にて鋳片とし、その後、鍛錬成形比が2.0以上になる鍛造、および、1150℃以上1350℃未満の温度域で10時間超加熱する加熱処理を行う、下記(1)式にて定義される偏析度が2.8以下であり、さらに極値統計によって算出される30000mm における最大介在物径の予測値が60μm以下である軸受用造塊材の製造方法。

    Mo(max) /C Mo(ave) ≦2.8 …(1)
    但し、C Mo(max) はMoの強度値の最大値、並びにC Mo(ave) はMoの強度値の平均値
JP2013527809A 2011-09-30 2012-09-27 軸受用造塊材および製造方法 Active JP5433111B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013527809A JP5433111B2 (ja) 2011-09-30 2012-09-27 軸受用造塊材および製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011218229 2011-09-30
JP2011218229 2011-09-30
PCT/JP2012/006168 WO2013046678A1 (ja) 2011-09-30 2012-09-27 軸受用造塊材および製造方法
JP2013527809A JP5433111B2 (ja) 2011-09-30 2012-09-27 軸受用造塊材および製造方法

Publications (2)

Publication Number Publication Date
JP5433111B2 true JP5433111B2 (ja) 2014-03-05
JPWO2013046678A1 JPWO2013046678A1 (ja) 2015-03-26

Family

ID=47994755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013527809A Active JP5433111B2 (ja) 2011-09-30 2012-09-27 軸受用造塊材および製造方法

Country Status (6)

Country Link
US (1) US9732395B2 (ja)
EP (1) EP2762587B1 (ja)
JP (1) JP5433111B2 (ja)
KR (2) KR102011531B1 (ja)
CN (1) CN103827337B (ja)
WO (1) WO2013046678A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834956A (zh) * 2016-11-09 2017-06-13 芜湖市永帆精密模具科技有限公司 一种耐磨轴承钢球及其制备方法
CN106636942A (zh) * 2016-11-09 2017-05-10 芜湖市永帆精密模具科技有限公司 一种抗滚动疲劳轴承钢球及其制备方法
CN106834955A (zh) * 2016-11-09 2017-06-13 芜湖市永帆精密模具科技有限公司 一种高强度轴承钢球及其制备方法
CN106811688A (zh) * 2016-12-28 2017-06-09 芜湖市永帆精密模具科技有限公司 一种中碳高铬抗裂耐磨钢球及其制备方法
CN108149133B (zh) * 2017-12-08 2020-12-18 安泰科技股份有限公司 一种加硼高碳、微合金化的高强度碳素纯净钢及制备方法
CN108193017B (zh) * 2017-12-08 2020-08-11 安泰科技股份有限公司 一种加锆高碳、微合金化的高强度碳素纯净钢及制备方法
CN108300934B (zh) * 2017-12-15 2020-06-30 安泰科技股份有限公司 一种加硼高碳纯净钢电弧炉冶炼制备方法
CN108220772B (zh) * 2017-12-15 2020-06-23 安泰科技股份有限公司 一种加硼高碳纯净钢中频感应炉冶炼制备方法
CN108220771B (zh) * 2017-12-15 2020-06-09 安泰科技股份有限公司 一种加锆高碳纯净钢电弧炉冶炼制备方法
CN108300933B (zh) * 2017-12-15 2020-05-12 安泰科技股份有限公司 一种加锆高碳纯净钢真空感应炉冶炼制备方法
CN108220769B (zh) * 2017-12-15 2020-06-09 安泰科技股份有限公司 一种加锆高碳纯净钢中频感应炉冶炼制备方法
CN108220770B (zh) * 2017-12-15 2020-06-23 安泰科技股份有限公司 一种加硼高碳纯净钢真空感应炉冶炼制备方法
CN112813363B (zh) * 2021-02-08 2022-04-08 洛阳Lyc轴承有限公司 一种用于风电偏航、变桨轴承的轴承钢及其制备方法
CN114182078A (zh) * 2021-12-03 2022-03-15 上海电气上重铸锻有限公司 一种高强度奥氏体轴类大锻件的制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306542A (ja) 1988-05-31 1989-12-11 Sanyo Special Steel Co Ltd 介在物組成を制御した軸受用鋼
JPH0375312A (ja) 1989-08-17 1991-03-29 Daido Steel Co Ltd 軸受鋼のソーキング法
JP3018355B2 (ja) 1989-10-11 2000-03-13 日本精工株式会社 軸受用鋼及び転がり軸受
JP2956324B2 (ja) * 1991-10-24 1999-10-04 株式会社神戸製鋼所 加工性および転動疲労性に優れた軸受用鋼
JP3233674B2 (ja) 1992-03-25 2001-11-26 川崎製鉄株式会社 軸受用鋼
JPH07127643A (ja) 1993-10-29 1995-05-16 Nippon Seiko Kk 転がり軸受
JP3007834U (ja) 1994-08-12 1995-02-28 節子 江成 バケツ用ごみこしネット
JP3007834B2 (ja) 1995-12-12 2000-02-07 株式会社神戸製鋼所 転動疲労特性に優れた軸受鋼
JP4050829B2 (ja) 1998-07-30 2008-02-20 新日本製鐵株式会社 転動疲労特性に優れた浸炭材
US6419646B1 (en) 2000-04-10 2002-07-16 Cervilenz Devices and methods for cervix measurement
JP4066903B2 (ja) 2003-07-18 2008-03-26 日産自動車株式会社 短時間で浸炭可能な肌焼鋼および浸炭部品
JP4631618B2 (ja) * 2005-08-31 2011-02-16 Jfeスチール株式会社 疲労特性に優れた軸受用鋼部品の製造方法
JP5338188B2 (ja) * 2007-10-31 2013-11-13 大同特殊鋼株式会社 合金工具鋼及びその製造方法
JP5463662B2 (ja) * 2008-03-10 2014-04-09 Jfeスチール株式会社 転動疲労特性に優れた軸受鋼およびその製造方法
JP2009272929A (ja) * 2008-05-08 2009-11-19 Canon Inc 映像符号化装置および映像符号化方法
JP2010194919A (ja) * 2009-02-26 2010-09-09 Seiko Epson Corp ワイピング装置および液体噴射装置
JP2010242668A (ja) * 2009-04-08 2010-10-28 Toyota Motor Corp 気体燃料噴射弁
JP5025710B2 (ja) * 2009-11-06 2012-09-12 ユニバーサル造船株式会社 帆走装置および帆船
EP2508638B1 (en) 2009-11-30 2015-07-15 JFE Steel Corporation Forged steel bar for bearings and process for producing it
WO2011065592A1 (ja) * 2009-11-30 2011-06-03 Jfeスチール株式会社 軸受鋼
JP5400089B2 (ja) 2010-08-31 2014-01-29 Jfeスチール株式会社 転動疲労寿命特性に優れた軸受鋼、軸受用造塊材並びにそれらの製造方法
JP6006903B2 (ja) 2013-08-12 2016-10-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 患者インタフェース装置のフィット性の検出

Also Published As

Publication number Publication date
KR102011531B1 (ko) 2019-08-16
EP2762587B1 (en) 2016-07-13
WO2013046678A1 (ja) 2013-04-04
EP2762587A4 (en) 2015-04-08
KR20140073506A (ko) 2014-06-16
KR20190049908A (ko) 2019-05-09
CN103827337A (zh) 2014-05-28
CN103827337B (zh) 2016-02-10
JPWO2013046678A1 (ja) 2015-03-26
US9732395B2 (en) 2017-08-15
US20150041026A1 (en) 2015-02-12
KR102127626B1 (ko) 2020-06-29
EP2762587A1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5433111B2 (ja) 軸受用造塊材および製造方法
JP4775506B1 (ja) 軸受鋼
JP5400089B2 (ja) 転動疲労寿命特性に優れた軸受鋼、軸受用造塊材並びにそれらの製造方法
KR101520208B1 (ko) 기소강 및 그의 제조 방법, 및 기소강을 이용한 기계 구조 부품
JP4775505B1 (ja) 転動疲労寿命に優れる軸受用造塊材および軸受用鋼の製造方法
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP5503170B2 (ja) 最大結晶粒の縮小化特性に優れた肌焼鋼
JP6620490B2 (ja) 時効硬化性鋼
JP6462376B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP6801782B2 (ja) 鋼及び部品
JP6390685B2 (ja) 非調質鋼およびその製造方法
CN107429359B (zh) 热轧棒线材、部件及热轧棒线材的制造方法
JP4280923B2 (ja) 浸炭部品又は浸炭窒化部品用の鋼材
JP6109730B2 (ja) 浸炭後の曲げ疲労特性に優れた鋼材およびその製造方法並びに浸炭部品
JP5976581B2 (ja) 転動疲労特性に優れた軸受用鋼材、および軸受部品
JP5423571B2 (ja) 高周波焼入れ部品用熱間加工高炭素鋼材
JP2005307257A5 (ja)
JP7464821B2 (ja) 軸受軌道用鋼材、および軸受軌道
JP2020164936A (ja) 浸炭用鋼およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Ref document number: 5433111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250