WO2017154652A1 - 転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品 - Google Patents

転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品 Download PDF

Info

Publication number
WO2017154652A1
WO2017154652A1 PCT/JP2017/007620 JP2017007620W WO2017154652A1 WO 2017154652 A1 WO2017154652 A1 WO 2017154652A1 JP 2017007620 W JP2017007620 W JP 2017007620W WO 2017154652 A1 WO2017154652 A1 WO 2017154652A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
steel material
oxide
rolling fatigue
Prior art date
Application number
PCT/JP2017/007620
Other languages
English (en)
French (fr)
Inventor
正樹 島本
世意 木村
裕己 太田
克浩 岩崎
章弘 大脇
朋子 杉村
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017154652A1 publication Critical patent/WO2017154652A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Definitions

  • the present invention relates to a bearing steel material excellent in rolling fatigue characteristics, a manufacturing method thereof, and a bearing component excellent in rolling fatigue characteristics. More specifically, in bearings used in various industrial machines, automobiles, etc., when used as parts such as rolling elements and bearing rings, a bearing steel material that exhibits excellent rolling fatigue characteristics, and The present invention relates to a manufacturing method and a bearing part obtained from the bearing steel material.
  • the composition of the oxide to be produced is mainly Al 2 O 3.
  • the SiO 2, CaO or the like to control the composition mainly without Accordingly, the non-metallic inclusions stretching, by dividing by reducing the size of the nonmetallic inclusions, a method is proposed to extend the rolling contact fatigue life in rolling process (Patent Documents 1 and 2 below).
  • Patent Document 1 contains, by mass%, CaO: 10 to 60%, Al 2 O 3 : 20% or less, MnO: 50% or less, and MgO: 15% or less, with the balance being SiO 2 and inevitable oxides.
  • the oxide-based inclusions made of the steel material are present inside the steel material, and the arithmetic average value of the maximum thickness of the oxide-based inclusions present in the area of 100 mm 2 in the 10 longitudinal sections of the steel material and the sulfide system Bearing steel materials having an arithmetic average value of the maximum thickness of inclusions of 8.5 ⁇ m or less have been proposed.
  • Patent Document 2 proposes a high cleanliness Si deoxidized steel material in which the oxide inclusions described in Patent Document 1 further contain a predetermined amount of ZrO 2 as an oxide component.
  • Patent Document 3 proposes a spring steel having a long fatigue life in which the generation of REM inclusions is controlled to render alumina, TiN, and MnS harmless, and a method for manufacturing the same. Specifically, alumina is modified into REM-Al-OS inclusions to prevent coarsening, S is immobilized as REM-Al-OS inclusions to suppress coarse MnS, A method of reducing the number density of TiN harmful to fatigue life by combining TiN with REM-Al-O-S inclusions has been proposed.
  • Patent Document 4 discloses that the inclusion of TiO 2 in the oxide inclusions obtained by Si deoxidation suppresses crystallization of the oxide inclusions, whereby the parent phase (base phase) in the steel.
  • Steel materials for bearings have been proposed that have improved rolling fatigue life by suppressing cavities generated at the interface between the oxide inclusions and the oxide inclusions.
  • Patent Document 1 it cannot be said that sufficient rolling fatigue life is obtained because no attempt is made to suppress the cavity at the interface between the matrix phase and the oxide inclusions in the steel.
  • Patent Document 2 there is no description regarding cavities caused by peeling at the interface.
  • this technique focuses only on the miniaturization of the entire non-metallic inclusions, and in the evaluation of the examples, it is only evaluated by the arithmetic average value of the C-type inclusion rating of the ASTM E45 method. Therefore, the rolling fatigue life of the steel material thus manufactured is not always long.
  • the oxide inclusions are composed of strong deoxidation elements such as REM and Al, and are not mainly composed of weak deoxidation elements such as Si. The peeling that occurs at the interface of the mother phase cannot be suppressed.
  • Patent Document 4 since the generation of cavities at the interface between the oxide inclusions and the matrix phase that have become amorphous is suppressed, the rolling fatigue life is improved regardless of the direction in which the load is applied. I am letting. However, development of a steel material for bearings having a longer rolling fatigue life is desired due to recent demands for further improvement in durability of bearing components.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a bearing steel material excellent in rolling fatigue characteristics, a manufacturing method thereof, and a bearing component excellent in rolling fatigue characteristics.
  • One aspect of the present invention is mass%, C: 0.8% to 1.1%, Si: 0.15% to 0.8%, Mn: 0.1% to 1.0%, Cr: 1.3% to 1.8%, P: more than 0% to 0.05%, S: more than 0% to 0.015%, Al: 0.0002% to 0.005%, Ti: Bearing steel material containing 0.0005% or more and 0.010% or less, N: 0.0030% or more and 0.010% or less, O: more than 0% and 0.0030% or less, with the balance being iron and inevitable impurities
  • the oxide inclusions having a minor axis of 1 ⁇ m or more present in the steel material are in mass%, Al 2 O 3 : 5% to 50%, SiO 2 : 10% to 70%, TiO 2 : containing 50% or less than 3%, the balance consisting of unavoidable oxides, the Al 2 O 3, the SiO 2 and the The total weight percentage of iO 2 is 60% or more, the ratio of the TiO 2 mass to the total mass of the Al 2 O 3 and
  • Another aspect of the present invention includes a melting step for obtaining a steel material composed of the steel components by performing a Si deoxidation treatment, a first soaking step, a bundling step, a second soaking step, and heat.
  • a holding temperature in the second soaking step is 1240 ° C. or lower, and in the first soaking step and the second soaking step, the holding time at a temperature of 900 to 1240 ° C.
  • it is a manufacturing method of the steel material for bearings excellent in rolling fatigue characteristics which is 60 minutes or more in total.
  • Still another aspect of the present invention is a bearing component made of the bearing steel material.
  • the present inventors conducted further studies in order to provide a steel material for a bearing that further extends the rolling fatigue life even after disclosing Patent Document 4 described above.
  • the amount of CaO contained in the oxide inclusions obtained by Si deoxidation is small, depending on whether the heating and holding temperature is high or short and the heating and holding time is long or short in the heating step before the block rolling or hot rolling, It was revealed that the rolling fatigue life of the steel material fluctuated greatly.
  • the present inventors generated oxide inclusions mainly composed of Al 2 O 3 , SiO 2 and TiO 2 as oxide inclusions obtained by Si deoxidation, and further, the oxide
  • oxide inclusions obtained by Si deoxidation
  • the oxide The idea was that if TiN was present at the interface between the system inclusions and the parent phase of the steel (steel base phase), the rolling fatigue life would be further extended.
  • the size and composition of oxide inclusions, and the number ratio of inclusions containing TiN at the interface in the oxide inclusions were examined.
  • excellent in rolling fatigue characteristics means that the fatigue life L 10 in the thrust rolling fatigue test described in Examples described later is 5.4 ⁇ 10 7 times or more.
  • the present inventors have made various studies in order to provide a Si deoxidized steel material having a longer rolling fatigue life than the steel material of Patent Document 4.
  • oxide inclusions obtained by Si deoxidation tend to be amorphous and are easily stretched by hot rolling. Therefore, in steel materials that have been hot-rolled, anisotropy occurs in the oxide inclusions. As a result, since anisotropy occurs in the rolling fatigue life of the steel material, it is not preferable.
  • by controlling the composition of the oxide inclusions it is possible to crystallize in a high temperature range where hot working is performed to obtain a polycrystal.
  • oxide inclusions that have become polycrystalline have a higher deformation resistance than the parent phase of steel, they are present at the interface between the parent phase and oxide inclusions in steel during hot working or cold working. It is easy to generate voids. The void generated at the interface is not preferable because it adversely affects the rolling fatigue life.
  • the present inventors diligently studied a method for suppressing the generation of voids by controlling not only the composition of oxide inclusions obtained by Si deoxidation but also the generation state of TiN. As a result, it has been found that when a predetermined amount of TiN is generated at the interface between the oxide inclusions obtained by Si deoxidation and the parent phase, peeling at the interface can be suppressed, and the rolling fatigue life is remarkably improved.
  • the complex of the deoxidation product such as Al 2 O 3 and TiN tends to be coarsened, which is considered to adversely affect the rolling fatigue life.
  • the complex of the deoxidation product such as Al 2 O 3 and TiN tends to be coarsened, which is considered to adversely affect the rolling fatigue life.
  • the composite is coarsened, the rolling fatigue life is adversely affected. Conceivable.
  • peeling still occurs at the interface between the oxide inclusions such as Al 2 O 3 that could not be coated with TiN and the parent phase, the rolling fatigue life of the steel material must be improved due to the peeling. Conceivable.
  • Patent Document 3 As described above, a number of techniques focusing on TiN generated at the interface between the oxide inclusions and the parent phase have been disclosed. However, as shown in Patent Document 3, all of them are intended for steel materials using Al deoxidized steel as a raw material. As a solution, only a technique for reducing the number density of TiN harmful to fatigue life and making it harmless is disclosed. In the solution disclosed in Patent Document 3, peeling that occurs at the interface between the oxide inclusion and the parent phase and adversely affects the rolling fatigue life cannot be suppressed.
  • the steel material of the present invention uses Si deoxidized steel, and the production of a deoxidized product such as Al 2 O 3 that tends to be coarsened is suppressed at the melting stage of the Si deoxidized steel.
  • Si-deoxidized steel is a steel of the present invention, in its melting stage, Al 2 O 3, SiO 2 and TiO 2 produced as a deoxidation product, Al 2 O 3 to the total deoxidation product , SiO 2 and TiO 2 total mass percentage is 60% or more.
  • Oxide inclusions comprising Al 2 O 3 , SiO 2 and TiO 2 are deoxidation products (Al 2 O 3 , MgO ⁇ Al 2 O 3 , (Ca, Al) oxides generated by Al deoxidation.
  • Etc. it has a lower melting point, is less likely to agglomerate in molten steel, and is less prone to coarsening. Therefore, TiN is formed using oxide inclusions (deoxidation products generated by Si deoxidation) as production nuclei in the heating stage before hot working (eg, block rolling, block forging, hot rolling). Even if it is formed to form a composite inclusion, the composite inclusion remains relatively fine. It is well known that TiN is excellent in lattice matching with ⁇ -Fe having a crystal structure of bcc. Therefore, it is considered that TiN improves the adhesion between the composite inclusion and the parent phase, and as a result, delamination that occurs at the interface between the composite inclusion and the parent phase is suppressed. As a result, it is considered that the rolling fatigue life has been dramatically improved.
  • Patent Document 4 focuses on maintaining the oxide inclusions obtained by Si deoxidation in an amorphous body in order to extend the rolling fatigue life.
  • the holding time was the same as before, and no special consideration was given.
  • the retention time during the heating which has not been noted so far, at a temperature suitable for the generation of TiN than before has been compared.
  • TiN is generated at the interface between the oxide inclusions and the parent phase, the adhesion at the interface between the oxide inclusions and the parent phase is improved, the voids are suppressed, and the rolling fatigue life is increased. It turned out to be even longer. For example, if the holding temperature and holding time at the time of heating performed prior to the partial rolling, the partial forging, the hot rolling, etc. are maintained for a long time at a temperature suitable for generating TiN, the oxide-based intervening It was found that TiN was generated at the interface between the material and the mother phase, the adhesion between the oxide inclusion and the mother phase was improved, voids were suppressed, and the rolling fatigue life was improved, completing the present invention. did.
  • the steel material for bearings of the present invention is mass%, C: 0.8% to 1.1%, Si: 0.15% to 0.8%, Mn: 0.1% to 1.0%, Cr: 1.3% to 1.8%, P: more than 0% to 0.05%, S: more than 0% to 0.015%, Al: 0.0002% or more and 0.005% or less, Ti: 0.0005% or more and 0.010% or less, N: 0.0030% or more and 0.010% or less, O: more than 0% and 0.0030% or less
  • the balance is a steel material composed of steel and steel components that are inevitable impurities. The reason for setting this range is as follows.
  • C 0.8 to 1.1%
  • C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance.
  • the C content is 0.8% or more, preferably 0.85% or more, more preferably 0.90% or more.
  • the C content is 1.1% or less, preferably 1.05% or less, more preferably 1.0% or less.
  • Si 0.15 to 0.8%
  • Si has an effect of increasing hardness by increasing resistance to quenching and tempering.
  • the Si content is set to 0.15% or more, preferably 0.20% or more, more preferably 0.25% or more.
  • the Si content is 0.8% or less, preferably 0.7% or less, more preferably 0.6% or less.
  • Mn is an element that improves the solid solution strengthening and hardenability of the steel matrix.
  • the Mn content is 0.1% or more, preferably 0.2% or more, more preferably 0.3% or more.
  • the Mn content is 1.0% or less, preferably 0.8% or less, more preferably 0.6% or less.
  • Cr 1.3-1.8%
  • Cr is an element effective in improving rolling fatigue characteristics by improving strength and wear resistance by improving hardenability and forming stable carbides.
  • the Cr content is 1.3% or more, preferably 1.35% or more, more preferably 1.4% or more.
  • the Cr content is 1.8% or less, preferably 1.7% or less, more preferably 1.6% or less.
  • P more than 0% and 0.05% or less
  • P is an element inevitably contained in the steel material. If the P content is excessive, it segregates at the grain boundaries and adversely affects the rolling fatigue characteristics. Therefore, the P content is 0.05% or less, preferably 0.03% or less, more preferably 0.02% or less. The P content should be as low as possible. The lower limit of the P content is not particularly defined, but is industrially 0.002%.
  • S is an element inevitably contained in the steel material, and is also an element forming sulfide.
  • the S content is 0.015% or less, preferably 0.007% or less, more preferably 0.005% or less.
  • the content of S should be as low as possible.
  • the lower limit of the S content is not particularly defined, but is industrially 0.0005%.
  • Al is a deoxidizing element, and is also an element that varies the composition of oxide inclusions depending on the content.
  • the Al content is 0.005% or less, preferably 0.002% or less, more preferably 0.0015% or less.
  • deoxidation treatment by addition of Al after oxidative refining is not performed unlike Al deoxidized steel.
  • the Al content is 0.0002% or more, preferably 0.0003% or more, more preferably 0.0005% or more.
  • Ti 0.0005 to 0.010%
  • TiN is generated at the interface between the oxide inclusions and the parent phase, and the peeling that occurs at the interface is suppressed.
  • the concentration of TiO 2 in the oxide inclusions can be controlled, and this effectively acts in reducing the aspect ratio (details will be described later), and the rolling fatigue characteristics are further improved.
  • the Ti content is 0.0005% or more, preferably 0.0008% or more, more preferably 0.0011% or more.
  • the Ti content is 0.010% or less, preferably 0.0050% or less, more preferably 0.0030% or less.
  • N is an element that characterizes the present invention.
  • TiN is generated at the interface between the oxide inclusions and the parent phase, and peeling that occurs at the interface can be suppressed.
  • the N content is set to 0.0030% or more, preferably 0.0035% or more, more preferably 0.0040% or more.
  • the N content is 0.010% or less, preferably 0.008% or less, more preferably 0.007% or less.
  • O is an element inevitably contained in the steel material.
  • the O content is 0.0030% or less, preferably 0.0025% or less, more preferably 0.0020% or less.
  • the O content should be as low as possible.
  • the lower limit of the O content is not particularly limited from the viewpoint of improving rolling fatigue characteristics, but it is preferably 0.0004% or more, more preferably 0.0008% or more in consideration of economy and the like. This is because, in order to control the O content to less than 0.0004%, it is necessary to strictly remove O from the molten steel, which is not economical because the treatment time for the molten steel becomes long.
  • the steel material for bearings of the present invention satisfies the above components, and the remaining components are iron and inevitable impurities other than P, S and O.
  • the inevitable impurities include elements (for example, H, Ni, etc.) that are brought in depending on conditions such as raw materials, materials, and manufacturing equipment.
  • the steel material for bearings of the present invention has oxide inclusions having a minor axis of 1 ⁇ m or more, the composition of which is Al 2 O 3 in mass%. : 5% or more and 50% or less, SiO 2 : 10% or more and 70% or less, TiO 2 : containing 3% or more and 50% or less, the balance is made of inevitable oxides, Al 2 O 3 , SiO 2 and TiO 2
  • the total mass percentage is 60% or more, and the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 is 0.10 or more and 1.50 or less. The reason for setting this range is as follows.
  • the rolling fatigue characteristics are said to have a greater adverse effect as the size of oxide inclusions increases. Therefore, in the present invention, the oxide inclusions having the above-mentioned size (minor axis of 1 ⁇ m or more) are controlled in order to evaluate large-sized oxide inclusions that may adversely affect rolling fatigue characteristics. It was to be.
  • Al 2 O 3 has an effect of lowering the liquidus temperature of an oxide mainly composed of SiO 2 . Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusion steel and the parent phase. As a result, rolling fatigue characteristics are improved.
  • Al 2 O 3 has an effect of promoting crystallization of oxide inclusions. Therefore, it plays an important role in reducing the aspect ratio of oxide inclusions. In order to effectively exhibit such an effect, the content of Al 2 O 3 in the composition of oxide inclusions is 5% or more, preferably 8% or more, more preferably 12% or more.
  • the content of Al 2 O 3 in the composition of oxide inclusions is 50% or less, preferably 40% or less, more preferably 30% or less.
  • SiO 2 has the effect of lowering the liquidus temperature of oxide inclusions. Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusion and the parent phase. As a result, rolling fatigue characteristics are improved.
  • the SiO 2 content in the composition of oxide inclusions is 10% or more, preferably 15% or more, more preferably 25% or more, and further preferably 30% or more. .
  • the SiO 2 content in the composition of oxide inclusions becomes excessive, the oxide becomes coarse and the rolling fatigue characteristics deteriorate.
  • the SiO 2 content in the composition of oxide inclusions is 70% or less, preferably 60% or less, more preferably 45% or less.
  • TiO 2 has an effect of lowering the liquidus temperature of an oxide mainly composed of SiO 2 . Therefore, there is an effect of suppressing the coarsening of the oxide and generating TiN at the interface between the oxide inclusion and the parent phase. As a result, rolling fatigue characteristics are improved. TiO 2 has an effect of promoting crystallization of oxide inclusions. Therefore, it plays an important role in reducing the aspect ratio of oxide inclusions. In order to effectively exhibit such an effect, the content of TiO 2 in the composition of oxide inclusions is 3% or more, preferably 5% or more, more preferably 10% or more, and further preferably 20% or more. .
  • the TiO 2 content in the composition of the oxide inclusions is 50% or less, preferably 45% or less, more preferably 40% or less.
  • the oxide inclusions contain Al 2 O 3 , SiO 2 , and TiO 2 , and the remaining components are inevitable oxides.
  • Inevitable oxides are oxides that are inevitably included in the production process, for example, CaO, REM 2 O 3 , MgO, MnO, ZrO 2 , Na 2 O, K 2 O, Li 2 O, Cr. 2 O 3 , NbO, FeO, Fe 3 O 4 , Fe 2 O 3 may be mentioned.
  • Inevitable oxides may be included as long as desired characteristics are obtained without adversely affecting the crystallization state and aspect ratio of the oxide inclusions.
  • the total mass percentage of inevitable oxides with respect to the total mass of the oxide inclusions is preferably generally 30% or less, and more preferably 20% or less.
  • CaO can be contained in a range where the mass percentage with respect to the total mass of the oxide inclusions is 20% or less.
  • REM 2 O 3 , MgO, MnO, ZrO 2 , Na 2 O, K 2 O, Li 2 O, Cr 2 O 3 , NbO, FeO, Fe 3 O 4 , and Fe 2 O 3 are the oxides described above. It can contain in the range whose mass percentage with respect to the total mass of a system inclusion is less than 10%.
  • REM means 17 elements of lanthanoid elements (15 elements from La to Lu belonging to Group 3 of Periodic Table 6), Sc (scandium) and Y (yttrium). .
  • lanthanoid elements 15 elements from La to Lu belonging to Group 3 of Periodic Table 6
  • Sc scandium
  • Y yttrium
  • Total mass percentage of Al 2 O 3 , SiO 2 and TiO 2 60% or more (Al 2 O 3 + SiO 2 + TiO 2 ⁇ 60%)]
  • Al 2 O 3 , SiO 2, and TiO 2 are the main components of the oxide inclusions in the present invention, and their respective contents are controlled.
  • Al 2 O 3 Further, the total content of SiO 2 and TiO 2 needs to be appropriately controlled. Thereby, TiN can be produced
  • the total content of Al 2 O 3 , SiO 2 and TiO 2 is set to 60% or more.
  • the upper limit value of the total content of Al 2 O 3 , SiO 2 and TiO 2 is not particularly limited, and may be 100%, for example.
  • Al 2 O 3 , SiO 2 and TiO 2 are main components of the oxide inclusions in the present invention.
  • Al 2 O 3 and the ratio of the mass TiO 2 to the total mass of SiO 2 is suppressed peeling at the interface to thereby produce a TiN by the interface between the case, oxide inclusions and the matrix phase in a predetermined range can do.
  • the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 is 0.10 or more, preferably 0.15 or more, more preferably 0.25 or more.
  • Al 2 O 3 and the ratio of the mass TiO 2 is too large with respect to the total mass of SiO 2, the proportion of TiO 2 is too large in the oxide inclusions, oxide-based inclusions and the matrix phase TiN cannot be generated at the interface, and rolling fatigue characteristics are not improved. Accordingly, Al 2 O 3 and the ratio of the mass TiO 2 to the total mass of SiO 2 is 1.50 or less, preferably 1.30 or less, more preferably 1.00 or less.
  • the TiN existing at the interface means TiN formed on the oxide inclusions (and the interface between the parent phase (base phase) of the steel material) as shown in the column of Examples described later.
  • This TiN is extremely important for improving the rolling fatigue life, and the presence of TiN at the interface suppresses peeling that occurs at the interface between the composite inclusion and the parent phase. As a result of suppressing interfacial delamination that adversely affects the rolling fatigue life, the rolling fatigue life is improved.
  • the TiN number ratio in which such an effect occurs is 30% or more. The larger the TiN number ratio, the better. It is preferably 40% or more, and more preferably 50% or more.
  • the upper limit of the TiN number ratio is not particularly limited, and may be 100%, for example.
  • the aspect ratio of the oxide inclusions existing on the plane cut in parallel to the longitudinal direction of the steel (long diameter / The average value of the minor axis (hereinafter sometimes simply referred to as an aspect ratio) is reduced to 3.0 or less.
  • the aspect ratio is preferably as small as possible, and is generally preferably 2.5 or less, and more preferably 2.0 or less.
  • the steel material for bearings of the present invention includes a melting step, a first soaking step, a bundling step, a second soaking step, a hot soaking step for obtaining a steel material comprising the steel components by performing Si deoxidation treatment,
  • the holding temperature in the second soaking step is set to 1240 ° C. or less, and the holding time at 900 to 1240 ° C. in the first soaking step and the second soaking step is set. It can manufacture by making it 60 minutes or more in total.
  • the melting step In producing the bearing steel of the present invention, attention is paid to the melting step, the first soaking step, and the second soaking step so as to obtain a predetermined oxide composition and TiN number ratio. In steps other than these, a method usually used for producing bearing steel is appropriately selected.
  • a steel material that is a slab is obtained by melting and casting the steel composed of the steel components.
  • a deoxidation treatment Si deoxidation treatment
  • a deoxidation treatment by adding Si is performed without performing a deoxidation treatment by adding Al, which is usually performed.
  • a preferable melting method for obtaining the oxide composition is as follows.
  • the Al content contained in the steel is controlled to 0.0002 to 0.005% as described above.
  • the method for controlling TiO 2 is not particularly limited. Based on a method commonly used in the technical field, Ti is added so that the Ti content contained in the steel is controlled within the range of 0.0005 to 0.010% as described above during melting. That's fine.
  • the addition method of Ti in this case is not particularly limited. For example, it may be adjusted by adding an iron-based alloy containing Ti, or the Ti concentration in the molten steel may be controlled by controlling the slag composition.
  • the content of SiO 2 is indirectly controlled by controlling the other oxides as described above.
  • a preferred control method for obtaining the TiN number ratio is as follows.
  • the Ti content contained in the steel is controlled within the range of 0.0005 to 0.010% as described above, and the N content is controlled within the range of 0.003 to 0.010% as described above.
  • Ti and N are added as shown.
  • the addition method of Ti is not specifically limited. For example, it may be adjusted by adding an iron-based alloy containing Ti, or the Ti concentration in the molten steel may be controlled by controlling the slag composition.
  • the addition method of N is not particularly limited. For example, it may be adjusted by adding an alloy containing N, or may be controlled using nitrogen gas when the molten steel is gas-stirred, or the nitrogen partial pressure in the gas phase in contact with the molten steel May be controlled.
  • First soaking step and second soaking step Heating and hot rolling performed before the partial rolling or the partial forging so that TiN exists at the interface between the oxide inclusions and the parent phase of the steel (base phase of the steel) after hot rolling.
  • the holding time is controlled to a certain level (60 minutes or more) at a holding temperature (900 to 1240 ° C.) at which TiN is likely to be formed at the interface between the oxide inclusions and the steel.
  • the heating performed before the partial rolling or the partial forging after the steel material is heated to the specified temperature, it is held for the specified time (first specified time) at the specified temperature (first specified temperature).
  • a step (first soaking step) is included.
  • the other specified temperature first 2 steps (second soaking step) held for another specified time (second specified time) under the specified temperature).
  • the second specified temperature is set to 1240 ° C. or lower so that TiN generated at the interface between the oxide inclusions and the steel does not disappear during heating performed before hot rolling.
  • the holding time of the steel material and the rolled material at 900 to 1240 ° C. in the first soaking process and the second soaking process is controlled to be 60 minutes or more in total.
  • the first designated temperature, the second designated temperature, the first designated time, and the second designated time in the first soaking step and the second soaking step are set to satisfy any of the following conditions 1 to 3: To control.
  • Condition 1 The first specified temperature is 900 to 1240 ° C., the second specified temperature is less than 900 ° C., and the time (first specified time) for holding the steel material at the first specified temperature in the first soaking step is For 60 minutes or more
  • Condition 2 The first specified temperature is over 1240 ° C., the second specified temperature is 900 to 1240 ° C., and the time (second specified time) for holding at the second specified temperature of the rolled material in the second soaking process is For 60 minutes or more
  • Condition 3 Both the first designated temperature and the second designated temperature are 900 to 1240 ° C., and the time for holding the steel material at the first designated temperature in the first soaking step (first designated time) The total time (second designated time) for holding the rolled material at the second designated temperature in the thermal process is 60 minutes or more.
  • the time for holding the steel material at a temperature (900 to 1240 ° C.) at which TiN is easily generated in the first soaking process is 60 minutes or more, and TiN is generated in the second soaking process.
  • the temperature at which the steel material is held at a temperature (greater than 1240 ° C.) that easily disappears even if TiN is generated in the first soaking step, and the temperature at which TiN is easily generated in the second soaking step (900 to 1240 ° C.) ) May be controlled so that the time for holding the rolled material is 60 minutes or more.
  • a steel material is held at a temperature (900 to 1240 ° C.) at which TiN is easily generated in the first soaking process, and at a temperature (900 to 1240 ° C.) at which TiN is easily generated in the second soaking process. You may control so that the time to hold
  • the lower limit value of the first designated temperature in the condition 1 is preferably 950 ° C.
  • the upper limit value of the first designated temperature in the condition 1 is preferably 1200 ° C, and more preferably 1150 ° C.
  • the first designated time in the condition 1 is preferably as long as possible. For example, it is preferably 80 minutes or longer, more preferably 100 minutes or longer, and further preferably 150 minutes or longer.
  • the upper limit value of the first designated time in the condition 1 is not particularly limited, but it is preferable that the upper limit value is generally 20 hours or less in consideration of manufacturing efficiency and the like.
  • the lower limit value of the second designated temperature in the condition 1 is preferably 700 ° C.
  • the lower limit value of the second designated temperature in the condition 2 is preferably 950 ° C.
  • the upper limit value of the second designated temperature in the condition 2 is preferably 1200 ° C, and more preferably 1150 ° C. It is better that the second designated time in the condition 2 is longer. For example, it is preferably 80 minutes or longer, more preferably 100 minutes or longer, and further preferably 150 minutes or longer.
  • the upper limit value of the second designated time in the condition 2 is not particularly limited, but it is preferable that the upper limit value is approximately 20 hours or less in consideration of manufacturing efficiency and the like.
  • the upper limit value of the first specified temperature in the condition 2 is preferably 1300 ° C.
  • the lower limit values of the first designated temperature and the second designated temperature in the condition 3 are 950 ° C., respectively.
  • the upper limit values of the first designated temperature and the second designated temperature in the condition 3 are each preferably 1200 ° C., and more preferably 1150 ° C. The longer the total value of the first designated time and the second designated time in the condition 3, the better.
  • the total of the first designated time and the second designated time is preferably 80 minutes or more, more preferably 100 minutes or more, and further preferably 150 minutes or more.
  • the upper limit value obtained by summing the first designated time and the second designated time in the condition 3 is not particularly limited, but is preferably about 20 hours or less in consideration of manufacturing efficiency and the like.
  • each range of the first designated time and the second designated time is different between the first designated temperature and the second designated temperature in the first soaking step and the second soaking step. It is recommended to set a preferred first designated time according to one designated temperature and a preferred second designated time according to a second designated temperature.
  • the holding in the first soaking step means that the steel material is maintained at the first specified temperature, and the temperature of the steel material is higher or lower than the target first specified temperature due to equipment restrictions. Including the case of fluctuating.
  • a predetermined temperature range is specified as the first specified temperature, this means that the steel material is maintained within the predetermined temperature range.
  • the first specified temperature is 900 to 1240 ° C.
  • the steel material may be maintained in the range of 900 to 1240 ° C., and the specific temperature within the range of 900 to 1240 ° C. (eg, 1200 ° C.). May be maintained.
  • holding in the second soaking step means maintaining the rolled material at the second designated temperature, and the steel material temperature is set to a high or low temperature relative to the target second designated temperature due to equipment constraints. Including the case of fluctuating.
  • a predetermined temperature range is specified as the second specified temperature, this means that the rolling material is maintained within the predetermined temperature range.
  • the second specified temperature is 900 to 1240 ° C.
  • the rolled material may be maintained within the range of 900 to 1240 ° C., and the specific temperature within the range of 900 to 1240 ° C. (for example, 1000 ° C.). May be maintained.
  • the steel material held for the first specified time at the first specified temperature is subjected to ingot rolling or ingot forging according to a conventional method.
  • the rolled material held for the second designated time at the second designated temperature is subjected to hot rolling according to a conventional method, and further subjected to spheroidizing annealing, Process or cold work. In this way, the steel for bearings of the present invention is obtained.
  • the rolling raw material which performed the partial rolling or the partial forging may be heated after being cooled once, or may be heated without being cooled.
  • the bearing steel according to the present invention obtained in this way is cut into a predetermined part shape and further subjected to quenching and tempering treatment, whereby a bearing part which is still another aspect of the present invention is obtained.
  • the shape at the stage of manufacturing the steel material includes both a linear shape and a rod shape applicable to the above-described manufacturing.
  • the size of the intermediate product at the stage of manufacturing the steel material is appropriately determined according to the final product.
  • bearing parts examples include rolling elements such as rollers, needles and balls, and race rings such as outer races and inner races.
  • one aspect of the present invention is mass%, C: 0.8% to 1.1%, Si: 0.15% to 0.8%, Mn: 0.1% to 1%. 0.0% or less, Cr: 1.3% to 1.8%, P: more than 0% to 0.05%, S: more than 0% to 0.015% or less, Al: 0.0002% to 0.005 %: Ti: 0.0005% or more and 0.010% or less, N: 0.0030% or more and 0.010% or less, O: more than 0% and 0.0030% or less, the balance being iron and inevitable impurities
  • the oxide inclusions having a minor axis of 1 ⁇ m or more present in the steel material are in mass%, Al 2 O 3 : 5% to 50%, SiO 2 : 10% to 70%.
  • TiO 2 it contains 3% to 50%, the balance consisting of unavoidable oxides, the Al 2 O 3, wherein iO is 2 and the total mass percent of TiO 2 is 60%, the Al 2 O 3 and the and the ratio of the mass the TiO 2 to the total mass of SiO 2 is 0.10 to 1.50, wherein Rolling fatigue characteristics in which the percentage of the number of composite inclusions in which TiN is present at the interface with the parent phase of the steel material is 30% or more of the total number of oxide inclusions Excellent bearing steel.
  • the steel material for bearings of the present invention is useful as a material for bearing parts such as outer races and inner races to which a load in the thrust direction is repeatedly applied.
  • the bearing steel material of the present invention is made of rollers, needles, balls, etc. It is also useful as a material for bearing components that are repeatedly subjected to radial loads.
  • the oxide inclusions contain CaO: more than 0% and less than 10% by mass% as the inevitable oxide.
  • TiN can be further generated at the interface between the oxide inclusions and the parent phase, and excellent rolling fatigue characteristics can be obtained.
  • Another aspect of the present invention includes a melting step for obtaining a steel material composed of the steel components by performing a Si deoxidation treatment, a first soaking step, a bundling step, a second soaking step, and heat.
  • a holding temperature in the second soaking step is 1240 ° C. or lower, and in the first soaking step and the second soaking step, the holding time at a temperature of 900 to 1240 ° C.
  • it is a manufacturing method of the steel material for bearings excellent in rolling fatigue characteristics which is 60 minutes or more in total.
  • the designated temperature is 1240 ° C. or lower, and the total time for holding at least one of the steel material and the rolled material at a temperature of 900 to 1240 ° C. in the first soaking step and the second soaking step is 60. How to make steel for bearings with excellent rolling fatigue properties that lasts over a minute It is.
  • the steel material for bearing of the present invention can be suitably manufactured.
  • the method for producing a bearing steel material according to the present invention includes, for example, (1) a holding temperature (first designated temperature) in the first soaking step of 900 to 1240 ° C., and a holding temperature in the second soaking step (second (Designated temperature) may be set to less than 900 ° C., and the holding time in the first soaking step may be 60 minutes or more.
  • the holding temperature in the first soaking step (first designated temperature) may be
  • the holding temperature (second designated temperature) in the second soaking step may be set to 900 to 1240 ° C.
  • Both the holding temperature (first designated temperature) in the first soaking step and the holding temperature (second designated temperature) in the second soaking step are set to 900 to 1240 ° C., and the first soaking step is performed.
  • Holding time in the The total retention time in the soaking step may be more than 60 minutes.
  • Still another aspect of the present invention is a bearing component made of the bearing steel material. According to such a configuration, since the bearing steel material of the present invention is used as the material of the bearing part, the rolling fatigue characteristics of the bearing part can be stably improved regardless of the direction in which the load is applied. it can.
  • the present invention it is possible to provide a bearing steel material excellent in rolling fatigue characteristics, a manufacturing method thereof, and a bearing component excellent in rolling fatigue characteristics.
  • a ladle made of MgO refractory was used.
  • Steel No. For steels 1 to 46, Si deoxidation treatment was performed at the time of melting, the dissolved oxygen content of the molten steel was adjusted using C, Si, Mn, and Cr, and then the Ti source was introduced and the Ti content Was controlled. An Fe—Ti alloy was used as the Ti source. The N content was adjusted by controlling the nitrogen partial pressure in the atmosphere and adding manganese nitride before adding the Ti source.
  • the steel material No. About 47 steel the deoxidation process by Al addition was performed at the time of melting.
  • the slabs 1 to 47 were subjected to ingot rolling and hot rolling to obtain a hot rolled material (round bar steel) having a diameter of 65 mm.
  • the slab is heated to the pre-bloom heating furnace holding temperature shown in Table 2 below (the holding temperature in the first soaking step, that is, the first designated temperature), and at that temperature
  • the rolling is performed at a temperature of 900 to 1200 ° C. And cooled to room temperature.
  • the slab subjected to the block rolling is heated to the pre-hot rolling furnace holding temperature shown in Table 2 (the holding temperature in the second soaking step, that is, the second specified temperature), and the temperature. Is held only for the holding time before the hot rolling shown in the same table (the holding time in the second soaking step, that is, the second designated time), and then hot rolled at a temperature of 830 to 1100 ° C. Was given.
  • a cylindrical test piece having a diameter (D) of 60 mm and a height (length in the rolling direction of the hot-rolled material) of 30 mm was cut out from the spheroidized annealed material.
  • the cut specimen is heated for 30 minutes at a temperature of 840 ° C., then oil-quenched, and then tempered for 120 minutes at a temperature of 160 ° C., thereby preparing a specimen for measuring the composition of oxide inclusions. It was.
  • the dimension of the cross section including the rolling direction is 20 mm in the rolling direction length and 20 mm in the direction perpendicular to the rolling direction at a quarter of the diameter D (60 mm).
  • One micro sample was cut out so that And the said cross section of the micro sample was grind
  • the polished surfaces of micro samples 1 to 47 were observed using an electron probe X-ray micro analyzer (EPMA, trade name “JXA-8500F”) manufactured by JEOL Datum.
  • EPMA electron probe X-ray micro analyzer
  • JXA-8500F trade name “JXA-8500F”
  • the composition of oxide inclusions having a minor axis of 1 ⁇ m or more was quantitatively analyzed. Details are as follows.
  • the composition of the central part of the inclusion was quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays, with the observation area on the polished surface of the micro sample being 100 mm 2 .
  • the analysis target elements are Ca, Al, Si, Ti, Ce, La, Mg, Mn, Zr, Na, K, Cr, and O (oxygen), and the X-ray intensity and element concentration of each element are measured using known substances.
  • the composition in the table represents the composition of oxide inclusions having a minor axis of 1 ⁇ m or more (the balance is inevitable oxide).
  • the total mass percentage of Al 2 O 3 , SiO 2 and TiO 2 (Al 2 O 3 + SiO 2 + TiO 2 ) and the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 (TiO 2 / (Al 2 O 3 + SiO 2 )) is also shown in the table.
  • the average aspect ratio of the oxide inclusions was obtained by arithmetically averaging the results. Table 3 shows the obtained aspect ratio.
  • the oxide having a minor axis of 1 ⁇ m or more is first measured using an electron beam microprobe X-ray analyzer.
  • System inclusions (elements to be analyzed are inclusions of Ca, Al, Si, Ti, Ce, La, Mg, Mn, Zr, Na, K, Cr, O (oxygen) with an oxygen content of 5% by mass or more) 5 were selected.
  • the selection criteria for the five oxide inclusions are five that are selected in order from the largest oxide inclusions in the observation area of 100 mm 2 .
  • the reason why the oxide inclusions having the largest size is selected is that the rolling fatigue characteristics are said to have a greater adverse effect as the size of the oxide inclusions increases.
  • the size of the oxide inclusions was compared by the value of “major axis ⁇ minor axis” of the oxide inclusions appearing on the observation surface.
  • the target oxide inclusions were sliced by the FIB method (Focused Ion Beam, focused ion beam processing method) to a thickness at which the oxide inclusions can be observed by TEM.
  • the apparatus used for thinning was a focused ion beam processing observation apparatus FB2000A manufactured by Hitachi, Ltd., the acceleration voltage was 30 kV, and Ga was used as an ion source.
  • the flaky oxide inclusions were observed by TEM.
  • the apparatus used for the TEM observation is JEM-2010F, a field emission transmission electron microscope manufactured by JEOL Ltd., which uses an oxide-based inclusion and mother phase in a Noran EDX (Energy dispersive X-ray spectroscopy) analyzer Vantage.
  • the analysis target elements are Ca, Al, Si, Ti, Ce, La, Mg, Mn, Zr, Na, K, and Cr.
  • a phase with a Ti concentration of 30% or more is selected, and electron diffraction is performed on the phase.
  • the identification analysis by was performed, and it was judged that TiN was the one showing a cubic crystal structure.
  • TiN is present at the interface between the target oxide inclusion and the parent phase (that is, when TiN is recognized to be present by the above-described method for determining TiN)
  • the oxide inclusion and the mother phase are present.
  • thrust rolling fatigue test pieces 1 to 47 using a thrust fatigue testing machine (thrust-type rolling fatigue testing machine “FJ-5T”, manufactured by Fuji Testing Machine Co., Ltd.), a load speed of 1200 rpm and 3 steel balls
  • the thrust rolling fatigue test was conducted under the conditions of a surface pressure of 5.24 GPa and a stop count of 200 million.
  • L 10 life As a rolling fatigue life scale, fatigue life L 10 (the number of stress repetitions until fatigue failure at a cumulative failure probability of 10%, hereinafter may be referred to as “L 10 life”) is usually used. Specifically, L 10 means the number of repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting the test results on Weibull probability paper (see “Bearings”, Iwanami Zensho and Nobunori Hamada). ). Steel No. For each steel 1-47, wherein the thrust rolling fatigue tests were performed L 10 life using 16 samples was determined. Next, the steel No. of the conventional steel that was deoxidized by adding Al during melting. Steel No.
  • the life ratio (4.5 times or more) of “OK”, which is the lowest level of the acceptance criteria, is the test No. in Table 2 in which the highest life ratio was obtained in the example of Patent Document 4. 11, Test No. 35 (lifetime ratio is 3.8 times), and in this example, a higher acceptance standard than that of Patent Document 4 is set.
  • Steel No. Nos. 1 to 26 are examples satisfying the requirements (a) to (c) defined in the present invention, and all show excellent rolling fatigue characteristics.
  • Steel No. In Nos. 1 to 26, the aspect ratio of the oxide inclusions is also appropriately controlled.
  • the rolling fatigue characteristics in the thrust direction are measured, but in this example, the aspect ratio of the oxide inclusions is small, so that the rolling fatigue life in the radial direction is also good. Inferred.
  • steel material No. Nos. 27 to 47 are examples that do not satisfy at least one of the requirements (a) to (c) defined in the present invention, and do not exhibit desired rolling fatigue characteristics.
  • steel material No. 27 is an example in which the C content in steel is excessive.
  • Steel No. 28 is an example in which the Mn content in the steel is excessive.
  • Steel No. 29 is an example in which the Cr content in steel is excessive.
  • Steel No. 30 is an example in which the Cr content in steel is too low.
  • Steel No. 31 is an example in which the P content in steel is excessive.
  • Steel No. 32 is an example in which the S content in steel is excessive.
  • Steel No. 37 is an example in which the N content in steel is excessive.
  • Steel No. 39 is an example in which the O content in the steel is excessive.
  • Steel No. 33 is an example in which the Al content in the steel is excessive. And steel material No. 33, the content of Al 2 O 3 in the oxide inclusions having a minor axis of 1 ⁇ m or more is excessive, and the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 in the oxide inclusions is In this example, the TiN number ratio is too small. Steel No. No. 33 does not exhibit the desired rolling fatigue characteristics because the L 10 life and life ratio are lower than the reference value.
  • Steel No. 34 is an example in which the Al content in the steel is too low. And steel material No. 34, the content of Al 2 O 3 in the oxide inclusions having a minor axis of 1 ⁇ m or more is too small, and the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 in the oxide inclusions is This is an example in which the TiN number ratio is too small. Steel No. 34 is lower than the reference value L 10 life and the life ratio, it does not exhibit the desired rolling fatigue characteristics.
  • Steel No. 35 is an example in which the Ti content in the steel is excessive. And steel material No. No. 35 has an excessive content of TiO 2 in the oxide inclusions with a minor axis of 1 ⁇ m or more and an excessive SiO 2 content, and the total mass of Al 2 O 3 and SiO 2 in the oxide inclusions This is an example in which the ratio of the mass of TiO 2 to is excessive and the TiN number ratio is excessively small. Steel No. No. 35 does not exhibit the desired rolling fatigue characteristics because the L 10 life and life ratio are lower than the reference value.
  • Steel No. 36 is an example in which the Al content and Ti content in steel are too low.
  • steel material No. 36 is a SiO 2 content with content of Al 2 O 3 and TiO 2 content in the oxide inclusions of more than minor 1 ⁇ m is too small is excessive, Al 2 O 3 in the oxide inclusions and the ratio of TiO 2 in weight relative to the total mass of SiO 2 is too small, not TiN at the interface of the oxide inclusions and the matrix phase is present (i.e., TiN number proportion is too small) are examples.
  • Steel No. No. 36 does not exhibit the desired rolling fatigue characteristics because the L 10 life and life ratio are lower than the reference value.
  • Steel No. No. 38 is an example in which the N content in steel is too low and the TiN number ratio is too low. Steel No. No. 38 does not exhibit the desired rolling fatigue characteristics because the L 10 life and the life ratio are lower than the reference value.
  • Steel No. No. 40 is an example in which the ratio of the total mass of Al 2 O 3 , SiO 2 and TiO 2 in the total mass of oxide inclusions having a minor axis of 1 ⁇ m or more is too small and the TiN number ratio is too small. Steel No. No. 40 does not exhibit the desired rolling fatigue characteristics because the L 10 life and life ratio are lower than the reference value.
  • Steel No. No. 41 is an example in which the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 in the oxide inclusions having a minor axis of 1 ⁇ m or more is excessive and the TiN number ratio is excessive. Steel No. No. 41 does not exhibit the desired rolling fatigue characteristics because the L 10 life and the life ratio are lower than the reference value.
  • Steel No. No. 42 is an example in which the ratio of the mass of TiO 2 to the total mass of Al 2 O 3 and SiO 2 in the oxide inclusions having a minor axis of 1 ⁇ m or more is too small and the TiN number ratio is too small. Steel No. No. 42 does not show the desired rolling fatigue characteristics because the L 10 life and life ratio are lower than the standard value.
  • Steel No. No. 43 is an example in which the heating furnace holding temperature before the batch rolling and the heating furnace holding temperature before the hot rolling are too high, and the TiN number ratio is too low. Steel No. 43 is lower than the reference value L 10 life and the life ratio, it does not exhibit the desired rolling fatigue characteristics.
  • Steel No. Nos. 44 and 46 are examples in which the heating furnace holding temperature before the batch rolling is too high and the heating furnace holding time before the hot rolling is too short, and the TiN number ratio is too low. Steel No. 44,46 is lower than the reference value L 10 life and the life ratio, it does not exhibit the desired rolling fatigue characteristics.
  • Steel No. 45 is an example in which the heating furnace holding temperature before the batch rolling is too high and the heating furnace holding temperature before the hot rolling is too low, and the TiN number ratio is too low. Steel No. 45 is lower than the reference value L 10 life and the life ratio, it does not exhibit the desired rolling fatigue characteristics.
  • Steel No. 47 is an example in which deoxidation treatment by addition of Al was performed at the time of melting. SiO 2 and TiO 2 do not exist in oxide inclusions having a minor axis of 1 ⁇ m or more. Steel No. 47 since a reference value of the L 10 life and the life ratio, it does not exhibit the desired rolling fatigue characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明の軸受用鋼材は、C、Si、Mn、Cr、P、S、Al、Ti、N、Oを含有し、残部が鉄及び不可避的不純物である鋼成分からなり、鋼材中に存在する短径1μm以上の酸化物系介在物は、Al、SiO、TiOを含有し、残部は不可避的酸化物からなり、Al、SiO及びTiOの合計質量百分率が60%以上であり、Al及びSiOの合計質量に対するTiOの質量の比が0.10以上1.50以下であり、酸化物系介在物の全個数に占める、当該酸化物系介在物のうち鋼材の母相との界面にTiNが存在する複合介在物の個数の百分率が30%以上である。

Description

転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品
本発明は、転動疲労特性に優れた軸受用鋼材、その製造方法及び転動疲労特性に優れた軸受部品に関する。より詳しくは、各種産業機械や自動車等に使用される軸受において、転動体や軌道輪等の部品として用いられたときに、優れた転動疲労特性を発揮する軸受用鋼材、当該軸受用鋼材の製造方法、及び当該軸受用鋼材から得られた軸受部品に関する。
 軸受が各種産業機械や自動車等に使用されたときには、当該軸受中の転動体及び軌道輪に高い繰り返し応力が付与される。そのため、軸受の転動体及び軌道輪は長い転動疲労寿命が求められている。転動疲労寿命の向上要求は、産業機械類の高性能化、軽量化に対応して、年々厳しくなっている。軸受部品の更なる耐久性向上のため、軸受用鋼材にはより一層長い転動疲労寿命が求められている。
 従来、転動疲労寿命は、鋼中に生成する酸化物系介在物のなかでも、主にAl脱酸鋼において比較的多く生成するAl等のような、硬質酸化物系介在物の個数密度と深く相関しており、当該硬質酸化物系介在物の個数密度を低減することによって転動疲労寿命が延びると考えられていた。そのため、製鋼工程において、鋼中の酸素含有量を低減して転動疲労寿命を延ばす試みがなされてきた。
 しかし、近年では、転動疲労寿命と、酸化物系介在物に代表される非金属介在物との関係についての研究が進み、酸化物系介在物の個数密度と転動疲労寿命とは必ずしも相関関係があるとは言えないことが判明している。そして、転動疲労寿命は、非金属介在物のサイズ、例えば非金属介在物の面積の平方根と密接な相関関係があり、転動疲労寿命を延ばすには、非金属介在物の個数密度を低減するよりも、非金属介在物のサイズを小さくする方が有効であることが明らかになっている。
 一方、従来のようなAl脱酸鋼を用いるのではなく、鋼中のAl含有量を極力抑えるとともに、Si脱酸鋼を用いることで、生成する酸化物の組成を、Al主体ではなくSiO、CaO等を主体とする組成に制御し、これにより、圧延工程で非金属介在物を延伸、分断させて非金属介在物のサイズを低減し、転動疲労寿命を延ばす方法が提案されている(下記特許文献1、2)。
 特許文献1には、質量%で、CaO:10~60%、Al:20%以下、MnO:50%以下及びMgO:15%以下を含有し、残部はSiO及び不可避的酸化物からなる酸化物系介在物が鋼材内部に存在し、鋼材の長手方向縦断面の10箇所の100mmの面積中に存在する当該酸化物系介在物の最大厚さの算術平均値と硫化物系介在物の最大厚さの算術平均値が、それぞれ、8.5μm以下である軸受鋼材が提案されている。
 特許文献2には、特許文献1に記載の酸化物系介在物に、酸化物成分として更にZrOを所定量含む高清浄度Si脱酸鋼材が提案されている。
 他方、特許文献3には、REM介在物の生成を制御して、アルミナ、TiN、及びMnSを無害化させた、長い疲労寿命を有するばね用鋼とその製造方法が提案されている。詳細には、アルミナをREM-Al-O-S介在物へと改質して粗大化を防止し、SをREM-Al-O-S介在物として固定化して粗大MnSを抑制し、更に、REM-Al-O-Sの介在物にTiNを複合させることにより疲労寿命に有害なTiNの個数密度を減らす方法が提案されている。
 特許文献4には、Si脱酸で得られる酸化物系介在物中にTiOを含むことで当該酸化物系介在物の結晶化を抑制し、これにより、鋼中の母相(基地相)と酸化物系介在物の界面に発生する空洞を抑制して転動疲労寿命を向上させた軸受用鋼材が提案されている。
特開2009-30145号公報 特開2010-202905号公報 特開2013-108171号公報 特開2014-25083号公報
 特許文献1では、鋼中の母相と酸化物系介在物の界面の空洞に関して、空洞を抑制する取組みが行われていないため、充分な転動疲労寿命が得られているとはいえない。
 特許文献2にも、前記界面での剥離によって生じる空洞に関する記載は一切ない。そもそも非金属介在物全体の微細化のみに主眼を置いた技術であり、実施例の評価においても、ASTM E45法のC系介在物評点の算術平均値で評価されているに過ぎない。従って、このようにして製造された鋼材の転動疲労寿命が長いとは限らない。
 特許文献3では、酸化物系介在物がREMやAlのような強脱酸元素から構成されており、Siのような弱脱酸元素を主体としていないため、鋼中における酸化物系介在物と母相の界面に生じる剥離を抑制することはできない。
 特許文献4では、非晶質体となった酸化物系介在物と母相との界面における空洞発生が抑制されていることから、荷重の付与される方向にかかわらず、転動疲労寿命を向上させている。しかし、昨今の軸受部品に対する更なる耐久性向上要求から、転動疲労寿命が更に長い軸受用鋼材の開発が望まれている。
 本発明は上記事情に鑑みてなされたものであり、転動疲労特性に優れた軸受用鋼材、その製造方法及び転動疲労特性に優れた軸受部品を提供することを目的とする。
 本発明の一局面は、質量%で、C:0.8%以上1.1%以下、Si:0.15%以上0.8%以下、Mn:0.1%以上1.0%以下、Cr:1.3%以上1.8%以下、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002%以上0.005%以下、Ti:0.0005%以上0.010%以下、N:0.0030%以上0.010%以下、O:0%超0.0030%以下を含有し、残部は鉄及び不可避的不純物からなる軸受用鋼材であって、前記鋼材中に存在する短径1μm以上の酸化物系介在物は、質量%で、Al:5%以上50%以下、SiO:10%以上70%以下、TiO:3%以上50%以下を含有し、残部は不可避的酸化物からなり、前記Al、前記SiO及び前記TiOの合計質量百分率が60%以上であり、前記Al及び前記SiOの合計質量に対する前記TiOの質量の比が0.10以上1.50以下であり、前記酸化物系介在物の全個数に占める、当該酸化物系介在物のうち前記鋼材の母相との界面にTiNが存在する複合介在物の個数の百分率が30%以上である、転動疲労特性に優れた軸受用鋼材である。
 本発明の他の一局面は、Si脱酸処理を行って前記鋼成分からなる鋼素材を得る溶製工程と、第1均熱工程と、分塊工程と、第2均熱工程と、熱間圧延工程とを有し、前記第2均熱工程における保持温度が1240℃以下であり、前記第1均熱工程及び前記第2均熱工程において、900~1240℃の温度下での保持時間が、合計で60分間以上である、転動疲労特性に優れた軸受用鋼材の製造方法である。
本発明の更に他の一局面は、前記軸受用鋼材からなる軸受部品である。
 本発明の目的、特徴、局面及び利点は、以下の詳細な説明によって、より明白となる。
《軸受用鋼材》 まず、本発明の一局面である転動疲労特性に優れた軸受用鋼材について説明する。
 本発明者らは、前述した特許文献4を開示した後も、転動疲労寿命を更に延ばした軸受用鋼材を提供するため、更に検討を重ねた。そして、Si脱酸で得られる酸化物系介在物に含まれるCaOの量が少ないときには、分塊圧延又は熱間圧延前の加熱工程における加熱保持温度の高低又は加熱保持時間の長短によって、軸受用鋼材の転動疲労寿命が大幅に変動することが明らかになった。
 そこで、本発明者らは、Si脱酸で得られる酸化物系介在物として、Al、SiO及びTiOを主成分とする酸化物系介在物を生成させ、更に、当該酸化物系介在物と鋼材の母相(鋼材の基地相)との界面にTiNを存在させれば、転動疲労寿命が更に延びるのではないかと着想した。その具体的な手段として、酸化物系介在物の大きさ及び組成、並びに、当該酸化物系介在物に占める前記界面にTiNが存在する介在物の個数比率を検討した。
 その結果、下記要件(a)~(c)を満足すれば、所期の目的が達成されることを見出し、本発明の転動疲労特性に優れた軸受用鋼材に至った。
(a)鋼材が、質量%で、C:0.8%以上1.1%以下、Si:0.15%以上0.8%以下、Mn:0.1%以上1.0%以下、Cr:1.3%以上1.8%以下、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002%以上0.005%以下、Ti:0.0005%以上0.010%以下、N:0.0030%以上0.010%以下、O:0%超0.0030%以下を含有し、残部は鉄及び不可避的不純物である鋼成分からなること、
(b)鋼材中に存在する短径1μm以上の酸化物系介在物は、質量%で、Al:5%以上50%以下、SiO:10%以上70%以下、TiO:3%以上50%以下を含有し、残部は不可避的酸化物からなり、Al、SiO及びTiOの合計質量百分率が60%以上であり、Al及びSiOの合計質量に対するTiOの質量の比が0.10以上1.50以下であること、
(c)前記酸化物系介在物の全個数に占める、当該酸化物系介在物のうち鋼材の母相との界面にTiNが存在する介在物(本明細書では、複合介在物と呼ぶ場合がある。)の個数の百分率が30%以上であること。
 本発明において、「転動疲労特性に優れた」とは、後記する実施例に記載のスラスト転動疲労試験における疲労寿命L10が5.4×10回以上であることをいう。
 以下、本発明に到達した経緯を、特許文献4、更には特許文献3との関係で詳しく説明する。
 本発明者らは、特許文献4の鋼材よりも転動疲労寿命が長いSi脱酸鋼材を提供すべく、種々検討を重ねてきた。
 Si脱酸で得られる酸化物系介在物は非晶質となり易く、熱間圧延で延伸し易いことが知られている。そのため、熱間圧延が施された鋼材では、酸化物系介在物に異方性が生じてしまう。その結果、鋼材の転動疲労寿命においても異方性が生じてしまうため、好ましくない。一方、酸化物系介在物の組成を制御することで熱間加工が施される高温域で結晶化し、多結晶体とすることも可能である。しかし、多結晶体となった酸化物系介在物は、鋼の母相に比べて変形抵抗が高いため、熱間加工や冷間加工時に鋼中の母相と酸化物系介在物の界面に空隙を発生し易い。界面に発生した空隙は、転動疲労寿命に悪影響を及ぼすため、好ましくない。
 そこで本発明者らは、Si脱酸で得られる酸化物系介在物の組成のみならずTiNの生成状況を制御することによって空隙の発生を抑制する方法について鋭意検討した。その結果、Si脱酸で得られる酸化物系介在物と母相の界面に所定量のTiNを生成させると当該界面での剥離を抑制でき、転動疲労寿命が著しく向上することを見出した。
 TiNに関しては、特許文献3に示すように、疲労寿命に悪影響を及ぼすとの報告が多数行われている。しかし、上記報告は全て、特許文献3のようにAl脱酸鋼において生成するTiNに関するものである。つまり、Al脱酸鋼の場合、Al、MgO・Al、(Ca,Al)系酸化物等の脱酸生成物が溶鋼中に固相で生成するため、当該脱酸生成物を生成核としてTiNが生成し易い。又、Al等は溶鋼中で凝集して粗大化し易いため、Al等に生成したTiNも粗大化する傾向にある。その結果、前記Al等の脱酸生成物とTiNの複合体は粗大化する傾向にあり、転動疲労寿命に悪影響を及ぼすと考えられる。又、粗大化したAl等の大部分をTiNで被覆するには、多量のTiNを生成させる必要があり、却って前記複合体の粗大化を招き、転動疲労寿命に悪影響を及ぼすと考えられる。更に、TiNで被覆できなかったAl等の酸化物系介在物と母相との界面では、依然として剥離が生じるため、その剥離が原因となって鋼材の転動疲労寿命は向上しないと考えられる。
 このように従来においても、酸化物系介在物と母相との界面に生成するTiNに着目した技術は多数開示されている。しかし、特許文献3に示すように、いずれもAl脱酸鋼を原料として用いた鋼材を対象としている。そして、解決方法として、疲労寿命に有害なTiNの個数密度を低減して無害化する技術が開示されているに過ぎない。特許文献3に開示された解決方法では、酸化物系介在物と母相との界面に生じて、転動疲労寿命に悪影響を及ぼす剥離を抑制することはできない。
 これに対して、本発明の鋼材はSi脱酸鋼を用いており、Si脱酸鋼の溶製段階ではAl等のような粗大化し易い脱酸生成物の生成は抑制される。そして、本発明の鋼材であるSi脱酸鋼は、その溶製段階で、Al、SiO及びTiOを脱酸生成物として生成し、脱酸生成物全体に占めるAl、SiO及びTiOの合計質量百分率は60%以上である。AlとSiOとTiOからなる酸化物系介在物は、Al脱酸で生成する脱酸生成物(Al、MgO・Al、(Ca,Al)系酸化物等)に比べて低融点であり、溶鋼中で凝集し難く、粗大化し難い傾向にある。そのため、熱間加工(例えば、分塊圧延、分塊鍛造、熱間圧延)前の加熱段階にて、酸化物系介在物(Si脱酸で生成した脱酸生成物)を生成核としてTiNが生成して複合介在物が形成されても、当該複合介在物は比較的微細なままである。又、TiNは、結晶構造がbccであるα-Feとの格子整合性に優れていることはよく知られている。そのため、TiNにより、前記複合介在物と母相との密着性が良好となり、その結果、前記複合介在物と母相の界面に生じる剥離が抑制されると考えられる。その結果、転動疲労寿命が飛躍的に向上したと考えられる。
 所定量の前記複合介在物を確保するためには、前述したように分塊圧延、分塊鍛造、熱間圧延等の前に行われる加熱時の保持温度と保持時間を、TiNを生成するのに適した温度で適した時間だけ保持する必要がある。この点、特許文献4では、転動疲労寿命を延ばすために、Si脱酸で得られた酸化物系介在物を非晶質体に維持することに主眼を置き、前記加熱時の保持温度及び保持時間は従来のままであり、特段の配慮は全く行っていなかった。そして、特許文献4における転動疲労寿命を延ばすに当たって、本発明者らが検討した結果、これまで留意していなかった、前記加熱時の保持時間をTiNが生成するのに適した温度で従来よりも長く行うことで、前記酸化物系介在物と母相の界面にTiNが生成し、酸化物系介在物と母相の界面の密着性が向上して空隙が抑制され、転動疲労寿命がより一層長くなることが判明した。例えば、分塊圧延、分塊鍛造、熱間圧延等の前に行われる加熱時の保持温度と保持時間を、TiNを生成するのに適した温度で長時間保持すれば、前記酸化物系介在物と母相の界面にTiNが生成し、酸化物系介在物と母相の界面の密着性が向上して空隙が抑制され、転動疲労寿命が向上することが判明し、本発明を完成した。
 以下、本発明の軸受用鋼材の要件(a)~(c)について説明する。
(a)鋼材の化学組成(鋼成分)について
 本発明の軸受用鋼材は、質量%で、C:0.8%以上1.1%以下、Si:0.15%以上0.8%以下、Mn:0.1%以上1.0%以下、Cr:1.3%以上1.8%以下、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002%以上0.005%以下、Ti:0.0005%以上0.010%以下、N:0.0030%以上0.010%以下、O:0%超0.0030%以下を含有し、残部が鉄及び不可避的不純物である鋼成分からなる鋼材である。こうした範囲を定めた理由は次の通りである。
[C:0.8~1.1%]
 Cは、焼入硬さを増大させ、室温、高温における強度を維持して耐磨耗性を付与するための必須の元素である。こうした作用を発揮させるために、C含有量は0.8%以上、好ましくは0.85%以上、より好ましくは0.90%以上とする。しかし、C含有量が多過ぎると、軸受の芯部に巨大炭化物が生成し易くなり、転動疲労特性に悪影響を及ぼすようになる。従って、C含有量は1.1%以下、好ましくは1.05%以下、より好ましくは1.0%以下とする。
[Si:0.15~0.8%]
 Siは、脱酸元素として有効に作用する他、焼入れ・焼戻し軟化抵抗を高めて硬さを高める作用を有している。こうした作用を有効に発揮させるために、Si含有量は0.15%以上、好ましくは0.20%以上、より好ましくは0.25%以上とする。しかし、Si含有量が過剰になると、鍛造時に金型寿命が低下するばかりか、コスト増加を招くことになる。従って、Si含有量は0.8%以下、好ましくは0.7%以下、より好ましくは0.6%以下とする。
[Mn:0.1~1.0%]
 Mnは、鋼材母相の固溶強化及び焼入れ性を向上させる元素である。このような作用を有効に発揮させるために、Mn含有量は0.1%以上、好ましくは0.2%以上、より好ましくは0.3%以上とする。しかし、Mn含有量が過剰になると、低級酸化物であるMnO含有量が増加し、転動疲労特性を悪化させる他、加工性や切削性が著しく低下する。従って、Mn含有量は1.0%以下、好ましくは0.8%以下、より好ましくは0.6%以下とする。
[Cr:1.3~1.8%]
 Crは、焼入れ性の向上と安定な炭化物の形成によって、強度及び耐磨耗性を向上させ、これによって転動疲労特性の改善に有効な元素である。こうした作用を発揮させるために、Cr含有量は1.3%以上、好ましくは1.35%以上、より好ましくは1.4%以上とする。しかし、Cr含有量が過剰になると、炭化物が粗大化して、転動疲労特性及び切削性を低下させる。従って、Cr含有量は1.8%以下、好ましくは1.7%以下、より好ましくは1.6%以下とする。
[P:0%超0.05%以下]
 Pは、鋼材に不可避的に含まれる元素である。P含有量が過剰になると、結晶粒界に偏析して転動疲労特性に悪影響を及ぼす。従って、P含有量は0.05%以下、好ましくは0.03%以下、より好ましくは0.02%以下とする。P含有量はできるだけ少ない方がよい。P含有量の下限値は特に定めないが、工業的には0.002%である。
[S:0%超0.015%以下]
 Sは、鋼材に不可避的に含まれる元素であり、硫化物を形成する元素でもある。S含有量が過剰になると、粗大な硫化物が鋼材中に残存するため、転動疲労特性が劣化する。従って、Sの含有量は0.015%以下、好ましくは0.007%以下、より好ましくは0.005%以下とする。S含有量はできるだけ少ない方がよい。S含有量の下限値は特に定めないが、工業的には0.0005%である。
[Al:0.0002~0.005%]
 Alは脱酸元素であり、その含有量の多寡によって酸化物系介在物の組成を変動させる元素でもある。Al含有量が過剰になると、Alを主体とする硬質な酸化物の生成量が多くなり、しかも熱間圧延後も粗大な酸化物として残存するので、転動疲労特性が悪化する。従って、Al含有量は0.005%以下、好ましくは0.002%以下、より好ましくは0.0015%以下とする。本発明ではSiによる脱酸を行うため、Al脱酸鋼のように酸化精錬後のAl添加による脱酸処理は行わない。しかし、Al含有量が過少な場合には、酸化物中のAl含有量が少なくなり過ぎ、SiOを多く含む酸化物系介在物が生成して転動疲労特性が劣化する。又、Al含有量を極力減らすには、Alの混入を抑制する必要がある。そのために、鋼中成分のみならず、フラックス中のAl含有量も少なくする必要がある。しかし、Al含有量の少ないフラックスは非常に高価であり、高炭素鋼である軸受鋼では経済的でない。従って、Al含有量は0.0002%以上、好ましくは0.0003%以上、より好ましくは0.0005%以上とする。
[Ti:0.0005~0.010%]
 Tiは、本発明を特徴付ける元素である。所定量のTiを添加することで、酸化物系介在物と母相の界面にTiNが生成され、当該界面に生じる剥離が抑制される。その結果、転動疲労特性が改善する。更に、酸化物系介在物中のTiO濃度を制御することができ、アスペクト比の低減化(詳細は後述する。)にも有効に作用し、転動疲労特性が一層向上する。こうした作用を発揮させるために、Ti含有量は0.0005%以上、好ましくは0.0008%以上、より好ましくは0.0011%以上とする。しかし、Ti含有量が過剰になると、TiNが粗大化するとともに、TiO系酸化物の粗大化を招き、転動疲労特性が悪化する。従って、Ti含有量は0.010%以下、好ましく0.0050%以下、より好ましくは0.0030%以下とする。
[N:0.0030~0.010%]
 Nも前記Tiと同様、本発明を特徴付ける元素である。所定量のNを添加することで、酸化物系介在物と母相との界面にTiNが生成され、当該界面に生じる剥離を抑制できる。その結果、転動疲労特性が改善する。こうした作用を発揮させるために、N含有量は0.0030%以上、好ましくは0.0035%以上、より好ましくは0.0040%以上とする。しかし、N含有量が過剰になると、TiNが粗大化するため、転動疲労特性が悪化する。従って、N含有量は0.010%以下、好ましくは0.008%以下、より好ましくは0.007%以下とする。
[O:0%超0.0030%以下]
 Oは、鋼材に不可避的に含まれ元素である。O含有量が過剰になると、粗大な酸化物が生成し易くなり、熱間圧延及び冷間圧延後においても酸化物系介在物が粗大な酸化物として残存し、転動疲労特性に悪影響を及ぼす。従って、O含有量は0.0030%以下、好ましくは0.0025%以下、より好ましくは0.0020%以下とする。転動疲労特性を改善するために、O含有量はできるだけ少ない方がよい。O含有量の下限値は、転動疲労特性改善の観点からは特に限定されないが、経済性等を考慮すると、好ましくは0.0004%以上であり、より好ましくは0.0008%以上である。O含有量を0.0004%未満に制御するためには溶鋼からのO除去を厳密に行う必要があり、溶鋼処理時間が長くなる等経済的でないからである。
[その他の成分]
 本発明の軸受用鋼材は前記各成分を満足するものであり、残部成分は鉄並びに前記P、S及びO以外の不可避不純物である。前記不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、H、Ni等)が挙げられる。
(b)短径1μm以上の酸化物系介在物の組成について
 本発明の軸受用鋼材は、短径1μm以上の酸化物系介在物を有し、その組成は、質量%で、Al:5%以上50%以下、SiO:10%以上70%以下、TiO:3%以上50%以下を含有し、残部は不可避的酸化物からなり、Al、SiO及びTiOの合計質量百分率が60%以上であり、Al及びSiOの合計質量に対するTiOの質量の比が0.10以上1.50以下である。こうした範囲を定めた理由は次の通りである。
[酸化物系介在物の短径:1μm以上]
 転動疲労特性は、酸化物系介在物の寸法が大きい程、悪影響度が大きいと言われている。そこで、本発明では、転動疲労特性に悪影響を及ぼす可能性がある、寸法の大きな酸化物系介在物を評価するために、前記サイズ(短径1μm以上)の酸化物系介在物を制御することにした。
[Al:5~50%]
 Alは、SiOを主体とした酸化物の液相線温度を下げる効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物鋼と母相との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。又、Alには、酸化物系介在物の結晶化を促進する効果がある。そのため、酸化物系介在物のアスペクト比低減に重要な役割を果たす。このような効果を有効に発揮させるために、酸化物系介在物の組成におけるAl含有量は5%以上、好ましくは8%以上、より好ましくは12%以上とする。しかし、酸化物系介在物の組成におけるAl含有量が過剰になると、溶鋼中及び凝固過程でAl(コランダム)結晶相が晶出したり、MgOとともにMgO・Al(スピネル)結晶相が晶出する。これらの固相は硬質であり、粗大な介在物として存在し、加工中に空洞が生成し易くなり、転動疲労特性を悪化させる。従って、酸化物系介在物の組成におけるAl含有量は50%以下、好ましくは40%以下、より好ましくは30%以下とする。
[SiO:10~70%]
 SiOは、酸化物系介在物の液相線温度を下げる効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物と母相との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。このような効果を有効に発揮させるために、酸化物系介在物の組成におけるSiO含有量は10%以上、好ましくは15%以上、より好ましくは25%以上、更に好ましくは30%以上とする。しかし、酸化物系介在物の組成におけるSiO含有量が過剰になると、酸化物が粗大化して転動疲労特性が悪化する。又、酸化物が延伸してアスペクト比が大きくなるため、転動疲労特性が悪化する。従って、酸化物系介在物の組成におけるSiO含有量は70%以下、好ましくは60%以下、より好ましくは45%以下とする。
[TiO:3~50%]
 TiOは、SiOを主体とした酸化物の液相線温度を下げる効果がある。そのため、酸化物の粗大化を抑制して、酸化物系介在物と母相との界面にTiNを生成させる効果がある。その結果、転動疲労特性が改善する。又、TiOには、酸化物系介在物の結晶化を促進する効果がある。そのため、酸化物系介在物のアスペクト比低減に重要な役割を果たす。このような効果を有効に発揮させるために、酸化物系介在物の組成におけるTiO含有量は3%以上、好ましくは5%以上、より好ましくは10%以上、更に好ましくは20%以上とする。しかし、酸化物系介在物の組成におけるTiO含有量が過剰になると、酸化物が粗大化して転動疲労特性が悪化してしまう。従って、酸化物系介在物の組成におけるTiO含有量は50%以下、好ましくは45%以下、より好ましくは40%以下とする。
[不可避的酸化物]
 前記酸化物系介在物は、Al、SiO、及びTiOを含有し、残部成分は不可避的酸化物である。不可避的酸化物とは、製造過程等で不可避的に含まれる酸化物であり、例えば、CaO、REM、MgO、MnO、ZrO、NaO、KO、LiO、Cr、NbO、FeO、Fe、Feが挙げられる。不可避的酸化物は、前記酸化物系介在物の結晶化状態やアスペクト比等に悪影響を及ぼさず、所望の特性が得られる限度において含まれてもよい。前記酸化物系介在物の全質量に対する不可避的酸化物の合計質量百分率は、おおむね、30%以下であることが好ましく、20%以下であることがより好ましい。例えば、CaOは、前記酸化物系介在物の全質量に対する質量百分率が20%以下の範囲で、含有することができる。又、REM、MgO、MnO、ZrO、NaO、KO、LiO、Cr、NbO、FeO、Fe、Feは、それぞれ前記酸化物系介在物の全質量に対する質量百分率が10%未満の範囲で、含有することができる。尚、本発明において、REMとは、ランタノイド元素(周期表第6周期第3族に属するLaからLuまでの15種の元素)、Sc(スカンジウム)及びY(イットリウム)の17種の元素をいう。これらの元素のなかでも、La、Ce及びYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、La及び/又はCeを含有することがより好ましい。
[Al、SiO及びTiOの合計質量百分率:60%以上(Al+SiO+TiO≧60%)]
 上述したようにAl、SiO及びTiOは、本発明における酸化物系介在物の主要成分であり、それぞれの含有量が制御されているが、本発明では、更にAl、SiO及びTiOの合計含有量も適切に制御される必要がある。これにより、酸化物系介在物と母相との界面にTiNを生成させて界面での剥離を抑制し、転動疲労特性を改善することができる。Al、SiO及びTiOの合計含有量が過少であると、酸化物が粗大化してしまい、TiNによる前記界面制御が十分に得られず、転動疲労特性は向上しない。このような観点から、Al、SiO及びTiOの合計含有量は60%以上とする。Al、SiO及びTiOの合計含有量は多い程よく、65%以上であることが好ましく、70%以上であることがより好ましい。一方、Al、SiO及びTiOの合計含有量の上限値は特に限定されず、例えば100%であってもよい。
[Al及びSiOの合計質量に対するTiOの質量の比:0.10以上1.50以下(1.50≧TiO/(Al+SiO)≧0.10)]
 上述したようにAl、SiO及びTiOは、本発明における酸化物系介在物の主要成分である。AlとSiOの合計質量に対するTiOの質量の比が、所定の範囲内にある場合、酸化物系介在物と母相との界面にTiNを生成させて界面での剥離を抑制することができる。AlとSiOの合計質量に対するTiOの質量の比が過小な場合、酸化物系介在物の中に占めるTiOの割合が少なくなり、AlとSiOが主体となる。その結果、酸化物系介在物と母相の界面にTiNを生成させることができず、転動疲労特性は向上しない。又、酸化物系介在物のアスペクト比が大きくなる。このような観点から、AlとSiOの合計質量に対するTiOの質量の比は0.10以上、好ましくは0.15以上、より好ましくは0.25以上とする。しかし、AlとSiOの合計質量に対するTiOの質量の比が過大な場合、酸化物系介在物の中にTiOの割合が大きくなり過ぎ、酸化物系介在物と母相の界面にTiNを生成させることができず、転動疲労特性は向上しない。従って、AlとSiOの合計質量に対するTiOの質量の比は1.50以下、好ましくは1.30以下、より好ましくは1.00以下とする。
(c)短径1μm以上の酸化物系介在物の全個数に占める、当該酸化物系介在物のうち鋼材の母相との界面にTiNが存在する複合介在物の個数の百分率について
 本発明の軸受用鋼材中に存在する短径1μm以上の酸化物系介在物は、その全個数に占める、当該酸化物系介在物のうち鋼材の母相(基地相)との界面にTiNが存在する介在物の個数の百分率(以下、TiN個数割合と呼ぶ場合がある。)が30%以上である。こうした範囲を定めた理由は次の通りである。
 前記界面に存在するTiNとは、後記する実施例の欄に示すように、前記酸化物系介在物(と鋼材の母相(基地相)との界面)上に生成したTiNを意味する。このTiNは転動疲労寿命の向上に極めて重要であり、前記界面にTiNが存在することで、複合介在物と母相との界面に生じる剥離が抑制される。転動疲労寿命に悪影響を及ぼす界面剥離が抑制される結果、転動疲労寿命が向上する。このような効果が生じるTiN個数割合は30%以上である。TiN個数割合は多い程よく、40%以上であることが好ましく、50%以上であることがより好ましい。一方、TiN個数割合の上限は特に限定されず、例えば、100%であってもよい。
 TiN個数割合の測定方法は、後記する実施例の欄で詳述する。
 本発明の軸受用鋼材では、上記のように鋼成分及び酸化物組成を適切に制御することによって、鋼材の長手方向に平行に切断した面に存在する酸化物系介在物のアスペクト比(長径/短径)の平均値(以下、単にアスペクト比と呼ぶ場合がある。)は3.0以下に低減される。これにより、荷重の付与される方向にかかわらず転動疲労特性を安定的に改善することができる。前記アスペクト比は小さい程よく、おおむね、2.5以下であることが好ましく、2.0以下であることが更に好ましい。
 アスペクト比の測定方法は、後記する実施例の欄で詳述する。
《軸受用鋼材の製造方法》
 次に、本発明の他の一局面である転動疲労特性に優れた軸受用鋼材の製造方法について説明する。
 本発明の軸受用鋼材は、Si脱酸処理を行って前記鋼成分からなる鋼素材を得る溶製工程と、第1均熱工程と、分塊工程と、第2均熱工程と、熱間圧延工程とを経るとともに、前記第2均熱工程における保持温度を1240℃以下に設定し、前記第1均熱工程及び前記第2均熱工程における900~1240℃の温度下での保持時間を合計で60分間以上にすることによって、製造することができる。
 本発明の軸受用鋼材の製造に際しては、所定の酸化物組成とTiN個数割合とが得られるように、溶製工程、第1均熱工程及び第2均熱工程に留意する。これら以外の工程では、軸受用鋼の製造に通常用いられる方法が適宜選択される。
 以下、溶製工程、第1均熱工程及び第2均熱工程について説明する。
[溶製工程]
 前記鋼成分からなる鋼を溶製して鋳造することにより、鋳片である鋼素材を得る。鋼を溶製する際に、通常実施されるAl添加による脱酸処理を行なわずに、Si添加による脱酸処理(Si脱酸処理)を実施する。
 前記酸化物組成を得るための好ましい溶製方法は以下の通りである。
 溶製時には、Alの含有量を制御するために、鋼中に含まれるAl含有量を前記の通り、0.0002~0.005%に制御する。
 TiOの制御方法は特に限定されない。当該技術分野で通常用いられる方法に基づいて、溶製時に、鋼中に含まれるTi含有量が前記の通り、0.0005~0.010%の範囲内に制御されるようにTiを添加すればよい。この場合のTiの添加方法は特に限定されない。例えば、Tiを含有する鉄系合金を添加して調整してもよいし、或いは、スラグ組成の制御によって溶鋼中のTi濃度を制御してもよい。
 SiOの含有量は、他の酸化物を前記のように制御することによって、間接的に制御される。
 前記TiN個数割合を得るための好ましい制御方法は以下の通りである。
 常法に従って鋼の溶製時に、鋼中に含まれるTi含有量が前記の通り0.0005~0.010%、N含有量が前記の通り0.003~0.010%の範囲内に制御されるようにTi、Nを添加する。Tiの添加方法は特に限定されない。例えば、Tiを含有する鉄系合金を添加して調整してもよいし、或いは、スラグ組成の制御によって溶鋼中のTi濃度を制御してもよい。Nの添加方法も特に限定されない。例えば、Nを含有する合金を添加して調整してもよいし、溶鋼をガス攪拌する際に窒素ガスを用いて制御してもよいし、或いは、溶鋼と接触するガス相中の窒素分圧を制御してもよい。
[第1均熱工程及び第2均熱工程]
 熱間圧延後にTiNが前記酸化物系介在物と鋼材の母相(鋼材の基地相)との界面に存在するように、分塊圧延又は分塊鍛造の前に行われる加熱及び熱間圧延の前に行われる加熱の際に、前記酸化物系介在物と鋼の界面にTiNが生成しやすい保持温度(900~1240℃)で保持時間を一定以上(60分間以上)に制御する。
 以下、詳しく説明する。
 分塊圧延又は分塊鍛造の前に行われる加熱には、鋼素材が指定温度に昇温した後に、当該指定温度(第1指定温度)下で指定時間(第1指定時間)だけ保持される工程(第1均熱工程)が含まれる。一方、熱間圧延の前に行われる加熱には、鋼素材に分塊圧延又は分塊鍛造を行って得られた圧延素材が他の指定温度に昇温した後に、当該他の指定温度(第2指定温度)下で他の指定時間(第2指定時間)だけ保持される工程(第2均熱工程)が含まれる。熱間圧延の前に行われる加熱の際にして、前記酸化物系介在物と鋼の界面に生成したTiNが消失しないように、第2指定温度を1240℃以下に設定する。そして、鋼素材及び圧延素材の第1均熱工程及び第2均熱工程における900~1240℃の温度下での保持時間を、合計で60分間以上となるように制御する。
 具体的には、第1均熱工程及び第2均熱工程における第1指定温度、第2指定温度、第1指定時間及び第2指定時間を次の条件1~条件3のいずれかを満たすように制御する。
 条件1:第1指定温度が900~1240℃であり、第2指定温度が900℃未満であり、第1均熱工程における鋼素材の第1指定温度で保持する時間(第1指定時間)が60分間以上であること、
 条件2:第1指定温度が1240℃超であり、第2指定温度が900~1240℃であり、第2均熱工程における圧延素材の第2指定温度で保持する時間(第2指定時間)が60分間以上であること、
 条件3:第1指定温度及び第2指定温度の両方が900~1240℃であり、第1均熱工程における鋼素材の第1指定温度で保持する時間(第1指定時間)と、第2均熱工程における圧延素材を第2指定温度で保持する時間(第2指定時間)の合計が、60分間以上であること。
 例えば、(1)第1均熱工程においてTiNが生成しやすい温度(900~1240℃)で鋼素材を保持する時間が60分間以上となるように、且つ、第2均熱工程においてTiNが生成し難い温度(900℃未満)で圧延素材を保持するように制御してもよい。(2)第1均熱工程においてTiNが生成しても消失しやすい温度(1240℃超)で鋼素材を保持し、且つ、第2均熱工程においてTiNが生成しやすい温度(900~1240℃)で圧延素材を保持する時間が60分間以上となるように制御してもよい。(3)第1均熱工程においてTiNが生成し難い温度(900℃未満)で鋼素材を保持し、且つ、第2均熱工程においてTiNが生成しやすい温度(900~1240℃)で圧延素材を保持する時間が60分間以上となるように制御してもよい。(4)第1均熱工程においてTiNが生成しやすい温度(900~1240℃)で保持する時間と、第2均熱工程においてTiNが生成しやすい温度(900~1240℃)で保持する時間のいずれか一方又は双方が、60分間以上となるように制御してもよい。(5)第1均熱工程においてTiNが生成しやすい温度(900~1240℃)で保持する時間と、第2均熱工程においてTiNが生成しやすい温度(900~1240℃)で保持する時間とが、合計で60分間以上となるように制御してもよい。
 前記条件1における第1指定温度の下限値は950℃であることが好ましい。前記条件1における第1指定温度の上限値は1200℃であることが好ましく、1150℃であることがより好ましい。前記条件1における第1指定時間は長い程よい。例えば、80分間以上であることが好ましく、100分間以上であることがより好ましく、150分間以上であることが更に好ましい。一方、前記条件1における第1指定時間の上限値は特に限定されないが、製造効率等を考慮すると、おおむね、20時間以下であることが好ましい。前記条件1における第2指定温度の下限値は700℃であることが好ましい。
 前記条件2における第2指定温度の下限値は950℃であることが好ましい。前記条件2における第2指定温度の上限値は1200℃であることが好ましく、1150℃であることがより好ましい。前記条件2における第2指定時間は長い程よい。例えば、80分間以上であることが好ましく、100分間以上であることがより好ましく、150分間以上であることが更に好ましい。一方、前記条件2における第2指定時間の上限値は特に限定されないが、製造効率等を考慮すると、おおむね、20時間以下であることが好ましい。前記条件2における第1指定温度の上限値は1300℃であることが好ましい。
 前記条件3における第1指定温度及び第2指定温度の下限値は、それぞれ950℃であることが好ましい。前記条件3における第1指定温度及び第2指定温度の上限値は、それぞれ、1200℃であることが好ましく、1150℃であることがより好ましい。前記条件3における第1指定時間と第2指定時間の合計値は長い程よい。例えば、第1指定時間と第2指定時間の合計で、80分間以上であることが好ましく、100分間以上であることがより好ましく、150分間以上であることが更に好ましい。一方、前記条件3における第1指定時間と第2指定時間を合計した上限値は特に限定されないが、製造効率等を考慮すると、おおむね、20時間以下であることが好ましい。
 前記条件1~3において、第1指定時間及び第2指定時間の各範囲は、第1均熱工程と第2均熱工程とで、第1指定温度及び第2指定温度が相違するため、第1指定温度に応じた好ましい第1指定時間と、第2指定温度に応じた好ましい第2指定時間とを設定することが推奨される。
 尚、第1均熱工程における保持とは、鋼素材を第1指定温度に維持することをいい、設備の制約から目標とする第1指定温度に対して、鋼素材の温度が高温又は低温に変動する場合を含む。第1指定温度として所定の温度域を指定した場合には、鋼素材を当該所定の温度域内に維持することをいう。例えば、第1指定温度が900~1240℃である場合には、鋼素材を900~1240℃の範囲内に維持すればよく、900~1240℃の範囲内の特定の温度(例えば1200℃)に維持してもよい。
 又、第2均熱工程における保持とは、圧延素材を第2指定温度に維持することをいい、設備の制約から目標とする第2指定温度に対して、鋼素材の温度が高温又は低温に変動する場合を含む。第2指定温度として所定の温度域を指定した場合には、圧延素材を当該所定の温度域内に維持することをいう。例えば、第2指定温度が900~1240℃である場合には、圧延素材を900~1240℃の範囲内に維持すればよく、900~1240℃の範囲内の特定の温度(例えば1000℃)に維持してもよい。
 そして、第1均熱工程において、第1指定温度下で第1指定時間だけ保持された鋼素材に対して、常法に従い、分塊圧延又は分塊鍛造を行う。又、第2均熱工程において、第2指定温度下で第2指定時間だけ保持された圧延素材に対して、常法に従い、熱間圧延を行い、更に球状化焼鈍を行った後に、熱間加工又は冷間加工を行う。このようにして、本発明の軸受用鋼材が得られる。尚、分塊圧延又は分塊鍛造を行った圧延素材は、一旦冷却した後に加熱してもよいし、冷却せずに加熱してもよい。
《軸受部品》
 このようにして得られた本発明の軸受用鋼材を、所定の部品形状に切削し、更に焼入れ・焼戻し処理を施すことで、本発明の更に他の一局面である軸受部品が得られる。鋼材を製造する段階の形状は、上述した製造に適用できるような線状及び棒状のいずれも含まれる。鋼材を製造する段階における中間品のサイズは、最終製品に応じて適宜決められる。
 前記軸受部品としては、例えば、コロ、ニードル、玉等の転動体と、アウターレース、インナーレース等の軌道輪とが挙げられる。
 上述したように、本発明の一局面は、質量%で、C:0.8%以上1.1%以下、Si:0.15%以上0.8%以下、Mn:0.1%以上1.0%以下、Cr:1.3%以上1.8%以下、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002%以上0.005%以下、Ti:0.0005%以上0.010%以下、N:0.0030%以上0.010%以下、O:0%超0.0030%以下を含有し、残部は鉄及び不可避的不純物からなる軸受用鋼材であって、前記鋼材中に存在する短径1μm以上の酸化物系介在物は、質量%で、Al:5%以上50%以下、SiO:10%以上70%以下、TiO:3%以上50%以下を含有し、残部は不可避的酸化物からなり、前記Al、前記SiO及び前記TiOの合計質量百分率が60%以上であり、前記Al及び前記SiOの合計質量に対する前記TiOの質量の比が0.10以上1.50以下であり、前記酸化物系介在物の全個数に占める、当該酸化物系介在物のうち前記鋼材の母相との界面にTiNが存在する複合介在物の個数の百分率が30%以上である、転動疲労特性に優れた軸受用鋼材である。
 このような構成によれば、鋼成分及び鋼中に含まれる酸化物系介在物の組成が適切に制御されているため、優れた転動疲労特性を示す。特に、母相と酸化物系介在物の界面に存在するTiNが両者を密着させるので、転動疲労によって生じる早期剥離が抑制される。
 従って、本発明の軸受用鋼材は、アウターレース、インナーレース等の、スラスト方向の荷重が繰り返し付与される軸受部品の素材として有用である。又、母相と酸化物系介在物の界面に存在するTiNの密着力に、スラスト方向とラジアル方向の異方性は殆どないので、本発明の軸受用鋼材はコロ、ニードル、玉等の、主にラジアル方向の荷重が繰り返し付与される軸受部品の素材としても有用である。
本発明の軸受用鋼材は、前記酸化物系介在物が、前記不可避的酸化物として、質量%で、CaO:0%超10%未満を含有することが好ましい。このような構成により、酸化物系介在物と母相の界面により一層TiNを生成させることができるようになり、優れた転動疲労特性を得ることができる。
 本発明の他の一局面は、Si脱酸処理を行って前記鋼成分からなる鋼素材を得る溶製工程と、第1均熱工程と、分塊工程と、第2均熱工程と、熱間圧延工程とを有し、前記第2均熱工程における保持温度が1240℃以下であり、前記第1均熱工程及び前記第2均熱工程において、900~1240℃の温度下での保持時間が、合計で60分間以上である、転動疲労特性に優れた軸受用鋼材の製造方法である。
 より具体的には、溶鋼に対してSi脱酸処理を行い、鋳造することにより前記鋼成分からなる鋼素材を得る溶製工程と、前記鋼素材を第1指定温度で保持する第1均熱工程と、前記第1均熱工程にて前記第1指定温度で保持された前記鋼素材に分塊圧延又は分塊鍛造を行うことにより圧延素材を得る分塊工程と、前記圧延素材を第2指定温度で保持する第2均熱工程と、前記第2均熱工程にて前記第2指定温度で保持された前記圧延素材に熱間圧延を行う熱間圧延工程とを有し、前記第2指定温度が1240℃以下であり、前記鋼素材及び前記圧延素材の少なくとも一方を前記第1均熱工程と前記第2均熱工程において900~1240℃の温度下で保持する時間が、合計で60分間以上である、転動疲労特性に優れた軸受用鋼材の製造方法である。
 このような構成によれば、本発明の軸受用鋼材を好適に製造することができる。
 本発明の軸受用鋼材の製造方法は、例えば、(1)前記第1均熱工程における保持温度(第1指定温度)を900~1240℃に、前記第2均熱工程における保持温度(第2指定温度)を900℃未満にそれぞれ設定し、前記第1均熱工程における保持時間を60分間以上にしてもよいし、(2)前記第1均熱工程における保持温度(第1指定温度)を1240℃超に、前記第2均熱工程における保持温度(第2指定温度)を900~1240℃にそれぞれ設定し、前記第2均熱工程における保持時間を60分間以上にしてもよいし、(3)前記第1均熱工程における保持温度(第1指定温度)及び前記第2均熱工程における保持温度(第2指定温度)の双方を900~1240℃に設定し、前記第1均熱工程における保持時間と、前記第2均熱工程における保持時間の合計を、60分間以上にしてもよい。
 本発明の更に他の一局面は、前記軸受用鋼材からなる軸受部品である。このような構成によれば、軸受部品の素材として本発明の軸受用鋼材を用いているので、荷重の付与される方向にかかわらず、軸受部品の転動疲労特性を安定的に改善することができる。
本発明によれば、転動疲労特性に優れた軸受用鋼材、その製造方法及び転動疲労特性に優れた軸受部品を提供することができる。
 以下、実施例を挙げて本発明をより具体的に説明する。尚、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは可能であり、それらはいずれも本発明の技術的範囲に包含される。
<1>鋳片の作製
 1チャージの容量が170kgである小型溶解炉を用いて、下記表1に示す鋼成分の鋼(残部は鉄及び不可避的不純物)が溶製された。この溶鋼から、表1に示す鋼材No.1~47の鋳片が作製された。各鋳片の寸法は、上部の直径が245mmで、下部の直径が210mmで、高さ(長さ)が480mmであった。
 前記溶製時には、MgO系耐火物の取鍋が用いられた。鋼材No.1~46の鋼については、溶製時にSi脱酸処理が行われ、C、Si、Mn及びCrを用いて溶鋼の溶存酸素量が調整された後、Ti源が投入されて、Ti含有量が制御された。前記Ti源としてFe-Ti合金が用いられた。N含有量は、雰囲気中の窒素分圧を制御するとともに、Ti源添加前に窒化マンガンを添加することで調整された。一方、鋼材No.47の鋼については、溶製時にAl添加による脱酸処理が行われた。
<2>熱間圧延材の作製
 鋼材No.1~47の鋳片に対して分塊圧延及び熱間圧延が施されて、直径65mmの熱間圧延材(丸棒鋼)が得られた。前記鋳片は、分塊圧延前に、下記表2に示す分塊前加熱炉保持温度(前記第1均熱工程における保持温度、即ち、前記第1指定温度)まで加熱され、その温度にて同表に示す分塊前加熱炉保持時間(前記第1均熱工程における保持時間、即ち、前記第1指定時間)だけ保持された後に、900~1200℃の温度にて分塊圧延が施され、室温まで冷却された。その後、分塊圧延が施された鋳片は、表2に示す熱間圧延前加熱炉保持温度(前記第2均熱工程における保持温度、即ち、前記第2指定温度)まで加熱され、その温度にて同表に示す熱間圧延前加熱炉保持時間(前記第2均熱工程における保持時間、即ち、前記第2指定時間)だけ保持された後に、830~1100℃の温度にて熱間圧延が施された。
<3>酸化物系介在物の組成測定用試験片の作製と組成の測定
 鋼材No.1~47の熱間圧延材は、760~800℃の温度で2~8時間加熱された後に、10~15℃/時の平均冷却速度で(Ar変態点-60℃)の温度まで冷却されてから大気放冷された(球状化焼鈍)。これにより、球状化セメンタイトを分散させた球状化焼鈍材が得られた。この球状化焼鈍材から直径(D)が60mmで、高さ(熱間圧延材の圧延方向長さ)が30mmである円柱状の試験片が切り出された。切り出された試験片を、840℃の温度で30分間加熱した後、油焼入れし、次いで160℃の温度で120分間焼戻しを行うことによって、酸化物系介在物の組成測定用試験片が作製された。
 このようにして作製された鋼材No.1~47の組成測定用試験片から、その直径D(60mm)の1/4の位置において圧延方向を含む断面の寸法が圧延方向長さで20mm且つ圧延方向に垂直な方向の長さで20mmとなるように、ミクロ試料が1個切り出された。そして、ミクロ試料の前記断面が研磨された。
 鋼材No.1~47のミクロ試料の研磨面は、日本電子データム社製の電子線マイクロプローブX線分析装置(Electron Probe X-ray Micro  Analyzer:EPMA、商品名「JXA-8500F」)を用いて観察され、短径が1μm以上の酸化物系介在物の組成が定量分析された。詳細には次の通りである。ミクロ試料の研磨面での観察面積を100mmとして、介在物の中央部の組成が特性X線の波長分散分光により定量分析された。分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Cr、O(酸素)とし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする前記介在物から得られたX線強度と前記検量線から、各介在物に含まれる元素量を定量し、その結果を算術平均することで、介在物の組成が求められた。このようにして定量分析された介在物のうち、酸素(O)含量が5質量%以上の介在物を酸化物系介在物とした。このとき、一つの酸化物系介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に換算して酸化物の組成が算出された。本発明では、前記単独酸化物として質量換算したものを平均して、酸化物の組成とした。前記定量分析の結果を表3に示す。同表中の組成は、短径が1μm以上の酸化物系介在物の組成(残部は不可避的酸化物)を表す。Al、SiO及びTiOの合計質量百分率(Al+SiO+TiO)、及びAl及びSiOの合計質量に対するTiOの質量の比(TiO/(Al+SiO))も同表に示す。
<4>酸化物系介在物のアスペクト比の測定
 鋼材No.1~47の酸化物系介在物の組成測定用試験片を用いて、短径が1μm以上の任意の酸化物系介在物(分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Cr、O(酸素))100個が選ばれ、各々の長径と短径が測定され、各々の酸化物系介在物のアスペクト比(=長径/短径)が算出された。その結果を算術平均することで、酸化物系介在物の平均のアスペクト比が得られた。得られたアスペクト比を表3に示す。
<5>TiN個数割合の測定
 まず、鋼材No.1~47の酸化物系介在物の組成測定用試験片の前記研磨面における観察面積100mmに対して、まず、電子線マイクロプローブX線分析装置を用いて、短径が1μm以上の酸化物系介在物(分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Cr、O(酸素)で、酸素含量が5質量%以上の介在物)が5個選ばれた。5個の酸化物系介在物の選定基準は、観察面積100mmの中に存在する酸化物系介在物のうち、そのサイズが最も大きいものから順番に選ばれる5個である。酸化物系介在物のサイズが最も大きいものを選定した理由は、転動疲労特性は、酸化物系介在物の寸法が大きい程、悪影響度が大きいと言われているからである。尚、酸化物系介在物のサイズは、前記観察面に現れている酸化物系介在物の「長径×短径」の値で大小を比較した。
 次に、対象の酸化物系介在物は、FIB法(Focused Ion Beam、集束イオンビーム加工法)により酸化物系介在物がTEM観察可能な厚さまで薄片化された。薄片化に用いられた装置は、日立製作所製の集束イオンビーム加工観察装置FB2000Aであり、加速電圧は30kVで、イオン源としてGaが用いられた。そして、薄片化した酸化物系介在物がTEM観察された。TEM観察に用いられた装置は、日本電子製の電界放出形透過電子顕微鏡JEM-2010Fであり、Noran製EDX(Energy dispersive X-ray spectrometry)分析装置Vantageにて、酸化物系介在物と母相の界面に対してEDX分析が実施された。分析対象元素は、Ca、Al、Si、Ti、Ce、La、Mg、Mn、Zr、Na、K、Crとし、Ti濃度が30%以上の相が選定され、その相に対して電子線回折による同定解析が行われ、立方晶の結晶構造を示すものがTiNと判断された。このとき、対象の酸化物系介在物と母相の界面にTiNが存在している場合(つまり、TiNとして判断する前記方法でTiNが存在すると認められた場合)、酸化物系介在物と母相の界面にTiNが存在している酸化物系介在物があると判断され、測定した5個の酸化物系介在物中に存在する、前記TiNが存在している酸化物系介在物の個数の割合が測定された。得られた割合(TiN個数割合)を表3に示す。
<6>スラスト転動疲労試験片の作製と転動疲労特性の評価
 前記<3>で得られた球状化焼鈍材から直径が60mmで、厚さが6mmである試験片が切り出された。切り出された試験片に対して、840℃の温度で30分間の加熱が行われた後、油焼入れが行われ、次いで160℃の温度で120分間焼戻しが行われた。焼戻された試験片に対して仕上げ研磨が施こされて、表面粗さRa0.04μm以下のスラスト転動疲労試験片が作製された。このようにして得られた鋼材No.1~47のスラスト転動疲労試験片に対して、スラスト疲労試験機(スラスト型転動疲労試験機「FJ-5T」、富士試験機製作所製)用いて、負荷速度1200rpm、鋼球数3個、面圧5.24GPa、中止回数2億回の条件でスラスト転動疲労試験が実施された。
 転動疲労寿命の尺度として、通常、疲労寿命L10(累積破損確率10%における疲労破壊までの応力繰り返し数、以下「L10寿命」と呼ぶ場合がある。)が用いられる。詳細には、L10とは、試験結果をワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの繰り返し数を意味する(「軸受」、岩波全書、曽田範宗著を参照)。鋼材No.1~47の各鋼材につき、16個の試料を用いて前記スラスト転動疲労試験が行われてL10寿命が決定された。次いで、溶製時にAl添加による脱酸処理が行われた従来鋼の鋼材No.47のL10寿命(1.2×10回)に対する鋼材No.1~46の各鋼材のL10寿命の寿命比が求められ、下記基準で評価された。
 不可(転動疲労寿命に劣る):L10寿命5.4×10回未満(4.5倍未満の寿命比)
 可(転動疲労寿命に優れる):L10寿命5.4×10回以上6.0×10回未満(4.5倍以上5.0倍未満の寿命比)
 良(転動疲労寿命に特に優れる):L10寿命6.0×10回以上6.5×10回未満(5.0倍以上5.4倍未満の寿命比)
 優(転動疲労寿命に特段に優れる):L10寿命6.5×10回以上(5.4倍以上の寿命比)
 上記基準のうち、不可は不合格を意味し、可、良及び優は合格を意味する。
 尚、前記合格基準の最低レベルである「可」の寿命比(4.5倍以上)は、特許文献4の実施例で最も高い寿命比が得られた表2の試験No.11、試験No.35(寿命比3.8倍)を超えるものであり、本実施例では、特許文献4よりも高い合格基準を設定している。
 鋼材No.1~47のL10寿命、寿命比及び合否を表4に示す。表中、「E+07」は「×10」を意味する。
 鋼材No.1~26は、本発明で規定する要件(a)~(c)を満足する例であり、いずれも優れた転動疲労特性を示す。鋼材No.1~26は、酸化物系介在物のアスペクト比も適切に制御されている。
 尚、本実施例では、スラスト方向での転動疲労特性を測定しているが、本実施例では酸化物系介在物のアスペクト比が小さいため、ラジアル方向の転動疲労寿命も良好であると推察される。
 一方、鋼材No.27~47は、本発明で規定する要件(a)~(c)の少なくとも1つを満足しない例であり、所望の転動疲労特性を示さない。
具体的には、鋼材No.27は鋼中C含有量が過多な例である。鋼材No.28は鋼中Mn含有量が過多な例である。鋼材No.29は鋼中Cr含有量が過多な例である。鋼材No.30は鋼中Cr含有量が過少な例である。鋼材No.31は鋼中P含有量が過多な例である。鋼材No.32は鋼中S含有量が過多な例である。鋼材No.37は鋼中N含有量が過多な例である。鋼材No.39は鋼中O含有量が過多な例である。これらは、いずれもL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.33は鋼中Al含有量が過多な例である。そして、鋼材No.33は、短径1μm以上の酸化物系介在物中のAl含有量が過多で、当該酸化物系介在物においてAl及びSiOの合計質量に対するTiOの質量の比が過小で、TiN個数割合が過小な例である。鋼材No.33はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.34は鋼中Al含有量が過少な例である。そして、鋼材No.34は、短径1μm以上の酸化物系介在物中のAl含有量が過少で、当該酸化物系介在物においてAl及びSiOの合計質量に対するTiOの質量の比が過大で、TiN個数割合が過小な例である。鋼材No.34はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.35は鋼中Ti含有量が過多な例である。そして、鋼材No.35は、短径1μm以上の酸化物系介在物中のTiO含有量が過多であるとともにSiO含有量が過少であり、当該酸化物系介在物においてAl及びSiOの合計質量に対するTiOの質量の比が過大で、TiN個数割合が過小な例である。鋼材No.35はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.36は鋼中Al含有量及びTi含有量が過少な例である。そして、鋼材No.36は、短径1μm以上の酸化物系介在物中のAl含有量及びTiO含有量が過少であるとともにSiO含有量が過多であり、酸化物系介在物においてAl及びSiOの合計質量に対するTiOの質量の比が過小で、酸化物系介在物と母相の界面にTiNが存在しない(即ち、TiN個数割合が過小な)例である。鋼材No.36はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.38は鋼中N含有量が過少であるとともに、TiN個数割合が過小な例である。鋼材No.38はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.40は、短径1μm以上の酸化物系介在物の全質量に占めるAl、SiO及びTiOの合計質量の割合が過少であるとともに、TiN個数割合が過小な例である。鋼材No.40はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.41は、短径1μm以上の酸化物系介在物においてAl及びSiOの合計質量に対するTiOの質量の比が過大であるとともに、TiN個数割合が過小な例である。鋼材No.41はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.42は、短径1μm以上の酸化物系介在物においてAl及びSiOの合計質量に対するTiOの質量の比が過小であるとともに、TiN個数割合が過小な例である。鋼材No.42はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.43は、分塊圧延前の加熱炉保持温度及び熱間圧延前の加熱炉保持温度が高過ぎて、TiN個数割合が過小となった例である。鋼材No.43はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.44、46は、分塊圧延前の加熱炉保持温度が高過ぎ、且つ熱間圧延前の加熱炉保持時間が短過ぎて、TiN個数割合が過小となった例である。鋼材No.44、46はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.45は、分塊圧延前の加熱炉保持温度が高過ぎ、且つ熱間圧延前の加熱炉保持温度が低過ぎて、TiN個数割合が過小となった例である。鋼材No.45はL10寿命及び寿命比が基準値よりも低いため、所望の転動疲労特性を示さない。
鋼材No.47は、溶製時にAl添加による脱酸処理が行われた例である。短径1μm以上の酸化物系介在物中にSiO及びTiOが存在しない。鋼材No.47はL10寿命及び寿命比の基準値となっているので、所望の転動疲労特性を示さない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 この出願は、2016年3月7日に出願された日本国特許出願特願2016-043159号を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易に為し得ることであると認識すべきである。従って、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を逸脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。

Claims (7)

  1.  質量%で、C:0.8%以上1.1%以下、Si:0.15%以上0.8%以下、Mn:0.1%以上1.0%以下、Cr:1.3%以上1.8%以下、P:0%超0.05%以下、S:0%超0.015%以下、Al:0.0002%以上0.005%以下、Ti:0.0005%以上0.010%以下、N:0.0030%以上0.010%以下、O:0%超0.0030%以下を含有し、残部が鉄及び不可避的不純物である鋼成分からなる軸受用鋼材であって、
     前記鋼材中に存在する短径1μm以上の酸化物系介在物は、質量%で、Al:5%以上50%以下、SiO:10%以上70%以下、TiO:3%以上50%以下を含有し、残部は不可避的酸化物からなり、前記Al、前記SiO及び前記TiOの合計質量百分率が60%以上であり、前記Al及び前記SiOの合計質量に対する前記TiOの質量の比が0.10以上1.50以下であり、
     前記酸化物系介在物の全個数に占める、当該酸化物系介在物のうち前記鋼材の母相との界面にTiNが存在する複合介在物の個数の百分率が30%以上である、転動疲労特性に優れた軸受用鋼材。
  2.  前記酸化物系介在物は、前記不可避的酸化物として、質量%で、CaO:0%超10%未満を含有する請求項1に記載の転動疲労特性に優れた軸受用鋼材。
  3.  請求項1又は2に記載の転動疲労特性に優れた軸受用鋼材を製造する方法であって、
     Si脱酸処理を行って前記鋼成分からなる鋼素材を得る溶製工程と、第1均熱工程と、分塊工程と、第2均熱工程と、熱間圧延工程とを有し、
     前記第2均熱工程における保持温度が1240℃以下であり、
     前記第1均熱工程及び前記第2均熱工程において、900~1240℃の温度下での保持時間が合計で60分間以上である、軸受用鋼材の製造方法。
  4.  前記第1均熱工程における保持温度が900~1240℃であり、前記第2均熱工程における保持温度が900℃未満であり、
     前記第1均熱工程における保持時間が60分間以上である請求項3に記載の軸受用鋼材の製造方法。
  5.  前記第1均熱工程における保持温度が1240℃超であり、前記第2均熱工程における保持温度が900~1240℃であり、
     前記第2均熱工程における保持時間が60分間以上である請求項3に記載の軸受用鋼材の製造方法。
  6.  前記第1均熱工程における保持温度及び前記第2均熱工程における保持温度が900~1240℃であり、
     前記第1均熱工程における保持時間と、前記第2均熱工程における保持時間の合計が、60分間以上である請求項3に記載の軸受用鋼材の製造方法。
  7.  請求項1又は2に記載の軸受用鋼材からなる軸受部品。
PCT/JP2017/007620 2016-03-07 2017-02-28 転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品 WO2017154652A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016043159A JP2017160466A (ja) 2016-03-07 2016-03-07 転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品
JP2016-043159 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017154652A1 true WO2017154652A1 (ja) 2017-09-14

Family

ID=59789313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007620 WO2017154652A1 (ja) 2016-03-07 2017-02-28 転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品

Country Status (3)

Country Link
JP (1) JP2017160466A (ja)
TW (1) TW201736620A (ja)
WO (1) WO2017154652A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017362A1 (ja) * 2012-07-24 2014-01-30 株式会社神戸製鋼所 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2014189854A (ja) * 2013-03-27 2014-10-06 Kobe Steel Ltd 転動疲労特性と切削加工性に優れた軸受用鋼材、および軸受部品
JP2015036437A (ja) * 2013-08-13 2015-02-23 株式会社神戸製鋼所 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2015163735A (ja) * 2014-01-29 2015-09-10 株式会社神戸製鋼所 疲労特性に優れたばね用鋼線材、およびばね

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017362A1 (ja) * 2012-07-24 2014-01-30 株式会社神戸製鋼所 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2014189854A (ja) * 2013-03-27 2014-10-06 Kobe Steel Ltd 転動疲労特性と切削加工性に優れた軸受用鋼材、および軸受部品
JP2015036437A (ja) * 2013-08-13 2015-02-23 株式会社神戸製鋼所 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2015163735A (ja) * 2014-01-29 2015-09-10 株式会社神戸製鋼所 疲労特性に優れたばね用鋼線材、およびばね

Also Published As

Publication number Publication date
TW201736620A (zh) 2017-10-16
JP2017160466A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5425736B2 (ja) 冷間加工性、耐摩耗性、及び転動疲労特性に優れた軸受用鋼
KR102127626B1 (ko) 베어링용 조괴재 및 제조 방법
JP6248026B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP5400089B2 (ja) 転動疲労寿命特性に優れた軸受鋼、軸受用造塊材並びにそれらの製造方法
WO2017122830A1 (ja) 非調質機械部品用鋼線及び非調質機械部品
WO2019142947A1 (ja) 浸炭軸受鋼部品、および浸炭軸受鋼部品用棒鋼
JP2001049388A (ja) 被削性に優れた軸受要素部品用の鋼線材、棒鋼及び鋼管
JP2011117010A (ja) 冷間加工性に優れた軸受用鋼
WO2017126695A1 (ja) 非調質機械部品用鋼線及び非調質機械部品
JP6462376B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP5833984B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP6801782B2 (ja) 鋼及び部品
JP5976584B2 (ja) 転動疲労特性と切削加工性に優れた軸受用鋼材、および軸受部品
JP3882538B2 (ja) 熱間加工で成形して用いる軸受要素部品用丸鋼
JP5976581B2 (ja) 転動疲労特性に優れた軸受用鋼材、および軸受部品
WO2017154652A1 (ja) 転動疲労特性に優れた軸受用鋼材、その製造方法及び軸受部品
WO2019142946A1 (ja) 軸受鋼部品、および軸受鋼部品用棒鋼
JP6073200B2 (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2014019911A (ja) 転動疲労特性に優れた軸受用鋼材および軸受部品
JP2016172916A (ja) 転動疲労特性および冷間鍛造性に優れた軸受用鋼材、および軸受部品
KR20240013186A (ko) 강재, 및, 그 강재를 소재로 하는 크랭크 샤프트

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762992

Country of ref document: EP

Kind code of ref document: A1