WO2016117551A1 - フルオロプロペンの製造方法 - Google Patents

フルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2016117551A1
WO2016117551A1 PCT/JP2016/051423 JP2016051423W WO2016117551A1 WO 2016117551 A1 WO2016117551 A1 WO 2016117551A1 JP 2016051423 W JP2016051423 W JP 2016051423W WO 2016117551 A1 WO2016117551 A1 WO 2016117551A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
containing compound
general formula
fluorine
represented
Prior art date
Application number
PCT/JP2016/051423
Other languages
English (en)
French (fr)
Inventor
大輔 加留部
勇博 茶木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP16740158.7A priority Critical patent/EP3248958A4/en
Priority to US15/544,987 priority patent/US10392326B2/en
Publication of WO2016117551A1 publication Critical patent/WO2016117551A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing fluoropropene.
  • 1233xf is 1,1,1,2 , 3-pentachloropropane (240db) and 1,1,2,3-tetrachloropropene (1230xa) are easily obtained from chlorine-containing compounds, and are useful processes for producing 1234yf.
  • 1,1,1,2,2-pentafluoropropane (245cb) is obtained as a byproduct obtained by adding hydrogen fluoride to the target product.
  • hydrogen chloride is not included in the reaction process, and when hydrogen chloride is generated as a by-product, a separation device is installed and operated under severe conditions to separate hydrogen chloride.
  • a perfluorinated product or the like is generated as a by-product, an additional reaction step is required to convert this into a target product, so that the equipment cost and energy cost are high.
  • the present invention provides the following method for producing a fluoroolefin.
  • the chlorine-containing compound is at least one compound selected from the group consisting of 2,3-dichloro-1,1,1-trifluoropropane and 2-chloro-3,3,3-trifluoropropene.
  • the fluorine-containing compound is 1,1,1,2,2-pentafluoropropane, 1,1,1,2,3-pentafluoropropane or 2,3,3,3-tetrafluoropropene, Item 3.
  • Item 5 The method for producing a fluorine-containing compound according to any one of Items 1 to 4, wherein the fluorine-containing compound is 2,3,3,3-tetrafluoropropene.
  • Item 6 Chlorine-containing fluoro represented by the general formula (1): CX 3 CHClCH 2 Cl (wherein each X is independently F or Cl, where at least one of X is F) Alkane and general formula (2): CX 3 CCl ⁇ CH 2 (wherein X is independently F or Cl, provided that at least one of X is F).
  • Item 7 The method for producing a fluorine-containing compound according to Item 6, wherein the concentration of hydrogen chloride in the circulating gas is 0.01 vol% or more and 3 vol% or less.
  • the chlorine-containing compound is at least one compound selected from the group consisting of 2,3-dichloro-1,1,1-trifluoropropane and 2-chloro-3,3,3-trifluoropropene
  • the fluorine-containing compound is 1,1,1,2-tetrafluoro-2-chloropropane, 1,1,1,2,2-pentafluoropropane or 2,3,3,3-tetrafluoropropene.
  • Item 8. A method for producing a fluorine-containing compound according to Item 6 or 7.
  • Item 9 The method for producing a fluorine-containing compound according to any one of Items 6 to 8, wherein the chlorine-containing compound is 2-chloro-3,3,3-trifluoropropene.
  • Item 11 A method for producing a fluorine-containing compound, comprising the following steps (a), (b) and (c).
  • From the chlorine-containing olefin represented by the general formula (6): CX 2 CClCH 2 X (wherein X is each independently F or Cl, where at least one of X is Cl).
  • a reactor outlet gas containing at least one selected chlorine-containing compound and hydrogen chloride (b) By adjusting the concentration of the hydrogen chloride in the reactor outlet gas obtained in the step (a) to 0.01 vol% or more and 10 vol% or less, the general formula (3): CF 3 CFY n CH 2 Z Reactor inlet serving as a reactor for obtaining a fluorine-containing compound represented by n (wherein n is 0 or 1, one of Y and Z is H, and the other is F or Cl) A process of using gas, (c) The chlorine-containing fluoroalkane represented by the general formula (1) and the chlorine-containing fluoro represented by the general formula (2) contained in the reactor inlet gas obtained in the step (b) A step of producing a fluorine-containing compound represented by the general formula (3) by continuously reacting at least one chlorine-containing compound selected from the group consisting of olefins in the presence of a fluorination catalyst.
  • Item 13 At least one chlorine-containing compound selected from the group consisting of the chlorine-containing fluoroalkane represented by the general formula (1) and the chlorine-containing fluoroolefin represented by the general formula (2) is 2-chloro- Item 13.
  • Item 14 The method for producing a fluorine-containing compound according to any one of Items 11 to 13, wherein the fluorine-containing compound is 2,3,3,3-tetrafluoropropene.
  • Item 15 At least one chlorine-containing compound selected from the group consisting of the chlorine-containing fluoroalkane represented by the general formula (1) and the chlorine-containing fluoroolefin represented by the general formula (2) is 2-chloro- Item 11-13, which is 3,3,3-trifluoropropene, and the fluorine-containing compound is 1,1,1,2,2-pentafluoropropane or 2,3,3,3-tetrafluoropropene The manufacturing method of the fluorine-containing compound in any one of.
  • the main propane and propene related to the present invention are defined as shown in Table 1.
  • the chlorine-containing compound is not particularly limited within the range represented by the general formula (1) or (2), but is preferably 243db, 1233xf, and particularly preferably 1233xf.
  • the fluorine-containing compound is not particularly limited within the range represented by the general formula (3), but 1234yf is preferable.
  • the fluorine-containing compound is not particularly limited within the range represented by the general formula (3), but is preferably 244bb, 1234yf, and particularly preferably 1234yf.
  • a chlorine-containing fluoroalkane represented by the general formula (1) obtained by reacting at least one chlorine-containing compound selected from the group consisting of anhydrous hydrogen fluoride in the presence of a fluorination catalyst; At least one kind selected from the group consisting of the chlorine-containing fluoroolefin represented by the general formula (2).
  • the fluorine-containing compound represented by the general formula (3) is adjusted by adjusting the concentration of the hydrogen chloride in the reactor outlet gas obtained in the step (a) to 0.01 vol% or more and 10 vol% or less.
  • the fluorine-containing compound is not particularly limited within the range represented by the general formula (3), but is preferably 244bb, 1234yf, and particularly preferably 1234yf.
  • hydrogen chloride may be contained in the reactor inlet gas in the step (a), and the concentration thereof is represented by the chlorine-containing alkane represented by the general formula (4), represented by the general formula (5). It is preferable that it is 0.01 vol% or more and 200 vol% or less with respect to the total amount of the chlorine-containing olefin and the chlorine-containing olefin represented by the general formula (6).
  • the production method of the embodiment of the present invention includes a step of including hydrogen chloride in the reactor inlet gas.
  • the method of including hydrogen chloride in the reactor inlet gas is not particularly limited.
  • the starting material is supplied to the reactor in advance and hydrogen chloride is further added thereto, or the starting material and hydrogen chloride are added to the reactor.
  • a method of supplying the two at the same time may be employed.
  • the starting material may be supplied to the reactor after hydrogen chloride is supplied to the reactor in advance.
  • the reaction is performed by a method in which the raw material is continuously supplied from the reactor inlet and the fluorination reaction is performed in the reactor, and then the product is continuously discharged from the reactor outlet (so-called continuous reaction method).
  • hydrogen chloride is preferably supplied from the inlet of the reactor.
  • the concentration of hydrogen chloride in the reactor inlet gas is 0.01 vol% or more and 10 vol% or less. If the concentration of hydrogen chloride in the reactor inlet gas is in the above range, the effect of suppressing the perfluorination product by-product is sufficiently exerted, and a large number of steps are required for the deoxidation treatment of the reaction outlet gas. Nor.
  • the concentration of hydrogen chloride in the reactor inlet gas may be 0.01 vol% or more and 10 vol% or less, but is preferably 0.01 vol% or more and 3 vol% or less. If it is made not to contain hydrogen chloride substantially, since the installation cost and energy cost for removing hydrogen chloride before entering into reaction will become large, it is not economical. On the other hand, when too much hydrogen chloride is contained, the conversion rate of the reaction product decreases, leading to a decrease in productivity.
  • hydrogen chloride is generated when the chlorine-containing fluoroalkane or chlorine-containing fluoroolefin contained in the starting material is fluorinated, but the hydrogen chloride is generated in order from the entrance of the reaction field such as the reactor or the catalyst layer. Therefore, unless hydrogen chloride is separately supplied to the reactor as described above, there is almost no hydrogen chloride in the vicinity of the inlet of the reactor, and perfluorination of the product proceeds in the vicinity of the inlet. Therefore, hydrogen chloride generated when the starting material is fluorinated is unlikely to contribute to the suppression of perfluorinated products.
  • the fluorination reaction of the chlorine-containing fluoroalkane or chlorine-containing fluoroolefin contained in the starting material can be performed with a fluorinating agent in the presence of a catalyst or in the absence of a catalyst.
  • the fluorinating agent is usually suitably about 1 to 100 moles per mole of the chlorine-containing fluoroalkane and chlorine-containing fluoroolefin, and can be about 5 to 50 moles.
  • a gas inert to the raw materials and catalysts such as nitrogen, helium, and argon may coexist.
  • an oxidizing agent such as oxygen or chlorine may be accompanied.
  • the reactor is preferably a tubular reactor, and the contact method with the catalyst is preferably a fixed bed type.
  • the reactor is preferably composed of a material that is resistant to the corrosive action of hydrogen fluoride.
  • the reaction phase may be a liquid phase or a gas phase, but a gas phase is preferred. In this case, the effect of suppressing the production of perfluoride by hydrogen chloride is particularly significant.
  • a metal oxide, a metal fluoride or a metal oxyfluoride can be suitably used as the catalyst, and it is particularly preferable to use a catalyst containing chromium or aluminum.
  • These catalysts may further contain a metal component such as nickel, cobalt, zinc, copper, indium, manganese, or lanthanoid as a second component.
  • the reaction temperature of the fluorination reaction is not particularly limited, and can usually be about 200 ° C. to 550 ° C.
  • the pressure of the fluorination reaction is not particularly limited, and the reaction can be carried out under reduced pressure, normal pressure or increased pressure. Usually, it may be carried out under a pressure in the vicinity of atmospheric pressure (0.1 MPa), but the reaction can proceed smoothly even under a reduced pressure of less than 0.1 MPa. Furthermore, the reaction may be performed under a pressure that does not liquefy the raw material.
  • the total flow rate F O (0 ° C., flow rate at 0.1MPa: cc / sec) of the gas component flowing into the reaction system loading of the catalyst to W ( The ratio of g):
  • the contact time represented by W / F is preferably about 0.1 to 90 g ⁇ sec / cc, more preferably about 1 to 50 g ⁇ sec / cc.
  • the ratio of the reactor volume V (cc) to the total flow rate F O of gas components flowing through the reaction system (flow rate at 0 ° C, 0.1 MPa: cc / sec): V / F
  • the represented contact time is preferably about 0.1 to 100 seconds, and more preferably about 1 to 30 seconds.
  • the total flow rate of the gas components is a total flow rate obtained by adding these flow rates when an inert gas, oxygen, or the like is used in addition to the total flow rate of the raw material, hydrogen fluoride, and hydrogen chloride. .
  • the fluorine-containing compound represented by the general formula (3) is generated by the above fluorination reaction.
  • the structure of the fluorine-containing compound varies depending on the type of chlorine-containing fluoroalkane or chlorine-containing fluoroolefin contained in the starting material.
  • ⁇ Separation process and circulation process> unreacted chlorine-containing compounds, fluorinating agents, intermediates, hydrogen chloride and the like are separated from the product produced in the reaction step, and at least a part thereof is circulated to the reaction step for reuse. be able to.
  • This separation step can be selected in any manner, and a plurality of different separation steps may be selected. Specifically, this separation step may be distillation, liquid-liquid separation, extractive distillation or liquid-liquid extraction separation, or a combination thereof. These are merely examples and do not limit the separation step when the present invention is carried out.
  • the concentration of hydrogen chloride in the circulating gas is 0.01 vol% or more and 10 vol% or less. Yes, it is preferably 0.01 vol% or more and 3 vol% or less.
  • the concentration of the hydrogen chloride in the reactor outlet gas obtained in the step (a) is adjusted to 0.01 vol% or more and 10 vol% or less, and 0.01 vol% or more and 3 vol% or less. It is preferable to do.
  • a deoxidation step When circulating and reusing the fractions in the separation step, a deoxidation step, a water removal step, a rough purification step such as distillation, etc. may be installed as necessary. What is necessary is just to set the process conditions of these each process suitably according to the component which should be isolate
  • the condition for separating 1234yf from the component recycled from the reactor outlet component of the reaction step and 1234yf is to separate unreacted raw materials, hydrogen fluoride, intermediates, etc. as high boiling components, What is necessary is just to make it the conditions which can isolate
  • the component that does not become an intermediate of 1234yf can be separated from the circulating component by further supplying it to the separation step before circulating to the reaction step. Further, for the purpose of suppressing deterioration of the catalyst used in the reaction step, the component that does not become the intermediate of 1234yf can be separated and removed from the component to be recycled.
  • Components containing 1234yf, hydrogen chloride, etc. separated as low-boiling components can be further separated and recovered using any purification process such as single or multistage distillation, liquid separation, extraction, extractive distillation, etc. it can.
  • any purification process such as single or multistage distillation, liquid separation, extraction, extractive distillation, etc. it can.
  • high-purity 1234yf can be recovered from the bottom or middle of the final distillation column through a single or multi-stage distillation operation.
  • Hydrogen can be recovered and reused for the desired purpose.
  • the other organic component contained in the fraction containing hydrogen chloride is a chlorine-containing fluoride and serves as an intermediate raw material for the reaction process. Therefore, it can be separated in the 1234yf recovery process and recycled to the reaction process.
  • the concentration of hydrogen chloride in the circulating gas is 0.01 vol% or more and 10 vol% or less, and preferably 0.01 vol% or more and 3 vol% or less.
  • oxygen when oxygen is introduced in the reaction step for the purpose of maintaining the catalyst life, if oxygen is contained in the fraction containing hydrogen chloride, it can be recycled to the reaction step.
  • hydrogen chloride may be contained in the reactor inlet gas in the step (a), and the concentration of the chlorine-containing alkane represented by the general formula (4), It is preferable that they are 0.01 vol% or more and 200 vol% or less with respect to the total amount of the chlorine containing olefin represented by Formula (5) and the chlorine containing olefin represented by General formula (6).
  • a pentachloroalkane such as 240 db is used as a starting material in the step (a)
  • the pentachloroalkane has a property of being easily dehydrochlorinated in a reaction tube to become tetrachloropropene.
  • the starting material is preferably pentachloropropane such as 240 db.
  • Example 1 A tubular reactor was charged with 11.1 g of a chromium oxide catalyst, and an anhydrous hydrogen fluoride gas, an oxygen gas, a hydrogen chloride gas, and a gas of 1233xf were supplied at a reaction temperature of 365 ° C. and atmospheric pressure to carry out a fluorination reaction.
  • Example 2 The fluorination reaction was carried out in the same manner as in Example 1 except that the flow rate of the hydrogen chloride gas supplied was 0.6 Nml / min. After about 20 hours, the effluent gas from the reactor was analyzed using a gas chromatograph. As a result, the conversion rate of 1233xf was 16%. The production ratio of 1234yf and 245cb was 79:21.
  • Example 3 The fluorination reaction was carried out in the same manner as in Example 1 except that the flow rate of the hydrogen chloride gas supplied was 1.0 Nml / min. After about 20 hours, the effluent gas from the reactor was analyzed using a gas chromatograph. As a result, the conversion rate of 1233xf was 12%. The production ratio of 1234yf and 245cb was 83:17.
  • Example 4 The fluorination reaction was carried out in the same manner as in Example 1 except that the flow rate of the supplied hydrogen chloride gas was set to 5.3 Nml / min. After about 20 hours, the effluent gas from the reactor was analyzed using a gas chromatograph. As a result, the conversion rate of 1233xf was 8%. The production ratio of 1234yf and 245cb was 85:15.
  • Comparative Example 1 A fluorination reaction was carried out in the same manner as in Example 1 except that the supply of hydrogen chloride gas was stopped. After about 20 hours, the effluent gas from the reactor was analyzed using a gas chromatograph. As a result, the conversion rate of 1233xf was 18%. The production ratio of 1234yf and 245cb was 78:22.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、出発原料化合物の高い転化率を保ちながら245cbの発生率を低減し、設備コスト及びエネルギーコストを低減して、経済的に有利な方法によって特定の含フッ素化合物を、効率よく製造できる方法を提供する 本発明は、具体的には、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であって、反応器入口ガスの塩化水素の濃度が0.01vol%以上10vol%以下であることを特徴とする製造方法を提供する。

Description

フルオロプロペンの製造方法
 本発明は、フルオロプロペンの製造方法に関する。
 2-クロロ-3,3,3-トリフルオロプロペン(1233xf)から2,3,3,3-テトラフルオロプロペン(1234yf)をフッ素化反応で製造するプロセスは、1233xfが1,1,1,2,3-ペンタクロロプロパン(240db)や1,1,2,3-テトラクロロプロペン(1230xa)等の含塩素化合物から容易に得られることから、1234yfの製造方法として有用なプロセスである。
 一方、1233xfを気相フッ素化反応で1234yfに変換する場合、その反応における1234yfへの転化率は低く、このことは、大きな製造設備が必要となったり、未反応の原料をリサイクルするための設備やプロセスが必要となったりする等、製造コストの増大につながる。
 また、従来の1234yfの製造方法においては、副生成する塩化水素は分離して本反応の反応器に戻さないことが記載されているが、この塩化水素の分離のためには、分離設備を反応器とは別に設け、さらに約0.5MPaG以上の高圧条件や約-40℃以下の低温条件等の苛酷な条件にすることが必要であり、設備への負荷やコストが高くなる。
 さらに、1233xfを気相フッ素化反応で1234yfに変換する場合、目的物にフッ化水素が付加した副生物として1,1,1,2,2-ペンタフルオロプロパン(245cb)が得られるが、これは脱フッ化水素を行えば1234yfに戻すことができるものの、脱フッ化水素を行うための別の反応工程、あるいは元の反応器に戻して脱フッ化水素を行う工程が必要となり、設備コスト、エネルギーコスト及び製造効率等の観点から改善が求められている。
WO 2008/054781号公報 WO 2011/077192号公報 WO 2010/123154号公報 WO 2009/003084号公報
 従来技術の製造方法では、反応工程に塩化水素を含ませず、また、副生成物として塩化水素が生成した場合には分離装置を設置し、これを苛酷な条件で運転して塩化水素を分離する必要があり、副生成物として過フッ素化物等が生成した場合には、これを目的物に変換するためのさらなる反応工程が必要であるため、設備コスト及びエネルギーコストが高かった。
 本発明は、上記の従来技術の現状に鑑みてなされたものであり、その主な目的は、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を、出発原料化合物の高い転化率を保ちながら、副生成物の発生率を低減し、設備コスト及びエネルギーコストを抑えて、経済的に有利な方法によって効率よく製造できる方法を提供することである。
 本発明者らは、上記の目的を達成すべく、鋭意研究を重ねた結果、反応器入口に特定の割合で塩化水素を含有するプロセスとすることで、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法において、出発原料化合物の高い転化率を保ちながら副生成物の発生率を低減し、設備コスト及びエネルギーコストの低減を達成できることを見出した。本発明は、これらの知見に基づいてさらに検討を重ねた結果、完成されたものである。
 すなわち、本発明は、下記のフルオロオレフィンの製造方法を提供するものである。
 項1: 一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であって、反応器入口ガスの塩化水素の濃度が0.01vol%以上10vol%以下であることを特徴とする製造方法。
 項2:前記反応器入口ガスの塩化水素の濃度が0.01vol%以上3vol%以下である、項1に記載の含フッ素化合物の製造方法。
 項3:前記含塩素化合物が、2,3-ジクロロ-1,1,1-トリフルオロプロパン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選択される少なくとも一種の化合物であり、前記含フッ素化合物が、1,1,1,2,2-ペンタフルオロプロパン、1,1,1,2,3-ペンタフルオロプロパン又は2,3,3,3-テトラフルオロプロペンである、項1又は2に記載の含フッ素化合物の製造方法。
 項4:前記含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンである、項1~3のいずれかに記載の含フッ素化合物の製造方法。
 項5:前記含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである、項1~4のいずれかに記載の含フッ素化合物の製造方法。
 項6:一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において反応させて、一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であって、反応器出口ガスより未反応原料を含む成分を分離して反応器入口に循環して再び反応に供する工程を含み、循環するガスの塩化水素の濃度が0.01vol%以上10vol%以下であることを特徴とする製造方法。
 項7:前記循環するガスの塩化水素の濃度が0.01vol%以上3vol%以下である、項6に記載の含フッ素化合物の製造方法。
 項8:前記含塩素化合物が、2,3-ジクロロ-1,1,1-トリフルオロプロパン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選択される少なくとも一種の化合物であり、前記含フッ素化合物が、1,1,1,2-テトラフルオロ-2-クロロプロパン、1,1,1,2,2-ペンタフルオロプロパン又は2,3,3,3-テトラフルオロプロペンである、項6又は7に記載の含フッ素化合物の製造方法。
 項9:前記含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンである、項6~8のいずれかに記載の含フッ素化合物の製造方法。
 項10:前記含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである、項6~9のいずれかに記載の含フッ素化合物の製造方法。
 項11:下記工程(a)、(b)及び(c)を含むことを特徴とする、含フッ素化合物の製造方法。
 (a) 一般式(4):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはClである。)で表される含塩素アルカン、一般式(5):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはClである。)で表される含塩素オレフィン及び一般式(6):CX2=CClCH2X(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはClである。)で表される含塩素オレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において反応させることによって得られる、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と塩化水素とを含む反応器出口ガスを得る工程、
 (b) 前記工程(a)で得られた反応器出口ガスの前記塩化水素の濃度を、0.01vol%以上10vol%以下に調整することにより、一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を得るための反応器に供する反応器入口ガスとする工程、
 (c) 前記工程(b)で得られた、反応器入口ガス中に含まれる、前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物を、フッ素化触媒の存在下において連続的に反応させて前記一般式(3)で表される含フッ素化合物を製造する工程。
 項12:前記工程(b)において、前記反応器入口ガスの塩化水素の濃度を0.01vol%以上3vol%以下にする工程を含む、項11に記載の含フッ素化合物の製造方法。
 項13:前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンである、項11又は12に記載の含フッ素化合物の製造方法。
 項14:前記含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである、項11~13のいずれかに記載の含フッ素化合物の製造方法。
 項15:前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンであり、前記含フッ素化合物が、1,1,1,2,2-ペンタフルオロプロパン又は2,3,3,3-テトラフルオロプロペンである、項11~13のいずれかに記載の含フッ素化合物の製造方法。
 項16:前記工程(a)において、前記反応器入口ガスの塩化水素の濃度が、前記一般式(4)で表される含塩素アルカン、一般式(5)で表される含塩素オレフィン及び一般式(6)で表される含塩素オレフィンの総量に対し、0.01vol%以上200vol%以下であることを特徴とする、項11~15のいずれかに記載の含フッ素化合物の製造方法。
 本発明の製造方法によれば、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を、出発原料化合物の高い転化率を保ちながら、過フッ素化物等の副生成物の発生率を低減し、低い設備コスト及びエネルギーコストで製造することができる。
本発明における反応プロセスの一例のフロー図である。
 以下、本発明について、具体的に説明する。なお、本発明に関する主な各種プロパン及びプロペンについては、表1に示すとおり定義する。
Figure JPOXMLDOC01-appb-T000001
<反応工程>
 本発明の実施形態の一例では、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であり、反応器入口ガスに特定の濃度で塩化水素を含むことを特徴とする。
 前記含塩素化合物としては、前記一般式(1)又は(2)によって表される範囲において特に限定されないが、243db、1233xf等が好ましく、特に1233xfが好ましい。
 また、含フッ素化合物としては、前記一般式(3)によって表される範囲において特に限定されないが、1234yfが好ましい。
 本発明の別の実施形態の一例では、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において反応させて、一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であって、反応器出口ガスより未反応原料を含む成分を分離して反応器入口に循環して再び反応に供する工程を含み、循環するガスの塩化水素の濃度が0.01vol%以上10vol%以下であることを特徴とする。
 前記含塩素化合物としては、前記一般式(1)又は(2)によって表される範囲において特に限定されないが、243db、1233xf等が好ましく、特に1233xfが好ましい。
 また、前記含フッ素化合物としては、前記一般式(3)によって表される範囲において特に限定されないが、244bb、1234yf等が好ましく、特に1234yfが好ましい。
 本発明の別の実施形態の一例では、
(a) 一般式(4):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはClである。)で表される含塩素アルカン、一般式(5):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはClである。)で表される含塩素オレフィン及び一般式(6):CX2=CClCH2X(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはClである。)で表される含塩素オレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において反応させることによって得られる、前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィン、からなる群から選ばれる少なくとも一種の含塩素化合物と塩化水素とを含む反応器出口ガスを得る工程、
(b) 前記工程(a)で得られた反応器出口ガスの前記塩化水素の濃度を、0.01vol%以上10vol%以下に調整することにより、前記一般式(3)で表わされる含フッ素化合物を得るための反応器に供する反応器入口ガスとする工程、
(c) 前記工程(b)で得られた、反応器入口ガス中に含まれる、前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物を、フッ素化触媒の存在下において連続的に反応させて前記一般式(3)で表される含フッ素化合物を製造する工程を含むことを特徴とする。
 前記一般式(1)で表される含塩素フルオロアルカン又は前記一般式(2)で表される含塩素フルオロオレフィンとしては、前記一般式(4)、(5)又は(6)を原料として得られる範囲において特に限定されないが、1233xfが好ましい。
 また、前記含フッ素化合物としては、前記一般式(3)によって表される範囲において特に限定されないが、244bb、1234yf等が好ましく、特に1234yfが好ましい。
 さらに、前記工程(a)において塩化水素が反応器入口ガス中に含まれていてもよく、その濃度が、前記一般式(4)で表される含塩素アルカン、一般式(5)で表される含塩素オレフィン及び一般式(6)で表される含塩素オレフィンの総量に対し、0.01vol%以上200vol%以下であることが好ましい。
 <塩化水素>
 本発明の実施形態の製造方法では、反応器入口ガス中に塩化水素を含ませる工程を備える。
 反応器入口ガス中に塩化水素を含ませる方法は特に限定されず、例えば反応器にあらかじめ出発原料を供給しておき、そこへ塩化水素をさらに添加する方法や、反応器に出発原料と塩化水素とを同時に供給させる方法を採用してもよい。あるいは、反応器に塩化水素をあらかじめ供給させてから出発原料を該反応器に供給してもよい。
 塩化水素を反応器に供給するにあたっては、反応器のどの部分からでも供給することができる。例えば、原料を反応器の入口から連続的に供給させて反応器内でフッ素化反応を行った後、生成物を反応器の出口から連続的に排出させる方式(いわゆる、連続反応方式)で反応させる場合、塩化水素は反応器の入口から供給することが好ましい。このように塩化水素を反応器の入口から供給した場合は、過フッ素化物の生成が抑制されやすく、一般式(3)で表される含フッ素化合物(例えば、1234yf等)を特に効率よく製造することができる。連続反応方式の場合であっても、出発原料と塩化水素を供給する順序は特に限定されず、出発原料を供給した後に塩化水素を供給してもよいし、両者を同時に反応器に供給してもよいが、過フッ素化物の生成をより抑制できるという点では、同時に反応器に供給することが好ましい。
 反応器入口ガスの塩化水素の濃度は、0.01vol%以上10vol%以下とする。反応器入口ガスの塩化水素の濃度が上記範囲であれば、過フッ素化物の副生を抑制させる効果が十分に発揮され、また、反応出口ガスの脱酸処理に多大な工程を必要とすることもない。反応器入口ガスの塩化水素の濃度は、0.01vol%以上10vol%以下であればよいが、0.01vol%以上3vol%以下であることが好ましい。塩化水素を実質的に含有させないようにすると、反応に入る前に塩化水素を除去するための設備コストやエネルギーコストが大きくなるため、経済的でない。一方、含有する塩化水素が多すぎると反応物の転化率が低下してしまい、生産性の低下につながる。
 なお、出発原料に含まれる含塩素フルオロアルカン又は含塩素フルオロオレフィンがフッ素化される際に塩化水素は発生するが、その塩化水素の発生は反応器や触媒層等反応場の入口から順に起こる。そのため、上記のように反応器に塩化水素を別途供給しなければ、反応器の入口付近では塩化水素がほとんど存在しないので、その入口付近においては生成物の過フッ素化が進行してしまう。よって、出発原料がフッ素化される際に発生する塩化水素は、過フッ素化物の抑制に寄与しにくい。
<フッ素化剤>
 出発原料に含まれる含塩素フルオロアルカン又は含塩素フルオロオレフィンのフッ素化反応は、触媒の存在下又は触媒の非存在下、フッ素化剤により行うことができる。
 フッ素化剤としてはフッ化水素を使用することが好ましい。また、触媒の存在下でフッ素化反応を行う場合、その触媒の種類は特に限定されず、従来、ハロゲン化炭化水素のフッ素化反応で使用されている触媒を採用することができる。例えば、触媒は、従来からこの反応に使用されている公知の材料を使用することができ、遷移金属、14族元素、15族元素等のハロゲン化物、酸化物等が例示される。フッ素化反応を行うにあたっては、触媒はあらかじめ反応器に充填しておけばよい。
 フッ素化剤は、通常、前記含塩素フルオロアルカン及び含塩素フルオロオレフィン1モルに対して、1~100モル程度とすることが適当であり、5~50モル程度とすることができる。
 フッ素化剤や、ペンタクロロプロパン及びテトラクロロプロペンを反応器に供給するにあたっては、窒素、ヘリウム、アルゴン等の原料や触媒に対して不活性なガスを共存させてもよい。なお、出発原料を反応器に供給するにあたっては、酸素や塩素のような酸化剤を同伴させてもよい。
 反応器としては、管型反応器が好ましく、また、触媒との接触方式としては、固定層型が好ましい。反応器は、フッ化水素の腐食作用に抵抗性がある材料によって構成されるものが好ましい。
<触媒>
 反応相は液相であっても気相であっても良いが、気相が好ましい。この場合、塩化水素による過フッ素化物生成の抑制効果が特に大きく発揮される。
 気相の場合、触媒は好ましくは金属酸化物、金属フッ化物又は金属酸化フッ化物を適宜用いることができ、特に、クロム又はアルミニウムを含有する触媒を用いることが好ましい。これらの触媒はさらに第二成分としてニッケル、コバルト、亜鉛、銅、インジウム、マンガン、ランタノイド等の金属成分を添加しても良い。
 また、これら気相反応触媒は、担持又は非担持のいずれの形態でも用いることができ、担持の場合は好ましい担体の例としてアルミナ、クロミア、フッ化アルミニウム、フッ化クロム等の金属酸化物又は金属フッ化物が例示できる。
 液相反応触媒についても特に限定されないが、好ましくは金属のハロゲン化物が用いられ、より好ましくはアンチモン、ニオブ、モリブデン、スズ、タンタル、タングステン等の塩化物もしくはフッ化物を用いることができる。
<反応条件>
 フッ素化反応の反応温度は特に限定的ではなく、通常、200℃~550℃程度とすることができる。フッ素化反応の圧力も特に限定的ではなく、減圧、常圧又は加圧下にて反応を行うことができる。通常は、大気圧(0.1MPa)近傍の圧力下で実施すればよいが、0.1MPa未満の減圧下においても円滑に反応を進行させることができる。さらに、原料が液化しない程度の加圧下で反応を行っても良い。
 反応時間については限定的ではないが、触媒を用いる際は、例えば、反応系に流すガス成分の全流量FO(0℃、0.1MPaでの流量:cc/sec)に対する触媒の充填量W(g)の比率:W/Fで表される接触時間を0.1~90g・sec/cc程度とすることが好ましく、1~50g・sec/cc程度とすることがより好ましい。触媒を用いない際は、例えば、反応系に流すガス成分の全流量FO(0℃、0.1MPaでの流量:cc/sec)に対する反応器の容積V(cc)の比率:V/Fで表される接触時間を0.1~100sec程度とすることが好ましく、1~30sec程度とすることがより好ましい。尚、この場合のガス成分の全流量とは、原料、フッ化水素及び塩化水素の合計流量に、さらに、不活性ガス、酸素等を用いる場合には、これらの流量を加えた合計流量である。
 上記のフッ素化反応により、前記一般式(3)で表される含フッ素化合物が生成する。前記含フッ素化合物の構造は、出発原料に含まれる含塩素フルオロアルカン又は含塩素フルオロオレフィンの種類によって異なるものとなる。
<分離工程及び循環工程>
 本発明では、上記反応工程で生成した生成物から、未反応の含塩素化合物、フッ素化剤、中間体、塩化水素等を分離し、その少なくとも一部を上記反応工程へ循環し、再利用することができる。この分離工程は任意の様態を選択することができ、異なる複数の様態の分離工程を選択してもよい。具体的には、この分離工程を蒸留、液液分離、抽出蒸留又は液液抽出分離としてもよく、これらの組み合わせでもよい。これらは一例であって本発明を実施する際の分離工程を限定するものではないが、本発明の実施形態の一例においては、循環するガスの塩化水素の濃度が0.01vol%以上10vol%以下であり、0.01vol%以上3vol%以下であることが好ましい。
 本願発明の実施形態の一例においては、前記工程(a)で得られた反応器出口ガスの前記塩化水素の濃度を調整して0.01vol%以上10vol%以下とし、0.01vol%以上3vol%以下にすることが好ましい。
 分離工程における留分を循環再利用する際には、必要に応じて除酸工程、水分除去工程、蒸留等の粗精工程等を設置してよい。これらの各工程の処理条件は、分離すべき成分に応じて適宜設定すればよい。
 分離工程において蒸留を採用した場合について、反応工程のフッ素化剤としてフッ化水素を用い、含フッ素化合物として1234yfを製造した場合の具体的な条件の例を挙げる。
 反応工程の反応器出口成分から反応工程へ循環再利用する成分と1234yfを分離する条件は、高沸点成分として未反応原料、フッ化水素、中間体等を分離し、低沸点成分として、1234yf、塩化水素等を分離できる条件とすればよい。本発明における含塩素化合物原料および中間体はいずれも目的物である1234yfより高沸点であるため、この様にして分離された高沸点成分は反応工程を循環して再利用することが可能であり、高沸点成分中における1234yfの中間体とならない成分については、反応工程へ循環する前にさらに分離工程へ供して循環する成分から分離することができる。また、反応工程に用いる触媒の劣化を抑制する目的としても、1234yfの中間体とならない成分を循環再利用する成分から分離除去することができる。
 低沸点成分として分離された1234yf、塩化水素等を含む成分は、さらに、単一又は多段の蒸留、分液、抽出、抽出蒸留等の任意の精製工程を用いて、1234yfを分離回収することができる。例えば、分離手段として蒸留操作を行う場合には、単一又は多段の蒸留操作を経て、最終の蒸留塔の塔底又は塔中段から高純度の1234yfを回収することができ、塔頂からは塩化水素を回収して所望の目的に再利用できる。塩化水素を含む留分中に含まれる他の有機成分は、含塩素フッ化物であり反応工程の中間原料となるため、1234yf回収工程中で分離して反応工程へ循環再利用することができる。本発明の実施形態の一例においては、循環するガスの塩化水素の濃度は0.01vol%以上10vol%以下であり、0.01vol%以上3vol%以下であることが好ましい。
 また、反応工程で触媒寿命維持の目的で酸素を導入した場合、塩化水素を含む留分中に酸素が含まれる場合は、これを反応工程へ循環再利用することができる。
<作用>
 本発明の実施形態の製造方法では、出発原料のフッ素化反応が行われる反応器入口のガス中に塩化水素を含ませる工程を備えるので、過フッ素化物の副生成が抑制される。そのため、1233xf、1234yf等の前記一般式(3)で表される含フッ素化合物が高収率で製造される。逆に出発原料のフッ素化反応が行われる反応器入口のガス中に塩化水素を含ませる工程を経ないでフッ素化反応を行うと、例えば245cb等の過フッ素化合物が副生成しやすくなる。
 以上のように、本実施形態に係る製造方法では、過フッ素化物の副生成が抑制されることで、出発原料から目的物への選択率を高めることができ、所望の含フッ素化合物を高純度で収率よく製造することができる。
 本願発明の実施形態の一例においては、前記工程(a)において塩化水素が反応器入口ガスに含まれていてもよく、その濃度が、前記一般式(4)で表される含塩素アルカン、一般式(5)で表される含塩素オレフィン及び一般式(6)で表される含塩素オレフィンの総量に対し、0.01vol%以上200vol%以下であることが好ましい。前記工程(a)において出発原料として240db等のペンタクロロアルカンを使用した場合、ペンタクロロアルカンは反応管内で脱塩化水素して、テトラクロロプロペンとなりやすい性質を有する。そして、このテトラクロロプロペンは、ペンタクロロプロパンに比べて触媒劣化を起こしやすい。しかし、本実施形態の製造方法では、上述のようにフッ素化反応が行われる反応器に塩化水素が供給されるので、上記脱塩化水素の発生が化学平衡の観点から抑制される。よって、出発原料としてペンタクロロプロパンを使用したとしても、ペンタクロロプロパンの脱塩化水素によるテトラクロロプロペンへの変化が抑制されるので、テトラクロロプロペンによる触媒劣化の懸念も少なく、触媒の寿命をさらに向上させることができる。このようにフッ素化反応で使用する触媒の寿命を向上させるという点に鑑みれば、出発原料は、240db等のペンタクロロプロパンを使用することが好ましいといえる。
 以上より、本願発明の実施形態によれば、出発原料化合物の高い転化率を保ちながら、過フッ素化物等の副生成物の発生率を低減し、低い設備コスト及びエネルギーコストで製造することができる。これは、塩化水素が反応ガスに含まれていることにより、過フッ素化が抑制されていると考えられる。
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は実施例に限定されない。
 実施例1
 酸化クロム触媒11.1gを管状の反応器に充填し、反応温度365℃、大気圧で、無水フッ化水素ガス、酸素ガス、塩化水素ガス及び1233xf のガスを供給しフッ素化反応をおこなった。それぞれの流速は、無水フッ化水素ガス=60.0Nml/分、酸素ガス=0.1Nml/分、塩化水素ガス=0.1Nml/分及び1233xf=6.0Nml/分とした。
 約20時間後、反応器からの流出ガスを、ガスクロマトグラフを使用して分析したところ、1233xfの転化率は18%であった。1234yfと245cbの生成比は81:19であった。
 実施例2
 供給する塩化水素ガスの流速を0.6Nml/分にしたほかは実施例1と同様にしてフッ素化反応をおこなった。約20時間後、反応器からの流出ガスを、ガスクロマトグラフを使用して分析したところ、1233xfの転化率は16%であった。1234yfと245cbの生成比は79:21であった。
 実施例3
 供給する塩化水素ガスの流速を1.0Nml/分にしたほかは実施例1と同様にしてフッ素化反応をおこなった。約20時間後、反応器からの流出ガスを、ガスクロマトグラフを使用して分析したところ、1233xfの転化率は12%であった。1234yfと245cbの生成比は83:17であった。
 実施例4
 供給する塩化水素ガスの流速を5.3Nml/分にしたほかは実施例1と同様にしてフッ素化反応をおこなった。約20時間後、反応器からの流出ガスを、ガスクロマトグラフを使用して分析したところ、1233xfの転化率は8%であった。1234yfと245cbの生成比は85:15であった。
 比較例1
 塩化水素ガスの供給を停止したほかは実施例1と同様にしてフッ素化反応をおこなった。約20時間後、反応器からの流出ガスを、ガスクロマトグラフを使用して分析したところ、1233xfの転化率は18%であった。1234yfと245cbの生成比は78:22であった。
Figure JPOXMLDOC01-appb-T000002

Claims (16)

  1.  一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において連続的に反応させて一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であって、反応器入口ガスの塩化水素の濃度が0.01vol%以上10vol%以下であることを特徴とする製造方法。
  2.  前記反応器入口ガスの塩化水素の濃度が0.01vol%以上3vol%以下である、請求項1に記載の含フッ素化合物の製造方法。
  3.  前記含塩素化合物が、2,3-ジクロロ-1,1,1-トリフルオロプロパン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選択される少なくとも一種の化合物であり、前記含フッ素化合物が、1,1,1,2,2-ペンタフルオロプロパン、1,1,1,2,3-ペンタフルオロプロパン又は2,3,3,3-テトラフルオロプロペンである、請求項1又は2に記載の含フッ素化合物の製造方法。
  4.  前記含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンである、請求項1~3のいずれかに記載の含フッ素化合物の製造方法。
  5.  前記含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである、請求項1~4のいずれかに記載の含フッ素化合物の製造方法。
  6.  一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において反応させて、一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を製造する方法であって、反応器出口ガスより未反応原料を含む成分を分離して反応器入口に循環して再び反応に供する工程を含み、循環するガスの塩化水素の濃度が0.01vol%以上10vol%以下であることを特徴とする製造方法。
  7.  前記循環するガスの塩化水素の濃度が0.01vol%以上3vol%以下である、請求項6に記載の含フッ素化合物の製造方法。
  8.  前記含塩素化合物が、2,3-ジクロロ-1,1,1-トリフルオロプロパン及び2-クロロ-3,3,3-トリフルオロプロペンからなる群から選択される少なくとも一種の化合物であり、前記含フッ素化合物が、1,1,1,2-テトラフルオロ-2-クロロプロパン、1,1,1,2,2-ペンタフルオロプロパン又は2,3,3,3-テトラフルオロプロペンである、請求項6又は7に記載の含フッ素化合物の製造方法。
  9.  前記含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンである、請求項6~8のいずれかに記載の含フッ素化合物の製造方法。
  10.  前記含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである、請求項6~9のいずれかに記載の含フッ素化合物の製造方法。
  11.  下記工程(a)、(b)及び(c)を含むことを特徴とする、含フッ素化合物の製造方法。
     (a) 一般式(4):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはClである。)で表される含塩素アルカン、一般式(5):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはClである。)で表される含塩素オレフィン及び一般式(6):CX2=CClCH2X(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはClである。)で表される含塩素オレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と、無水フッ化水素とを、フッ素化触媒の存在下において反応させることによって得られる、一般式(1):CX3CHClCH2Cl(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも1つはFである。)で表される含塩素フルオロアルカン及び一般式(2):CX3CCl=CH2(式中、Xは各々独立してF又はClである。ただしXのうち少なくとも一つはFである。)で表される含塩素フルオロオレフィン、からなる群から選ばれた少なくとも一種の含塩素化合物と塩化水素とを含む反応器出口ガスを得る工程、
     (b) 前記工程(a)で得られた反応器出口ガスの前記塩化水素の濃度を、0.01vol%以上10vol%以下に調整することにより、一般式(3):CF3CFYnCH2Zn(式中、nは0又は1であり、YおよびZはいずれか一方がH、他方がFもしくはClである。)で表される含フッ素化合物を得るための反応器に供する反応器入口ガスとする工程、
     (c) 前記工程(b)で得られた、反応器入口ガス中に含まれる、前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物を、フッ素化触媒の存在下において連続的に反応させて前記一般式(3)で表される含フッ素化合物を製造する工程。
  12.  前記工程(b)において、前記反応器入口ガスの塩化水素の濃度を0.01vol%以上3vol%以下にする工程を含む、請求項11に記載の含フッ素化合物の製造方法。
  13.  前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンである、請求項11又は12に記載の含フッ素化合物の製造方法。
  14.  前記含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである、請求項11~13のいずれかに記載の含フッ素化合物の製造方法。
  15.  前記一般式(1)で表される含塩素フルオロアルカン及び前記一般式(2)で表される含塩素フルオロオレフィンからなる群から選ばれる少なくとも一種の含塩素化合物が、2-クロロ-3,3,3-トリフルオロプロペンであり、前記含フッ素化合物が、1,1,1,2,2-ペンタフルオロプロパン又は2,3,3,3-テトラフルオロプロペンである、請求項11~13のいずれかに記載の含フッ素化合物の製造方法。
  16.  前記工程(a)において、前記反応器入口ガスの塩化水素の濃度が、前記一般式(4)で表される含塩素アルカン、一般式(5)で表される含塩素オレフィン及び一般式(6)で表される含塩素オレフィンの総量に対し、0.01vol%以上200vol%以下であることを特徴とする、請求項11~15のいずれかに記載の含フッ素化合物の製造方法。
PCT/JP2016/051423 2015-01-21 2016-01-19 フルオロプロペンの製造方法 WO2016117551A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16740158.7A EP3248958A4 (en) 2015-01-21 2016-01-19 Method for producing fluoropropene
US15/544,987 US10392326B2 (en) 2015-01-21 2016-01-19 Method for producing fluorine-containing compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015009603A JP6210073B2 (ja) 2015-01-21 2015-01-21 フルオロプロペンの製造方法
JP2015-009603 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016117551A1 true WO2016117551A1 (ja) 2016-07-28

Family

ID=56417092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051423 WO2016117551A1 (ja) 2015-01-21 2016-01-19 フルオロプロペンの製造方法

Country Status (4)

Country Link
US (1) US10392326B2 (ja)
EP (1) EP3248958A4 (ja)
JP (1) JP6210073B2 (ja)
WO (1) WO2016117551A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210073B2 (ja) 2015-01-21 2017-10-11 ダイキン工業株式会社 フルオロプロペンの製造方法
WO2018079727A1 (ja) * 2016-10-28 2018-05-03 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
CN114262254A (zh) * 2022-03-02 2022-04-01 北京宇极科技发展有限公司 一种制备e-1-氯-3,3,3-三氟丙烯的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504528A (ja) * 1998-02-26 2002-02-12 ソルヴェイ クロロ炭化水素のフッ化水素化方法
WO2008054781A1 (en) * 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
JP2010043080A (ja) * 2008-08-08 2010-02-25 Honeywell Internatl Inc 2−クロロ−1,1,1,2−テトラフルオロプロパン(HCFC−244bb)を製造するための改良法
JP2011529447A (ja) * 2008-07-29 2011-12-08 ダイキン工業株式会社 気相フッ素化による含フッ素プロペンの製造方法
JP2012519654A (ja) * 2009-03-04 2012-08-30 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンと1,3,3,3−テトラフルオロプロペンを含む含フッ素プロペンの製造方法
JP2012524026A (ja) * 2009-04-23 2012-10-11 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
JP2013519629A (ja) * 2010-02-12 2013-05-30 ダイキン工業株式会社 含フッ素アルケン化合物の製造方法
JP2013537167A (ja) * 2010-10-27 2013-09-30 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
JP2013237677A (ja) * 2006-10-03 2013-11-28 Mexichem Amanco Holding Sa De Cv プロセス
WO2014025065A1 (en) * 2012-08-08 2014-02-13 Daikin Industries, Ltd. Process for producing 2,3,3,3-tetrafluoropropene
JP2014530088A (ja) * 2011-09-14 2014-11-17 シノケム ランティアン カンパニー リミテッドSinochem Lantian Co., Ltd. 2,3,3,3−テトラフルオロプロペンを調製する方法
JP2014532046A (ja) * 2011-09-27 2014-12-04 アルケマ フランス 2,3,3,3−テトラフルオロプロペンの製造方法
WO2015005322A1 (ja) * 2013-07-12 2015-01-15 ダイキン工業株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
JP2015009603A (ja) 2013-06-27 2015-01-19 アイシン精機株式会社 ルーフレール
EP3248958A1 (en) 2015-01-21 2017-11-29 Daikin Industries, Ltd. Method for producing fluoropropene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939071B1 (en) * 1998-02-26 2003-07-30 Central Glass Company, Limited Method for producing fluorinated propane
JP3031465B2 (ja) * 1998-02-26 2000-04-10 セントラル硝子株式会社 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP3031464B2 (ja) * 1998-02-26 2000-04-10 セントラル硝子株式会社 1,1,1,3,3−ペンタフルオロプロパンの製造方法
US8952208B2 (en) 2006-01-03 2015-02-10 Honeywell International Inc. Method for prolonging a catalyst's life during hydrofluorination
US8076521B2 (en) 2007-06-27 2011-12-13 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US8618340B2 (en) * 2009-11-03 2013-12-31 Honeywell International Inc. Integrated process for fluoro-olefin production
ES2616232T3 (es) 2009-12-23 2017-06-12 Arkema France Fluoración catalítica en fase gaseosa de 1233XF hasta 1234YF
EP2545021B1 (en) 2010-03-10 2016-09-28 Arkema France Process of fluorination in liquid phase
US9890096B2 (en) * 2011-01-19 2018-02-13 Honeywell International Inc. Methods of making 2,3,3,3-tetrafluoro-2-propene

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504528A (ja) * 1998-02-26 2002-02-12 ソルヴェイ クロロ炭化水素のフッ化水素化方法
JP2013237677A (ja) * 2006-10-03 2013-11-28 Mexichem Amanco Holding Sa De Cv プロセス
WO2008054781A1 (en) * 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
JP2011529447A (ja) * 2008-07-29 2011-12-08 ダイキン工業株式会社 気相フッ素化による含フッ素プロペンの製造方法
JP2010043080A (ja) * 2008-08-08 2010-02-25 Honeywell Internatl Inc 2−クロロ−1,1,1,2−テトラフルオロプロパン(HCFC−244bb)を製造するための改良法
JP2012519654A (ja) * 2009-03-04 2012-08-30 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンと1,3,3,3−テトラフルオロプロペンを含む含フッ素プロペンの製造方法
JP2012524026A (ja) * 2009-04-23 2012-10-11 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
JP2013519629A (ja) * 2010-02-12 2013-05-30 ダイキン工業株式会社 含フッ素アルケン化合物の製造方法
JP2013537167A (ja) * 2010-10-27 2013-09-30 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
JP2014530088A (ja) * 2011-09-14 2014-11-17 シノケム ランティアン カンパニー リミテッドSinochem Lantian Co., Ltd. 2,3,3,3−テトラフルオロプロペンを調製する方法
JP2014532046A (ja) * 2011-09-27 2014-12-04 アルケマ フランス 2,3,3,3−テトラフルオロプロペンの製造方法
WO2014025065A1 (en) * 2012-08-08 2014-02-13 Daikin Industries, Ltd. Process for producing 2,3,3,3-tetrafluoropropene
JP2015009603A (ja) 2013-06-27 2015-01-19 アイシン精機株式会社 ルーフレール
WO2015005322A1 (ja) * 2013-07-12 2015-01-15 ダイキン工業株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
EP3248958A1 (en) 2015-01-21 2017-11-29 Daikin Industries, Ltd. Method for producing fluoropropene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248958A4

Also Published As

Publication number Publication date
JP2016132648A (ja) 2016-07-25
EP3248958A4 (en) 2018-10-10
JP6210073B2 (ja) 2017-10-11
EP3248958A1 (en) 2017-11-29
US10392326B2 (en) 2019-08-27
US20180273448A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US9120716B2 (en) Process for the preparation of 2,3,3,3 tetrafluoropropene
JP5588174B2 (ja) フッ素化オレフィンの製造方法
JP5930077B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5825299B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5884130B2 (ja) 2−クロロ−3,3,3−トリフルオロプロペンの液相フッ素化で2−クロロ−1,1,1,2−テトラフルオロプロペンを製造する方法
US20140121424A1 (en) Process for preparing 2,3,3,3-tetrafluoropropene
JP6420816B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
CN107531593A (zh) 制备HCFO‑1233zd的方法
JP2014503496A (ja) ペンタクロロプロパンの液相フッ素化による2−クロロ−3,3,3−トリフルオロプロペン(hcfo1233xf)の製造方法
WO2016117551A1 (ja) フルオロプロペンの製造方法
JP6583360B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
KR20160122745A (ko) 하이드로클로로플루오로올레핀의 제조 방법
JP6233535B2 (ja) テトラフルオロプロペンの製造方法
CN106458795B (zh) 含有1,2-二氯-3,3,3-三氟丙烯(HCFO-1223xd)和/或1,1,2-三氯-3,3,3-三氟丙烯(CFO-1213xa)的组合物的制造方法
JP6043415B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP6360084B2 (ja) 2−クロロ−3,3,3−トリフルオロプロペンの液相フッ素化で2−クロロ−1,1,1,2−テトラフルオロプロペンを製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544987

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016740158

Country of ref document: EP