WO2016111290A1 - 被覆pc鋼より線 - Google Patents

被覆pc鋼より線 Download PDF

Info

Publication number
WO2016111290A1
WO2016111290A1 PCT/JP2016/050120 JP2016050120W WO2016111290A1 WO 2016111290 A1 WO2016111290 A1 WO 2016111290A1 JP 2016050120 W JP2016050120 W JP 2016050120W WO 2016111290 A1 WO2016111290 A1 WO 2016111290A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
strand
coated
steel
coating
Prior art date
Application number
PCT/JP2016/050120
Other languages
English (en)
French (fr)
Inventor
及川 雅司
山田 眞人
松原 喜之
晋志 中上
山本 徹
山野辺 慎一
道男 今井
直樹 曽我部
一正 大窪
一芳 千桐
小林 俊之
Original Assignee
住友電工スチールワイヤー株式会社
ヒエン電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工スチールワイヤー株式会社, ヒエン電工株式会社 filed Critical 住友電工スチールワイヤー株式会社
Priority to EP16735029.7A priority Critical patent/EP3243972A4/en
Priority to US15/542,332 priority patent/US10815664B2/en
Priority to EP18209429.2A priority patent/EP3486394B1/en
Priority to EP22200642.1A priority patent/EP4137652A1/en
Priority to CN201680004944.3A priority patent/CN107208422A/zh
Priority to AU2016205720A priority patent/AU2016205720A1/en
Priority to BR112017014392A priority patent/BR112017014392A2/pt
Publication of WO2016111290A1 publication Critical patent/WO2016111290A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/145Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising elements for indicating or detecting the rope or cable status
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/148Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising marks or luminous elements
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0693Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2041Strands characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2042Strands characterised by a coating
    • D07B2201/2044Strands characterised by a coating comprising polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2092Jackets or coverings characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2095Auxiliary components, e.g. electric conductors or light guides
    • D07B2201/2096Light guides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/206Epoxy resins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/25System input signals, e.g. set points
    • D07B2301/259Strain or elongation
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/202Environmental resistance
    • D07B2401/2025Environmental resistance avoiding corrosion
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/2023Concrete enforcements
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2801/00Linked indexing codes associated with indexing codes or classes of D07B
    • D07B2801/16Filler
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/06Material constitution of slabs, sheets or the like of metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands

Definitions

  • the present invention relates to a coated PC steel wire provided with an optical fiber.
  • the present invention relates to a coated PC steel wire that can easily transmit the strain of the strand and can easily protect the optical fiber.
  • PC prestressed concrete
  • tensile member a member that reinforces the concrete structure by burying it inside the concrete structure or placing it outside the concrete structure to transmit the compressive force to the concrete structure.
  • PC steel materials represented by steel strands.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-133871 discloses a tension member (PC steel strand) that includes a hollow body and a plurality of strands that are combined so as to surround the outer periphery thereof and bear a tension force. It is disclosed.
  • the inside of the hollow body of the tension member (PC steel strand) is filled between an optical fiber used as a strain sensor and between the hollow body and the optical fiber to maintain the position of the optical fiber in the hollow body.
  • Agent By storing the optical fiber inside the hollow body, the optical fiber is prevented from being damaged when the tension member is used, and the strain generated in the tension member is transferred to the optical fiber via the strand, the hollow body, and the filler. Communicating.
  • hollow bodies and fillers are members that do not substantially function as tension members, and the number of parts increases and the diameter of the tension member increases.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a coated PC steel wire that easily transmits the distortion of the strands and easily protects the optical fiber.
  • the coated PC steel stranded wire includes a stranded wire obtained by twisting a plurality of steel strands, an anticorrosion coating having an outer peripheral portion covering the outer periphery of the stranded wire, and an outer surface covering the outer periphery of the anticorrosion coating A coating, and an optical fiber provided so as to follow the expansion and contraction of the line at a position corresponding to the groove of the twisted line inside the outer peripheral surface of the outer cover.
  • the above-mentioned coated PC steel strand is easy to transmit the strain of the strand and easily protect the optical fiber.
  • FIG. 1 is a schematic cross-sectional view showing a stranded PC steel wire according to Embodiment 1.
  • FIG. It is a schematic side view which shows the strand from the covering PC steel which concerns on Embodiment 1.
  • FIG. 7 is a schematic cross-sectional view showing a stranded PC steel wire according to Modification 1-1.
  • FIG. 6 is a schematic cross-sectional view showing a stranded PC steel wire according to Modification 1-2.
  • FIG. 6 is a schematic side view showing a stranded PC steel wire according to Modification 1-2.
  • FIG. 6 is a schematic cross-sectional view showing a stranded PC steel wire according to Modification 1-3.
  • FIG. 6 is a schematic side view showing a coated PC steel wire according to Modification 1-3.
  • FIG. 6 is a schematic cross-sectional view showing a stranded PC steel wire according to Modification 1-4.
  • FIG. 10 is a schematic side view showing a stranded PC steel wire according to Modification 1-4. It is a schematic sectional drawing which shows a strand from the covering PC steel which concerns on Embodiment 2.
  • FIG. FIG. 6 is a schematic cross-sectional view showing a stranded PC steel wire according to Modification 2-1.
  • FIG. 6 is a schematic cross-sectional view showing a stranded PC steel wire according to Modification 2-2.
  • the coated PC steel stranded wire includes a stranded wire obtained by combining a plurality of steel strands, an anticorrosion coating having an outer peripheral portion covering the outer periphery of the stranded wire, and an outer periphery of the anticorrosion coating And an optical fiber provided so as to follow the expansion and contraction of the line at a position corresponding to the twist of the twisted line inside the outer peripheral surface of the outer cover.
  • the anti-corrosion coating by providing the anti-corrosion coating, it is easy to make the strands behave uniformly as compared with the case without the anti-corrosion coating, so that it is easy to improve the measurement accuracy of the strain due to the optical fiber.
  • the optical fiber by placing the optical fiber at a position corresponding to the groove more inside than the outer peripheral surface of the outer coating, the optical fiber can easily follow the expansion and contraction of the strands. Easy to measure.
  • the anti-corrosion coating when the strands are tensed, the strands are biased, which may cause an excessive compressive force on the optical fiber existing at the location corresponding to the groove, resulting in a decrease in strain measurement accuracy and light. There is a risk of damaging the fiber.
  • cover by providing anti-corrosion coating
  • the optical fiber can be easily protected from the external environment by the strands arranged on both sides of the optical fiber or the strands surrounding the optical fiber.
  • the diameter of the wire is less likely to be larger than that of the coated PC steel because the optical fiber can be easily disposed within the envelope circle of the coated PC steel.
  • the outer coating makes it easier to follow the optical fiber by stretching the strands. In addition, it is easy to suppress stranded corrosion.
  • the optical fiber since the optical fiber is fixed to the groove by the anticorrosion coating with the adhesive, the optical fiber can easily follow the expansion and contraction of the stranded wire.
  • the optical fiber can be fixed with the anticorrosion coating itself, an adhesive can be made unnecessary, and the complexity associated with the adhesive application work can be eliminated. Further, it can be expected that the optical fiber can be made to follow the expansion and contraction of the stranded wire over a long period of time as compared with the case where the optical fiber is fixed with an adhesive.
  • a part of the optical fiber is embedded in the anticorrosion coating and integrated, so that the optical fiber can easily follow the expansion and contraction of the stranded wire. Further, the optical fiber can hardly be separated from the anticorrosion coating, and the optical fiber can be easily prevented from falling off.
  • the anticorrosion coating has a press-fitting groove into which a part of the optical fiber is press-fitted on the surface. It is mentioned.
  • the optical fiber can easily follow the expansion and contraction of the stranded wire.
  • the anticorrosion coating may have irregularities that increase the frictional resistance between the optical fiber and the outer coating on the surface thereof. In this case, the unevenness is smaller than the unevenness formed by the groove.
  • the frictional resistance between the optical fiber and the anticorrosion coating and the frictional resistance between the anticorrosion coating and the outer coating can be easily increased, so that the optical fiber can easily follow the expansion and contraction of the stranded wire.
  • the optical fiber has a triple point surrounded by an outer peripheral strand constituting the strand and an inner peripheral strand or a central strand adjacent to the outer peripheral strand. It is mentioned that it is arranged.
  • the optical fiber can be mechanically protected because the optical fiber is surrounded by the strands.
  • the diameter of the wire is less likely to be larger than the coated PC steel by arranging the optical fiber in the gap between the triple points.
  • the anticorrosion coating has a filling portion filled between the strands.
  • the optical fiber and the strand can be integrated at the triple point by the filling portion, the optical fiber can easily follow the expansion and contraction of the strand.
  • the coated PC steel strand when an optical fiber is arranged at a triple point, the strand is a central strand and a plurality of outer peripheries spiraled around the central strand It is mentioned that the length of the clearance gap between adjacent outer strands is more than the diameter of an optical fiber.
  • the optical fiber it is easy to place the optical fiber at the triple point. This is because, when the optical fiber is arranged at the triple point, if one of the gaps between the outer peripheral wires is widened and the other gaps are closed, a gap larger than the diameter of the optical fiber is formed.
  • the length of the gap is defined as a common circumscribing line of two outer peripheral wires forming the gap when the gap is formed by widening one of the gaps between the outer peripheral strands and the other gap is closed. Of the straight lines orthogonal to each other, the length between straight lines circumscribing each of these outer peripheral strands is said.
  • the coated PC steel stranded wire 1 a includes a stranded wire 2 obtained by combining a plurality of steel strands 21, an anticorrosion coating 3 having an outer peripheral portion 31 covering the outer periphery of the stranded wire 2, and an outer side covering the outer periphery of the anticorrosion coating 3.
  • a coating 6 and an optical fiber 4 are provided.
  • the main characteristic of the coated PC steel strand 1a is that the optical fiber 4 is disposed on the inner side of the outer peripheral surface of the outer coating 6 at a position corresponding to the groove of the strand 2 (including more grooves).
  • the coated PC steel stranded wire 1a reinforces the concrete structure, for example, by being embedded inside the concrete structure or disposed outside the concrete structure. Specifically, the reinforcement of the concrete structure is performed by applying a tension force to the stranded wire 2 (elementary wire 21) and transmitting the tension force to the concrete structure as a compression force.
  • the stranded wire 2 is formed by combining a plurality of steel strands 21 together. Each strand 21 bears tension.
  • the number of the strands 21 can be appropriately selected according to the usage form (inner cable or outer cable) of the wire 1a from the coated PC steel, and examples thereof include 7 wires and 19 wires.
  • the structure of the strand 2 is a structure having one layer in which six outer strands 21o are spirally twisted on the outer periphery of one central strand 21c.
  • the outer peripheral wire 21o is located on the outermost periphery of the stranded wire 2.
  • the center strand 21c and the outer strand 21o are composed of strands having substantially the same diameter (FIG. 1)
  • the diameter of the center strand 21c (outer strand 21o) is the outer strand 21o (center strand).
  • the wire 21c) is composed of strands larger (smaller) than the diameter (see FIG. 11, Modification 2-1 described later).
  • the structure of the strands is not shown, but the inner and outer strands are spirally twisted in order from the inside with respect to one central strand.
  • the central strand and the outer peripheral strand are configured by strands having substantially the same diameter
  • the inner peripheral strand is configured by a strand having a diameter smaller than that of the central strand.
  • the central strand and the inner peripheral strand are composed of strands having substantially the same diameter.
  • the peripheral strand is configured by alternately arranging strands having a diameter substantially equal to that of the central strand and strands having a smaller diameter.
  • a triple point surrounded by three adjacent strands of the strand 2 and a valley formed between two adjacent strands of the outer peripheral strand 21c are continuous from the longitudinal direction of the strand 2. It is constituted by a groove 22.
  • the strand 2 has a structure with one layer (the number of strands is 7)
  • a triple point gap is formed between the central strand 21c and the two outer strands 21o.
  • the gap between the triple points is between the central strand and the two inner peripheral strands, one inner peripheral strand and two inner strands.
  • Between the outer peripheral strands it is formed between two inner peripheral strands and one outer peripheral strand.
  • the stranded wire 2 is composed of one layer in which the number of the strands 21 is seven, and the central strand 21c and the peripheral strand 21o are configured with substantially the same diameter.
  • a strand of a known material and size can be used for the stranded wire 2.
  • the anticorrosion coating 3 protects the stranded wire 2 from the external environment and suppresses the corrosion of the stranded wire 2.
  • the anticorrosion coating 3 has an outer peripheral portion 31 that covers the outer periphery of the stranded wire 2.
  • the outer peripheral portion 31 has a surface along the outer peripheral contour of the stranded wire 2, and the groove 32 is formed at a location corresponding to the groove 22 of the stranded wire 2 on the surface.
  • the anticorrosion coating 3 has a filling portion 33 filled between the strands 21 (triple point). If it does so, it can suppress that a water
  • the filling unit 33 is provided so that the optical fiber 4 and the strand 21 are filled at the triple point.
  • the optical fiber 4 can be made to follow the expansion and contraction of the strand 21 by being fixed by 33.
  • the filling part 33 it is mentioned that the outer peripheral part 31 and the filling part 33 are formed of the same material in series.
  • Examples of the material of the anticorrosion coating 3 include resins having excellent corrosion resistance.
  • Examples of such a resin include an epoxy resin and a polyethylene resin.
  • the anticorrosion coating 3 (the outer peripheral portion 31 and the filling portion 33) is made of an epoxy resin.
  • the optical fiber 4 is used as a sensor for measuring the strain of the strand 21.
  • an optical fiber composed of a core and a clad can be suitably used.
  • the material for the core and the clad include plastic and quartz glass.
  • the configuration of the optical fiber 4 includes an optical fiber (not shown) provided with a primary coating on the outer periphery of the cladding, an optical fiber core wire (not shown) further provided with a secondary coating, and a reinforcing material and a reinforcement on the outer periphery of the secondary coating.
  • An optical fiber cord (not shown) provided with a jacket covering the outer periphery of the material can be used.
  • the material of the primary coating include an ultraviolet curable resin.
  • Examples of the material of the secondary coating include flame retardant polyester elastomer.
  • Examples of the material of the reinforcing material include glass fiber, carbon fiber, and aramid fiber.
  • Examples of the material of the jacket include flame retardant polyolefin such as flame retardant polyethylene, flame retardant crosslinked polyolefin such as flame retardant crosslinked polyethylene, and heat resistant vinyl.
  • the configuration of the optical fiber 4 is an optical fiber core wire in which the material of the core and the clad is quartz glass and the primary coating and the secondary coating are provided.
  • the number of optical fibers 4 may be singular or plural, and can be appropriately selected according to the strain measurement method.
  • the strain measurement method include BOCDA (Brillouin Optical Correlation Domain Analysis), BOTDR (Brillouin Optical Time Domain Reflexometry), and FBG (FibreBraging).
  • BOCDA Bossembly-Coupled Device
  • BOTDR Bossembly-Coupled Device
  • FBG FibreBraging
  • the measurement method is BOTDR or FBG
  • one end of one optical fiber 4 is arranged at one end of the coated PC steel strand 1a, and the other end of the optical fiber 4 is the other end of the coated PC steel strand 1a. It is pulled out from the side and connected to a BOTDR measuring device (not shown) or an FBG measuring device (not shown).
  • the optical fibers 4 that are not used for strain measurement can be used as spares.
  • the arrangement position of the optical fiber 4 may be a portion on the inner side of the outer peripheral surface of the outer coating 6 and corresponding to the groove of the stranded wire 2.
  • the arrangement of the optical fiber 4 on the inner side of the outer peripheral surface of the outer coating 6 means that the optical fiber 4 is embedded in the anticorrosion coating 3 or disposed between the anticorrosion coating 3 and the outer coating 6 (boundary portion). Of course, the case where the optical fiber 4 is embedded in the outer coating 6 is included.
  • the arrangement position of the optical fiber 4 typically includes the vicinity of the outer periphery of the anticorrosion coating 3.
  • the portion corresponding to the groove examples include the groove 32 on the outer side (outer peripheral surface 31 surface) of the anticorrosion coating 3 and the groove 22 on the inner side of the anticorrosion coating 3.
  • the optical fibers 4 may be provided in the grooves 22 and 32 rather than facing each other across the central strand 21c.
  • the outer arrangement type in which the optical fiber 4 is provided in the groove 32 on the outer side (surface of the outer peripheral portion 31) of the anticorrosion coating 3, and the anticorrosion coating 3.
  • the outer arrangement type includes a fixed type in which the optical fiber 4 follows the expansion and contraction of the stranded wire 2 by fixing the optical fiber 4 to the surface of the outer peripheral portion 31, and the optical fiber 4 and the anticorrosion coating 3 without fixing.
  • the fixed type includes a fixing member 5 that is independent of the anticorrosion coating 3, and at least one of the following forms (1) and (2), and does not include the independent fixing member 5, and the anticorrosion coating 3 itself is fixed.
  • the following (3) or (4) forms that also serve as the member 5 are mentioned.
  • An example of the non-fixed type is that the surface of the anticorrosion coating 3 has irregularities 7 that increase the frictional resistance with the optical fiber 4. The unevenness 7 is smaller than the unevenness formed by the grooves 22 and 32.
  • the non-fixed type for example, the following form (5) in which unevenness 7 is formed on the surface of the anticorrosion coating 3 by another member independent of the anticorrosion coating 3, and the anticorrosion coating 3 itself without the separate member.
  • the following (6) forms in which the irregularities 7 are formed are mentioned.
  • the inner arrangement type includes the following forms (7) and (8).
  • a form in which the fixing member 5 is composed of an adhesive 51 (FIG. 2).
  • the arrangement position of the optical fiber 4 is the groove 32 on the surface of the outer peripheral portion 31.
  • the arrangement position of the optical fiber 4 is substantially the boundary between the anticorrosion coating 3 (outer peripheral portion 31) and the outer coating 6 (described later), and the optical fiber 4 is arranged in a spiral shape along the groove 32. is there.
  • the optical fibers 4 may be provided in the grooves 32 rather than facing each other across the central strand 21c (FIG. 1).
  • the fixing member 5 fixes the optical fiber 4 to the anticorrosion coating 3 (FIG. 2).
  • the outer covering 6 (described later) shown in FIG. 1 is omitted.
  • This fixing makes it easy for the optical fiber 4 to follow the expansion and contraction of the stranded wire 2 and makes it easy to measure the distortion of the strand 21 with high accuracy.
  • the fixing member 5 is composed of an adhesive 51.
  • the application location of the adhesive 51 may be an equidistant location along the length of the optical fiber 4. For example, it may be applied every one pitch of the optical fiber 4. If it does so, the application
  • the coated PC steel stranded wire 1 a includes an outer coating 6 that covers the outer periphery of the anticorrosion coating 3. If it does so, it will be easier to suppress the corrosion of the strand 2 more.
  • the outer coating 6 can also be expected to function as a fixing member 5 that fixes the optical fiber 4 to the anticorrosion coating 3. When the function as the fixing member 5 can be sufficiently expected from the outer coating 6, the above-described adhesive 51 may be omitted.
  • the outer peripheral surface of the outer coating 6 is formed of a cylindrical surface on which more grooves are not formed. Examples of the material of the outer coating 6 include PE resin.
  • the manufacture of the above-described coated PC steel strand 1a includes the following preparation process, fixing process, and extrusion process. This can be done by a method of manufacturing a strand of coated PC steel.
  • the coated wire including the stranded wire 2 and the anticorrosion coating 3 and the optical fiber 4 are prepared.
  • the preparation of the coated wire may be performed by preparing the prepared coated wire, or may be performed by forming the anticorrosion coating 3 on the stranded wire 2 and preparing the coated wire.
  • the stranded wire 2 can be formed by aligning six outer peripheral wires 21o in a spiral shape on the outer periphery of the central strand 21c.
  • the anticorrosion coating 3 can be formed by known powder coating. When powder coating is applied, the strands of the outer peripheral strands 21o of the strands 2 are unraveled with the eye plate. A gap is formed between the peripheral strands 21o that have been unraveled, and the constituent resin can be sufficiently supplied between the peripheral strand 21o and the central strand 21c. The central strand 21c and the peripheral strand 21o The component resin (epoxy resin) of the anticorrosion coating 3 can be painted on the outer periphery of the substrate. After returning these outer peripheral strands 21o again on the central strand 21c, the coated resin is cooled.
  • the filling portion 33 is formed without forming a gap at the triple point between the central strand 21c and the two peripheral strands 21o, and the outer peripheral strand is formed on the outer periphery of the peripheral strand 21o.
  • the anti-corrosion coating 3 is formed by forming the outer peripheral portion 31 along the spiral outer peripheral contour of the line 21o.
  • the optical fiber 4 is placed in the groove 32 of the anticorrosion coating 3, and the adhesive 51 is applied and fixed.
  • the adhesive 51 is applied for each pitch of the optical fiber 4 (FIG. 2).
  • the outer coating 6 is formed by extruding PE resin, which is a constituent resin of the outer coating 6, on the outer periphery of the anticorrosion coating 3.
  • the optical fiber 4 is fixed between the anticorrosion coating 3 and the outer coating 6.
  • the conventional hollow body and filler can be made unnecessary, so that the number of parts can be reduced.
  • the optical fiber 4 can be covered by providing the outer coating 6, it is easy to protect the optical fiber 4, and even if the adhesive 51 is removed, the optical fiber 4 can be prevented from falling off.
  • the coated PC steel stranded wire 1b is the coated PC of Embodiment 1 in that the optical fiber 4 is fixed to the surface of the anticorrosion coating 3 by the anticorrosion coating 3 itself without using the adhesive 51 (FIG. 2) as in Embodiment 1. It differs from the steel strand 1a, and the other points are the same as those of the coated PC steel strand 1a of the first embodiment. That is, the coated PC steel stranded wire 1b is composed of the stranded wire 2, the anticorrosion coating 3, the optical fiber 4, and the outer coating 6. Hereinafter, this difference will be mainly described, and the description of the same configuration will be omitted.
  • a part of the optical fiber 4 is embedded in the surface of the outer peripheral portion 31 of the anticorrosion coating 3 and integrated with the anticorrosion coating 3. This integration makes it easy for the optical fiber 4 to follow the expansion and contraction of the stranded wire 2 and makes it easier to measure the distortion of the strand 21 with high accuracy.
  • the remaining portion of the optical fiber 4 is exposed from the surface of the outer peripheral portion 31 and is covered with the outer coating 6.
  • a recess 34 is formed which is formed by embedding the optical fiber 4.
  • the recess 34 is formed in a spiral shape along the spiral of the optical fiber 4.
  • the production of the coated PC steel strand 1b can be performed by arranging the optical fiber 4 in the middle of the formation of the anticorrosion coating 3 described in the first embodiment. Specifically, after the twisted outer strand 21o is again aligned on the center strand 21c, the optical fiber 4 is pressed against the surface of the resin, and then the resin is cooled. Then, a part of the optical fiber 4 can be embedded in the surface of the outer peripheral portion 31 of the anticorrosion coating 3 and integrated with the anticorrosion coating 3.
  • the coated PC steel strand 1c of the modified example 1-2 will be described.
  • the configuration of the coated PC steel stranded wire 1c is different from the coated PC steel stranded wire 1b of the modified example 1-1 in that the optical fiber 4 is fixed to the surface of the anticorrosive coating 3 by the anticorrosion coating 3 itself. That is, the coated PC steel stranded wire 1c is the same as the modified example 1-1 in that no adhesive is used, and is composed of the stranded wire 2, the anticorrosion coating 3, the optical fiber 4, and the outer coating 6. The Hereinafter, this difference will be mainly described, and the description of the same configuration will be omitted.
  • the anticorrosion coating 3 is formed with a press-fitting groove 35 for press-fitting the optical fiber 4 on the surface of the outer peripheral portion 31.
  • the press-fitting groove 35 may be formed over the entire length of the groove 32 or may be partially formed along the length of the groove 32.
  • the groove 32 is formed over the entire length.
  • the outer coating 6 shown in FIG. 4 is omitted, and the optical fiber 4 is shown separated from the anticorrosion coating 3 (press-fit groove 35).
  • the width of the press-fit groove 35 may be approximately the same as or slightly smaller than the diameter of the optical fiber 4. If it does so, it will be easy to press-fit without damaging the optical fiber 4, and the optical fiber 4 will not drop easily from the press-fit groove 35 after arrangement
  • the depth of the press-fitting groove 35 can be appropriately selected as long as the optical fiber 4 does not drop off. For example, the depth of the press-fitting groove 35 may be approximately the same as the diameter of the optical fiber 4.
  • the press-fitting groove 35 can be formed by cutting or the like after the anticorrosion coating 3 is formed.
  • Modification 1-3 With reference to FIG. 6 and FIG. 7, the coated PC steel wire 1d of Modification 1-3 will be described.
  • the point of the coated PC steel stranded wire 1d is that the optical fiber 4 follows the expansion and contraction of the stranded wire 2 by the frictional resistance between the optical fiber 4 and the anticorrosion coating 3 without fixing the optical fiber 4 to the anticorrosion coating 3.
  • This is different from the first embodiment and the modified examples 1-1 and 1-2.
  • Other configurations are the same as those of the first embodiment and the modified examples 1-1 and 1-2.
  • this difference will be mainly described, and the description of the same configuration will be omitted.
  • FIG. 7 for convenience of explanation, the outer coating 6 shown in FIG. 6 is omitted, and the optical fiber 4 is shown separated from the anticorrosion coating 3 (more groove 32).
  • the coated PC steel stranded wire 1d includes the stranded wire 2, the anticorrosion coating 3, and the optical fiber 4, the solid particles 71 forming the irregularities 7 that increase the frictional resistance with the optical fiber 4, and the outer coating 6 It consists of.
  • the solid particles 71 are formed of a member different from the anticorrosion coating 3, a part of the solid particle 71 is exposed from the surface of the outer peripheral portion 31 of the anticorrosion coating 3, and the remaining portion is embedded in the outer peripheral portion 31.
  • the frictional resistance between the optical fiber 4 and the anticorrosion coating 3 and the frictional resistance between the anticorrosion coating 3 and the outer coating 6 can be increased, so that the optical fiber 4 can be more easily followed by the expansion and contraction of the stranded wire 2.
  • known materials such as sand can be used.
  • the coated PC steel strand 1d is manufactured by spraying solid particles 71 instead of pressing the optical fiber 4 against the resin coated on the strand 2 in the manufacturing process of the coated PC steel strand 1b of Modification 1-1. This can be done by cooling the resin. Thus, a part of the solid particles 71 is exposed from the surface of the epoxy resin, and the remaining part is embedded in the resin.
  • the optical fiber 4 is placed in contact with the surface in which the solid particles 71 are embedded, and the constituent resin of the outer coating 6 melted on the outer periphery of the optical fiber 4 is embedded in the constituent material of the outer coating 6. The Thereafter, by cooling the constituent resin of the outer coating 6, the constituent resin contracts, and the outer coating 6 comes into close contact with the surface where the solid particles 71 are embedded.
  • the material of the outer coating 6 is preferably PE resin as described above.
  • Modification 1-4 With reference to FIG. 8 and FIG. 9, the coated PC steel wire 1e of Modification 1-4 will be described.
  • the coated PC steel stranded wire 1e is different from the modified example 1-3 in that the anticorrosion coating 3 itself is formed with unevenness 7 that causes the optical fiber 4 to follow the expansion and contraction of the stranded wire 2 due to frictional resistance.
  • the point is the same as in Modification 1-3. That is, the coated PC steel stranded wire 1 e is composed of the stranded wire 2, the anticorrosion coating 3, the optical fiber 4, and the outer coating 6.
  • this difference will be mainly described, and the description of the same configuration will be omitted.
  • the unevenness 7 is formed in series on the surface of the anticorrosion coating 3 with the constituent material of the anticorrosion coating 3.
  • the unevenness 7 is formed with streak-like concave portions and convex portions alternately.
  • the lengths of the concave and convex portions of the irregularities 7 may be formed along the following direction (1) or (2).
  • the optical fiber 4 and the unevenness 7 are crossed to increase the friction between the optical fiber 4 and the unevenness 7 and the friction between the unevenness 7 and the outer coating 6. Therefore, the optical fiber 4 can easily follow the expansion and contraction of the stranded wire 2.
  • the concave and convex portions of the projections and depressions 7 are formed along the spiral direction opposite to the spiral direction of the strand 2.
  • the outer coating 6 shown in FIG. 8 is omitted, and the optical fiber 4 is shown separated from the anticorrosion coating 3 (more groove 32).
  • thick (thin) portions of the anticorrosion coating 3 can be formed at predetermined intervals along the axial direction. That is, it can be set as the node shape by which the convex ring part of uniform height and the concave ring part with a smaller diameter are alternately formed in the longitudinal direction on the surface of the anticorrosion coating 3.
  • the coated PC steel strand 1e is formed with irregularities on the inner circumferential surface after the outer strand 21o is returned and before the coated resin is cooled. It can be formed by passing through a roller.
  • the coated PC steel stranded wire 1f is different from the coated PC steel stranded wire 1a of the first embodiment in that it is an inner arrangement type in which the optical fiber 4 is mainly provided in the groove 22 inside the anticorrosion coating 3.
  • this difference will be mainly described, and description of similar configurations and effects will be omitted.
  • the coated PC steel stranded wire 1 f includes a stranded wire 2, an anticorrosion coating 3, an optical fiber 4, and an outer coating 6.
  • the material of the anticorrosion coating 3 is PE resin.
  • the material of the core and the clad is quartz glass, and the optical fiber is provided with a primary coating.
  • the arrangement position of the optical fiber 4 is a groove 22 formed at a triple point surrounded by three adjacent strands 21 (a central strand 21c and two peripheral strands 21o) constituting the strand 2. Yes.
  • the optical fiber 4 is fixed integrally with the strand 2 in the groove 22 by the filling portion 33 of the anticorrosion coating 3.
  • the triple point explained the case where the number of strands is 7 strands.
  • the number of strands is 19 strands, between the various strands described above, for example, outer strands and inner strands.
  • a space surrounded by lines can be mentioned.
  • the triple point depends on the diameters of the outer peripheral wire and the inner peripheral wire, but includes a space surrounded by two outer peripheral wires and one inner peripheral wire.
  • a composite wire in which the optical fiber 3 is arranged in the groove 22 formed at the triple point of the strand 2 is prepared, and the outer periphery of the composite wire is covered with PE resin,
  • the anticorrosion coating 3 is formed by filling PE resin between the wires 21.
  • the composite wire can be produced by any of the following methods (1) to (4).
  • the molten PE resin is extruded to the outer periphery of the strand 2.
  • the twisted line 2 may not be solved once.
  • pressure is applied from the outer peripheral side of the wire 2 by the PE resin extruded to the outer periphery of the stranded wire 2, and the PE resin is filled between the outer peripheral wire 21o and the central wire 21c.
  • the following effects can be achieved. (1) By disposing the optical fiber 4 at the triple point of the stranded wire 2, the optical fiber 4 is surrounded by three strands, so that it is easier to protect the optical fiber 4. (2) Since the optical fiber 4 is fixed integrally with the strand 21 by the filling portion 33 of the anticorrosion coating 3 at the triple point, the optical fiber 4 can easily follow the expansion and contraction of the strand 2. (3) Since the gap between the triple points can be used effectively, the diameter of the wire 1f is less likely to be larger than that of the coated PC steel. (4) No adhesive is required, and the number of parts can be further reduced.
  • the coated PC steel strand 1g is different from the coated PC steel of Embodiment 2 in that the diameters of the central strand 21c and the peripheral strand 21o are different from those of the coated PC steel of Embodiment 2, and other points are different from those of the coated PC steel of Embodiment 2.
  • this difference will be mainly described, and the description of the same configuration will be omitted.
  • the diameter of the outer peripheral wire 21o and the diameter of the central strand 21c may be appropriately selected so as to be different from each other while satisfying the following conditions (1) and (2).
  • (1) The total cross-sectional area of all the strands of the outer strand 21o and the center strand 21c is about the same as the case where the diameters of the outer strand 21o and the center strand 21c are substantially equal as in the second embodiment.
  • the length of the gap between adjacent outer peripheral strands 21 o is equal to or greater than the diameter of the optical fiber 4.
  • the length of the gap is a common circumscribing of the two outer strands 21o that form a gap when the gap between the outer strands 21o is widened to form a gap and the other gap is closed.
  • the length between the straight lines circumscribing each of the outer peripheral wires 21o is said. That is, when the outer peripheral strands 21 o are further aligned on the central strand 21 c, one interval between the adjacent outer peripheral strands 21 o is larger than the diameter of the optical fiber 4.
  • the optical fiber 4 By satisfying these conditions (1) and (2), it is easy to place the optical fiber 4 at a triple point when a gap is secured with an appropriate tool (for example, a roller cutter) that can be easily inserted between the outer peripheral wires 21o. Further, the outer diameter of the stranded wire 2 (the diameter of the envelope circle) is difficult to increase. Here, compared to the case where the diameters of the outer peripheral wire 21o and the central strand 21c are substantially equal, the central strand 21c is slightly increased and the outer peripheral wire 21o is slightly decreased.
  • the configuration of the optical fiber 4 may be an optical fiber or an optical fiber core.
  • the configuration of the optical fiber 4 is an optical fiber core wire.
  • Production of 1 g of wire from coated PC steel can be performed as follows. First, the stranded wire 2 and the optical fiber 4 are prepared. Subsequently, one of the adjacent outer strands 21o in the stranded wire 2 is widened, the other space is closed, and the optical fiber 4 is widened from the gap of the triple point of the stranded wire 2 to the groove 22. Arrange along. Next, the optical fiber 4 is arranged in the same manner with the interval between the outer peripheral strands 21o of the portion opposed to the portion where the interval is widened across the center strand 21c being increased. Thus, a composite wire is produced.
  • the molten PE resin is extruded to the outer periphery of the composite wire, and the PE resin is cooled. Since the diameter of the outer peripheral strand 21o is smaller than that of the central strand 21c, a gap is formed between adjacent outer peripheral strands 21o. Therefore, the optical fiber 4 can be arranged at the triple point without using the composite wire manufacturing method described in the second embodiment, so that the optical fiber 4 can be easily arranged. Further, when the anticorrosion coating 3 is formed, there is no need to untwist the stranded wire 2 or apply pressure from the outer periphery to the molten PE resin between the outer peripheral strand 21o and the central strand 21c. PE resin can be easily and sufficiently supplied.
  • the coated PC steel strand 1h according to Modification 2-2 will be described.
  • the coated PC steel strand 1h is different from the coated PC steel strand 1f of the second embodiment in the arrangement position of the optical fiber 4, and the other points are the same as those of the second embodiment. That is, the coated PC steel stranded wire 1h is composed of the stranded wire 2, the anticorrosion coating 3, and the optical fiber 4.
  • this difference will be mainly described, and the description of the same configuration will be omitted.
  • the configuration of the optical fiber 4 may be an optical fiber or an optical fiber core.
  • the configuration of the optical fiber 4 is an optical fiber core wire.
  • the arrangement position of the optical fiber 4 is a groove 22 formed between adjacent outer peripheral wires 21o. Compared to the case where the optical fiber 4 is arranged in the groove 22 rather than formed in the triple point of the strand 2 by arranging the arrangement position of the optical fiber 4 between the adjacent outer strands 21o. The arrangement of the optical fiber 4 is easy.
  • the stranded wire 2 and the optical fiber 4 are prepared, and the optical fiber 4 is arranged in the groove 22 between the adjacent outer peripheral strands 21o, and then the anticorrosion as in the second embodiment. This can be done by forming the coating 3.
  • the modification 1-2 described above has been described in which the anticorrosion coating 3 is provided with the press-fit groove 35. It can be set as the form provided with the accommodation groove
  • the optical fiber 4 is fixed in the storage groove with an adhesive, or the optical fiber 4 is disposed in the storage groove and the storage groove is sealed with the outer coating 6. In this case, it is possible to prevent the optical fiber 4 from dropping out of the storage groove, and to make the optical fiber 4 follow the expansion and contraction of the stranded wire 2.
  • the coated PC steel stranded wire according to one embodiment of the present invention can be suitably used for reinforcing a concrete structure by being embedded inside the concrete structure or disposed outside the concrete structure.
  • the coated PC steel strand according to one aspect of the present invention can be suitably used for confirming a tension state over the entire length of the wire using an optical fiber as a sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ropes Or Cables (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Communication Cables (AREA)

Abstract

 複数の鋼製の素線(21)をより合わせたより線(2)と、前記より線(2)の外周を被覆する外周部(31)を有する防食被覆(3)と、前記防食被覆(3)の外周を覆う外側被覆(6)と、前記外側被覆(6)の外周面よりも内側で、前記より線(2)のより溝(22)に対応した箇所に前記より線(2)の伸縮に追従するように設けられる光ファイバ(4)とを備える被覆PC鋼より線(1a、1b、1c、1d、1e、1f、1g、1h)。

Description

被覆PC鋼より線
 本発明は、光ファイバを備える被覆PC鋼より線に関する。特に、素線の歪を伝達し易く、かつ光ファイバを保護し易い被覆PC鋼より線に関する。
 コンクリート構造物の内側に埋設したり、コンクリート構造物の外側に配置したりして、コンクリート構造物に圧縮力を伝達することでコンクリート構造物を補強する部材(緊張部材)としてPC(プレストレスト・コンクリート)鋼より線に代表されるPC鋼材がある。
 例えば、特許文献1(特開2010-133871号公報)には、中空体と、その外周を取り囲むようにより合わされ、緊張力を負担する複数の素線とを備える緊張部材(PC鋼より線)が開示されている。この緊張部材(PC鋼より線)の中空体の内部には、歪センサとして用いられる光ファイバと、中空体と光ファイバとの間に充填されて中空体内での光ファイバの位置を保持する充填剤とが設けられている。中空体の内部に光ファイバを収納することで、緊張部材の使用時に光ファイバが損傷することを防止して、緊張部材に生じる歪を、素線、中空体、充填剤を介して光ファイバに伝達させている。
特開2010-133871号公報
 上述のような中空体や充填剤を用いることなく、より細い構造で歪の伝達を確実に行え、かつ光ファイバの保護も十分可能な構成が望まれている。この中空体や充填剤を備えることで光ファイバを保護可能な上に光ファイバを素線の伸縮に追従させられる。しかし、中空体や充填剤は緊張部材として実質的に機能しない部材であり、部品点数が多くなる上に、緊張部材の径が大きくなる。
 本発明は、上記事情に鑑みてなされたもので、その目的の一つは、素線の歪を伝達し易く、かつ光ファイバを保護し易い被覆PC鋼より線を提供することにある。
 本発明の一態様に係る被覆PC鋼より線は、複数の鋼製の素線をより合わせたより線と、より線の外周を被覆する外周部を有する防食被覆と、防食被覆の外周を覆う外側被覆と、外側被覆の外周面よりも内側でより線のより溝に対応した箇所により線の伸縮に追従するように設けられる光ファイバとを備える。
 上記被覆PC鋼より線は、素線の歪を伝達し易く、かつ光ファイバを保護し易い。
実施形態1に係る被覆PC鋼より線を示す概略断面図である。 実施形態1に係る被覆PC鋼より線を示す概略側面図である。 変形例1-1に係る被覆PC鋼より線を示す概略断面図である。 変形例1-2に係る被覆PC鋼より線を示す概略断面図である。 変形例1-2に係る被覆PC鋼より線を示す概略側面図である。 変形例1-3に係る被覆PC鋼より線を示す概略断面図である。 変形例1-3に係る被覆PC鋼より線を示す概略側面図である。 変形例1-4に係る被覆PC鋼より線を示す概略断面図である。 変形例1-4に係る被覆PC鋼より線を示す概略側面図である。 実施形態2に係る被覆PC鋼より線を示す概略断面図である。 変形例2-1に係る被覆PC鋼より線を示す概略断面図である。 変形例2-2に係る被覆PC鋼より線を示す概略断面図である。
《本発明の実施形態の説明》
 最初に本発明の実施態様の内容を列記して説明する。
 (1)本発明の一態様に係る被覆PC鋼より線は、複数の鋼製の素線をより合わせたより線と、より線の外周を被覆する外周部を有する防食被覆と、防食被覆の外周を覆う外側被覆と、外側被覆の外周面よりも内側でより線のより溝に対応した箇所により線の伸縮に追従するように設けられる光ファイバとを備える。
 上記の構成によれば、防食被覆を備えることで、防食被覆のない場合に比較して素線を一様に挙動させ易いため光ファイバによる歪の測定精度を高め易い。また、光ファイバを外側被覆の外周面よりも内側でより溝に対応する箇所に配置することで、光ファイバをより線の伸縮に追従させ易いため、素線の歪を伝達させ易くて精度良く測定し易い。
 防食被覆のない場合はより線を緊張した際、素線が偏ることでより溝に対応した箇所に存在する光ファイバに過度な圧縮力が作用する虞があり、歪の測定精度の低下や光ファイバの損傷を招く虞がある。これに対して、上記の構成によれば、防食被覆を備えることでより線を緊張した際の素線の偏りを抑制でき、歪の測定精度の低下や光ファイバの機械的損傷を抑制し易い。また、光ファイバをより溝に対応する箇所に配置することで、光ファイバの両側に配置される素線又は光ファイバを囲む素線により光ファイバを外部環境から保護し易い。その上、被覆PC鋼より線の包絡円内に光ファイバを配置させ易いため、被覆PC鋼より線の径が大きくなり難い。
 光ファイバを防食被覆と外側被覆との間(境界部)に配置する場合、外側被覆を備えることで光ファイバをより線の伸縮により一層追従させ易い。その上、より線の腐食を抑制し易い。
 上記の構成によれば、従来のような中空体や充填剤を備えていないため、部品点数を低減できる。
 (2)上記被覆PC鋼より線の一形態として、光ファイバは、防食被覆の表面におけるより溝に接着剤で固定されていることが挙げられる。
 上記の構成によれば、接着剤で光ファイバを防食被覆のより溝に固定するため、光ファイバをより線の伸縮に追従させ易い。
 (3)上記被覆PC鋼より線の一形態として、光ファイバは、接着剤を用いることなく防食被覆により固定されていることが挙げられる。
 上記の構成によれば、防食被覆自体で光ファイバを固定できることで、接着剤を不要にでき、接着剤の塗布作業に伴う煩雑さを解消できる。また、接着剤で光ファイバを固定する場合に比較して、長期に亘って光ファイバをより線の伸縮に追従させられると期待できる。
 (4)光ファイバが接着剤を用いることなく防食被覆により固定される上記被覆PC鋼より線の一形態として、光ファイバの一部が防食被覆に埋設されて防食被覆に一体化されていることが挙げられる。
 上記の構成によれば、光ファイバの一部が防食被覆に埋設されて一体化されていることで、光ファイバをより線の伸縮に追従させ易い。また、光ファイバが防食被覆から離間し難くできて、光ファイバの脱落を防止し易い。
 (5)光ファイバが接着剤を用いることなく防食被覆により固定される上記被覆PC鋼より線の一形態として、防食被覆は、その表面に光ファイバの一部が圧入される圧入溝が形成されていることが挙げられる。
 上記の構成によれば、防食被覆の表面に光ファイバの一部が圧入される圧入溝が形成されていることで、光ファイバをより線の伸縮に追従させ易い。
 (6)上記被覆PC鋼より線の一形態として、防食被覆は、その表面に光ファイバ及び外側被覆との摩擦抵抗を高める凹凸を有することが挙げられる。この場合、この凹凸は、より溝により形成される凹凸よりも小さい凹凸である。
 上記の構成によれば、光ファイバと防食被覆との摩擦抵抗と、防食被覆と外側被覆との摩擦抵抗とを高め易いため、光ファイバをより線の伸縮に追従させ易い。
 (7)上記被覆PC鋼より線の一形態として、光ファイバが、より線を構成する外周素線と、外周素線に隣接する内周素線又は中心素線とに囲まれた三重点に配置されていることが挙げられる。
 上記の構成によれば、光ファイバが素線に囲まれているため光ファイバを機械的に保護できる。その上、三重点の隙間に光ファイバを配置することで、被覆PC鋼より線の径が大きくなり難い。
 (8)上記被覆PC鋼より線の一形態として、光ファイバが三重点に配置されている場合、防食被覆は、素線の間に充填される充填部を有することが挙げられる。
 上記の構成によれば、充填部により三重点で光ファイバと素線とを一体化できるため、光ファイバをより線の伸縮に追従させ易い。
 (9)上記被覆PC鋼より線の一形態として、光ファイバが三重点に配置されている場合、より線は、中心素線と、中心素線の外周に螺旋状によられた複数の外周素線とを備え、隣り合う外周素線同士の隙間の長さが、光ファイバの径以上であることが挙げられる。
 上記の構成によれば、三重点に光ファイバを配置し易い。光ファイバを三重点に配置する際に外周素線同士の間のうち1箇所の間隔を広げて、他の間隔を閉じると、光ファイバの径以上の隙間が形成されるからである。この隙間の長さとは、外周素線同士の間のうち1箇所の間隔を広げて隙間を形成し、他の間隔を閉じたとき、その隙間を形成する二つの外周素線の共通外接線に直交する直線のうち、これら外周素線の各々に外接する直線同士の間の長さを言う。
《本発明の実施形態の詳細》
 本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 〔実施形態1〕
 図1、図2を参照して、実施形態1に係る被覆PC鋼より線1aを説明する。被覆PC鋼より線1aは、複数の鋼製の素線21をより合わせたより線2と、より線2の外周を被覆する外周部31を有する防食被覆3と、防食被覆3の外周を覆う外側被覆6と、光ファイバ4とを備える。この被覆PC鋼より線1aの主たる特徴とするところは、光ファイバ4を外側被覆6の外周面よりも内側でより線2のより溝に対応した箇所(より溝を含む)に配置してより線2と複合する点にある。詳しくは後述するが、光ファイバ4をより線2に複合することで、より線2(素線21)の伸縮に光ファイバ4を追従させ易く、素線21の歪を精度良く測定できる。以下、各構成を詳細に説明する。図中の同一符号は同一名称物を示す。
 [被覆PC鋼より線]
 被覆PC鋼より線1aは、例えば、コンクリート構造物の内側に埋設したり、コンクリート構造物の外側に配置したりしてコンクリート構造物を補強する。具体的には、コンクリート構造物の補強は、より線2(素線21)に緊張力を付与し、その緊張力をコンクリート構造物に圧縮力として伝達することで行う。
 (より線)
 より線2は、複数の鋼製の素線21をより合わせて形成される。各素線21は、緊張力を負担する。素線21の数は、被覆PC鋼より線1aの使用形態(内ケーブルや外ケーブル)などに応じて適宜選択でき、例えば、7本、19本などが挙げられる。
 素線21の数が7本の場合、より線2の構造は1本の中心素線21cの外周に6本の外周素線21oが螺旋状に撚られた1層より構造である。外周素線21oが、より線2の最外周に位置する。中心素線21cと外周素線21oとは、略同等の径の素線で構成される場合(図1)と、中心素線21c(外周素線21o)の径が外周素線21o(中心素線21c)の径よりも大きい(小さい)素線で構成される場合(図11、後述の変形例2-1参照)とがある。
 一方、素線の数が19本の場合、より線の構造は、図示は省略するが、1本の中心素線に対して内側から順に内周素線及び外周素線が螺旋状に撚られた2層より構造であり、代表的には内周素線と外周素線の本数が異なる2つのタイプがある。具体的には、1本の中心素線と9本の内周素線と9本の外周素線とで構成されるタイプと、1本の中心素線と6本の内周素線と12本の外周素線とで構成されるタイプとがある。前者のタイプでは、中心素線と外周素線は、略同等の径の素線で構成され、内周素線は、中心素線よりも径の小さい素線で構成される。後者のタイプでは、中心素線と内周素線は、略同等の径の素線で構成される。外周素線は、中心素線と略同等の径の素線と、それよりも径の小さい素線とが交互に配置されて構成される。
 より線2の隣接し合う3本の素線に囲まれた三重点や、外周素線21cの隣接する2本の素線の間に形成される谷は、より線2の長手に連続するより溝22で構成される。より線2が1層より構造(素線の数が7本)の場合、三重点の隙間は、中心素線21cと2本の外周素線21oとの間に形成される。より線が2層より構造(素線の数が19本)の場合、三重点の隙間は、中心素線と2本の内周素線の間、1本の内周素線と2本の外周素線との間、2本の内周素線と1本の外周素線との間に形成される。
 ここでは、より線2は、素線21の数を7本とし、中心素線21cと外周素線21oとが略同等の径で構成された1層より構造で構成されている。より線2には、公知の材質・寸法の素線を用いることができる。
 (防食被覆)
 防食被覆3は、より線2を外部環境から保護してより線2の腐食を抑制する。防食被覆3は、より線2の外周を被覆する外周部31を有する。外周部31は、より線2の外周輪郭に沿った表面を有し、その表面におけるより線2のより溝22に対応した箇所により溝32が形成されている。
 防食被覆3は、各素線21の間(三重点)に充填される充填部33を有していることが好ましい。そうすれば、より線2の隙間に水分などが侵入することを抑制でき、より線2の腐食をより一層抑制し易い。また、後述する実施形態2のように三重点に光ファイバ4が配置される場合(図10)には、充填部33を備えることで、三重点で光ファイバ4と素線21とを充填部33により固定できて素線21の伸縮に光ファイバ4を追従させ易い。充填部33を備える場合、外周部31と充填部33とは同一材質で一連に形成されていることが挙げられる。ここでは、外周部31と同一材質で一連に形成される充填部33を備える。
 防食被覆3の材質は、耐食性に優れる樹脂が挙げられる。そのような樹脂としては、例えば、エポキシ樹脂、ポリエチレン樹脂などが挙げられる。ここでは、防食被覆3(外周部31及び充填部33)をエポキシ樹脂で構成する。
 (光ファイバ)
 光ファイバ4は、素線21の歪を測定するセンサとして用いられる。光ファイバ4は、コアとクラッドとで構成されるものを好適に利用できる。コアとクラッドの材質は、プラスチックや石英ガラスが挙げられる。光ファイバ4の構成は、クラッドの外周に一次被覆を備える光ファイバ素線(図示略)や、更に二次被覆を備える光ファイバ芯線(図示略)、更に二次被覆の外周に補強材と補強材の外周を覆う外被とを備える光ファイバコード(図示略)などが利用できる。一次被覆の材質は、例えば、紫外線硬化型樹脂が挙げられる。二次被覆の材質は、例えば、難燃性ポリエステルエラストマーなどが挙げられる。補強材の材質は、例えば、ガラス繊維、炭素繊維、アラミド繊維などが挙げられる。外被の材質は、難燃性ポリエチレンなどの難燃性ポリオレフィンや、難燃性架橋ポリエチレンなどの難燃性架橋ポリオレフィン、耐熱ビニルなどが挙げられる。ここでは、光ファイバ4の構成は、コアとクラッドの材質を石英ガラスとし、一次被覆及び二次被覆を備える光ファイバ芯線としている。
 光ファイバ4の数は、単数でもよいし複数でもよく、歪の測定方式に応じて適宜選択できる。歪の測定方式は、例えば、BOCDA(Brillouin Optical Correlation Domain Analysis)、BOTDR(Brillouin Optical Time Domain Reflectometry)、FBG(Fiber Bragg Grating)などが挙げられる。測定方式をBOCDAとする場合、光ファイバ4の数は2本以上の偶数本とし、測定方式をBOTDRやFBGとする場合、光ファイバ4の数は1本以上とする。測定方式をBOCDAとする場合、2本の光ファイバ4の両一端部を被覆PC鋼より線1aの一端側から引き出して一端部同士を接続し、2本の光ファイバの両他端部を被覆PC鋼より線1aの他端側から引き出してBOCDA測定装置(図示略)に接続する。測定方式をBOTDRやFBGとする場合、1本の光ファイバ4の一端部を被覆PC鋼より線1aの一端側に配置し、光ファイバ4の他端部を被覆PC鋼より線1aの他端側から引き出してBOTDR測定装置(図示略)やFBG測定装置(図示略)に接続する。各測定方式において、光ファイバ4の数を歪測定に必要な本数超とする場合、歪測定に使用しない光ファイバ4を予備として利用できる。
 光ファイバ4の配置位置は、外側被覆6の外周面よりも内側で、より線2のより溝に対応した箇所が挙げられる。光ファイバ4を外側被覆6の外周面よりも内側に配置するとは、光ファイバ4を防食被覆3に埋設させることや、防食被覆3と外側被覆6との間(境界部)に配置することは勿論、光ファイバ4を外側被覆6に埋設させる場合を含む。光ファイバ4を外側被覆6に埋設させる場合、光ファイバ4の配置位置は、代表的には防食被覆3の外周近傍が挙げられる。より溝に対応した箇所とは、防食被覆3の外側(外周部31表面)のより溝32や、防食被覆3の内側のより溝22などが挙げられる。光ファイバ4を複数本(例えば2本)備える場合、互いの光ファイバ4が中心素線21cを挟んで互いに対向するより溝22,32に設けることが挙げられる。
 この光ファイバ4の配置位置に応じて、被覆PC鋼より線の形態としては、防食被覆3の外側(外周部31表面)のより溝32に光ファイバ4を設ける外側配置タイプと、防食被覆3の内側のより溝22に光ファイバ4を設ける内側配置タイプとがある。外側配置タイプには、より線2の伸縮に対する光ファイバ4の追従を、外周部31の表面に光ファイバ4を固定することで行う固定タイプと、固定せず光ファイバ4と防食被覆3との摩擦抵抗により行う非固定タイプとがある。固定タイプには、防食被覆3とは独立する固定部材5を別途備える以下の(1)及び(2)の少なくとも一方の形態と、この独立する固定部材5を備えず、防食被覆3自体が固定部材5の機能を兼ねる以下の(3)又は(4)の形態とが挙げられる。非固定タイプは、例えば、防食被覆3の表面に光ファイバ4との摩擦抵抗を高める凹凸7を有することが挙げられる。この凹凸7は、より溝22、32により形成される凹凸よりも小さい。非固定タイプとしては、例えば、防食被覆3とは独立する別部材で防食被覆3の表面に凹凸7が形成される以下の(5)の形態と、この別部材を備えず、防食被覆3自体に凹凸7が形成される以下の(6)の形態とが挙げられる。一方、内側配置タイプには、以下の(7)や(8)の形態が挙げられる。
 (1)固定部材5が接着剤51で構成される形態(図2)。
 (2)固定部材5が防食被覆3の外周を覆う外側被覆6で構成される形態(図1)。
 (3)防食被覆3の外周部31の表面に光ファイバ4の一部が埋設される形態(図3)。
 (4)防食被覆3の外周部31の表面に光ファイバ4を圧入する圧入溝34が形成される形態(図4,5)。
 (5)凹凸7が防食被覆3の外周部31表面から一部露出する固体粒子71により形成される形態(図6,7)。
 (6)凹凸7が表面加工により防食被覆3表面に防食被覆3の構成材料で一連に形成される形態(図8,9)。
 (7)より線2を構成する隣り合う3本の素線21に囲まれた三重点(より溝22)に配置される形態(図10,11)。
 (8)より線2の隣り合う外周素線21o同士の間に形成される谷(より溝22)に配置される形態(図12)。
 ここでは、上記(1)及び(2)の形態を説明する。上記(3)の形態は変形例1-1、上記(4)の形態は変形例1-2、上記(5)の形態は変形例1-3、上記(6)の形態は変形例1-4、上記(7)の形態は実施形態2と変形例2-1、上記(8)の形態は変形例2-2でそれぞれ説明する。
 実施形態1では、光ファイバ4の配置位置は、外周部31の表面のより溝32である。即ち、光ファイバ4の配置位置は実質的に防食被覆3(外周部31)と外側被覆6(後述)との境界部であり、光ファイバ4の配置形態はより溝32に沿った螺旋状である。光ファイバ4を2本備える場合、互いの光ファイバ4が中心素線21cを挟んで互いに対向するより溝32に設けることが挙げられる(図1)。
 (固定部材)
 固定部材5は、光ファイバ4を防食被覆3へ固定する(図2)。図2では、説明の便宜上、図1に示す外側被覆6(後述)を省略している。この固定により、より線2の伸縮に光ファイバ4を追従させ易くなり素線21の歪を精度良く測定し易くなる。固定部材5は接着剤51で構成されている。接着剤51の塗布箇所は、光ファイバ4の長手に沿って等間隔の箇所とすることが挙げられる。例えば、光ファイバ4の1ピッチごとに塗布することが挙げられる。そうすれば、接着剤51の塗布作業が煩雑になり難い上に、より線2の伸縮に追従できる程度に光ファイバ4を外周部31表面に固定できる。
 (外側被覆)
 被覆PC鋼より線1aは、防食被覆3の外周を覆う外側被覆6を備える。そうすれば、より線2の腐食をより一層抑制し易い。この外側被覆6は、光ファイバ4を防食被覆3へ固定する固定部材5としての機能も期待できる。外側被覆6に固定部材5としての機能を十分に期待できる場合には、上述の接着剤51を省略してもよい。外側被覆6の外周面は、より溝が形成されない円筒状面で構成されている。外側被覆6の材質は、例えば、PE樹脂が挙げられる。
 [被覆PC鋼より線の製造方法]
 上述の被覆PC鋼より線1aの製造は、以下の準備工程、固定工程、押出工程を備える。被覆PC鋼より線の製造方法により行える。
 (準備工程)
 準備工程は、より線2及び防食被覆3を備える被覆線と光ファイバ4とを準備する。上記被覆線の準備は、作製された被覆線を準備することで行ってもよいし、より線2に対して防食被覆3を形成して被覆線を作製することで行ってもよい。より線2は、中心素線21cの外周上に6本の外周素線21oを螺旋状により合わせることで形成できる。
 防食被覆3の形成は、公知の粉体塗装で行える。粉体塗装する際には、目板でより線2の外周素線21oのよりを解いておく。よりが解かれた外周素線21o同士の間には隙間が形成されて、外周素線21oと中心素線21cとの間に構成樹脂を十分に供給でき、中心素線21c及び外周素線21oの外周に防食被覆3の構成樹脂(エポキシ樹脂)を塗装できる。これらの外周素線21oを再び中心素線21c上により戻した後、塗装した樹脂を冷却する。このより解きとより戻しにより中心素線21cと2本の外周素線21oとの間の三重点に隙間が形成されることなく充填部33を形成し、かつ外周素線21oの外周に外周素線21oの螺旋状の外周輪郭に沿った外周部31を形成して防食被覆3を形成する。
 (固定工程)
 固定工程は、光ファイバ4を防食被覆3のより溝32に配置し、接着剤51を塗布して固定する。ここでは、接着剤51を光ファイバ4の1ピッチごとに塗布する(図2)。
 (押出工程)
 押出工程は、防食被覆3の外周に外側被覆6の構成樹脂であるPE樹脂を押出成形して外側被覆6を形成する。そうして、光ファイバ4が防食被覆3と外側被覆6との間に固定される。
 〔作用効果〕
 被覆PC鋼より線1aによれば、以下の効果を奏することができる。
 (1)光ファイバ4を防食被覆3のより溝32に設けることで、光ファイバ4をより線2の三重点に設ける場合に比較して設け易い。
 (2)光ファイバ4をより線2の三重点に設ける場合に比較して、素線21のよりを解く必要がないため、歪測定装置に接続するために光ファイバ4の一端部を被覆PC鋼より線1aの一端側から引き出しやすい。
 (3)光ファイバ4を防食被覆3のより溝32に接着剤51で固定することで、光ファイバ4をより線2の伸縮に追従させ易い。
 (4)光ファイバ4を防食被覆3のより溝32に接着剤51で固定することで、従来のような中空体や充填剤を不要にできるため、部品点数を低減できる。
 (5)外側被覆6を備えることで、光ファイバ4を覆うことができるため光ファイバ4を保護し易い上に、仮に接着剤51が外れても光ファイバ4の脱落を防止できる。
 〔変形例1-1〕
 図3を参照して、変形例1-1の被覆PC鋼より線1bを説明する。被覆PC鋼より線1bは、実施形態1のような接着剤51(図2)を用いることなく防食被覆3自体で光ファイバ4を防食被覆3の表面に固定する点が実施形態1の被覆PC鋼より線1aと相違し、その他の点は実施形態1の被覆PC鋼より線1aと同様である。即ち、被覆PC鋼より線1bは、より線2と防食被覆3と光ファイバ4と外側被覆6とで構成される。以下、この相違点を中心に説明し、同様の構成については説明を省略する。
 光ファイバ4は、その一部が防食被覆3の外周部31の表面に埋設されて、防食被覆3と一体化されている。この一体化により、より線2の伸縮に光ファイバ4を追従させ易くなり素線21の歪を精度良く測定し易くなる。光ファイバ4の残部は、外周部31の表面から露出し、外側被覆6に覆われる。防食被覆3の外周部31の表面には、光ファイバ4が埋設されることで形成される凹部34が形成されている。この凹部34は、光ファイバ4の螺旋に沿って螺旋状に形成されている。
 被覆PC鋼より線1bの製造は、実施形態1で説明した防食被覆3の形成途中に光ファイバ4を配置することで行える。具体的には、一旦よりを解いた外周素線21oを再び中心素線21c上により合わせた後、光ファイバ4を樹脂の表面に押し付けてから樹脂を冷却する。そうすれば、光ファイバ4の一部が防食被覆3の外周部31表面に埋設されて、防食被覆3と一体化させることができる。
 〔変形例1-2〕
 図4,図5を参照して、変形例1-2の被覆PC鋼より線1cを説明する。被覆PC鋼より線1cは、防食被覆3自体で光ファイバ4を防食被覆3の表面に固定する構成が変形例1-1の被覆PC鋼より線1bと相違する。即ち、被覆PC鋼より線1cは、接着剤を用いない点やその他の構成は変形例1-1と同様であり、より線2と防食被覆3と光ファイバ4と外側被覆6とで構成される。以下、この相違点を中心に説明し、同様の構成については説明を省略する。
 防食被覆3は、外周部31の表面に光ファイバ4を圧入する圧入溝35が形成されている。圧入溝35に光ファイバ4を圧入することで、光ファイバ4を防食被覆3に固定でき、光ファイバ4をより線2の伸縮に追従させ易くなる。
 圧入溝35は、より溝32の長手全長に亘って形成されていてもよいし、より溝32の長手に部分的に形成されていてもよい。ここでは、図5に示すように、より溝32の長手全長に亘って形成されている。なお、図5では、説明の便宜上、図4に示す外側被覆6を省略し、光ファイバ4を防食被覆3(圧入溝35)に対して分離して示している。
 圧入溝35の幅は、光ファイバ4の直径と略同等か少し小さくすることが挙げられる。そうすれば、光ファイバ4を損傷させることなく圧入させ易く、圧入溝35への配置後に光ファイバ4が圧入溝35から脱落し難い。圧入溝35の深さは、光ファイバ4が脱落しない程度で適宜選択でき、例えば、光ファイバ4の径と同等程度とすることが挙げられる。圧入溝35の形成は、防食被覆3を形成後に切削加工などで行える。
 〔変形例1-3〕
 図6,図7を参照して、変形例1-3の被覆PC鋼より線1dを説明する。被覆PC鋼より線1dは、光ファイバ4を防食被覆3に固定することなく、光ファイバ4と防食被覆3との摩擦抵抗でより線2の伸縮に対して光ファイバ4を追従させる点が、実施形態1や変形例1-1,1-2と相違する。その他の構成は、実施形態1や変形例1-1,1-2と同様である。以下、この相違点を中心に説明し、同様の構成については説明を省略する。なお、図7では、説明の便宜上、図6に示す外側被覆6を省略し、光ファイバ4を防食被覆3(より溝32)に対して分離して示している。
 被覆PC鋼より線1dは、実施形態1と同様のより線2、防食被覆3、及び光ファイバ4と、光ファイバ4との摩擦抵抗を高める凹凸7を形成する固体粒子71と、外側被覆6とで構成される。ここでは、固体粒子71は、防食被覆3とは別部材で構成され、防食被覆3の外周部31表面からその一部が露出し、外周部31にその残部が埋設されている。この固体粒子71により、光ファイバ4と防食被覆3との摩擦抵抗、及び防食被覆3と外側被覆6との摩擦抵抗を高められることで、光ファイバ4をより線2の伸縮により一層追従させ易い。固体粒子71は、砂など公知のものを利用できる。
 被覆PC鋼より線1dの製造は、変形例1-1の被覆PC鋼より線1bの製造過程において、より線2に塗装した樹脂に光ファイバ4を押し付ける代わりに、固体粒子71を吹き付けてから樹脂を冷却することで行える。そうして、固体粒子71の一部をエポキシ樹脂表面から露出させて、残部を樹脂に埋設させられる。光ファイバ4を固体粒子71の埋設された面に接触させて配置し、その外周部に溶融した外側被覆6の構成樹脂を押出加工することで光ファイバ4は外側被覆6の構成材料に埋設される。その後、外側被覆6の構成樹脂を冷却することでその構成樹脂が収縮して外側被覆6が固体粒子71の埋設された面に密着する。外側被覆6の材質は、上述したようにPE樹脂が好ましい。
 〔変形例1-4〕
 図8,図9を参照して、変形例1-4の被覆PC鋼より線1eを説明する。被覆PC鋼より線1eは、摩擦抵抗でより線2の伸縮に対して光ファイバ4を追従させる凹凸7が防食被覆3自体に形成されている点が変形例1-3と相違し、その他の点は変形例1-3と同様である。即ち、被覆PC鋼より線1eは、より線2と防食被覆3と光ファイバ4と外側被覆6とで構成されている。以下、この相違点を中心に説明し、同様の構成については説明を省略する。
 凹凸7は、防食被覆3の表面に防食被覆3の構成材料で一連に形成される。この凹凸7は、筋状の凹部と凸部とが交互に形成されている。凹凸7の凹部及び凸部の長手は、以下の(1)又は(2)の方向に沿って形成することが挙げられる。(1)より線2の螺旋方向、(2)より線2の螺旋方向と反対の螺旋方向。上記(1)、(2)の方向であれば、光ファイバ4と凹凸7とを交差させられて、光ファイバ4と凹凸7との摩擦と、凹凸7と外側被覆6との摩擦とを高め易いため、光ファイバ4をより線2の伸縮に追従させ易い。ここでは、図9に示すように、凹凸7の凹部及び凸部の長手をより線2の螺旋方向と反対の螺旋方向に沿って形成している。なお、図9では、説明の便宜上、図8に示す外側被覆6を省略し、光ファイバ4を防食被覆3(より溝32)に対して分離して示している。その他、防食被覆3の厚い(薄い)箇所を軸方向に沿って所定の間隔で形成することもできる。即ち、防食被覆3の表面に一様な高さの凸環部とそれよりも径の小さい凹環部とが長手方向に交互に形成されている節形状とすることができる。
 被覆PC鋼より線1eは、実施形態1の被覆PC鋼より線1aの製造過程において、外周素線21oをより戻した後、塗装した樹脂を冷却する前に、内周面に凹凸が形成されたローラーに通すことで形成できる。
 〔実施形態2〕
 図10を参照して、実施形態2の被覆PC鋼より線1fを説明する。被覆PC鋼より線1fは、主として光ファイバ4を防食被覆3の内側のより溝22に設ける内側配置タイプである点が実施形態1の被覆PC鋼より線1aと相違する。以下、この相違点を中心に説明し、同様の構成及び効果については説明を省略する。
 被覆PC鋼より線1fは、より線2と防食被覆3と光ファイバ4と外側被覆6とを備える。防食被覆3の材質は、PE樹脂としている。光ファイバ4の構成は、コアとクラッドの材質を石英ガラスとし、一次被覆を備える光ファイバ素線としている。光ファイバ4の配置位置は、より線2を構成する隣り合う3本の素線21(中心素線21cと2本の外周素線21o)に囲まれた三重点に形成されるより溝22としている。光ファイバ4は、このより溝22において、防食被覆3の充填部33でより線2と一体に固定されている。三重点は、素線の数が7本のより線の場合を説明したが、素線の数が19本のより線の場合、上述した種々の素線間、例えば外周素線と内周素線とで囲まれた空間が挙げられる。三重点は、外周素線と内周素線の線径にもよるが、2本の外周素線と1本の内周素線とで囲まれる空間が挙げられる。
 被覆PC鋼より線1fの製造は、より線2の三重点に形成されるより溝22に光ファイバ3が配置された複合線を準備し、その複合線の外周をPE樹脂で覆うと共に、素線21の間にPE樹脂を充填して防食被覆3を形成する。上記複合線の作製は、以下の(1)~(4)のいずれかの方法で行える。
 (1)光ファイバ4の圧送
 より線2の外周を収縮チューブなどの筒状部材(図示略)で囲み、より線2の外側へ流体が逃げず、より線2の軸方向に流路が形成されるようにする。その後、圧縮空気で光ファイバ4を圧送して、より線2の三重点に形成されるより溝22に光ファイバ4を挿入する。
 (2)光ファイバ4のより合わせ
 中心素線21c上に6本の外周素線21oを螺旋状により合わせる際、光ファイバ4をより合わさったより線2の三重点に配置されるように外周素線21oと共により合わせる。
 (3)光ファイバ4の引き入れ
 中心素線21c上に6本の外周素線21oを螺旋状により合わせる際、光ファイバ4よりも細いワイヤを、より合わさったより線2の三重点に配置されるように外周素線21oと共により合わせる。続いて、より線2の一端側のワイヤの先端に光ファイバ4を接続する。そして、より線2の他端側からワイヤを引き抜くことで光ファイバ4を三重点に引き入れる。
 (4)外周素線21oの解撚と光ファイバ4の配置
 中心素線21c上に6本の外周素線21oを螺旋状により合わせてより線2を作製する。このより線2の1本の外周素線21oのよりを解く。そうすると、外周素線21o同士の間に外周素線21oの1本分の隙間が螺旋状に形成される。次に、その隙間に光ファイバ4を配置する。そして、その隙間を埋めるようによりを解いた外側素線21oを配置する。
 以上(1)~(4)のいずれかの方法により上記複合線を作製したら、より線2の外周に溶融状態のPE樹脂を押出する。このとき、より線2を一旦解かなくてもよい。そして、より線2の外周に押し出されたPE樹脂により線2の外周側から圧力を付与して外周素線21oと中心素線21cとの間にPE樹脂を充填する。この状態で、PE樹脂を冷却することで、中心素線21cと2本の外周素線21oとの間の三重点に隙間が形成されることなくPE樹脂が充填された充填部33と、外周素線21oの外周に外周素線21oの螺旋状の輪郭に沿った外周部31とが一連に形成された防食被覆3を形成できる。
 〔作用効果〕
 実施形態2の被覆PC鋼より線1fによれば、以下の効果を奏する事ができる。
 (1)光ファイバ4をより線2の三重点に配置することで、光ファイバ4は3本の素線に囲まれるため、光ファイバ4をより一層保護し易い。
 (2)光ファイバ4を三重点で防食被覆3の充填部33により素線21と一体に固定されているため、光ファイバ4をより線2の伸縮に追従させ易い。
 (3)三重点の隙間を有効活用できるため、被覆PC鋼より線1fの径が大きくなり難い。
 (4)接着剤が不要であり、さらに部品点数を低減できる。
 〔変形例2-1〕
 図11を参照して、変形例2-1の被覆PC鋼より線1gを説明する。被覆PC鋼より線1gは、中心素線21cと外周素線21oの径が異なる点が、実施形態2の被覆PC鋼より線1fと相違し、その他の点は実施形態2の被覆PC鋼より線1fと同様である。即ち、被覆PC鋼より線1gは、より線2と防食被覆3と光ファイバ4とで構成され、より線2の三重点に形成されるより溝22に光ファイバ4が配置されている。以下、この相違点を中心に説明し、同様の構成については説明を省略する。
 外周素線21oの径及び中心素線21cの径は、以下の(1)及び(2)の条件を満たした上で、互いに異ならせるように適宜選択するとよい。
 (1)外周素線21o及び中心素線21cの全素線の総合計断面積が、実施形態2のような外周素線21o及び中心素線21cの径が略同等である場合と同等程度となる。
 (2)隣り合う外周素線21o同士の隙間の長さが、光ファイバ4の径以上である。この隙間の長さとは、外周素線21o同士の間のうち1箇所の間隔を広げて隙間を形成し、他の間隔を閉じたとき、その隙間を形成する二つの外周素線21oの共通外接線に直交する直線のうち、これら外周素線21oの各々に外接する直線同士の間の長さを言う。即ち、中心素線21c上に外周素線21oをより合わせた際に隣り合う外周素線21o同士の間のうち、1箇所の間隔が光ファイバ4の径よりも大きくなる。
 これら(1)及び(2)の条件を満たすことで、外周素線21o同士の間に挿通させ易い適当な工具(例えばローラーカッターなど)で隙間を確保すると光ファイバ4を三重点に配置し易い上に、より線2の外径(包絡円の径)が大きくなり難い。ここでは、外周素線21o及び中心素線21cの径が略同等である場合に比較して、中心素線21cを少し大きくし、外周素線21oを少し小さくしている。
 光ファイバ4の構成は、光ファイバ素線でもよいし、光ファイバ芯線でもよい。ここでは、光ファイバ4の構成は、光ファイバ芯線としている。
 被覆PC鋼より線1gの製造は、次のようにして行える。まず、より線2と光ファイバ4とを準備する。続いて、より線2における隣り合う外周素線21o同士の間のうち1箇所の間隔を広げ、他の間隔は閉じて、光ファイバ4を広げた間隔からより線2の三重点のより溝22に沿って配置する。次に、中心素線21cを挟んでその間隔を広げた箇所と対向する箇所の外周素線21o同士の間の間隔を広げて、同様にして光ファイバ4を配置する。そうして複合線を作製する。次に、複合線の外周に溶融状態のPE樹脂を押し出し、このPE樹脂を冷却する。外周素線21oの径が中心素線21cに比較して小さいため、隣り合う外周素線21o同士の間には隙間が形成される。そのため、実施形態2で説明したような複合線の作製方法を用いることなく光ファイバ4を三重点に配置して複合線を作製できるので、光ファイバ4の配置が容易である。また、防食被覆3の形成の際、より線2のよりを解いたり、溶融状態のPE樹脂に対して外周から圧力を付与したりしなくても外周素線21oと中心素線21cとの間にPE樹脂を容易かつ十分に供給できる。
 〔変形例2-2〕
 図12を参照して、変形例2-2の被覆PC鋼より線1hを説明する。被覆PC鋼より線1hは、光ファイバ4の配置位置が実施形態2の被覆PC鋼より線1fと相違し、その他の点は実施形態2と同様である。即ち、被覆PC鋼より線1hは、より線2と防食被覆3と光ファイバ4とで構成されている。以下、この相違点を中心に説明し、同様の構成については説明を省略する。
 光ファイバ4の構成は、光ファイバ素線でもよいし、光ファイバ芯線でもよい。ここでは、光ファイバ4の構成は、光ファイバ芯線としている。光ファイバ4の配置位置は、隣接する外周素線21o同士の間に形成されるより溝22としている。光ファイバ4の配置位置を隣接する外周素線21o同士の間のより溝22とすることで、光ファイバ4をより線2の三重点に形成されるより溝22に配置する場合に比較して光ファイバ4の配置が容易である。
 被覆PC鋼より線1hは、より線2と光ファイバ4とを準備し、隣接する外周素線21o同士の間のより溝22に光ファイバ4を配置した後、実施形態2と同様にして防食被覆3を形成することで行える。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、図4,5を参照して上述の変形例1-2で防食被覆3が圧入溝35を備える形態を説明したが、圧入溝35ではなく圧入溝35よりも広くて光ファイバ4を圧入することなく収納できる収納溝を備える形態とすることができる。この場合、光ファイバ4を収納溝内で接着剤により固定したり、光ファイバ4を収納溝に配置して外側被覆6により収納溝を封止したりする。そうすれば、光ファイバ4の収納溝からの脱落を防止できる上に、光ファイバ4をより線2の伸縮に追従させ易い。
 本発明の一態様に係る被覆PC鋼より線は、コンクリート構造物の内側に埋設したり、コンクリート構造物の外側に配置したりしてコンクリート構造物を補強することに好適に利用できる。また、本発明の一態様に係る被覆PC鋼より線は、光ファイバをセンサとしてより線全長に亘る緊張状態を確認することに好適に利用できる。
 1a、1b、1c、1d、1e、1f、1g、1h 被覆PC鋼より線、2 より線、21 素線、21c 中心素線、21o 外周素線、22 より溝、3 防食被覆、31 外周部、32 より溝、33 充填部、34、凹部、35、圧入溝、4 光ファイバ、5 固定部材、51 接着剤、6 外側被覆、7 凹凸、71 固体粒子。

Claims (9)

  1.  複数の鋼製の素線をより合わせたより線と、
     前記より線の外周を被覆する外周部を有する防食被覆と、
     前記防食被覆の外周を覆う外側被覆と、
     前記外側被覆の外周面よりも内側で、前記より線のより溝に対応した箇所に前記より線の伸縮に追従するように設けられる光ファイバとを備える被覆PC鋼より線。
  2.  前記光ファイバは、前記防食被覆の表面における前記より溝に接着剤で固定されている請求項1に記載の被覆PC鋼より線。
  3.  前記光ファイバは、接着剤を用いることなく前記防食被覆により固定されている請求項1に記載の被覆PC鋼より線。
  4.  前記光ファイバの一部が前記防食被覆に埋設されて前記防食被覆に一体化されている請求項3に記載の被覆PC鋼より線。
  5.  前記防食被覆は、その表面に前記光ファイバの一部が圧入される圧入溝が形成されている請求項3に記載の被覆PC鋼より線。
  6.  前記防食被覆は、その表面に前記光ファイバ及び前記外側被覆との摩擦抵抗を高める凹凸を有し、
     前記凹凸は、前記より溝により形成される凹凸よりも小さい凹凸である請求項1に記載の被覆PC鋼より線。
  7.  前記光ファイバが、前記より線を構成する外周素線と、前記外周素線に隣接する内周素線又は中心素線とに囲まれた三重点に配置されている請求項1に記載の被覆PC鋼より線。
  8.  前記防食被覆は、前記素線の間に充填される充填部を有する請求項7に記載の被覆PC鋼より線。
  9.  前記より線は、中心素線と、前記中心素線の外周に螺旋状によられた複数の外周素線とを備え、
     隣り合う前記外周素線同士の隙間の長さが、前記光ファイバの径以上である請求項7又は請求項8に記載の被覆PC鋼より線。
PCT/JP2016/050120 2015-01-08 2016-01-05 被覆pc鋼より線 WO2016111290A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16735029.7A EP3243972A4 (en) 2015-01-08 2016-01-05 Covered pc steel twisted wire
US15/542,332 US10815664B2 (en) 2015-01-08 2016-01-05 Coated PC steel stranded cable
EP18209429.2A EP3486394B1 (en) 2015-01-08 2016-01-05 Coated pc steel stranded cable
EP22200642.1A EP4137652A1 (en) 2015-01-08 2016-01-05 Coated pc steel stranded cable
CN201680004944.3A CN107208422A (zh) 2015-01-08 2016-01-05 涂覆pc钢的绞线
AU2016205720A AU2016205720A1 (en) 2015-01-08 2016-01-05 Coated PC Steel Stranded Cable
BR112017014392A BR112017014392A2 (pt) 2015-01-08 2016-01-05 cabo torcido de aço pc revestido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015002709A JP6443803B2 (ja) 2015-01-08 2015-01-08 被覆pc鋼より線
JP2015-002709 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016111290A1 true WO2016111290A1 (ja) 2016-07-14

Family

ID=56355977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050120 WO2016111290A1 (ja) 2015-01-08 2016-01-05 被覆pc鋼より線

Country Status (8)

Country Link
US (1) US10815664B2 (ja)
EP (3) EP4137652A1 (ja)
JP (1) JP6443803B2 (ja)
CN (2) CN109298494B (ja)
AU (1) AU2016205720A1 (ja)
BR (1) BR112017014392A2 (ja)
ES (1) ES2968258T3 (ja)
WO (1) WO2016111290A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070594A (ja) * 2017-10-10 2019-05-09 住友電工スチールワイヤー株式会社 Pcケーブルの損傷検知方法
WO2023021797A1 (ja) * 2021-08-20 2023-02-23 住友電気工業株式会社 光ファイバー付きpc鋼撚り線、ひずみ測定装置、光ファイバー付きpc鋼撚り線の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640676B2 (ja) * 2016-08-15 2020-02-05 鹿島建設株式会社 管理方法及び管理装置
CN107478564B (zh) * 2017-06-30 2023-10-24 石家庄铁道大学 基于光纤传感的预应力锚索腐蚀损伤监测方法及装置
EP3674484B1 (en) * 2017-08-25 2023-04-05 Sumitomo Electric Industries, Ltd. Concrete structure and method for manufacturing same
CN107724138A (zh) * 2017-11-14 2018-02-23 浙锚科技股份有限公司 一种智能填充型环氧涂层钢绞线及制作方法
JP6869877B2 (ja) * 2017-12-04 2021-05-12 住友電気工業株式会社 光ファイバー取出し用装置、光ファイバー取出し方法
JP2019113424A (ja) * 2017-12-22 2019-07-11 ナブテスコ株式会社 犠牲部材を用いた腐食の検知
CN109183475A (zh) * 2018-08-30 2019-01-11 江阴法尔胜住电新材料有限公司 一种点式布置光纤光栅智能钢绞线及制备方法
CN110043042B (zh) * 2019-04-19 2021-01-15 宁波冶金勘察设计研究股份有限公司 预应力筋梳理定位器及其施工方法
CN114000368A (zh) * 2021-11-25 2022-02-01 江苏狼山钢绳股份有限公司 一种信号线防护用抗扭低延伸铠装稳定结构钢丝绳

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046527A (ja) * 1998-07-29 2000-02-18 Tokyu Constr Co Ltd ひずみ検知付きpc材、そのひずみ検知システム及び方法
JP2002221457A (ja) * 2001-01-26 2002-08-09 Toa Grout Kogyo Co Ltd 光ファイバセンサを用いたアンカー材軸力計測方法および装置
JP2010174423A (ja) * 2009-01-30 2010-08-12 Sumitomo Denko Steel Wire Kk 点検可能ポリエチレン被覆エポキシストランド

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2460492A1 (fr) * 1979-06-28 1981-01-23 Cables De Lyon Geoffroy Delore Cable sous-marin a fibres optiques
US4696542A (en) * 1982-08-17 1987-09-29 Chevron Research Company Armored optical fiber cable
JPS61217012A (ja) * 1985-03-22 1986-09-26 Furukawa Electric Co Ltd:The 光フアイバケ−ブル
JPS6218917U (ja) * 1985-07-17 1987-02-04
CN2326968Y (zh) 1997-11-12 1999-06-30 黄文生 具光纤导件的纲缆结构
US6490931B1 (en) * 1998-12-04 2002-12-10 Weatherford/Lamb, Inc. Fused tension-based fiber grating pressure sensor
US6584251B1 (en) * 2000-05-23 2003-06-24 Alcatel Solid stranding flextube unit
ATE433007T1 (de) * 2002-05-02 2009-06-15 Fatzer Ag Leuchtendes seil
JP2006090049A (ja) * 2004-09-24 2006-04-06 Sumitomo Denko Steel Wire Kk Pc鋼撚り線
US20070102188A1 (en) * 2005-11-01 2007-05-10 Cable Components Group, Llc High performance support-separators for communications cable supporting low voltage and wireless fidelity applications and providing conductive shielding for alien crosstalk
US7326854B2 (en) * 2005-06-30 2008-02-05 Schlumberger Technology Corporation Cables with stranded wire strength members
CN2825707Y (zh) * 2005-08-19 2006-10-11 江阴法尔胜住电新材料有限公司 磨砂型环氧涂层填充型钢绞线
AU2007209863A1 (en) * 2006-02-01 2007-08-09 Afl Telecommunications Llc Strain sensing device and method of measuring strain
JP2007297777A (ja) * 2006-04-27 2007-11-15 Nippon Steel Engineering Co Ltd 吊り構造用のケーブル及び測定システム
CN100368648C (zh) * 2006-09-30 2008-02-13 江阴法尔胜住电新材料有限公司 整体填充型涂塑钢绞线
JP4625043B2 (ja) * 2007-03-30 2011-02-02 東京製綱株式会社 動索用ワイヤロープ
JP5604760B2 (ja) 2008-12-05 2014-10-15 住友電工スチールワイヤー株式会社 緊張部材
US8224140B2 (en) * 2009-12-11 2012-07-17 Corning Cable Systems Llc Cables with bend insensitive optical fibers
EP2635924A4 (en) * 2010-10-01 2018-03-07 AFL Telecommunications LLC Sensing cable
CN102012285B (zh) * 2010-11-16 2013-09-04 江苏通光光电子有限公司 微形传感光单元及其嵌入式应用
WO2012142588A1 (en) * 2011-04-14 2012-10-18 Endosense S.A. Compact force sensor for catheters
US20130034324A1 (en) * 2011-08-03 2013-02-07 Baker Hughes Incorporated Optical fiber sensor and method for adhering an optical fiber to a substrate
US9575271B2 (en) * 2011-11-01 2017-02-21 Empire Technology Development Llc Cable with optical fiber for prestressed concrete
JP5935343B2 (ja) * 2012-01-19 2016-06-15 住友電気工業株式会社 ケーブル
CN102610318A (zh) * 2012-04-23 2012-07-25 江苏华亚电缆有限公司 一种光纤复合低压电缆
US9488794B2 (en) * 2012-11-30 2016-11-08 Baker Hughes Incorporated Fiber optic strain locking arrangement and method of strain locking a cable assembly to tubing
WO2019032332A1 (en) * 2017-08-08 2019-02-14 Corning Research & Development Corporation RIBBON FIBER RIBBON WITH LOW MITIGATION, OPTICAL FIBER WITH LARGE DIAMETER OF FASHION FIELD AND CABLE
JP2019070593A (ja) * 2017-10-10 2019-05-09 住友電工スチールワイヤー株式会社 光ファイバー付きpc鋼撚り線、ひずみ測定方法、ひずみ測定装置
JP7067733B2 (ja) * 2017-10-10 2022-05-16 住友電気工業株式会社 Pcケーブルの損傷検知方法
JP6869877B2 (ja) * 2017-12-04 2021-05-12 住友電気工業株式会社 光ファイバー取出し用装置、光ファイバー取出し方法
JP6993643B2 (ja) * 2017-12-19 2022-01-13 鹿島建設株式会社 定着構造及び定着方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046527A (ja) * 1998-07-29 2000-02-18 Tokyu Constr Co Ltd ひずみ検知付きpc材、そのひずみ検知システム及び方法
JP2002221457A (ja) * 2001-01-26 2002-08-09 Toa Grout Kogyo Co Ltd 光ファイバセンサを用いたアンカー材軸力計測方法および装置
JP2010174423A (ja) * 2009-01-30 2010-08-12 Sumitomo Denko Steel Wire Kk 点検可能ポリエチレン被覆エポキシストランド

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENTARO MATSUZAKI ET AL.: "The Basic Research on Strain Management of the Concrete Structure Using Optical Fiber", PROCEEDINGS OF THE JAPAN CONCRETE INSTITUTE, vol. 23, no. 1, 2001, pages 637 - 642, XP055466584 *
See also references of EP3243972A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070594A (ja) * 2017-10-10 2019-05-09 住友電工スチールワイヤー株式会社 Pcケーブルの損傷検知方法
JP7067733B2 (ja) 2017-10-10 2022-05-16 住友電気工業株式会社 Pcケーブルの損傷検知方法
WO2023021797A1 (ja) * 2021-08-20 2023-02-23 住友電気工業株式会社 光ファイバー付きpc鋼撚り線、ひずみ測定装置、光ファイバー付きpc鋼撚り線の製造方法

Also Published As

Publication number Publication date
EP4137652A1 (en) 2023-02-22
US10815664B2 (en) 2020-10-27
US20180274237A1 (en) 2018-09-27
CN107208422A (zh) 2017-09-26
CN109298494A (zh) 2019-02-01
EP3486394A1 (en) 2019-05-22
CN109298494B (zh) 2021-01-01
JP2016125330A (ja) 2016-07-11
ES2968258T3 (es) 2024-05-08
EP3243972A4 (en) 2018-10-31
EP3486394B1 (en) 2023-11-29
JP6443803B2 (ja) 2018-12-26
AU2016205720A1 (en) 2017-08-10
BR112017014392A2 (pt) 2018-01-02
EP3243972A1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6443803B2 (ja) 被覆pc鋼より線
US6714708B2 (en) Fiber optic with high strength component
JP6293035B2 (ja) ケーブル
US8746074B2 (en) Strain sensing cable
US20040258373A1 (en) Monitoring cable
KR20080027328A (ko) 광섬유 케이블 및 그 제조방법
CN108139235B (zh) Dptss电缆
JP2019070593A (ja) 光ファイバー付きpc鋼撚り線、ひずみ測定方法、ひずみ測定装置
AU2020205308A1 (en) Multisensing optical fiber cable
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
CN103052903B (zh) 光纤架空地线线缆及其制造方法
JP7067733B2 (ja) Pcケーブルの損傷検知方法
CN210982826U (zh) 复合材料智能筋引出光纤及其熔接部位的保护结构
JP4946338B2 (ja) 構造物敷設用テープ状光ファイバ及びその製造方法
EP2674738B1 (en) Strain sensor, manufacturing method and system
EP4024106B1 (en) Multisensing optical fiber cable
US20050141832A1 (en) Armouring joint, an armoured cable joint and a method for jointing armouring of two armoured cables
KR910008486B1 (ko) 광섬유 케이블
JP7246993B2 (ja) 三心撚り電力ケーブル
KR20050027149A (ko) 분기장치 제조방법
JP2005037641A (ja) 光ファイバケーブル
KR20180021053A (ko) 복합강연선용 광섬유센서유닛과 광섬유센서유닛의 제조방법 및 이를 이용한 복합강연선
JP2004094032A (ja) 光ファイバケーブル用スロット
JP2008298672A (ja) 歪みセンシング用光ケーブル
KR20230017209A (ko) 광섬유를 포함하는 오버헤드 전기 케이블 및 강도 부재 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542332

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016735029

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016205720

Country of ref document: AU

Date of ref document: 20160105

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017014392

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017014392

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170703