WO2016111110A1 - 配向性アパタイト型酸化物イオン伝導体及びその製造方法 - Google Patents

配向性アパタイト型酸化物イオン伝導体及びその製造方法 Download PDF

Info

Publication number
WO2016111110A1
WO2016111110A1 PCT/JP2015/084515 JP2015084515W WO2016111110A1 WO 2016111110 A1 WO2016111110 A1 WO 2016111110A1 JP 2015084515 W JP2015084515 W JP 2015084515W WO 2016111110 A1 WO2016111110 A1 WO 2016111110A1
Authority
WO
WIPO (PCT)
Prior art keywords
apatite
precursor
ion conductor
formula
oxide ion
Prior art date
Application number
PCT/JP2015/084515
Other languages
English (en)
French (fr)
Inventor
慎吾 井手
裕一 阿武
井筒 靖久
淳 大村
林太郎 石井
実 加畑
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP15876983.6A priority Critical patent/EP3244474B1/en
Priority to US15/542,155 priority patent/US10727493B2/en
Priority to JP2016568298A priority patent/JP6412957B2/ja
Priority to CN201580052353.9A priority patent/CN107078316B/zh
Publication of WO2016111110A1 publication Critical patent/WO2016111110A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an oriented apatite-type oxide ion conductor that can be used as a solid electrolyte of a battery such as a solid oxide fuel cell (SOFC), an ion battery, an air battery, a sensor, a catalyst, a separation membrane, and the like. Regarding the method.
  • SOFC solid oxide fuel cell
  • Oxide ion conductors are attracting attention as functional ceramics that can be used in various electrochemical devices such as solid electrolytes of batteries such as fuel cells (SOFC), ion cells, and air cells, sensors, and separation membranes. It is.
  • SOFC fuel cells
  • ion cells ion cells
  • air cells sensors, and separation membranes. It is.
  • oxide ion conductors conventionally, ZrO 2 having a fluorite structure, particularly stabilized ZrO 2 added with Y 2 O 3 has been widely used, and perovskite oxides such as LaGaO 3 are used.
  • perovskite oxides such as LaGaO 3 are used.
  • apatite type oxide ion conductors such as La 10 Si 6 O 27 have recently been reported as oxide ion conductors in which interstitial oxygen moves.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-244282
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-244282
  • the compositional formula is represented by A X B 6 O 1.5X + 12 (where 8 ⁇ X ⁇ 10)
  • the crystal structure is composed of a complex oxide having an apatite type
  • the conductivity of oxygen ions is anisotropic.
  • An oxide ion conductor is disclosed.
  • lanthanum silicate-based oxide ion conductors are known as solid electrolytes that exhibit high ion conductivity in the middle temperature range.
  • the composition formula La 9.33 + x Si 6 O 26 + 1.5x and so on are attracting attention.
  • Lanthanum silicate oxide ionic conductors have low symmetry, that is, highly anisotropic apatite structure and low activation energy for ionic conduction. It is said that it is advantageous for conversion.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-208333
  • Ln X Si 6 O (3X / 2) +12 where Ln is La, The sintered body fired at 1300 ° C. or higher, the main component of which is a trivalent rare earth element of Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, and x is 6 ⁇ x ⁇ 12
  • An oxide ion conductor is disclosed in which the crystal system of the main constituent phase is hexagonal.
  • Patent Document 3 Japanese Patent Laid-Open No. 11-711169 discloses (RE 2 O 3 ) x (SiO 2 ) 6 (RE is La, Ce, Pr, Nd, Sm) fired at a temperature of 1700 ° C. or higher. And x is a sintered body whose main component is a condition of 3.5 ⁇ x ⁇ 6), the main constituent phase of which is an apatite crystal structure Oxide ion conductive ceramics are disclosed.
  • the lanthanum silicate-based oxide ion conductor has anisotropy in its ion conductivity, so that it can be expected to further enhance the ion conductivity by orientation.
  • a production method capable of orienting a lanthanum silicate-based oxide ion conductor in one direction a method of producing a single crystal of LSO by a floating zone method (FZ method) or the like, La 2 O 3 powder and SiO 2 powder And a heat treatment at 700 to 1200 ° C. to produce a composite oxide porous body.
  • the porous body is pulverized into powder, and the powder is mixed with a dispersion medium to form a slurry.
  • the slurry is solidified in the presence of a magnetic field to form a molded body, and then sintered at 1400 to 1800 ° C. to obtain an ion conductive oriented ceramic in which the crystal orientation directions are approximately the same.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2011-37662 discloses that a large-sized one can be easily obtained in spite of a low-cost and simple process, and ion conductivity can be improved.
  • oxide raw material mixing step S1 oxide raw material mixing step S1
  • the mixed oxide raw material is heated and melted to obtain a liquid state, which is cast and then rapidly cooled to obtain a glassy material G (melted glass forming step S2).
  • the glassy material G is heated to 800 to 1400 ° C.
  • a method for producing ion-conducting oriented ceramics is disclosed, characterized in that it is crystallized by heat treatment (crystallization step S3).
  • Patent Document 5 Japanese Patent Laid-Open No. 2013-184862 discloses a first layer mainly composed of La 2 Si 2 O 7 and La 2 [Si 1-x Ge x ] O 5 (however, x represents a number in the range of 0.01 to 0.333.) and a third layer mainly composed of La 2 Si 2 O 7 is composed of the first layer. / A second layer / a third layer joined in this order is heated at a temperature at which element diffusion occurs, and apatite is removed by removing layers other than the most intermediate layer in the laminated structure generated after heating. A method for obtaining a type lanthanum silicogermanate polycrystal is disclosed.
  • the apatite-type lanthanum silicate-based oxide ion conductor can not only exhibit high ion conductivity in the intermediate temperature range, but also has anisotropy in the ion conductivity, so it is unidirectional.
  • the ionic conductivity can be further enhanced by the orientation.
  • cracks occur in the crystal during the manufacturing process, making it difficult to make a large crystal.
  • the manufacturing process is complicated, such as a process for forming a slurry of the sintered body and applying a magnetic field.
  • the present invention is capable of increasing the area by suppressing the occurrence of cracks, and is preferably a new oriented apatite-type oxide ion conductor that can be manufactured at a lower cost by an uncomplicated process and its manufacture It is intended to provide a method.
  • the present invention is, A 9.33 + x [T 6 -y M y] O 26.00 + z (A in the formula, La, Ce, Pr, Nd , Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca , Sr and Ba are one or more elements selected from the group consisting of T, wherein T is an element containing Si or Ge, or both, where M is B, Ge, Zn , Sn, W and Mo are one or more elements selected from the group consisting of, and x in the formula is ⁇ 1 to 1, and y in the formula is 1 to 3.
  • z is ⁇ 2 to 2
  • the ratio of the number of moles of A to the number of moles of M (A / M) is 3 to 10, which is an oriented apatite type oxidation comprising a composite oxide A ionic conductor is proposed.
  • the present invention also provides A 2 + x TO 5 + z (where A is selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr and Ba).
  • T is an element containing Si or Ge, or both.
  • x is ⁇ 1 to 1
  • z is ⁇ 2 to 2.
  • M is one or more elements selected from the group consisting of B, Ge, Zn, Sn, W and Mo.
  • the oriented apatite-type oxide ion conductor proposed by the present invention can be oriented not only in one direction but also can improve ion conductivity. Therefore, the oxide ion conductor proposed by the present invention can be suitably used as a solid electrolyte, a separation membrane, or the like, particularly as a solid electrolyte of a battery such as a fuel cell (SOFC), an ion cell, or an air cell. Moreover, according to the method for producing an oriented apatite type oxide ion conductor proposed by the present invention, oriented crystals can be produced easily and inexpensively. In addition, since the crystal can be oriented in one direction and the occurrence of cracks and the like is suppressed, the area of the oriented apatite-type oxide ion conductor can be increased.
  • FIG. 2 is a polarization micrograph of a cross section of an apatite-type sintered body (sample) obtained in Example 1.
  • FIG. 4 is a polarization micrograph of a cross section of an apatite-type sintered body (sample) obtained in Comparative Example 3.
  • the oxide ion conductor (referred to as “the present oxide ion conductor”) according to an example of the present embodiment has the formula (1): A 9.33 + x [T 6- y My ] O 26.00 + z (wherein A is one or more elements selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr and Ba.
  • T of Si is an element containing Si or Ge or both, and M in the formula is one or more elements selected from the group consisting of B, Ge, Zn, Sn, W and Mo.
  • X in the formula is ⁇ 1 to 1
  • y in the formula is 1 to 3
  • z in the formula is ⁇ 2 to 2
  • the number of moles of A relative to the number of moles of M is It is composed of a complex oxide having an apatite structure (referred to as “present apatite complex oxide”), characterized in that the ratio (A / M) is 3 to 10 It is an oriented apatite-type oxide ion conductor.
  • the “orientation” of the oriented apatite-type oxide ion conductor means that it has an orientation axis, and includes uniaxial orientation and biaxial orientation.
  • the apatite-type complex oxide preferably has c-axis orientation.
  • La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr, and Ba listed as A are ions having a positive charge, and are apatite. It is an element having a common point that it is a lanthanoid or an alkaline earth metal that can constitute a type hexagonal crystal structure.
  • the oxygen ion conductivity it is preferably a combination of one or more elements of the group consisting of La, Nd, Ba, Sr, Ca and Ce, Especially, it is preferable that it is 1 type in La, or Nd, or 1 type in the group which consists of La and Nd, Ba, Sr, Ca, and Ce, or a combination with 2 or more types of elements.
  • T in Formula (1) should just be an element containing Si or Ge, or both.
  • the element M in the formula (1) is introduced by reaction with a metastable precursor (A 2 + x TO 5 + z described later) in the gas phase, and as a result, the precursor is changed to an apatite structure. Crystals can be oriented in one direction. From this point of view, the M element may be any element that can obtain a required vapor pressure at a temperature of 1000 ° C. or higher at which the precursor has an apatite structure.
  • the “required vapor pressure” means a vapor pressure that can move in the atmosphere in a gas phase and can proceed from the precursor surface to the inside by diffusing at grain boundaries or within the grains. .
  • examples of the M element include one or more elements selected from the group consisting of B, Ge, Zn, W, Sn, and Mo.
  • B, Ge, Zn, and the like are particularly preferable in terms of a high degree of orientation and high productivity (orientation speed).
  • y is preferably 1 to 3 from the viewpoint of filling the position of the T element in the apatite type crystal lattice, more preferably 1 or more and 2 or less, and more preferably 1.00 or more or 1.62 or less. Is preferred.
  • z is preferably ⁇ 2 to 2 from the viewpoint of maintaining electrical neutrality in the apatite-type crystal lattice, more preferably ⁇ 1.5 or more and 1.5 or less. It is preferably ⁇ 1 or more or 1 or less.
  • the ratio of the number of moles of A to the number of moles of M (A / M), in other words, (9.33 + x) / y in the formula (1) is spatial From the viewpoint of maintaining the occupation ratio, it is preferably 3 to 10, more preferably 6.2 or more and 9.2 or less, and particularly preferably 7 or more and 9 or less.
  • Equation (1) Specific examples of A 9.33 + x [T 6- y M y] O 26.00 + z is, La 9.33 + x (Si 4.7 B 1.3) O 26 + z, La 9.33 + x (Si 4.7 Ge 1.3 ) O 26 + z , La 9.33 + x (Si 4.7 Zn 1.3 ) O 26 + z , La 9.33 + x (Si 4.7 W 1.3 ) O 26 + z , La 9.33 + x (Si 4.7 Sn 1.3 ) O 26+ x , La 9.33 + x (Ge 4.7 B 1.3 ) O 26 + z, and the like. However, it is not limited to these.
  • This apatite-type composite oxide can have an orientation degree measured by the Lotgering method, that is, the Lotgering orientation degree can be 0.6 or more, more preferably 0.8 or more, and particularly preferably 0.9 or more. it can.
  • the Lotgering orientation degree of this apatite-type composite oxide is 0.6 or more, more preferably 0.8 or more, and particularly preferably 0.9 or more. It can.
  • a precursor represented by A 2 + x TO 5 + z is prepared in a single phase and a high density (relative density of 80% or more). Is preferred. However, it is not limited to this method.
  • This apatite-type composite oxide can have an oxygen ion conductivity of 10 ⁇ 4 S / cm or more at 500 ° C., particularly 10 ⁇ 3 S / cm or more, and particularly 10 ⁇ 2 S / cm or more. can do.
  • the Lotgering orientation degree is preferably 0.6 or more. However, it is not limited to this method.
  • the apatite-type composite oxide can have a transport number of 0.8 or more, particularly 0.9 or more, and particularly 0.95 or more.
  • the transport number of the present apatite-type composite oxide it is preferable that the purity of A 9.33 + x [T 6- y My ] O 26.00 + z is 90% or more.
  • the method for producing an oxide ion conductor according to an example of the present embodiment has the formula (2): A 2 + x TO 5 + z (where A is La, Ce, One or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr and Ba, where T is Si or Ge or In the formula, x is ⁇ 1 to 1 and z is ⁇ 2 to 2.
  • a precursor represented by M element (M is B, Ge, Zn, Sn, W).
  • the oxide ion conductor having an apatite type structure in which the crystal is oriented in one direction can be obtained, but also the generation of cracks and the like in the crystal can be suppressed. It is possible to produce an oriented apatite-type oxide ion conductor.
  • the element M in the gas phase (cation) reacts with the precursor from the surface of the precursor to form an oriented apatite composite oxide, and the reaction at the interface between the precursor and the generated apatite phase proceeds.
  • the entire precursor can be an oriented apatite complex oxide. Therefore, the present oxide ion conductor can be manufactured by this manufacturing method.
  • the oxide ion conductor that can be produced by the production method is not limited to the above-described oxide ion conductor.
  • the precursor in this manufacturing method should just be a compound shown by said Formula (2), and a non-oriented body may be sufficient as it.
  • the precursor may be, for example, a sintered body, a molded body, or a film body.
  • the precursor may be, for example, a compound obtained by a wet synthesis method such as a sol-gel method or a hydrothermal synthesis method using a target compound containing A and T elements as a raw material, and contains A and T elements.
  • a compound obtained by sintering a compound may be used, or a film formed by sputtering or the like may be used.
  • the sintered body of the precursor for example, even a composite oxide sintered body obtained by mixing and heating two or more kinds of oxides by a solid phase method, the sintered body is pulverized. Even a green compact formed by pressure-molding the powder obtained in this way, a sintered body obtained by further heating and sintering the green compact (“composite oxide compacting and firing”). It may be prepared as a “conjugate”.
  • the composite oxide powder compacted sintered body is preferable from the viewpoint of the density of the final oriented apatite-type oxide ion conductor, and among them, cold isostatic pressing (CIP) is particularly preferable.
  • a method for preparing the precursor it is preferable to heat and sinter in the atmosphere at 1100 ° C. to 1700 ° C.
  • a mixture of compounds containing A and T as raw materials in the atmosphere is preferably 1200 ° C. to More preferably, after heating at 1700 ° C., the powder compact is again sintered in the atmosphere at 1300 ° C. to 1700 ° C. for sintering.
  • the first firing mainly has the role of synthesizing the composite oxide
  • the second firing mainly has the role of sintering.
  • the amount of M element doped from the gas phase is determined by the composition ratio of the precursor. Therefore, the amount of M element in the apatite silicate, germanate or silicogermanate produced by the vapor phase method, that is, the present apatite complex oxide depends on the composition ratio of the precursor. From this point of view, x in the formula (2) is preferably ⁇ 1 to 1, more preferably ⁇ 0.4 or more and 0.7 or less, and particularly preferably 0 or more and 0.6 or less.
  • z is preferably ⁇ 2 to 2 from the viewpoint of maintaining electrical neutrality in the precursor crystal lattice and chemically maintaining the crystal structure, and in particular, ⁇ 0.6 or more Alternatively, it is preferably 1 or less, and more preferably 0 or more or 0.7 or less.
  • composition of the precursor examples include La 2 SiO 5 , Nd 2 SiO 5 , LaNdSiO 5 , La 2 GeO 5 and the like. However, it is not limited to these.
  • the gas phase-solid phase diffusion step in this production method is characterized in that oriented crystals grow from the gas phase-solid phase interface.
  • M element is introduced from the gas phase, and an oriented sintered body having a target composition can be obtained.
  • the M element in the gas phase is oriented in the process of entering the crystal through the surface of the precursor. Therefore, the orientation direction can be controlled by masking a part of the surface of the precursor compacted body sintered body.
  • the element M only needs to be an element that becomes a gas phase at 1000 ° C. or higher at which the precursor changes to an apatite-type crystal structure and can obtain a necessary vapor pressure.
  • the “required vapor pressure” means a vapor pressure that can move in the atmosphere in a gas phase and can proceed from the surface of the precursor to the inside by diffusing at grain boundaries or within the grains.
  • examples of the M element include one or two or more elements selected from the group consisting of B, Ge, Zn, W, Sn, and Mo. These can obtain an oriented apatite structure sintered body in which the M element is introduced into the T site by the reaction between the M element in the gas phase and the precursor surface.
  • examples of the compound containing the M element include B 2 O 3 , H 3 BO 3 , LaBO 3 , and LaB 6 .
  • Amorphous materials such as borosilicate glass can also be used.
  • the M element is Zn, ZnO, Zn metal, Zn 2 SiO 4 and the like can be mentioned.
  • Ge, GeO 2 and Ge metal can be mentioned, and W
  • WO 3, WO 2, W metal and the like can be mentioned, in the case of Sn, SnO 2, SnO, can be mentioned, such as Sn metal, in the case of Mo, MoO 2, Examples thereof include MoO 3 , MoSi 2 , and Mo metal.
  • the gas phase containing M element may contain any of ions containing M element, vapor containing M element, gas containing M element, and the like.
  • the vapor phase may include a vapor containing M element and oxygen. Therefore, the heating atmosphere at this time, that is, the atmosphere in the container containing the M element may be any of an air atmosphere, a vacuum state, an oxidizing atmosphere, a reducing atmosphere and an inert atmosphere.
  • the gas phase-solid phase diffusion step as a specific method of heating the precursor in a gas phase containing M element, for example, the precursor represented by the A 2 + x TO 5 + z ,
  • the compound containing M element is placed in a container, for example, a closed container or a lidded container, and heated to vaporize the compound containing M element, and the atmosphere in the container is changed to the M element.
  • What is necessary is just to make it react the said M element and the surface of the said precursor as a gaseous-phase atmosphere to contain.
  • the “container” in the gas phase-solid phase diffusion process means a material that limits the space necessary for obtaining the “required vapor pressure” described above.
  • a reaction tube, a chamber, a lidded mortar Etc is not limited to these.
  • the B 2 O 3 powder is vaporized by heating the sintered body of La 2 SiO 5 composition and the B 2 O 3 powder at 1200 to 1600 ° C. in the same lidded alumina container. Then, the atmosphere in the vessel is made a gas phase atmosphere containing B element, and c-axis oriented apatite La 9.33 + x (Si 4.7 B 1.3 ) O 26 + z in which B is substituted at the Si site is synthesized. it can.
  • the heating temperature (furnace set temperature) in the vapor phase-solid phase diffusion step is preferably 1000 ° C. or higher, more preferably 1100 ° C. or higher, and particularly preferably 1200 ° C. or higher.
  • the upper limit of the heating temperature is not particularly limited, but it is understood that the upper limit temperature is around 1700 ° C. at which the crystal structure of the apatite-type composite oxide can be maintained.
  • a usage pattern of the oxide ion conductor As an example of a usage pattern of the oxide ion conductor, a usage pattern as a solid electrolyte of an electrode assembly having a configuration in which electrodes are laminated on both surfaces of the oxide ion conductor can be given.
  • the shape of the oxide ion conductor is not limited. For example, in addition to a flat membrane shape, there may be a cylindrical shape. For example, when the oxide ion conductor has a cylindrical shape, electrodes are usually stacked on the inner and outer peripheral surfaces thereof.
  • the electrode assembly as described above using the oxide ion conductor is used as a fuel cell (SOFC) cell
  • a fuel gas is supplied to the anode electrode of the electrode assembly and the cathode electrode is supplied to the cathode electrode.
  • an oxidant air, oxygen, etc.
  • oxygen atoms that have received electrons at the cathode electrode become O 2 ⁇ ions and reach the anode electrode through the solid electrolyte. It is possible to generate electricity by linking with hydrogen and releasing electrons.
  • the electrode assembly as described above using the oxide ion conductor is used as an oxygen sensor, for example, one side of the electrode assembly is exposed to a reference gas and the opposite side is exposed to a measurement atmosphere. And an electromotive force is generated according to the oxygen concentration of the measurement atmosphere. Therefore, for example, when the reference gas is air and the measurement atmosphere is exhaust gas from the internal combustion engine, it can be used for air-fuel ratio control of the exhaust gas.
  • the electrode assembly using the oxide ion conductor as described above is used as an oxygen separation membrane
  • air is supplied to the cathode electrode in the same manner as when used as a fuel cell (SOFC) cell.
  • SOFC fuel cell
  • oxygen atoms that have received electrons at the cathode become O 2 ⁇ ions, reach the anode electrode through the solid electrolyte, and emit electrons here to form O 2 ⁇ ions with each other. By binding, only oxygen molecules can be transmitted.
  • the thickness of the oxide ion conductor is preferably 0.01 ⁇ m to 1000 ⁇ m from the viewpoint of suppressing electrical resistance and manufacturing stability, and more preferably 0.1 ⁇ m or more or 500 ⁇ m or less. It is more preferable.
  • the electrode used for the said use is a porous form.
  • the material of the electrode a known material for the application can be appropriately used, and the thickness is preferably about 0.01 to 70 ⁇ m.
  • Example 1 La 2 O 3 and SiO 2 are mixed at a molar ratio of 1: 1, ethanol is added and mixed in a ball mill, then the mixture is dried, pulverized in a mortar, and a Pt crucible is used. And calcined at 1650 ° C. for 3 hours in an air atmosphere. Next, ethanol was added to the fired product and pulverized with a planetary ball mill to obtain a pre-fired powder. Next, the pre-fired powder was put into a 20 mm ⁇ molding machine and pressed from one direction to be uniaxially molded, and further subjected to cold isostatic pressing (CIP) at 600 MPa for 1 minute to form a pellet. .
  • CIP cold isostatic pressing
  • this pellet-shaped molded body was heated in the atmosphere at 1600 ° C. for 3 hours to obtain a pellet-shaped sintered body, and the surface of the obtained pellet-shaped sintered body was polished with a diamond grindstone to obtain a precursor. . From the results of powder X-ray diffraction and chemical analysis of the precursor thus obtained, it was confirmed that the precursor had a La 2 SiO 5 structure.
  • Example 2-6> In the preparation of the precursor of Example 1, the precursor (A 2 + x TO 5 + z ) shown in Table 1 was prepared by changing the molar ratio of La 2 O 3 and SiO 2. Similar to Example 1, an apatite-type sintered body (sample) was obtained. The composition shown in Table 1 was confirmed from the results of powder X-ray diffraction and chemical analysis of the obtained precursor.
  • Example 7 GeO 2 was used instead of SiO 2 and the precursor (A 2 + x TO 5 + z ) was calcined for 50 hours in the same manner as in Example 1, except that the precursor (A 2 + xTO 5 + z ) and apatite-type sintered bodies (samples) were prepared.
  • Example 8 a precursor (A 2 + x TO 5 + z ) and an apatite-type sintered body (sample) were prepared in the same manner as in Example 1 except that GeO 2 was used together with SiO 2 . .
  • Example 9-13> In place of B 2 O 3 powder, GeO 2 , ZnO, WO 3 or SnO 2 was used, and in the case of ZnO, the firing temperature was changed to 1500 ° C., and in the case of SnO 2 or WO 3 the firing temperature was changed to 1400 ° C. In the same manner as in Example 1, a precursor (A2 + xTO5 + z ) and an apatite-type sintered body (sample) were prepared.
  • the embodiment 13 put the MoO 3 with B 2 O 3 powder in a covered Napishtim bowl, except that calcined in the same manner as in Example 1, the precursor (A 2 + x TO 5 + z) and An apatite-type sintered body (sample) was produced.
  • Example 14 In the preparation of the precursor of Example 1, the precursor (A 2 + x TO 5 + z ) and apatite type were used in the same manner as in Example 1 except that Nd 2 O 3 was used instead of La 2 O 3. A sintered body (sample) was obtained.
  • Example 15-20> In the same manner as in Example 1 except that Nd 2 O 3 , BaCO 3 , SrCO 3 , CaCO 3 or CeO 2 was used together with La 2 O 3 , the precursor (A 2 + x TO 5 + z ) and An apatite-type sintered body (sample) was obtained.
  • the composition shown in Table 1 was confirmed from the results of powder X-ray diffraction and chemical analysis of the obtained precursor.
  • the main constituent phases of the apatite-type sintered bodies (samples) of all the examples were The space group had an apatite crystal structure belonging to P6 3 / m, and the composition shown in Table 1 was confirmed. Moreover, about the apatite type sintered compact (sample) of any Example, as a result of observing with a polarizing microscope and a scanning electron microscope, the crack was not recognized.
  • Example 1 In the same manner as in Example 1, a precursor was prepared and heated at 1550 ° C. (furnace atmosphere temperature) for 50 hours in the air without adding the compound containing the M element. The result of powder X-ray diffraction and chemical analysis of the obtained sintered body was La 2 SiO 5 structure, and no apatite type crystal structure was obtained.
  • the obtained powder is pulverized with a planetary ball mill, put into a 20 mm ⁇ molding machine, pressed from one direction, formed into a pellet, and further pressed with 600 MPa cold isostatic pressing (CIP) for 1 minute.
  • CIP cold isostatic pressing
  • a molded body was obtained. The molded body was heated in the atmosphere at 1600 ° C. for 3 hours to obtain an apatite-type sintered body (sample).
  • the obtained powder was pulverized with a planetary ball mill and then put in a dispersion medium to which a dispersant was added to form a slurry.
  • the produced slurry was solidified by a casting method while applying a strong magnetic field of 10T.
  • the compact was heated in air at 1600 ° C. for 10 hours to obtain an apatite-type sintered body (sample).
  • the degree of orientation was calculated by the Lotgering method using the following formula. Using the ratio ⁇ of the sum of all peak intensities obtained by apatite-type sintered bulk X-ray diffraction and the sum of both peak intensities attributed to (002) and (004), the degree of orientation can be calculated from the following formula (1). f was calculated.
  • the transport number was calculated from an electromotive force measurement by preparing an oxygen concentration cell (oxygen concentration 1.0% / 21.0%). For a cell using silver paste as an electrode, the electromotive force at 900 ° C. to 400 ° C. is measured, and the theoretical electromotive force value at each temperature calculated from the oxygen concentration and the cell using the obtained apatite type sintered body The ratio with the measured value was taken as the transportation number.
  • a 2 + x TO 5 + z (A: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca , One or more elements selected from the group consisting of Sr and Ba, T: an element containing Si or Ge, or both, x: ⁇ 1 to 1, z: ⁇ 2 to 2.
  • M element one or more elements selected from the group consisting of B, Ge, Zn, Sn, W and Mo
  • M element one or more elements selected from the group consisting of B, Ge, Zn, Sn, W and Mo

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

 クラックの発生を抑制して大面積化を図ることができ、好ましくは複雑でないプロセスでより安価に製造することができる、新たな配向性アパタイト型酸化物イオン伝導体を提供せんとするべく、A9.33+x[T6-yy]O26.00+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で示され、式中のxは-1~1であり、式中のyは1~3であり、式中のzは-2~2であり、Mのモル数に対するAのモル数の比率(A/M)が3~10であることを特徴とする複合酸化物からなる配向性アパタイト型酸化物イオン伝導体を提案する。

Description

配向性アパタイト型酸化物イオン伝導体及びその製造方法
 本発明は、固体電解質形燃料電池(SOFC)、イオン電池、空気電池などの電池の固体電解質、さらにはセンサーや触媒、分離膜などとして利用可能な配向性アパタイト型酸化物イオン伝導体及びその製造方法に関する。
 酸化物イオン伝導体は、燃料電池(SOFC)、イオン電池、空気電池などの電池の固体電解質や、センサーや分離膜など、様々な電気化学デバイスに利用可能な機能性セラミックスとして注目されている材料である。
 酸化物イオン伝導体としては、従来から、蛍石型構造を有するZrO2、特にY23を添加した安定化ZrO2が広範囲に使用されているほか、LaGaO3などのペロブスカイト型酸化物などが広く知られていた。
 従来から知られていたこの種の酸化物イオン伝導体の多くは、酸素欠陥を導入し、この酸素欠陥を通して酸素イオンが移動する欠陥構造型のものであった。これに対し、最近、格子間酸素が移動する酸化物イオン伝導体として、La10Si627などのアパタイト型酸化物イオン伝導体が報告されている。
 アパタイト型酸化物イオン伝導体に関しては、例えば特許文献1(特開2004-244282号公報)には、3価の元素Aと、4価の元素Bと、酸素Oとを構成元素として有し、組成式がA1.5X+12(ただし、8≦X≦10)で表されるとともに、結晶構造がアパタイト型である複合酸化物からなり、かつ酸素イオンの伝導度に異方性を有する酸化物イオン伝導体が開示されている。
 このようなアパタイト型酸化物イオン伝導体の中でも、ランタンシリケート系の酸化物イオン伝導体は、中温領域で高いイオン伝導性を発揮する固体電解質として知られており、例えば組成式La9.33+xSi626+1.5xなどが注目されている。
 ランタンシリケート系の酸化物イオン伝導体は、対称性の低い、つまり異方性の高いアパタイト構造を有し、イオン伝導の活性化エネルギーが低いことから、SOFCの固体電解質とした場合、特に低温作動化に有利であると言われている。
 この種のランタンシリケート系の酸化物イオン伝導体に関しては、例えば特許文献2(特開平8-208333号公報)において、LnXSi6(3X/2)+12(但し、Lnは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dyの3価の希土類元素であり、xは6<x<12である)を主成分とし、1300℃以上で焼成された該焼結体の主構成相の結晶系が六方晶からなることを特徴とする酸化物イオン伝導体が開示されている。
 また、特許文献3(特開平11-71169号公報)には、1700℃以上の温度で焼成された(RE23x(SiO26(REはLa,Ce,Pr,Nd,Smから選択される元素であり、xは3.5<x<6の条件を満たす。)を主成分とする焼結体であって、その主構成相がアパタイト結晶構造であることを特徴とする酸化物イオン導電性セラミックスが開示されている。
 ところで、ランタンシリケート系の酸化物イオン伝導体は、そのイオン伝導性に異方性があることから、配向させることによりイオン伝導性をさらに高めることが期待できる。
 ランタンシリケート系の酸化物イオン伝導体を一方向に配向させることができる製造方法として、フローティングゾーン法(FZ法)等によってLSOの単結晶を作製する方法や、La23粉末とSiO2粉末とを混合した後、700~1200℃で熱処理して複合酸化物の多孔質体を生成し、この多孔質体を粉砕して粉体とした後、該粉体を分散媒と混合してスラリーとし、このスラリーを磁場の存在下で固化させて成形体とした後、これを1400~1800℃で焼結させることにより、結晶の配向方向を概ね一致させたイオン伝導性配向セラミックスを得る方法などが提案されている。
 また、特許文献4(特開2011-37662号公報)には、低コスト且つシンプルなプロセスであるにもかかわらず、大型のものを簡単に得ることができ、しかもイオン伝導性の向上が可能なイオン伝導性配向セラミックスの製造方法を提供するべく、先ず、ランタノイドの酸化物粉末とSi又はGeの少なくとも一方の酸化物粉末とを含む酸化物原料を混合した後(酸化物原料混合工程S1)、混合した前記酸化物原料を加熱溶融させて液体状態とし、これをキャストした後、急冷してガラス状物Gを得(溶融ガラス化工程S2)、次いで、前記ガラス状物Gを800~1400℃で熱処理して結晶化させる(結晶化工程S3)、ことを特徴とするイオン伝導性配向セラミックスの製造方法が開示されている。
 さらには、特許文献5(特開2013-184862号公報)には、LaSiを主成分とする第1の層と、La[Si1-xGex]O(ただし、xは0.01~0.333の範囲の数を示す。)を主成分とする第2の層と、LaSiを主成分とする第3の層とを、第1の層/第2の層/第3の層の順に接合してなる接合体を元素拡散が生じる温度で加熱し、加熱後に生成する積層構造のうち最も中間に位置する層以外の層を除去してアパタイト型シリコゲルマン酸ランタン多結晶体を得る方法が開示されている。
特開2004-244282号公報 特開平8-208333号公報 特開平11-71169号公報 特開2011-37662号公報 特開2013-184862号公報
 前述のように、アパタイト型ランタンシリケート系の酸化物イオン伝導体は、中温領域で高いイオン伝導性を発揮することができるばかりか、そのイオン伝導性に異方性があることから、一方向に配向させることによりイオン伝導性をさらに高めることができる。しかしながら、従来知られていた配向性アパタイト型ランタンシリケート系の酸化物イオン伝導体及びその製造方法によると、製造過程で結晶内にクラックが発生してしまうため、大型の結晶を作ることが困難であったり、焼結体のスラリー化や磁場を与えるプロセスなど、製造プロセスが複雑であるために製造コストが高くなったりするなどの問題を抱えていた。
 そこで本発明は、クラックの発生を抑制して大面積化を図ることができ、好ましくは複雑でないプロセスでより安価に製造することができる、新たな配向性アパタイト型酸化物イオン伝導体及びその製造方法を提供せんとするものである。
 本発明は、A9.33+x[T6-yy]O26.00+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で示され、式中のxは-1~1であり、式中のyは1~3であり、式中のzは-2~2であり、Mのモル数に対するAのモル数の比率(A/M)が3~10であることを特徴とする複合酸化物からなる配向性アパタイト型酸化物イオン伝導体を提案する。
 本発明はまた、A2+xTO5+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のxは-1~1、zは-2~2である。)で示される前駆体を、M元素(Mは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)を含有する気相中で加熱することにより、当該M元素と前記前駆体との反応により、当該前駆体をアパタイト構造とし、且つ一方向に配向させることを特徴とする工程(「気相-固相拡散工程」と称する)を備えた、配向性アパタイト型酸化物イオン伝導体の製造方法を提案する。
 本発明が提案する配向性アパタイト型酸化物イオン伝導体は、一方向に配向させることができるばかりか、イオン伝導性を高めることができる。よって、本発明が提案する酸化物イオン伝導体は、固体電解質や分離膜などとして、特に燃料電池(SOFC)、イオン電池、空気電池などの電池の固体電解質として好適に用いることができる。
 また、本発明が提案する配向性アパタイト型酸化物イオン伝導体の製造方法によれば、配向結晶を容易に且つ安価に製造することができる。また、結晶を一方向に配向させることができると共に、クラックなどの発生を抑制することから、配向性アパタイト型酸化物イオン伝導体の大面積化を図ることができる。
実施例1で得られたアパタイト型焼結体(サンプル)の断面の偏光顕微鏡写真である。 比較例3で得られたアパタイト型焼結体(サンプル)の断面の偏光顕微鏡写真である。
 次に、実施の形態例に基づいて本発明について説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
<本酸化物イオン伝導体>
 本実施形態の一例に係る酸化物イオン伝導体(「本酸化物イオン伝導体」と称する)は、式(1):A9.33+x[T6-yy]O26.00+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で示され、式中のxは-1~1であり、式中のyは1~3であり、式中のzは-2~2であり、Mのモル数に対するAのモル数の比率(A/M)が3~10であることを特徴とする、アパタイト型構造を有する複合酸化物(「本アパタイト型複合酸化物」と称する)からなる配向性アパタイト型酸化物イオン伝導体である。
 なお、配向性アパタイト型酸化物イオン伝導体の“配向性”とは、配向軸を有しているという意味であり、一軸配向及び二軸配向を包含する。本アパタイト型複合酸化物においてはc軸配向性を有しているのが好ましい。
 式(1)において、Aとして挙げられた、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaは、正の電荷を有するイオンとなり、アパタイト型六方晶構造を構成し得るランタノイド又はアルカリ土類金属であるという共通点を有する元素である。これらの中でも、酸素イオン伝導度をより高めることができる観点から、La、Nd、Ba、Sr、Ca及びCeからなる群のうちの一種又は二種以上の元素との組み合わせであるのが好ましく、中でも、La,又はNdのうちの一種、或いは、LaとNd、Ba、Sr、Ca及びCeからなる群のうちの一種又は二種以上の元素との組み合わせであるのが好ましい。
 また、式(1)におけるTは、Si又はGe又はその両方を含む元素であればよい。
 式(1)におけるM元素は、気相中において、準安定な前駆体(後述するA2+xTO5+z)との反応により導入され、その結果、該前駆体をアパタイト構造に変化させると共に、結晶を一方向に配向させることができる。
 かかる観点から、M元素としては、上記前駆体がアパタイト構造をとることになる1000℃以上の温度で気相となって、必要な蒸気圧を得ることができる元素であればよい。なお、「必要な蒸気圧」とは、雰囲気中を気相状態で移動でき、上記前駆体表面から内部に向って粒界又は粒内拡散して反応を進めることができる蒸気圧の意である。
 よって、このような観点から、M元素として、例えばB、Ge、Zn、W、Sn及びMoからなる群から選ばれた一種又は二種以上の元素を挙げることができる。中でも、高配向度や高生産性(配向速度)の点で、B、Ge及びZnなどが特に好ましい。
 式(1):A9.33+x[T6-yy]O26.00+zにおいて、xは、配向度及び酸素イオン伝導性を高めることができる観点から、-1~1であるのが好ましく、中でも0.00以上或いは0.70以下、その中でも0.45以上或いは0.65以下であるのが好ましい。
 式(1)中のyは、アパタイト型結晶格子におけるT元素位置を埋めるという観点から、1~3であるのが好ましく、中でも1以上或いは2以下、その中でも1.00以上或いは1.62以下であるのが好ましい。
 式(1)中のzは、アパタイト型結晶格子内での電気的中性を保つという観点から、-2~2であるのが好ましく、中でも-1.5以上或いは1.5以下、その中でも-1以上或いは1以下であるのが好ましい。
 また、式(1)において、Mのモル数に対するAのモル数の比率(A/M)、言い換えれば、式(1)における(9.33+x)/yは、アパタイト型結晶格子における空間的な占有率を保つという観点から、3~10であるのが好ましく、中でも6.2以上或いは9.2以下、その中でも7以上或いは9以下であるのが好ましい。
 式(1):A9.33+x[T6-yy]O26.00+zの具体例としては、La9.33+x(Si4.71.3)O26+z、La9.33+x(Si4.7Ge1.3)O26+z、La9.33+x(Si4.7Zn1.3)O26+z、La9.33+x(Si4.71.3)O26+z、La9.33+x(Si4.7Sn1.3)O26+x、La9.33+x(Ge4.71.3)O26+z、などを挙げることができる。但し、これらに限定するものではない。
 本アパタイト型複合酸化物は、ロットゲーリング法で測定した配向度、すなわちロットゲーリング配向度を0.6以上とすることができ、中でも0.8以上、その中でも特に0.9以上とすることができる。
 本アパタイト型複合酸化物のロットゲーリング配向度を0.6以上とするためには、A2+xTO5+zで示される前駆体を単一相且つ高密度(相対密度80%以上)に調製するのが好ましい。ただし、かかる方法に限定するものではない。
 本アパタイト型複合酸化物は、酸素イオン伝導率を、500℃で10-4S/cm以上とすることができ、中でも10-3S/cm以上、その中でも特に10-2S/cm以上とすることができる。
 本アパタイト型複合酸化物の500℃での酸素イオン伝導率を10-4S/cm以上とするためには、ロットゲーリング配向度を0.6以上とするのが好ましい。ただし、かかる方法に限定するものではない。
 本アパタイト型複合酸化物は、輸率を0.8以上とすることができ、中でも0.9以上、その中でも特に0.95以上とすることができる。
 本アパタイト型複合酸化物の輸率を0.8以上とするためには、A9.33+x[T6-yy]O26.00+zの純度を90%以上とするのが好ましい。ただし、かかる方法に限定するものではない。
<酸化物イオン伝導体の製造方法>
 本実施形態の一例に係る酸化物イオン伝導体の製造方法(「本製造方法」と称する)は、式(2):A2+xTO5+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のxは-1~1、zは-2~2である。)で示される前駆体を、M元素(Mは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)を含有する気相中で加熱することにより、当該M元素と前記前駆体との反応により、当該前駆体を配向アパタイト構造とする工程(「気相-固相拡散工程」と称する)を備えた製法である。
 本製造方法は、気相-固相拡散工程を備えていればよいから、他の工程を追加することは任意である。
 本製造方法によれば、結晶が一方向に配向したアパタイト型構造を有する酸化物イオン伝導体を得ることができるばかりか、結晶内のクラックなどの発生を抑制することができるから、より大面積の配向性アパタイト型酸化物イオン伝導体を製造することができる。
 気相中のM元素(カチオン)が、前記前駆体の表面から前駆体と反応して配向アパタイト複合酸化物を形成しはじめ、前駆体と生成したアパタイト相との界面における反応が進むことで、前駆体全体を配向アパタイト複合酸化物とすることができる。
 したがって、本製造方法によって、上記の本酸化物イオン伝導体を製造することができる。但し、本製造方法によって製造することができる酸化物イオン伝導体は、上記の本酸化物イオン伝導体に限定されるものではない。
(前駆体)
 本製法における前駆体は、上記の式(2)で示される化合物であればよく、無配向体であってもよい。
 当該前駆体は、例えば焼結体であっても、成形体であっても、膜体であってもよい。
 当該前駆体は、例えば、目的とするA及びT元素を含む化合物を原料としたゾルゲル法や水熱合成法等の湿式合成法で得られる化合物であってもよいし、A及びT元素を含む化合物を焼結して得られる化合物であってもよいし、また、スパッタリング等で製膜されたものであってもよい。
 中でも、当該前駆体の焼結体としては、例えば、固相法で二種以上の酸化物を混合、加熱して得られた複合酸化物焼結体であっても、該焼結体を粉砕して得られた粉体を加圧成形してなる圧粉成形体であっても、さらに該圧粉成形体を加熱焼結して得られた焼結体(「複合酸化物圧粉成形焼結体」と称する)として調製されたものであってもよい。
 その中でも、最終的な配向性アパタイト型酸化物イオン伝導体の密度の点で、前記複合酸化物圧粉成形焼結体であるのが好ましく、その中でも特に、冷間等方圧加圧(CIP)によって加圧成形してなる圧粉成形体を加熱焼結して得られた圧粉成形焼結体であるのが好ましく、該圧粉成形焼結体の表面を研磨して得られたものがさらに好ましい。
 なお、前駆体の調製方法としては、大気中で1100℃~1700℃で加熱して焼結させるのが好ましく、その中でも、大気中で原料となるAとTを含む化合物の混合物を1200℃~1700℃で加熱した後、再度圧粉成形体として大気中で1300℃~1700℃で加熱して焼結させるのがさらに好ましい。このように2度焼成する際の各焼成の役割としては、一度目の焼成は主に複合酸化物を合成する役割があり、2度目の焼成は主に焼結させる役割がある。
 前駆体の組成比によって、気相からドープされるM元素量が決まる。よって、気相法で作製されるアパタイト型シリケート、ゲルマネート又はシリコゲルマネート、すなわち上記の本アパタイト型複合酸化物のM元素量は、前駆体の組成比に依存する。
 かかる観点から、式(2)中のxは-1~1であるのが好ましく、中でも-0.4以上或いは0.7以下、その中でも0以上或いは0.6以下であるのが好ましい。
 式(2)中のzは、前駆体結晶格子における電気的中性を保ち、且つ化学的に結晶構造を保持し得る観点から、-2~2であるのが好ましく、中でも-0.6以上或いは1以下、その中でも0以上或いは0.7以下であるのが好ましい。
 前駆体の具体的組成例としては、例えばLa2SiO5、NdSiO、LaNdSiO、LaGeOなどを挙げることができる。但し、これらに限定するものではない。
(気相-固相拡散工程)
 本製造方法における気相-固相拡散工程は、気相-固相界面から配向結晶が成長する点に特徴がある。気相からM元素が導入され、目的組成の配向焼結体を得ることができる。
 この際、気相中のM元素は、前駆体の表面を介して結晶内に入り込んでいく過程で、結晶が配向することになる。よって、前記前駆体圧粉成形体焼結体の表面の一部をマスキングすることで、配向方向を制御することができる。
 M元素は、前駆体がアパタイト型結晶構造に変化する1000℃以上で気相となり、必要な蒸気圧を得ることができる元素であればよい。ここで、当該「必要な蒸気圧」とは、雰囲気中を気相状態で移動でき、上記前駆体表面から内部に向って粒界又は粒内拡散して反応を進めることができる蒸気圧の意である。
 かかる観点から、M元素として、B、Ge、Zn、W、Sn及びMoからなる群から選ばれた一種又は二種以上の元素を挙げることができる。これらは、気相中のM元素と前駆体表面との反応によりTサイトにM元素が導入された配向アパタイト構造焼結体を得ることができる。
 例えばM元素がBの場合であれば、M元素を含有する化合物として、B23、H3BO3、LaBO3、LaB6などを挙げることができる。ホウケイ酸ガラスなどの非晶質体も用いることができる。
 他方、M元素がZnの場合であれば、ZnO、Zn金属、ZnSiOなどを挙げることができ、Geの場合であれば、GeO、Ge金属などを挙げることができ、Wの場合であれば、WO3、WO、W金属などを挙げることができ、Snの場合であれば、SnO、SnO、Sn金属などを挙げることができ、Moの場合であれば、MoO、MoO、MoSi、Mo金属などを挙げることができる。
 M元素を含有する気相としては、M元素を含むイオン、M元素を含む蒸気、M元素を含むガスなどのいずれかを含んでいればよい。例えば、M元素を含む蒸気と酸素とを含む気相であってもよい。
 よって、このときの加熱雰囲気、すなわちM元素を含有する容器内雰囲気は、大気雰囲気、真空状態、酸化雰囲気、還元雰囲気、不活性雰囲気のいずれでもよい。
 気相-固相拡散工程において、M元素を含有する気相中で前記前駆体を加熱する具体的な方法としては、例えば、前記A2+xTO5+zで示される前駆体と、前記M元素を含有する化合物とを、容器、例えば密閉容器や蓋付き容器内に入れて加熱することで、前記M元素を含有する化合物を気化させて、当該容器内の雰囲気を、前記M元素を含有する気相雰囲気として、当該M元素と前記前駆体の表面とを反応させるようにすればよい。但し、このような方法に限定するものではない。
 なお、気相-固相拡散工程における「容器」とは、前述した「必要な蒸気圧」を得るために必要な空間を限定する物という意味であり、例えば反応管、チャンバー、蓋付匣鉢等を挙げることができる。但しこれらに限定されるものではない。
 さらに具体的には、La2SiO5組成の焼結体と、B23粉末とを、同一の蓋付きアルミナ容器内で、1200~1600℃で加熱することによりB23粉末を気化させて、当該容器内の雰囲気を、B元素を含有する気相雰囲気として、SiサイトにBを置換したc軸配向アパタイトLa9.33+x(Si4.71.3)O26+zを合成することができる。
 気相-固相拡散工程における加熱温度(炉の設定温度)は、1000℃以上、中でも1100℃以上、その中でも特に1200℃以上とするのが好ましい。加熱温度の上限は特に限定するものではないが、アパタイト型複合酸化物の結晶構造を維持できる1700℃付近が上限温度となるものと解される。
<用途>
 本酸化物イオン伝導体の使用形態の一例として、本酸化物イオン伝導体の両面に、電極を積層してなる構成を備えた電極接合体の固体電解質としての使用形態を挙げることができる。本酸化物イオン伝導体の形状は限定的ではない。例えば平膜形状の他、円筒形状のような形態などもあり得る。例えば本酸化物イオン伝導体の形状が円筒形状の場合、通常はその内周面と外周面に電極を積層する。
 本酸化物イオン伝導体を用いた上記の如き電極接合体を、燃料電池(SOFC)のセルとして使用する場合には、例えば、該電極接合体のアノード電極に燃料ガスを供給し、カソード電極に酸化剤(空気、酸素等)を供給して350~1000℃で動作させると、当該カソード電極で電子を受け取った酸素原子がO2-イオンとなり、固体電解質を介してアノード電極に到達し、ここで水素と結びつき電子を放出することで発電することができる。
 他方、本酸化物イオン伝導体を用いた上記の如き電極接合体を、酸素センサーとして使用する場合には、例えば、当該電極接合体の片側を基準ガスにさらし、その反対側を測定雰囲気にさらすと、測定雰囲気の酸素濃度に応じて起電力が発生する。よって、例えば基準ガスを大気、測定雰囲気を内燃機関からの排気ガスとすることで、排気ガスの空燃比コントロールに利用することができる。
 また、本酸化物イオン伝導体を用いた上記の如き電極接合体を、酸素分離膜として使用する場合には、燃料電池(SOFC)のセルとして使用する場合と同様に、カソード電極に空気を供給して350~1000℃で動作させると、カソードで電子を受け取った酸素原子がO2-イオンとなり、固体電解質を介してアノード電極に到達し、ここで電子を放出してO2-イオン同士が結びつくことで酸素分子だけを透過させることができる。
 これらの用途において、本酸化物イオン伝導体の厚さは、電気抵抗を抑えることと製造安定性の観点から、0.01μm~1000μmであることが好ましく、中でも0.1μm以上或いは500μm以下であることがより好ましい。なお、上記用途に用いる電極は多孔質形態であることが好ましい。電極の材質は、当該用途における公知のものを適宜利用することができ、その厚さは0.01~70μm程度であることが好ましい。
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
<実施例1>
 La23とSiO2とをモル比で1:1になるように配合し、エタノールを加えてボ-ルミルで混合した後、この混合物を乾燥させ、乳鉢で粉砕し、Ptるつぼを使用して大気雰囲気下1650℃で3時間焼成した。次いで、この焼成物にエタノールを加えて遊星ボ-ルミルで粉砕し、予備焼成体粉末を得た。
 次に、前記予備焼成体粉末を、20mmφの成形器に入れて一方向から加圧して一軸成形した後、更に600MPaで1分間冷間等方圧加圧(CIP)を行ってペレットを成形した。次いで、このペレット状成形体を大気中、1600℃で3時間加熱してペレット状焼結体を得、得られたペレット状焼結体の表面をダイヤモンド砥石で研磨して、前駆体を得た。
 こうして得られた前駆体の粉末X線回折と化学分析の結果から、La2SiO5の構造であることが確認された。
 得られた前駆体(ペレット)800mgと、B23粉末140mgとを、蓋付き匣鉢内に入れて、電気炉を用いて大気中、1550℃(炉内雰囲気温度)で50時間加熱し、匣鉢内にB23蒸気を発生させると共に、B23蒸気と前駆体とを反応させた。こうして得られたペレットの表面を1200番の耐水研磨紙で研磨して、アパタイト型焼結体(サンプル)を得た。
<実施例2―6>
 上記実施例1の前駆体の作製において、La23とSiO2とのモル比を変えて、表1に示す前駆体(A2+xTO5+z)を作製し、これを用いて実施例1と同様に、アパタイト型焼結体(サンプル)を得た。
 なお、得られた前駆体の粉末X線回折と化学分析の結果から、表1に示す組成であることが確認された。
<実施例7-8>
 実施例7では、SiOの代わりにGeOを用い、前駆体(A2+xTO5+z)の焼成時間を50時間とした以外、上記実施例1と同様にして、前駆体(A2+xTO5+z)及びアパタイト型焼結体(サンプル)を作製した。
 他方、実施例8では、SiOと共にGeOを用いた以外、上記実施例1と同様にして、前駆体(A2+xTO5+z)及びアパタイト型焼結体(サンプル)を作製した。
<実施例9-13>
 B23粉末の代わりに、GeO、ZnO、WO又はSnOを用いると共に、ZnOの場合は焼成温度を1500℃、SnO又はWOの場合は焼成温度を1400℃に変更した以外、上記実施例1と同様に、前駆体(A2+xTO5+z)及びアパタイト型焼結体(サンプル)を作製した。
 なお、実施例13については、B23粉末と共にMoOを蓋付き匣鉢内に入れて、焼成した以外、実施例1と同様に、前駆体(A2+xTO5+z)及びアパタイト型焼結体(サンプル)を作製した。
<実施例14>
 上記実施例1の前駆体の作製において、La23の代わりにNd23を用いた以外、実施例1と同様にして、前駆体(A2+xTO5+z)及びアパタイト型焼結体(サンプル)を得た。
<実施例15-20>
 La23と共に、Nd23、BaCO、SrCO、CaCO又はCeOをそれぞれ用いた以外は、実施例1と同様にして、前駆体(A2+xTO5+z)及びアパタイト型焼結体(サンプル)を得た。
 なお、得られた前駆体の粉末X線回折と化学分析の結果から、表1に示す組成であることが確認された。
 実施例1~20で得られたアパタイト型焼結体(サンプル)について粉末X線回折及び化学分析を行った結果、いずれの実施例のアパタイト型焼結体(サンプル)も、その主構成相は空間群がP63/mに属したアパタイト結晶構造になっており、表1に示す組成であることが認められた。
 また、いずれの実施例のアパタイト型焼結体(サンプル)についても、偏光顕微鏡と走査型電子顕微鏡で観察した結果、クラックは認められなかった。
 なお、Ce、Pr、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaなどの元素を、実施例1~20におけるLaの代わりに使用しても、高温領域でアパタイト構造が安定であるから、Laを用いた場合と同様のアパタイト型焼結体を作製することができ、上記実施例と同様の効果を得られるものと期待することができる。
<比較例1>
 上記実施例1と同様に、前駆体を作製し、前記M元素を含有する化合物を入れずに大気中、1550℃(炉内雰囲気温度)で50時間加熱した。得られた焼結体の粉末X線回折と化学分析の結果は、LaSiO構造であり、アパタイト型結晶構造は得られなかった。
<比較例2>
 LaとSiOとをモル比で4.83:6になるよう混合し、大気中1600℃で3時間焼成しLa9.66Si26.49組成の合成粉を得た。得られた粉末を遊星ボールミルで粉砕し、20mmφの成形器に入れて一方向から加圧してペレット状に成形し、更に、600MPaの冷間等方圧加圧(CIP)で1分間加圧して成形体を得た。この成形体を大気中1600℃で3時間加熱することでアパタイト型焼結体(サンプル)を得た。
<比較例3>
 LaとSiOとをモル比で1:1になるよう混合し、大気中1600℃で3時間焼成してLaSiO組成の合成粉を得た。また、同様にLaとSiOとをモル比で1:2になるよう混合し、大気中1600℃で3時間焼成してLaSi組成の合成粉を得た。得られた二種類の合成粉をそれぞれ遊星ボールミルで粉砕した後、これらを用いてLaSiO(0.5g)/LaSi(0.35g)/LaSiO(0.5g)の順に20mmφの成形器に入れて3層が積層した状態で一方向から加圧してペレット状に成形し、更に、600MPaの冷間等方圧加圧(CIP)で1分間加圧して成形体を得た。この成形体を大気中1600℃で100時間加熱することで、元素拡散を利用した配向アパタイト層を持つ焼成体を得た。
 この焼成体の両面をダイヤモンド砥石で研削し、厚み方向中央に生成した配向アパタイト層を取り出すことで、アパタイト型焼結体(サンプル)を得た。
<比較例4>
 LaとSiOとをモル比で4.83:6になるよう混合し、大気中1500℃で3時間焼成しLa9.66Si26.49組成の合成粉を得た。得られた粉末を遊星ボールミルで粉砕後、分散剤を添加した分散媒に入れてスラリーとした。作製したスラリーを10Tの強磁場を印加しながら鋳込み成形法により固化した。この成形体を大気中1600℃10時間加熱することで、アパタイト型焼結体(サンプル)を得た。
<配向度の測定方法>
 下記式を用い、ロットゲーリング法で配向度を算出した。アパタイト型焼結体バルクX線回折で得られた全ピーク強度の総和と(002)及び(004)に帰属される両ピーク強度の和の比ρを用いて、下記数式(1)から配向度fを算出した。
      f=(ρ-ρ0)/(1-ρ0)   (1)
ここで、  ρ0:アパタイト構造結晶の理論値
        ρ0=ΣI(00l)/ΣI(hkl)
      ρ:配向アパタイト焼結体での測定値
        ρ=ΣI(00l)/ΣI(hkl)
<輸率の測定方法>
 輸率は、酸素濃淡電池(酸素濃度1.0%/21.0%)を作製し、起電力測定から算出した。電極に銀ペーストを用いたセルについて、900℃から400℃における起電力を測定し、酸素濃度から算出した各温度での理論起電力値と、得られたアパタイト型焼結体を用いたセルでの測定値との比を輸率とした。
<酸素イオン伝導率の測定>
 アパタイト型焼結体(サンプル)の両面にスパッタリング法を用いて150nm厚の白金膜を製膜して電極を形成した後、加熱炉中で温度を変化させ、インピーダンス測定装置にて周波数0.1Hz~32MHzで複素インピーダンス解析を行なった。各アパタイト型焼結体(サンプル)について、全抵抗成分(粒内抵抗+粒界抵抗)から酸素イオン伝導率(S/cm)を求めて、500℃の酸素イオン伝導率を下記表1に示した。
<総合評価>
 クラック発生の有無及び上記で測定した物性値を総合して、次のような基準で総合評価した。
 ◎(very good):伝導率1.0×10-2以上、配向度90以上であり、且つクラック無しの場合。
 ○(good):伝導率1.0×10-4以上、配向度60以上であり、且つクラック無しの場合。
 △(usual):伝導率1.0×10-5以上であり、且つクラック無しの場合。
 ×(poor):クラック有りの場合。
Figure JPOXMLDOC01-appb-T000001
(考察)
 上記実施例及び発明者がこれまで行ってきた試験結果から、A9.33+x[T6-yy]O26.00+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で示され、式中のxは-1~1であり、式中のyは1~3であり、式中のzは-2~2であり、Mのモル数に対するAのモル数の比率(A/M)が3~10であることを特徴とする複合酸化物からなる配向性アパタイト型酸化物イオン伝導体は、高い酸素イオン伝導性を示すことが分かった。
 また、上記実施例及び発明者がこれまで行ってきた試験結果から、A2+xTO5+z(A:La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素。T:Si又はGe又はその両方を含む元素。x:-1~1。z:-2~2。)で示される前駆体を、M元素(M:B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素)を含有する気相中で加熱することにより、配向性アパタイト型酸化物イオン伝導体の配向結晶を一方向に成長させることができ、更にはクラックなどの発生を抑制することができることが分かった。
 

Claims (7)

  1.  A9.33+x[T6-yy]O26.00+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のMは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で示され、式中のxは-1~1であり、式中のyは1~3であり、式中のzは-2~2であり、Mのモル数に対するAのモル数の比率(A/M)が3~10であることを特徴とする複合酸化物からなる配向性アパタイト型酸化物イオン伝導体。
  2.  ロットゲーリング法で測定した配向度が0.60以上であることを特徴とする請求項1に記載の配向性アパタイト型酸化物イオン伝導体。
  3.  A2+xTO5+z(式中のAは、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si又はGe又はその両方を含む元素である。式中のxは-1~1、zは-2~2である。)で示される前駆体を、M元素(Mは、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)を含有する気相中で加熱することにより、当該M元素と前記前駆体との反応により、当該前駆体を配向アパタイト構造とすることを特徴とする工程(「気相-固相拡散工程」と称する)を備えた、配向性アパタイト型酸化物イオン伝導体の製造方法。
  4.  気相-固相拡散工程では、前記A2+xTO5+zで示される前駆体と、前記M元素を含有する化合物とを、容器内に入れて加熱することで、前記M元素を含有する化合物を気化させて、当該容器内の雰囲気を、前記M元素を含有する気相雰囲気として、当該M元素と前記前駆体とを反応させることを特徴とする請求項3に記載の配向性アパタイト型酸化物イオン伝導体の製造方法。
  5.  気相-固相拡散工程では、前記A2+xTO5+zで示される前駆体を、前記M元素を含有する気相中で1000℃~1700℃で加熱することを特徴とする請求項3又は4に記載の配向性アパタイト型酸化物イオン伝導体の製造方法。
  6.  前記A2+xTO5+zで示される前駆体は、上記式A2+xTO5+zで示される化合物を、1100℃~1700℃で加熱して焼結させる工程を含む製造方法により得られたものであることを特徴とする請求項3~5の何れかに記載の配向性アパタイト型酸化物イオン伝導体の製造方法。
  7.  請求項1又は2に記載の配向性アパタイト型酸化物イオン伝導体の両面に、電極を積層してなる構成を備えた電極接合体。
     
PCT/JP2015/084515 2015-01-07 2015-12-09 配向性アパタイト型酸化物イオン伝導体及びその製造方法 WO2016111110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15876983.6A EP3244474B1 (en) 2015-01-07 2015-12-09 Oriented apatite-type oxide ion conductor and method for manufacturing same
US15/542,155 US10727493B2 (en) 2015-01-07 2015-12-09 Oriented apatite-type doped rare earth silicate and/or germanate ion conductor and method for manufacturing same
JP2016568298A JP6412957B2 (ja) 2015-01-07 2015-12-09 配向性アパタイト型酸化物イオン伝導体及びその製造方法
CN201580052353.9A CN107078316B (zh) 2015-01-07 2015-12-09 取向性磷灰石型氧化物离子导体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-001743 2015-01-07
JP2015001743 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016111110A1 true WO2016111110A1 (ja) 2016-07-14

Family

ID=56355812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084515 WO2016111110A1 (ja) 2015-01-07 2015-12-09 配向性アパタイト型酸化物イオン伝導体及びその製造方法

Country Status (6)

Country Link
US (1) US10727493B2 (ja)
EP (1) EP3244474B1 (ja)
JP (2) JP6412957B2 (ja)
CN (1) CN107078316B (ja)
TW (1) TWI690629B (ja)
WO (1) WO2016111110A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222506A (ja) * 2015-06-01 2016-12-28 国立研究開発法人物質・材料研究機構 イットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス
JP2018104229A (ja) * 2016-12-26 2018-07-05 三井金属鉱業株式会社 アパタイト型複合酸化物およびその製造方法、固体電解質型素子並びにスパッタリングターゲット
WO2019146493A1 (ja) 2018-01-29 2019-08-01 三井金属鉱業株式会社 酸素透過素子及びスパッタリングターゲット材
WO2019160019A1 (ja) * 2018-02-14 2019-08-22 三井金属鉱業株式会社 固体電解質接合体
WO2019160018A1 (ja) * 2018-02-14 2019-08-22 三井金属鉱業株式会社 配向性アパタイト型酸化物イオン伝導体及びその製造方法
JP2019138764A (ja) * 2018-02-09 2019-08-22 株式会社デンソー ガスセンサ
WO2019203215A1 (ja) 2018-04-17 2019-10-24 三井金属鉱業株式会社 固体電解質接合体
WO2019203219A1 (ja) 2018-04-17 2019-10-24 三井金属鉱業株式会社 中間層を有する固体電解質接合体
WO2020195681A1 (ja) * 2019-03-22 2020-10-01 三井金属鉱業株式会社 酸素センサ及びそれを具備する微小機械電気素子
WO2021132029A1 (ja) 2019-12-25 2021-07-01 三井金属鉱業株式会社 二酸化炭素センサ
WO2022030504A1 (ja) 2020-08-07 2022-02-10 三井金属鉱業株式会社 固体電解質接合体及びそれを含む電気化学素子
WO2022270448A1 (ja) 2021-06-25 2022-12-29 三井金属鉱業株式会社 一酸化炭素ガスセンサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390087B (zh) * 2018-02-11 2020-11-10 珠海冠宇电池股份有限公司 一种复合固体电解质及其制备方法
JP7291057B2 (ja) * 2019-10-16 2023-06-14 三井金属鉱業株式会社 排気ガス用酸素センサ素子
CN110808395A (zh) * 2019-11-12 2020-02-18 武汉工程大学 一种钕、锌共掺杂磷灰石型硅酸镧固体电解质及其制备方法
CN111389242B (zh) * 2020-03-19 2022-08-05 上海大学 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用
WO2022209399A1 (ja) 2021-03-31 2022-10-06 三井金属鉱業株式会社 積層体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327210A (ja) * 2003-04-24 2004-11-18 Honda Motor Co Ltd 酸化物イオン伝導体およびその製造方法
JP2005126269A (ja) * 2003-10-22 2005-05-19 Hyogo Prefecture 酸化物イオン伝導体及びその製造方法
WO2006118177A1 (ja) * 2005-04-28 2006-11-09 Shinkosha Co., Ltd. 酸化物単結晶およびその製造方法、ならびに単結晶ウエハ
JP2015185321A (ja) * 2014-03-24 2015-10-22 アイシン精機株式会社 固体酸化物形燃料電池用空気極及び固体酸化物形燃料電池セル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208333A (ja) 1995-02-06 1996-08-13 Shinagawa Refract Co Ltd 酸素イオン導電体及びその製造方法
JP3934750B2 (ja) 1997-08-27 2007-06-20 第一稀元素化学工業株式会社 酸化物イオン導電性セラミックス及びその製造方法
JP2004244282A (ja) * 2003-02-14 2004-09-02 Honda Motor Co Ltd 酸化物イオン伝導体およびその製造方法
JP5651309B2 (ja) 2009-08-10 2015-01-07 兵庫県 イオン伝導性配向セラミックスの製造方法およびそのイオン伝導体を用いた燃料電池
US20130052445A1 (en) * 2011-08-31 2013-02-28 Honda Motor Co., Ltd. Composite oxide film and method for producing the same
JP5877093B2 (ja) * 2012-03-08 2016-03-02 国立大学法人 名古屋工業大学 アパタイト型シリコゲルマン酸ランタン多結晶体及びその製造方法、並びに酸化物イオン伝導体、固体電解質
JP2014148443A (ja) * 2013-02-01 2014-08-21 Nagoya Institute Of Technology アパタイト型ケイ酸ランタン多結晶体及びその製造方法、並びに酸化物イオン伝導体、固体電解質
CN103241719B (zh) * 2013-04-25 2015-04-29 太原理工大学 一种高度取向纳米羟基磷灰石晶体阵列的制备方法
CN103436967B (zh) 2013-08-12 2015-09-30 英利集团有限公司 一种优化太阳能电池片管式扩散炉气流分布的方法
CN103456967B (zh) * 2013-08-14 2015-04-29 大连理工大学 一种制备多孔Ni/磷灰石型硅酸镧金属陶瓷阳极的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327210A (ja) * 2003-04-24 2004-11-18 Honda Motor Co Ltd 酸化物イオン伝導体およびその製造方法
JP2005126269A (ja) * 2003-10-22 2005-05-19 Hyogo Prefecture 酸化物イオン伝導体及びその製造方法
WO2006118177A1 (ja) * 2005-04-28 2006-11-09 Shinkosha Co., Ltd. 酸化物単結晶およびその製造方法、ならびに単結晶ウエハ
JP2015185321A (ja) * 2014-03-24 2015-10-22 アイシン精機株式会社 固体酸化物形燃料電池用空気極及び固体酸化物形燃料電池セル

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222506A (ja) * 2015-06-01 2016-12-28 国立研究開発法人物質・材料研究機構 イットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス
JP2018104229A (ja) * 2016-12-26 2018-07-05 三井金属鉱業株式会社 アパタイト型複合酸化物およびその製造方法、固体電解質型素子並びにスパッタリングターゲット
WO2019146493A1 (ja) 2018-01-29 2019-08-01 三井金属鉱業株式会社 酸素透過素子及びスパッタリングターゲット材
JP7033945B2 (ja) 2018-02-09 2022-03-11 株式会社デンソー ガスセンサ
JP2019138764A (ja) * 2018-02-09 2019-08-22 株式会社デンソー ガスセンサ
WO2019160019A1 (ja) * 2018-02-14 2019-08-22 三井金属鉱業株式会社 固体電解質接合体
WO2019160018A1 (ja) * 2018-02-14 2019-08-22 三井金属鉱業株式会社 配向性アパタイト型酸化物イオン伝導体及びその製造方法
JP7300440B2 (ja) 2018-02-14 2023-06-29 三井金属鉱業株式会社 固体電解質接合体
JP7300439B2 (ja) 2018-02-14 2023-06-29 三井金属鉱業株式会社 配向性アパタイト型酸化物イオン伝導体及びその製造方法
US11374248B2 (en) 2018-02-14 2022-06-28 Mitsui Mining & Smelting Co., Ltd. Oriented apatite type oxide ion conductor and method for producing same
JPWO2019160018A1 (ja) * 2018-02-14 2021-02-12 三井金属鉱業株式会社 配向性アパタイト型酸化物イオン伝導体及びその製造方法
JPWO2019160019A1 (ja) * 2018-02-14 2021-02-25 三井金属鉱業株式会社 固体電解質接合体
WO2019203215A1 (ja) 2018-04-17 2019-10-24 三井金属鉱業株式会社 固体電解質接合体
JPWO2019203215A1 (ja) * 2018-04-17 2021-05-27 三井金属鉱業株式会社 固体電解質接合体
JPWO2019203219A1 (ja) * 2018-04-17 2021-05-27 三井金属鉱業株式会社 中間層を有する固体電解質接合体
US20210126272A1 (en) * 2018-04-17 2021-04-29 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte assembly
US20210036354A1 (en) * 2018-04-17 2021-02-04 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte assembly having intermediate layer
JP7265538B2 (ja) 2018-04-17 2023-04-26 三井金属鉱業株式会社 固体電解質接合体
JP7278266B2 (ja) 2018-04-17 2023-05-19 三井金属鉱業株式会社 中間層を有する固体電解質接合体
WO2019203219A1 (ja) 2018-04-17 2019-10-24 三井金属鉱業株式会社 中間層を有する固体電解質接合体
WO2020195681A1 (ja) * 2019-03-22 2020-10-01 三井金属鉱業株式会社 酸素センサ及びそれを具備する微小機械電気素子
WO2021132029A1 (ja) 2019-12-25 2021-07-01 三井金属鉱業株式会社 二酸化炭素センサ
WO2022030504A1 (ja) 2020-08-07 2022-02-10 三井金属鉱業株式会社 固体電解質接合体及びそれを含む電気化学素子
WO2022270448A1 (ja) 2021-06-25 2022-12-29 三井金属鉱業株式会社 一酸化炭素ガスセンサ

Also Published As

Publication number Publication date
TW201634765A (zh) 2016-10-01
TWI690629B (zh) 2020-04-11
US20180183068A1 (en) 2018-06-28
CN107078316A (zh) 2017-08-18
EP3244474A1 (en) 2017-11-15
JP6412957B2 (ja) 2018-10-24
JP6441531B1 (ja) 2018-12-19
US10727493B2 (en) 2020-07-28
JPWO2016111110A1 (ja) 2017-10-19
EP3244474A4 (en) 2018-07-11
JP2019057500A (ja) 2019-04-11
EP3244474B1 (en) 2020-03-18
CN107078316B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
JP6441531B1 (ja) 配向性アパタイト型酸化物イオン伝導体及びその製造方法
TWI700262B (zh) 基板/定向性磷灰石型複合氧化物膜複合體及其製造方法
WO2019189275A1 (ja) セラミックス粉末、焼結体及び電池
JP2001307546A (ja) イオン伝導体
JP7300439B2 (ja) 配向性アパタイト型酸化物イオン伝導体及びその製造方法
Sutapun et al. Phase transitional behavior and dielectric properties of lead free (1− x)(K0. 5Na0. 5) NbO3− xBi (Zn0. 5Ti0. 5) O3 ceramics
Goulart et al. Reactive sintering of yttrium-doped barium zirconate (BaZr0. 8Y0. 2O3-δ) without sintering aids
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
JP6715133B2 (ja) 配向性アパタイト型複合酸化物の製造方法
Wenhui et al. Synthesis and ionic conduction of cation-deficient apatite La9. 332x/3MxSi6O26 doped with Mg, Ca, Sr
JP6877994B2 (ja) アパタイト型複合酸化物およびその製造方法、固体電解質型素子並びにスパッタリングターゲット
WO2022209399A1 (ja) 積層体
JP2024078311A (ja) 積層体及び電気化学素子
JP4428735B2 (ja) 酸化物イオン導電体および固体電解質型燃料電池
JPH11273451A (ja) 酸化物イオン導電体およびその製造法並びに固体電解質型燃料電池
CN114787619A (zh) 二氧化碳传感器
JP2021103673A (ja) 酸化物イオン伝導体
JP6141003B2 (ja) ガレート複合酸化物およびそれを用いた固体酸化物形燃料電池
RIVAS-VÁZQUEZ et al. List of Contents for Volume 26

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568298

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015876983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15542155

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE