WO2016111067A1 - 情報処理装置、情報処理方法、およびプログラム - Google Patents

情報処理装置、情報処理方法、およびプログラム Download PDF

Info

Publication number
WO2016111067A1
WO2016111067A1 PCT/JP2015/079175 JP2015079175W WO2016111067A1 WO 2016111067 A1 WO2016111067 A1 WO 2016111067A1 JP 2015079175 W JP2015079175 W JP 2015079175W WO 2016111067 A1 WO2016111067 A1 WO 2016111067A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
action
information processing
processing apparatus
content
Prior art date
Application number
PCT/JP2015/079175
Other languages
English (en)
French (fr)
Inventor
荘太 松澤
小形 崇
仁 大久保
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2016568284A priority Critical patent/JP6658545B2/ja
Priority to EP15876940.6A priority patent/EP3243557B1/en
Priority to US15/527,068 priority patent/US20170352226A1/en
Publication of WO2016111067A1 publication Critical patent/WO2016111067A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • G07F17/3225Data transfer within a gaming system, e.g. data sent between gaming machines and users
    • G07F17/323Data transfer within a gaming system, e.g. data sent between gaming machines and users wherein the player is informed, e.g. advertisements, odds, instructions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/18Training appliances or apparatus for special sports for skiing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/211Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/213Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/40Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment
    • A63F13/42Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
    • A63F13/428Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • A63F13/54Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
    • A63F13/67Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor adaptively or by learning from player actions, e.g. skill level adjustment or by storing successful combat sequences for re-use
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • A63F13/807Gliding or sliding on surfaces, e.g. using skis, skates or boards
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • G07F17/3286Type of games
    • G07F17/3288Betting, e.g. on live events, bookmaking
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/216Input arrangements for video game devices characterised by their sensors, purposes or types using geographical information, e.g. location of the game device or player using GPS

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, and a program.
  • Patent Literature 1 has a plurality of behavior determination units specialized for specific behavior among user behaviors recognized by threshold processing of sensor data, and the behavior based on the determination result in each behavior determination unit. An information processing apparatus that generates information is described.
  • a user's action (action) detected by the technique described in Patent Document 1 is not limited to the generation of information, and can be used in various ways. However, it cannot be said that such a method of utilization has been sufficiently proposed so far.
  • the present disclosure proposes a new and improved information processing apparatus, information processing method, and program capable of providing various benefits to the user based on the detection result of the user's action.
  • an information processing apparatus comprising: an information acquisition unit that acquires action information indicating a detected user action; and a content providing unit that provides content developed according to a temporal or spatial sequence of the actions. Is provided.
  • information processing including obtaining action information indicating a detected user action, and providing content to be developed according to a temporal or spatial sequence of the actions by the processor.
  • a method is provided.
  • a computer it is possible to cause a computer to realize a function of acquiring action information indicating a detected user action and a function of providing content developed according to a temporal or spatial sequence of the actions.
  • a program is provided.
  • FIG. 2 is a block diagram illustrating a schematic functional configuration of an information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating a first example of a process for detecting a jump included in a user action according to an embodiment of the present disclosure. It is a flowchart which shows the example of the high impact detection process shown in FIG.
  • FIG. 3 is a flowchart showing a first example of free fall detection processing shown in FIG. 2.
  • FIG. 5 is a flowchart illustrating an example of a process for providing a virtual game course in an embodiment of the present disclosure. It is a figure showing the 1st example of the virtual game course provided in one embodiment of this indication. It is a figure which shows the 2nd example of the virtual game course provided in one Embodiment of this indication. It is a figure which shows the 2nd example of the virtual game course provided in one Embodiment of this indication. It is a figure which shows the 3rd example of the virtual game course provided in one Embodiment of this indication. It is a figure which shows the 4th example of the virtual game course provided in one Embodiment of this indication. It is a figure which shows the 4th example of the virtual game course provided in one Embodiment of this indication. It is a figure which shows the example of the music rhythm game provided in one Embodiment of this indication.
  • FIG. 3 is a block diagram illustrating a hardware configuration example of an information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a schematic functional configuration of an information processing apparatus according to an embodiment of the present disclosure.
  • an information processing apparatus 100 includes a transmission unit 101, a reception unit 102, a sensor device control unit 103, a sensor data analysis unit 104, an analysis result processing unit 107, and a detection section information holding unit 110.
  • the additional information holding unit 111 and the service control unit 112 are included.
  • the information processing apparatus 100 may be a single device or a collection of devices that configure a server on a network, as shown in some specific examples described later, for example.
  • the information processing apparatus 100 may be a terminal device that communicates with a server via a network or a terminal device that operates alone.
  • the functions of the information processing apparatus 100 may be realized by being distributed to a server and a terminal device that communicate with each other via a network.
  • the hardware configuration of each of the information processing apparatus 100 or a plurality of apparatuses that implement the functions of the information processing apparatus 100 will be described later.
  • the transmission unit 101 and the reception unit 102 are realized by a communication device that communicates with the sensor device by various wired or wireless communication methods, for example.
  • the sensor device includes at least one sensor mounted on a user or an instrument used by the user.
  • the transmission unit 101 transmits a control signal output from the sensor device control unit 103 to the sensor device.
  • the receiving unit 102 receives sensor data and time information (time stamp) from the sensor device, and inputs them to the sensor device control unit 103.
  • the receiving unit 102 realizes a sensor data receiving unit that receives sensor data provided by a user or a sensor attached to an instrument used by the user.
  • the information processing apparatus 100 is a terminal device including at least one sensor, more specifically, a mobile device or a wearable device, a CPU that executes a driver program that receives sensor data from the sensor (
  • the sensor data receiving unit may be realized by a processor such as Central Processing Unit.
  • the information processing apparatus according to the present embodiment may include an acquisition unit that acquires sensor data from an external apparatus including a sensor, for example.
  • the acquisition unit is, for example, a processor such as a CPU that executes “a driver program that receives sensor data from an external device including a sensor via the communication device that implements the transmission unit 101 and the reception unit 102”. It is realized by.
  • the information processing apparatus which concerns on this embodiment can also take the structure which is not provided with a sensor data receiving part.
  • the sensor device control unit 103 is realized by a processor such as a CPU operating according to a program stored in a memory.
  • the sensor device control unit 103 acquires sensor data and time information from the reception unit 102.
  • the sensor device control unit 103 provides these data to the sensor data analysis unit 104 and the analysis result processing unit 107.
  • the sensor device control unit 103 may perform preprocessing of data as necessary.
  • the sensor device control unit 103 outputs a control signal for the sensor device to the transmission unit 101.
  • the sensor device control unit 103 may output a control signal based on feedback of a processing result in the sensor data analysis unit 104 or the analysis result processing unit 107.
  • the sensor data analysis unit 104 is realized by a processor such as a CPU operating according to a program stored in a memory.
  • the sensor data analysis unit 104 performs various analyzes using the sensor data provided from the sensor device control unit 103.
  • the sensor data analysis unit 104 includes a feature amount extraction unit 105 and an action detection unit 106.
  • the feature amount extraction unit 105 extracts various feature amounts from the sensor data.
  • the action detection unit 106 detects a user action based on the feature amount extracted from the sensor data by the feature amount extraction unit 105.
  • the user action detected by the action detection unit 106 includes a user turn and / or jump.
  • the action detection unit 106 may detect other user actions such as walking, running, standing still, and moving by a vehicle.
  • the user's action can be detected in association with time information (time stamp) indicating a section (action section) in which the user action occurred.
  • the sensor data analysis unit 104 stores the analysis result, more specifically, for example, information including a user action section detected by the action detection unit 106 in the detection section information holding unit 110. Further, the sensor data analysis unit 104 provides the analysis result to the analysis result processing unit 107.
  • the analysis result processing unit 107 is realized by a processor such as a CPU operating according to a program stored in a memory. Based on the analysis result of the sensor data analysis unit 104, more specifically, the information of the user action detected by the action detection unit 106, the analysis result processing unit 107 performs various types used by the service control unit 112 in the subsequent stage. Generate additional information.
  • the analysis result processing unit 107 includes a clustering processing unit 108 and a scoring processing unit 109. For example, when the detected user action includes a plurality of actions of the same type, the clustering processing unit 108 may identify these actions as feature amounts (feature amounts extracted by the feature amount extraction unit 105). Or an intermediate feature amount calculated by the action detection unit 106).
  • the scoring processing unit 109 may calculate a score indicating action evaluation based on the feature amount. Further, the clustering processing unit 108 and / or the scoring processing unit 109 may newly calculate a feature amount based on the sensor data provided from the sensor device control unit 103.
  • the analysis result processing unit 107 holds additional information on the processing result, more specifically, the result of clustering by the clustering processing unit 108 and the score information calculated by the scoring processing unit 109 together with time information (time stamp). Stored in the unit 111.
  • the detection section information holding unit 110 and the additional information holding unit 111 are realized by various memories or storage devices, for example.
  • the detection section information holding unit 110 and the additional information holding unit 111 temporarily or permanently store the information provided from the sensor data analysis unit 104 and the analysis result processing unit 107 as described above.
  • the information stored in the detection section information holding unit 110 and the information stored in the additional information holding unit 111 can be associated with each other by, for example, time information (time stamp). Further, the detection section information holding unit 110 and the additional information holding unit 111 may store information regarding each of a plurality of users.
  • the service control unit 112 is realized by a processor such as a CPU operating according to a program stored in a memory.
  • the service control unit 112 controls the service 113 using information stored in the detection section information holding unit 110 and / or the additional information holding unit 111. More specifically, for example, the service control unit 112 generates information provided to the user in the service 113 based on the information read from the detection section information holding unit 110 and / or the additional information holding unit 111.
  • the information processing apparatus 100 is a server
  • the information output by the service control unit 112 can be transmitted to the terminal apparatus via the communication apparatus.
  • the information output by the service control unit 112 can be provided to an output device such as a display, a speaker, or a vibrator included in the terminal device.
  • a sensor device including an acceleration sensor, an angular velocity sensor, and the like may be directly attached to a user by being embedded in wear, or incorporated in a wearable terminal device or a mobile terminal device.
  • the sensor device may be mounted on a snowboard tool, such as a board.
  • the action detection process executed in the present embodiment is not limited to jumps and turns that occur on snowboards.
  • the action detection process may be executed on jumps and turns that occur in sports other than snowboarding. Since jumps and turns are actions that can occur in common in various sports, it may be possible to detect jumps and turns regardless of the type of sports by, for example, detection processing described below.
  • an action other than a jump or turn may be detected.
  • various techniques used in the action recognition technique described in, for example, Japanese Patent Application Laid-Open No. 2010-198595 can be applied.
  • FIG. 2 is a flowchart illustrating a first example of a process for detecting a jump included in a user action according to an embodiment of the present disclosure. The illustrated process is executed by, for example, the sensor data analysis unit 104 included in the information processing apparatus 100 described above.
  • the sensor data analysis unit 104 performs a high impact detection process (S110) and a free fall detection process (S120) for each predetermined time frame. Details of these processes will be described later. Based on the results of these processes, the action detection unit 106 included in the sensor data analysis unit 104 determines whether or not a section between two high impact sections (estimated as crossing and landing) has occurred. (S101). When such a section occurs, the action detection unit 106 determines whether or not the duration of the section is between two threshold values (TH1, TH2) (S102). These threshold values are set, for example, for the purpose of excluding sections that are too long or too short for a jump.
  • TH1, TH2 threshold values
  • the action detection unit 106 further determines whether or not the ratio of the free fall section in the section exceeds the threshold (TH) (S103). When the ratio of the free fall section exceeds the threshold, it is detected that the section (section sandwiched between two high impact sections) is a jump section (S104).
  • FIG. 3 is a flowchart showing an example of the high impact detection process (S110) shown in FIG.
  • acceleration D111 included in the sensor data is used.
  • the feature quantity extraction unit 105 included in the sensor data analysis unit 104 calculates a norm of acceleration (S112), and further smoothes the norm with an LPF (Low Pass Filter) (S113).
  • the feature amount extraction unit 105 calculates the power of the amplitude in a predetermined time frame for the smoothed norm of acceleration (S114).
  • the action detection unit 106 determines whether or not the power exceeds the threshold value (TH) (S115), and when the power exceeds the threshold value, detects that the time frame is a high impact section (S116).
  • TH threshold value
  • S116 detects that the time frame is a high impact section
  • FIG. 4 is a flowchart showing a first example of the free fall detection process (S120) shown in FIG.
  • acceleration D121
  • angular velocity D125
  • the feature quantity extraction unit 105 calculates the norm of acceleration (S122), and the action detection unit 106 determines whether or not the norm in each section is below a threshold value (TH) (S123).
  • the action detection unit 106 detects that the section is a free fall section with respect to a section in which the norm of acceleration is below the threshold (S124).
  • the feature quantity extraction unit 105 also calculates the norm for the angular velocity (S126), and further calculates the variance of the norm in a predetermined time frame (S127).
  • the action detection unit 106 determines whether or not the variance of the norm of the angular velocity is lower than the threshold (TH) (S128), and when the variance is lower than the threshold, masks the free fall section detected in S124 (that is, free The determination as a fall section is canceled) (S129).
  • TH threshold
  • S129 masks the free fall section detected in S124 (that is, free The determination as a fall section is canceled)
  • Such a mask process based on angular velocity causes a change in angular velocity when the user jumps, so that the free fall section where the change (dispersion) in angular velocity is small is caused by a cause other than the jump. Based.
  • the mask processing in S126 to S129 does not necessarily have to be executed after the free fall section determination processing in S121 to S124.
  • the action detection unit 106 may perform the mask process in advance, and may not execute the free fall section determination process for the section specified as the section to be masked.
  • the mask process may be executed after the jump section detection process (S104) shown in FIG. 2, and a section once detected as a jump section may be masked.
  • the free fall process (S120) shown in FIG. 4 or the like does not necessarily need to be executed before the section occurrence determination (S101) shown in FIG. Before the determination regarding the ratio of the section (S103), the free fall detection process may be executed for the section.
  • FIG. 5 is a flowchart showing a second example of the free fall detection process (S120) shown in FIG.
  • acceleration D121 included in the sensor data provided by the acceleration sensor mounted on the user or an instrument used by the user is used.
  • the feature amount extraction unit 105 and the action detection unit 106 execute the same process as in the first example, and detect a free fall section.
  • the feature quantity extraction unit 105 extracts the X-axis component and the Y-axis component of acceleration (S132), and further calculates the covariance between the X-axis component and the Y-axis component of acceleration (S132). S133). More specifically, for example, when the user is walking or running on a reference plane (which is not limited to a horizontal plane but may be an inclined plane), the feature amount extraction unit 105 performs coordinate axes of the acceleration sensor.
  • the X axis is the axis closest to the user's direction of travel
  • the Y axis is the axis closest to the normal direction of the reference plane
  • the covariance of acceleration components (X axis component, Y axis component) in these axis directions is calculated.
  • the action detection unit 106 determines whether or not the covariance is lower than the threshold (TH) (S134), and when the covariance is lower than the threshold, masks the free fall section detected in S124 (S129).
  • Such mask processing based on the covariance of acceleration is performed when, for example, the jump to be detected is not a so-called vertical jump with a displacement in the normal direction of the reference plane but a jump with a displacement in the user's traveling direction. It is valid.
  • FIG. 6 is a flowchart illustrating a second example of a process for detecting a jump included in a user action according to an embodiment of the present disclosure. The illustrated process is executed in the sensor data analysis unit 104 included in the information processing apparatus 100, for example, as in the first example.
  • the sensor data analysis unit 104 executes candidate section detection processing (S140). Details of this process will be described later.
  • the action detection unit 106 included in the sensor data analysis unit 104 determines whether a candidate section has occurred (S105). When a candidate section occurs, the action detection unit 106 determines whether or not the duration (duration) of the section is between two threshold values (TH1, TH2), as in the first example ( S102). When the duration is between two threshold values, the action detection unit 106 further determines whether or not the average value (mean) of the acceleration in the vertical direction and the horizontal direction in the section exceeds the respective threshold values (THs) ( S106). When the average value of acceleration exceeds each threshold value, it is detected that the candidate section is a jump section (S104).
  • FIG. 7 is a flowchart showing an example of the candidate section detection process (S140) shown in FIG.
  • the candidate section detection process first, the high impact detection process (S110) described above with reference to FIG. 3, the vertical acceleration calculation process (S141), and the horizontal acceleration calculation process (S142). ) And are executed. Further, the feature amount extraction unit 105 included in the sensor data analysis unit 104 calculates the difference between the vertical acceleration and the horizontal acceleration calculated in S141 and S142 for each section (S143). After that, the action detection unit 106 determines whether or not a section between two high impact sections (estimated as crossing and landing) has occurred (S144).
  • the action detection unit 106 determines whether or not the difference between the vertical acceleration and the horizontal acceleration calculated in S143 exceeds a threshold (TH) in the section (S145). . When the difference exceeds the threshold, it is detected that the section (a section sandwiched between two high impact sections) is a jump section candidate section (S146).
  • FIG. 8 is a flowchart showing an example of the vertical acceleration calculation process (S141) shown in FIG.
  • the acceleration (D151) included in the sensor data is used.
  • the feature amount extraction unit 105 included in the sensor data analysis unit 104 calculates an average value (mean) of acceleration (S152).
  • the average value calculated here can be, for example, a moving average.
  • the feature amount extraction unit 105 executes gravity component acceleration calculation processing (S153). Further, the feature amount extraction unit 105 calculates the norm of the calculated gravity component acceleration (S154).
  • the gravity component acceleration may be calculated based on an average value such as a moving average, or may be calculated using a filter such as an LPF.
  • the feature quantity extraction unit 105 processes the acceleration (D151) by BPF (Band Pass Filter) separately from the processing of S152 to S154 described above (S155).
  • BPF Band Pass Filter
  • the BPF is used for the purpose of removing a DC component (that is, gravity component) included in acceleration by a filter in a low frequency region and further smoothing acceleration by a filter in a high frequency region.
  • the BPF in S155 may be replaced by a combination of other types of filters such as LPF and HPF (High Pass Filter).
  • the feature amount extraction unit 105 calculates the inner product of the acceleration processed by the BPF and the gravity component acceleration calculated in S153 (S156).
  • the feature amount extraction unit 105 divides the inner product calculated in S156 by the norm of the gravity component acceleration calculated in S154 (S157). Thereby, the vertical acceleration (V158) is obtained.
  • the vertical acceleration is calculated by projecting the acceleration from which the gravity component is removed by the BPF (S155) in the direction of the gravity component acceleration.
  • FIG. 9 is a flowchart showing an example of the horizontal acceleration calculation process (S142) shown in FIG.
  • the acceleration (D151) included in the sensor data is also used in the horizontal acceleration calculation process.
  • the vertical acceleration calculated in the vertical acceleration calculation process (S141) described above with reference to FIG. 8 is used.
  • the feature quantity extraction unit 105 included in the sensor data analysis unit 104 squares and uses the vertical acceleration (S161).
  • the feature amount extraction unit acceleration (D151) is processed by the BPF (S162), and the DC component included in the acceleration is removed and the acceleration is smoothed.
  • the BPF in S162 may also be replaced by a combination of other types of filters such as LPF and HPF.
  • the feature amount extraction unit 105 calculates the norm of the acceleration processed by the BPF (S163), and squares it (S164). Further, the feature amount extraction unit 105 calculates a difference between the square of the vertical acceleration calculated in S161 and the square of the horizontal acceleration calculated in S164 (S165), and the square root of the difference (S166). Obtain horizontal acceleration (V167).
  • the jump detection according to the embodiment of the present disclosure is the same as the case where the first example (FIG. 4) is adopted for the free fall detection process in the first example of jump detection (FIG. 2).
  • the second example (FIG. 5) is adopted for the free fall detection process
  • a total of three types Jump detection processing is possible.
  • the sensor data analysis unit 104 including the action detection unit 106 may detect the final jump section based on the results after executing these three types of jump detection processing. More specifically, for example, when a jump section is detected by at least one of the three types of jump detection processing, the action detection unit 106 may detect the section as a final jump section. . Alternatively, the action detection unit 106 may detect the section as a final jump section when a jump section is detected by two or more of the three types of jump detection processing or all three types.
  • FIG. 10 is a flowchart illustrating an example of a process for detecting a turn section included in a user action according to an embodiment of the present disclosure.
  • the illustrated process is executed by, for example, the sensor data analysis unit 104 included in the information processing apparatus 100 described above.
  • the sensor data analysis unit 104 detects rotation included in the user's action (S210), and further detects non-turning rotation included in the rotation (S230).
  • a turn is detected from those other than the rotation (S250).
  • the non-turning rotation includes, for example, rotation generated by swinging the user when the sensor includes a sensor attached to the user's head or an instrument attached to the user's head.
  • the non-turning rotation includes other rotations generated by the user's body movement, more specifically, a sensor that is mounted on the user's arm or a device that is mounted on the user's arm. In some cases, it may include rotation generated by a user's arm swing or arm rotation.
  • the sensor data analysis unit 104 can detect a turn section with higher accuracy by detecting a turn section after removing such non-turning rotation. In this sense, it can be said that the non-turning rotation is noise with respect to the detection target turn.
  • the sensor data analysis unit 104 detects the rotation included in the user action, and further detects the rotation. It can be said that a turn is detected from a noise obtained by detecting noise included in the rotation and removing the noise from the rotation.
  • the sensor data analysis unit 104 executes a rotation section detection process (S210).
  • the rotation section is defined as a section where the angular velocity in the horizontal plane direction exceeds a threshold value.
  • the sensor data analysis unit 104 determines whether a rotation section has occurred (S201). When a rotation section occurs, first, the sensor data analysis unit 104 performs a head shake detection process (S230). Further, the sensor data analysis unit 104 determines whether or not the swing is detected (S203), and when the swing is not detected, further performs a turn detection process (S250).
  • the section generated by the user swinging (for example, when the sensor is mounted on a head-mounted wearable terminal device) is excluded from the rotation section, and the rotation radius or angular velocity is further removed.
  • the turn section in which the duration or the like satisfies a desired condition can be extracted.
  • FIG. 11 is a flowchart showing an example of the rotation section detection process (S210) shown in FIG.
  • acceleration D211
  • angular velocity D214
  • the feature amount extraction unit 105 included in the sensor data analysis unit 104 calculates an average value (mean) of acceleration (S212).
  • the average value calculated here can be, for example, a moving average.
  • the feature amount extraction unit 105 executes gravity component acceleration calculation processing (S213).
  • the feature amount extraction unit 105 calculates the inner product of the gravity component acceleration calculated in S213 and the angular velocity (D214) (S215). Thereby, the projection of the angular velocity in the direction of the gravitational component acceleration, that is, the angular velocity (V216) in the horizontal plane direction (around the vertical axis) is obtained.
  • the feature amount extraction unit 105 temporarily integrates the calculated angular velocity (S217), and calculates the angular displacement (V218) in the horizontal plane direction.
  • the feature amount extraction unit 105 processes the angular displacement with the LPF (S219). Further, the feature amount extraction unit 105 differentiates the angular displacement (S220) to obtain the angular velocity (V221) in the horizontal plane direction.
  • the angular velocity of V221 is once integrated in S217 as compared with the angular velocity of V218, and the angular displacement after integration is smoothed by being processed by the LPF in S219, and noise is removed from the waveform.
  • the action detection unit 106 included in the sensor data analysis unit 104 determines whether or not the angular velocity (V221) in the horizontal plane direction exceeds a threshold (S222), and detects a section where the angular speed exceeds the threshold as a rotation section (S223). .
  • FIG. 12 is a flowchart showing an example of the swing detection process (S230) shown in FIG.
  • the angular velocity (V221) in the horizontal direction after smoothing calculated in the rotation section detection process shown in FIG. 11 is used.
  • the feature amount extraction unit 105 acquires the sign of the angular velocity (S231). Any sign may be defined for the direction of rotation. In the illustrated example, clockwise rotation (V232) and counterclockwise rotation (V233) are defined as signs of angular velocity (V221). To do. Further, the feature amount extraction unit 105 calculates a time interval at which reverse rotation has occurred (S234).
  • the feature amount extraction unit 105 determines the time interval from the occurrence of the clockwise rotation (V232) to the occurrence of the counterclockwise rotation (V233), and the counterclockwise rotation ( The time interval from the occurrence of V233) to the occurrence of clockwise rotation (V232) is calculated.
  • the action detection unit 106 determines whether or not the time interval calculated in S234 is below a threshold value (TH) (S235), and detects that a swing has occurred when the time interval is below the threshold value. (S236).
  • FIG. 13 is a chart showing an example of the turn detection process (S250) shown in FIG.
  • the turn detection process a plurality of feature amounts are calculated by the feature amount extraction unit 105, and the action detection unit 106 performs determination based on each threshold based on each feature amount.
  • FIG. 13 shows a process for the feature quantity extraction unit 105 to calculate each feature quantity.
  • the calculation processing of each feature amount will be described in order, but the processing by the feature amount extraction unit 105 does not necessarily have to be executed in the description order, and the presumed amount is acquired or calculated. If so, the processing can be executed in an arbitrary order.
  • the feature quantity extraction unit 105 calculates a norm of acceleration (D251) included in the sensor data (S252), and further calculates an average value of norms in a predetermined time frame (S253).
  • the acceleration norm average (V254) calculated in this way is used as one of the feature amounts for detecting the turn.
  • the feature amount extraction unit 105 processes the acceleration (D251) with the first LPF (S273), and calculates the gravity component acceleration (V274). Further, the feature amount extraction unit 105 calculates the inner product of the angular velocity (D255) and the gravity component acceleration included in the sensor data (S256). Thereby, the projection of the angular velocity in the direction of the gravitational component acceleration, that is, the angular velocity (V257) in the horizontal plane direction (around the vertical axis) is obtained. The feature quantity extraction unit 105 integrates the calculated angular velocity (S258), and calculates the angular displacement (V259) in the horizontal plane direction. Angular displacement (V259) is also used as one of feature quantities for turn detection.
  • the feature amount extraction unit 105 calculates the angular velocity (V261) based on the angular displacement (V259) and the duration (V260) of the rotation section to be processed.
  • the angular velocity of V261 can be a longer time frame (for example, smoothed over the entire rotation section, for example, compared to the angular speed of D255.
  • the duration of the rotation section (V260) and the angular change rate (V261) are also detected by the turn detection. Is used as one of the feature quantities for
  • the feature quantity extraction unit 105 calculates several feature quantities by analyzing the angular displacement (V259) for a predetermined time frame (S262). More specifically, the feature amount extraction unit 105 determines the maximum value (S263, V268), average value (S264, V269), variance (S265, V270), and kurtosis (S266, V271) in the time frame. , And skewness (S267, V272). These feature amounts are also used as feature amounts for turn detection.
  • the feature quantity extraction unit 105 processes the acceleration (D251) with the second LPF (S275).
  • the first LPF (S273) is used to extract the gravitational component acceleration (V274), which is a DC component included in the acceleration, whereas the second LPF (S275) Used to smooth acceleration by filtering the high frequency region. Therefore, the passband settings of these LPFs can be different.
  • the feature amount extraction unit 105 calculates the inner product of the acceleration smoothed by the second LPF (S275) and the gravity component acceleration (V274) extracted by the first LPF (S273) (S276). Thereby, vertical acceleration (V277) is obtained. Further, the feature amount extraction unit 105 calculates the difference between the acceleration vector obtained by combining the gravity component acceleration (V274) and the vertical acceleration (V277) and the acceleration smoothed by the second LPF (S275) (S278). ). Thereby, horizontal acceleration (V279) is obtained. The feature amount extraction unit 105 calculates the average value of the horizontal acceleration (S280). The average value (V281) of the horizontal acceleration calculated in this way is also used as a feature value for turn detection.
  • the action detection unit 106 determines whether or not a turn has occurred based on the feature amount extracted from the sensor data as described above, for example.
  • the action detection unit 106 includes the duration of the rotation section (V260), the angular displacement in the horizontal plane (V259), the smoothed angular velocity (V261), the acceleration norm average (V254), and the horizontal acceleration average. The determination is performed based on the value (V281), the maximum value (V268) of the angular velocity in the time frame, the average value (V269), the variance (V270), the kurtosis (V271), and the skewness (V272).
  • the feature amount used for the determination is not limited to the above example.
  • a feature amount other than the above example may be used, or a part of the feature amount of the above example may not be used.
  • the type of feature quantity used for turn detection may be determined by principal component analysis based on sensor data when a turn actually occurs.
  • the feature-value used for determination may be determined based on the tendency of the sensor data that appears when a turn actually occurs.
  • the acceleration norm average (V254) and the horizontal acceleration average value (V281) are feature quantities related to the turning radius of the turn.
  • the threshold value of each feature amount applied in the determination by the action detection unit 106 is determined according to the result of machine learning based on sensor data when a turn actually occurs, for example. At this time, whether or not a turn has actually occurred may be determined manually with reference to, for example, an action video acquired simultaneously with the sensor data. Further, not only whether or not a turn has occurred, but a label indicating what kind of turn may be given. More specifically, for example, as a result of referring to the video, a label indicating each attribute of an action determined on the service provider side that the service provider wants to detect as a turn, does not want to detect as a turn, or either may be detected. May be given.
  • the action detection processing executed in the present embodiment is not limited to jumps and turns that occur on snowboards.
  • action detection processing is performed on jumps and turns that occur in sports other than snowboards or scenes other than sports. May be executed.
  • an action other than a jump or turn may be detected.
  • the action detection unit 106 may detect a fall that occurs on a snowboard or the like.
  • the feature quantity extraction unit 105 calculates the norm of acceleration in the same manner as the above-described jump and turn detection, and the action detection unit 106 has a threshold value (for example, a large value that does not occur in normal downhill). The occurrence of a fall may be detected when the value exceeds (which may be a value).
  • the scoring processing unit 109 included in the analysis result processing unit 107 may perform the action section including the jump section and / or the turn section detected by the processing described with reference to FIGS. 2 to 13 above.
  • a score (action score) for evaluating the generated action is calculated.
  • the action score can be calculated, for example, by extracting physical quantities (feature quantities) representing good or bad actions and features from sensor data in the action section and weighting and adding them.
  • the service control unit 112 generates information on the action (for example, jump or turn) based on the score calculated in this way.
  • the duration of the section (the angular displacement around the X axis / Y axis / Z axis in the section), the ratio of the free fall section, the magnitude of the impact at the time of crossing / landing, etc. It can be extracted as a feature amount for calculating a score.
  • the duration of the section, the displacement angle, the average value of each speed, the maximum value, and the standard deviation, the maximum value of the angular acceleration and the standard deviation, etc. are the feature quantities for calculating the score. Can be extracted.
  • the weighted addition coefficient can be set according to the nature of the action emphasized in the service 113 provided by the information processing apparatus 100, for example.
  • the method for calculating the action score from the feature amount is not limited to the weighted addition, and other calculation methods may be used.
  • the action score may be calculated by applying a machine learning algorithm such as a linear regression model.
  • the clustering processing unit 108 included in the analysis result processing unit 107 performs an action section including a jump section and / or a turn section detected by the processing described above with reference to FIGS. Then, a clustering algorithm such as the k-means method is applied using the feature amount extracted for scoring, and the detected actions are classified into clusters.
  • a clustering algorithm such as the k-means method is applied using the feature amount extracted for scoring, and the detected actions are classified into clusters.
  • actions may be classified into clusters according to the length of the duration of the section or the magnitude of rotation.
  • the result of clustering is used, for example, to extract action sections so that various types of actions such as jumps and turns are included in the moving image when a digest moving image is provided as a service. Also, by classifying good actions and bad actions into separate clusters, the user may look back on the actions or use them for coaching to improve the actions.
  • the analysis result processing unit 107 may calculate the similarity between the action sections based on the correlation coefficient of the feature amount as the same process as the clustering (action sections with high similarity are classified into the same cluster). It can be treated in the same way as the action section that was made). In addition, for example, the analysis result processing unit 107 prepares a characteristic amount pattern of a typical type of action in advance, and determines which type the newly generated action corresponds to by a k-NN method or the like. May be.
  • FIG. 14 is a block diagram illustrating an example of processing for estimating a sensor mounting state according to an embodiment of the present disclosure. More specifically, the illustrated configuration determines whether a sensor that provides sensor data is mounted directly on the user's body or on an instrument used by the user. The illustrated process is executed by, for example, the sensor data analysis unit 104 included in the information processing apparatus 100 described above. In the illustrated example, the cut-off frequency (Fc) of the filter and the length of the time frame are specifically described. However, these numerical values are examples, and may be appropriately changed according to actual sensor characteristics. Can be done.
  • Fc cut-off frequency
  • the receiving unit 102 of the information processing apparatus 100 receives sensor data provided by a three-axis (u, v, w) acceleration sensor 121.
  • the sensor data analysis unit 104 acquires this sensor data via the sensor device control unit 103.
  • the above-described determination processing is based on the fact that when the sensor is directly attached to the user's body, the high-frequency component of acceleration is attenuated by the body functioning as an LPF.
  • A amplitude of the low frequency component that has passed through the LPF 124)
  • B amplitude of the high frequency component that has passed through the HPF
  • the threshold determination 130 if the value obtained by processing A / B with the HPF 129 is larger than the threshold, it is determined that the sensor is directly attached to the user's body, and if not, the sensor is attached to the instrument. It can be determined that it is attached.
  • the estimation result as described above may be used inside the sensor data analysis unit 104, for example.
  • the sensor data analysis unit 104 changes the threshold value, the filter setting value, and the like depending on whether the sensor is attached to the body or the appliance in the process of detecting the user action as described above. Also good.
  • the estimation result as described above is fed back to the sensor device control unit 103 and used for setting parameters relating to measurement of the sensor device, determining the sensor data preprocessing method by the sensor device control unit 103, and the like. May be.
  • adaptive control related to sensor data processing may be performed based on estimation related to the state of the sensor data providing side, such as estimation of the sensor mounting state described above.
  • the sensor data analysis unit 104 estimates the type of sport in which an action has occurred using an algorithm such as machine learning from the impact strength or movement pattern detected by an acceleration sensor or the like. Also good.
  • the sports may be estimated for each generally recognized event, or may be estimated for each system such as board sports, water sports, bicycle competitions, and motor sports.
  • the sensor data analysis unit 104 estimates the type of device (for example, in the case of skiing, whether it is mounted on a ski or mounted on a stock). May be.
  • the estimation result may be used, for example, for controlling a threshold value or a filter setting value in action detection or the like, or fed back to the sensor device control unit 103 and similar to the sensor mounting state estimation result described above. It may be used for device control and determination of sensor data pre-processing method.
  • an information acquisition unit that acquires action information indicating a detected user action
  • a content providing unit that provides content developed according to a temporal or spatial sequence of actions. Realized.
  • the receiving unit 102 receives sensor data and time information (time stamp) from the sensor device.
  • the action detection unit 106 included in the sensor data analysis unit 104 stores information in which the above time stamp is associated with the user action detected based on the sensor data in the detection section information holding unit 110. Accordingly, the service control unit 112 can acquire user action information and time coordinates (time stamp) associated with the action from the detection section information holding unit 110.
  • the action detecting unit 106 displays time information (time stamp) at the time when the action is detected, It may be used instead of the time stamp received together with the sensor data.
  • the position information of the user is associated with the data received by the receiving unit 102 from the sensor device, and the information in which the action detecting unit 106 associates the position information with the user action is stored in the detection section information holding unit 110.
  • the service control unit 112 can acquire user action information and spatial coordinates (position information) associated with the action from the detection section information holding unit 110.
  • the action detection unit 106 When the action detection unit 106 is realized in a terminal device that is carried or worn by the user, the action detection unit 106 receives the position information acquired by the terminal device when the action is detected, together with the sensor data. It may be used instead of the position information.
  • the service control unit 112 may acquire the spatial coordinates associated with the action by matching the action video acquired separately from the sensor data with the action information using the time stamp.
  • the spatial coordinates associated with the action may be defined by an absolute coordinate system such as latitude and longitude, or relative to the environment in which the action is executed, such as a course, court, field, etc. May be defined by a general coordinate system.
  • the action information is not limited to information directly indicating the user action detected by the action detection unit 106 but may include various information related to the detected user action. Therefore, in the above example, not only the action detection result provided by the action detection unit 106 but also additional information generated by the analysis result processing unit 107 can be included in the action information.
  • the service control unit 112 can acquire user action information and time coordinates (time stamp) and / or space coordinates (position information) associated with the action from the detection section information holding unit 110. .
  • the analysis result processing unit 107 associates the time stamp and / or position information provided together with the action detection result from the action detection unit 106 with additional information generated based on the action detection result, and additional information is generated.
  • the service control unit 112 receives additional information regarding the action, time coordinates (time stamp) and / or spatial coordinates (position information) associated with the action from the additional information holding unit 111. Can be obtained.
  • the service control unit 112 can provide content to be developed according to a temporal or spatial sequence of actions based on such information.
  • the content includes, for example, video or audio.
  • the content may be game content that progresses with user actions as input.
  • the content development may reflect the content of the action, more specifically, the type of action and the action score.
  • the temporal sequence of actions is defined by a sequence of time coordinates of detected actions. That is, the temporal sequence of actions is defined by the occurrence order and interval of a series of actions that occur in a certain temporal or spatial range. More specifically, for example, the temporal sequence of actions is the sequence and occurrence interval of a series of jumps and turns that occur while the user is descending a slope with a snowboard (or the time stamp of each action indicating them). May be defined by Also, for example, the temporal sequence of actions is defined by the occurrence order and interval of a series of user actions that occur between 10 am and 10:30 am (or the time stamp of each action indicating them). May be.
  • the spatial sequence of actions is defined by a series of spatial coordinates of detected actions. That is, the spatial sequence of actions is defined by the occurrence position of a series of actions that have occurred in a certain temporal or spatial range. More specifically, for example, the spatial sequence of actions is defined by the location of a series of jumps or turns that occur while the user is sliding down the slope with a snowboard (eg, can be relative to the slope). May be. Also, for example, a spatial sequence of actions is defined by a position where a user's series of actions that occur between 10 am and 10:30 (eg, can be absolute coordinates corresponding to latitude and longitude). May be.
  • the service control unit 112 may define a temporal sequence and / or a spatial sequence for actions that have already been detected, and provide content that is developed according to them.
  • the content may be a series of jumps or tunes that occur while the user slides down the slope with a snowboard. May be included.
  • the content may include game content in which the development of a story or the like changes according to the time and place where a series of user actions that occurred during one day occurred.
  • the content may further include other examples. Some of such examples will be described later.
  • the service control unit 112 may predict a temporal sequence and / or a spatial sequence based on, for example, a user's environmental state, and provide content to be developed in accordance with the detected action.
  • the content is the time or position where the task action should be detected in the temporal or spatial sequence of actions, with the series of jumps and turns that occur while the user is descending the slope on the snowboard as the task action.
  • the content may include, for example, game content that designates a place or time at which a user's action is detected within a predetermined time in daily activities.
  • the content may further include other examples. Some of such examples will be described later.
  • FIG. 15 is a flowchart illustrating an example of processing for providing a virtual game course according to an embodiment of the present disclosure.
  • game content is provided that specifies a position included in a spatial sequence of predicted user actions and a task action to be detected at that position.
  • the service control unit 112 receives an input of a start trigger (S301).
  • the start trigger may be, for example, a user operation, or may be that the user has reached a position in the real space that is set as the start point of the game course.
  • the service control unit 112 recognizes the environmental state based on the sensor data received by the receiving unit 102, the image from the camera, and the like (S303).
  • the environmental state may include, for example, the state of the course in which the user's action will be executed, the length, the width, the route to the goal, and obstacles existing in the course.
  • the service control unit 112 sets a task action at one or a plurality of positions included in the spatial sequence after predicting a spatial sequence of subsequent user actions according to the environmental state ( S305). A specific example of the task action will be described later. Further, the service control unit 112 designs a game course based on the environmental state recognized in S303 and the position and task action set in S305 (S307). The service control unit 112 virtually displays the virtual object displaying the designed game course in the real space using a transparent display such as an HMD (Head Mounted Display) on which the user wears (S309), thereby preparing the game Is completed (S311).
  • HMD Head Mounted Display
  • the service control unit 112 starts a game (S313).
  • the start timing of the game may be specified by a user operation or the start of an action by the user, or the game may be automatically started after completion of the game preparation.
  • a message prompting to start the game or a message notifying that the game has started may be displayed together with the virtually displayed game course.
  • the service control unit 112 updates the position of the user in the game course based on the space coordinates of the user that are sequentially updated, and the user designates the position where the task action is set in S305. It is determined whether or not the performed action is successful (S315). Here, if the user succeeds in the task action, points are added (S317), and if not, the points are subtracted (S319). The service control unit 112 repeats this determination until the user reaches the goal of the game course (S321).
  • the service control unit 112 calculates a total point based on the determination result in S315 (S323). In calculating the total points, the time required to reach the goal can be considered. The service control unit 112 presents the calculated total points to the user (S325). At this time, the service control unit 112 may present the user with a breakdown of points of individual task actions and points by elements other than the task actions together with the total points. Thus, the game ends (S327).
  • FIG. 16 is a diagram illustrating a first example of a virtual game course provided in an embodiment of the present disclosure.
  • a game screen 1100 is displayed in a superimposed manner on a real space R including a snowboard course C.
  • the game screen 1100 includes a game course 1101.
  • objects that display designated positions and task actions to be detected at those positions, more specifically, icons 1103 and text 1105 are displayed in the real space as in the game course 1101. Overlaid on R.
  • the game screen 1100 may display a status 1107 including the current point and elapsed time.
  • the service control unit 112 predicts a spatial sequence of user actions based on the environmental state of the user. More specifically, the service control unit 112 determines the length of the spatial sequence expressed as the game course 1101 based on the environmental state of the user at the start of the game content. For example, the service control unit 112 acquires an image around the user taken by a camera worn by the user or a camera installed in the course C, and recognizes the environmental state based on the image. In the above example, the service control unit 112 recognizes the state of the course C, such as the length and width of the course C, the route to the goal, and obstacles existing in the course C as the user's environmental state. A course 1101 is set. As a result, the game course 1101 is set along the course C while avoiding the obstacle B existing in the course C.
  • AR Augmented Reality
  • the user can wear a transmissive display such as an HMD and transparently superimpose the game screen 1100 on the image of the real space. If the user's safety is ensured due to being closed or the like, the user wears a shielded HMD or the like and plays the game while watching the game screen 1100 that does not include the real space image. It may be possible. Further, in a shielded HMD, a smartphone, a tablet, or the like, an experience similar to the example shown in FIG. 16 may be possible by superimposing the game screen 1100 on the live view image of the camera. The same applies to the examples of FIGS. 18 to 22 described below.
  • the icon 1103 includes an icon 1103a indicating a position where a turn task action is set and an icon 1103b indicating a position where a jump task action is set.
  • the text 1105a indicating the details of the turn for example, the rotation direction and the rotation angle of the turn are shown.
  • the text 1105a “R40 °” indicates that a turn with a rotation angle of 40 degrees in the clockwise direction (clockwise) is designated as the task action.
  • the text 1105b indicating the details of the jump indicates, for example, that the task action is a jump and the height of the jump.
  • a text 1105b “JUMP 1m” indicates that a jump with a height of 1 m is designated as a task action.
  • icons indicating the rotation direction of the turn and the jump direction may be displayed together with the text 1105.
  • FIG. 17 and 18 are diagrams illustrating a second example of a virtual game course provided in an embodiment of the present disclosure.
  • the game course is set in a place where the course is not necessarily set in the real space, more specifically in the urban area.
  • the service control unit 112 recognizes the user's environmental state based on the map information. More specifically, the service control unit, based on the map information and the position information of the user at the start of the game content, the length, width of the course that the user is expected to follow within a predetermined time, Recognize the route to the goal, the state of obstacles, etc. in the course, and based on these, set a game course that includes points where task actions are specified.
  • the game screen 1200 is superimposed on the real space R.
  • a game course 1201 set along the road Rd in the real space R is displayed.
  • the road Rd is not necessarily used as a course, it can be used as a course after arbitrarily extracting points as shown in FIG.
  • icons 1203 indicating designated positions and text 1205 indicating task actions that should be detected at those positions are superimposed and displayed in the real space R in the same manner as the game course 1201.
  • the text 1205 may display different contents depending on whether the distance to the icon 1203 is far or near, as indicated by the text 1205a on the game screen 1200a and the text 1205b on the game screen 1200b.
  • the text 1205a schematically indicates the existence of the task action
  • the text 1205b indicates the details of the task action.
  • a game course 1101 is set along a snowboard course C in real space. Since the user can slide down along the course C, the actual movement trajectory of the user is close to the game course 1101. Therefore, for example, a rule may be set such that a deduction is made when the movement locus deviates from the game course 1101 beyond a predetermined range.
  • the service control unit 112 may first determine the game course 1101 along the course C and then determine the position (indicated by the icon 1103) where the task action is set.
  • the service control unit 112 first determines a position for setting the task action, and then determines the game course 1101 along the course C including those positions. Also good.
  • the user sequentially passes the position where the task action is set while continuously descending along the game course 1101. Therefore, the timing for executing the task action can be specified, or a plurality of task actions can be specified. It is also possible to specify an interval (for example, executing three or more actions at equal intervals).
  • the game course 1201 is set in an urban area that is not necessarily a course in the real space.
  • the service control unit 112 may determine the game course 1201 as a link connecting these positions after determining the position (indicated by the icon 1203) for setting the task action first.
  • the game course 1201 is set as a link connecting positions where task actions are set with the shortest distance, and the user refers to the game course 1201 as a rough guide indicating the direction of the next destination, You may move according to the actual shape of the road or traffic regulations.
  • the game course 1201 may be set as a link connecting positions where task actions are set by a route that can move according to the shape of the road, traffic regulations, or the like. In this case, it may be set as a rule that the user moves along the game course 1201.
  • the movement of the user on the game course 1201 and the execution of the task action at the designated position can occur discontinuously.
  • the jump is performed 50 times by the text 1205b.
  • the user interrupts the movement at the position indicated by the icon 1203 (one corner of the sidewalk), jumps 50 times, and then resumes the movement toward the next position.
  • FIG. 19 is a diagram illustrating a third example of a virtual game course provided in an embodiment of the present disclosure.
  • the game course 1101 set along the course C in the real space R and the task action are set on the game screen 1100 as in the example shown in FIG.
  • the icon 1103 indicating the location (not shown, but text 1105 and status 1107 indicating the details of the task action may be displayed in the same manner)
  • the game course 1301 of other users and
  • the avatar 1309 is an example of an object that displays other users.
  • the game course 1301 of the other user displayed on the first user's game screen 1100 is configured based on, for example, the environmental state of the second user who is in a different location from the first user.
  • the game course 1301, the icon 1303, and the avatar 1309 displayed on the screen 1100 can be completely virtual. That is, the second user displayed by the avatar 1309 does not exist at the position of the real space R where the avatar 1309 is superimposed.
  • the second user is provided with a screen similar to the game screen 1100 at a place different from the first user.
  • the screen provided to the second user includes a display of a game course 1101 and an icon 1103 configured based on the environmental state for the second user.
  • the screen provided to the second user includes the same display as the game course 1301, the icon 1303, and the avatar 1309 for the first user.
  • the first user and the second user can battle each other on the game courses 1101 and 1301 that are virtually arranged in parallel.
  • the game course 1101 and the game course 1301 may be parallel or intersected at a short distance.
  • the icon 1103 displayed on the game course 1101 and the icon 1303 displayed on the game course 1301 are task actions that prompt the first user and the second user to compete or cooperate with each other. May be indicated. More specifically, points are added to the person who achieved the task action first, or points are added to both when each user synchronizes (with a time difference less than the threshold) and succeeds in the task action. Thus, the task action may be set.
  • FIG. 20 and 21 are diagrams illustrating a fourth example of a virtual game course provided in an embodiment of the present disclosure.
  • the game screen 1200c is displayed for the first user and the game screen 1200d is displayed for the second user with respect to the first user and the second user who are in different locations.
  • the game screens 1200c and 1200d are, for example, the game course 1201, icons 1203, and text displayed according to the course set in the urban area, similar to the example of the game screen 1200 described above with reference to FIGS. 1205 included.
  • a game course 1201c In the game screen 1200c provided to the first user shown in FIG. 20, a game course 1201c, an icon 1203c, and a text 1205c are displayed. The icon 1203c and the text 1205c indicate a task action “get on the train with player B (second user)”.
  • a game course 1201d In the game screen 1200d provided to the second user shown in FIG. 21, a game course 1201d, an icon 1203d, and a text 1205d are displayed. The icon 1203d and the text 1205d indicate a task action “get on the train with the player A (first user)”.
  • game screens 1200c and 1200d provided to the first user and the second user, respectively.
  • Such game screens 1200c and 1200d also allow a plurality of users to play a game in cooperation with each other.
  • the first user and the second user The users do not appear on the other party's game screen 1200 until they meet at the designated station and get on the train together.
  • the task action Is achieved.
  • the user may freely select a course until the users meet each other.
  • the service control unit 112 does not present a pre-completed game course 1201 to each user until the task action is achieved until the task action is presented. It may be recognized as 1201.
  • FIG. 22 is a diagram illustrating an example of a music rhythm game provided in an embodiment of the present disclosure.
  • game content is provided that specifies a time included in a temporal sequence of predicted user actions and a task action to be detected at that time.
  • the game screen 1400 is displayed superimposed on the real space R.
  • the rhythm score 1401 the icon 1403 indicating the time when the task action is set, the text 1405 indicating the details of the task action, and the approach indicating that the time indicated by the icon 1403 is approaching every moment.
  • a display 1407 and a status 1409 including the current point and elapsed time are displayed.
  • a music rhythm game is provided that evolves according to the user's actions while snowboarding down.
  • the music associated with the temporal sequence of the user's actions is also provided to the user via headphones or speakers.
  • the service control unit 112 predicts a temporal sequence of user actions, and selects a piece of music associated with the temporal sequence. Note that the music may be selected according to a user operation, and the music may be edited in accordance with the temporal sequence predicted by the service control unit 112.
  • the service control unit 112 predicts a temporal sequence of user actions based on the environmental state of the user. More specifically, for example, the service control unit 112 determines the length of the temporal sequence in which the game content is developed based on the user's environmental state at the start of the game content. In this case, the service control unit 112 may acquire an image around the user taken by a camera worn by the user or a camera installed on the course C, and recognize the environmental state based on the image.
  • the service control unit 112 recognizes the state, such as the length, width, and the route to the goal, of the course C as the user's environmental state, and based on these, the game content is developed over time.
  • the length of the sequence that is, the length of the music provided corresponding to the temporal sequence
  • the service control unit 112 may select a tempo or a tune according to the width of the course, the presence or absence of an obstacle, and the like.
  • the service control unit 112 may set the task action in accordance with the content of the selected music, more specifically, the tempo and melody.
  • the service control unit 112 estimates the length of the course C based on the position information of the user, action information of other users who have already slid down the course C, and the like. To do. Further, the service control unit 112 edits the music according to the length of the course C, and determines the time for setting the task action. After that, when the user starts downhill, the game starts, the music starts to be played, and the rhythm score 1401 and icons 1403 start to move. More specifically, the icon 1403 and the text 1405 approach along the approach display 1407 toward the user's feet down the course C in the real space R. Note that the icon 1403 and the text 1405 are not necessarily associated with positions within the course C.
  • the icon 1403 and the text 1405 flow toward the user at a constant speed, for example, so as to reach the user's feet when the music reaches the playback time associated with the task action.
  • the task action can be, for example, a turn or a jump.
  • a task action for example, it may be specified by an icon 1403, a text 1405, or the like that a technique is determined based on a tune key of the music.
  • the course downhill by the user can be free.
  • the user takes a task action when the icon 1403 and the text 1405 come to his or her feet, more specifically in accordance with the music being played while downhill (left turn or right turn in the illustrated example). Should be executed.
  • the service control unit 112 may recognize, for example, the width of the course C as the environmental state, and dynamically change the task action so that the user can correct the course on which the user slides down as necessary.
  • the task action is executed at a time close to the specified time (music playback time)
  • a high point is added, while the task action is executed with a large deviation from the specified time, If different actions are performed, points can be subtracted.
  • the service control unit 112 may provide a music rhythm game that is developed in accordance with a user's action during jogging.
  • the service control unit 112 edits the music according to the scheduled duration and determines the time for setting the task action.
  • the scheduled jogging duration (one of the user's environmental conditions) may be recognized based on, for example, a schedule input in advance by the user.
  • the game starts, the reproduction of the music starts, and the rhythm score 1401 and the icons 1403 start to move. More specifically, the icon 1403 and the text 1405 are approached along the approach display 1407 toward the step of the jogging user.
  • a single game may be composed of a plurality of music pieces having different tempos, and a high point may be given when the user can jog while performing a task action in accordance with the tempo of the music that changes.
  • the service control unit 112 may provide content that a story develops according to a user action.
  • a story develops according to a user action.
  • the service control unit 112 sets a task action for the user in the daily life of the user, and executes the task action according to a temporal or spatial sequence designated by the user.
  • You may develop the story. For example, when an event of jogging with a character appearing as a friend or lover of the user is generated and a jogging action is detected continuously for a predetermined time or more, the likability from the character may increase. Also, for example, when an event occurs in which a character is picked up to a designated place by a certain time, and it is detected that the user has actually arrived at a designated place at a designated time, Favorability may increase.
  • the service control unit 112 may generate an event corresponding to a temporal or spatial sequence of actions indicated by a user action detection result. More specifically, for example, when the user continues to be late, the service control unit 112 may generate a wake-up call event by a character having high user preference on the next morning.
  • the service control unit 112 extracts a habitual pattern configured by a temporal or spatial sequence of actions such as commuting and meals from the user's past action detection history, and the newly detected user's action Different events may be generated depending on whether the action matches or is different from the pattern. For example, if it is detected that the user is commuting on a bus at a different time (for example, one later), an unusual character may appear in the game.
  • the service control unit 112 estimates a user attribute from a temporal or spatial sequence of actions indicated by the user's past action detection history, and based on the estimated attribute, the attribute of the character appearing in the game May be selected.
  • a virtual personality of an agent program that provides a service in a user terminal device or the like is selected according to an attribute estimated from a temporal or spatial sequence of actions indicated by the user's past action detection history. May be.
  • the service control unit 112 may include information related to the previously detected action. Based on the character or agent in the game, the content of the conversation between the user and the user may be determined. For example, if an action such as a jump or turn that occurs during snowboard downhill is detected for the first time in a year, other actions detected when the character or agent was snowboarded a year ago, for example, moving in a car It may be talked about the fact that it took a long time or that there were many falls due to downhill.
  • the service control unit 112 may reflect the time and place related to the temporal or spatial sequence included in the action detection result in the expression in the game. For example, when it is estimated from the action detection result that the user is on the train, the stage setting in the game may be set in the train. When the route on which the user is on is specified, an announcement of the next station in the game may be provided according to the actual user location. At this time, the setting in the game may be matched with the actual detection result for the time (morning, evening, night, etc.). Moreover, you may change the character and appearance of the character which appear in a game according to a user's place. For example, if you are in a city where people of a specific age and hierarchy gather, characters with character and appearance that match the people who are in the city may appear in the game.
  • the service control unit 112 may provide content that uses a user action detection result as a collection.
  • “use as a collection” means, for example, that the object has a tangible and intangible value and is collected or exchanged. More specifically, the service control unit 112 gives points to each user based on the user's action detection result, and the user collects the points, and some valuables (for example, a substantial item or social item) It may be exchanged for a virtual item such as an avatar that can be used in the media) or compete for the number of points held.
  • a virtual item such as an avatar that can be used in the media
  • the service control unit 112 may give the user points according to the action at different grant rates depending on the temporal or spatial sequence of the action to be detected. For example, when a point is given to a moving action, if the moving distance is the same, an action that travels and moves (the time sequence corresponding to the movement is longer) than the action that walks and moves (the time sequence corresponding to the movement is long). High points may be given). Further, for example, when a point is given to a jump while snowboarding, a higher point may be given to a jump with a large rotation angle (a spatial sequence corresponding to the jump is large).
  • the point grant rate may be further adjusted by a combination with context information such as time and place.
  • the service control unit 112 may be defined to include a temporal or spatial sequence of actions, and may give points to actions achieved by a team of a plurality of users in cooperation. More specifically, for example, a task action of “consumption of 5000 kcal or more by a jogging with a team of five people by a jog” (in this case, “a week” is a temporal sequence) is given, If it is determined from the actions detected for each user that the calorie consumed by the jogging of the five people exceeds 5000 kcal, points may be given to each of the five users.
  • the service control unit 112 may detect actions that can be competed between users, such as the number of steps taken in a day, the height of a jump while snowboarding, and more specifically, the time or space of the action.
  • a user may bet points on a score calculated according to a typical sequence. More specifically, for example, the user bets points in anticipation of the user who becomes the first action detection result among the users other than the user. For example, points may be awarded according to the odds for a user who has made a prediction after one day or a predetermined number of downhill action detections.
  • Such a bet may be performed by a plurality of users performing an action at the same place, for example, or many users may be able to participate through social media or the like.
  • FIG. 23 is a block diagram illustrating a hardware configuration example of the information processing apparatus according to the embodiment of the present disclosure.
  • the information processing apparatus 900 includes a CPU (Central Processing unit) 901, a ROM (Read Only Memory) 903, and a RAM (Random Access Memory) 905.
  • the information processing apparatus 900 may include a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925.
  • the information processing apparatus 900 may include an imaging device 933 and a sensor 935 as necessary.
  • the information processing apparatus 900 may include a processing circuit such as a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array) instead of or in addition to the CPU 901.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls all or a part of the operation in the information processing device 900 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927.
  • the ROM 903 stores programs and calculation parameters used by the CPU 901.
  • the RAM 905 primarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901, the ROM 903, and the RAM 905 are connected to each other by a host bus 907 configured by an internal bus such as a CPU bus. Further, the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • PCI Peripheral Component Interconnect / Interface
  • the input device 915 is a device operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever.
  • the input device 915 may be, for example, a remote control device that uses infrared rays or other radio waves, or may be an external connection device 929 such as a mobile phone that supports the operation of the information processing device 900.
  • the input device 915 includes an input control circuit that generates an input signal based on information input by the user and outputs the input signal to the CPU 901. The user operates the input device 915 to input various data and instruct processing operations to the information processing device 900.
  • the output device 917 is configured by a device capable of notifying the acquired information to the user using a sense such as vision, hearing, or touch.
  • the output device 917 can be, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL (Electro-Luminescence) display, an audio output device such as a speaker or headphones, or a vibrator.
  • the output device 917 outputs the result obtained by the processing of the information processing device 900 as video such as text or image, sound such as sound or sound, or vibration.
  • the storage device 919 is a data storage device configured as an example of a storage unit of the information processing device 900.
  • the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 919 stores, for example, programs executed by the CPU 901 and various data, and various data acquired from the outside.
  • the drive 921 is a reader / writer for a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and is built in or externally attached to the information processing apparatus 900.
  • the drive 921 reads information recorded on the attached removable recording medium 927 and outputs the information to the RAM 905.
  • the drive 921 writes a record in the attached removable recording medium 927.
  • the connection port 923 is a port for connecting a device to the information processing apparatus 900.
  • the connection port 923 can be, for example, a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, or the like.
  • the connection port 923 may be an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, or the like.
  • the communication device 925 is a communication interface configured with, for example, a communication device for connecting to the communication network 931.
  • the communication device 925 can be, for example, a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), NFC (Near Field Communication), or a communication card for WUSB (Wireless USB).
  • the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various communication.
  • the communication device 925 transmits and receives signals and the like using a predetermined protocol such as TCP / IP with the Internet and other communication devices, for example.
  • the communication network 931 connected to the communication device 925 is a network connected by wire or wireless, and may include, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like.
  • the imaging device 933 uses various members such as an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device), and a lens for controlling the formation of a subject image on the imaging element. It is an apparatus that images a real space and generates a captured image.
  • the imaging device 933 may capture a still image or may capture a moving image.
  • the sensor 935 is various sensors such as an acceleration sensor, an angular velocity sensor, a geomagnetic sensor, an illuminance sensor, a temperature sensor, an atmospheric pressure sensor, a pressure sensor, a distance sensor, or a sound sensor (microphone).
  • the sensor 935 acquires information about the state of the information processing apparatus 900 itself, such as the posture of the information processing apparatus 900, and information about the surrounding environment of the information processing apparatus 900, such as brightness and noise around the information processing apparatus 900, for example. To do.
  • the sensor 935 may also include a GNSS receiver that receives a GNSS (Global Navigation Satellite System) signal and measures the latitude, longitude, and altitude of the device.
  • GNSS Global Navigation Satellite System
  • Each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Such a configuration can be appropriately changed according to the technical level at the time of implementation.
  • an information processing apparatus for example, an information processing apparatus, a system, an information processing method executed by the information processing apparatus or system, a program for causing the information processing apparatus to function, and a program are recorded. It may include tangible media that is not temporary.
  • An information acquisition unit that acquires action information indicating the detected user action
  • An information processing apparatus comprising: a content providing unit that provides content to be developed according to a temporal or spatial sequence of actions.
  • the content providing unit provides game content that specifies a position included in the spatial sequence and a task action to be detected at the position.
  • a game screen including an object that displays the position and the task action is presented to the user while being superimposed on a real space where the action is generated.
  • the game screen displays an object for displaying the position of the first user, an object for displaying the position of the second user different from the first user, and the second user.
  • the information processing apparatus according to (3) including an object to be displayed.
  • the information processing apparatus recognizes the environmental state based on position information and map information of the user.
  • the content providing unit provides game content that specifies a time included in the temporal sequence and a task action to be detected at the time, any of (1) to (8)
  • the information processing apparatus according to item 1.
  • the content providing unit according to (9), wherein a game screen including an object for displaying the time and the task action is presented to the user while being superimposed on a real space where the action occurs.
  • Information processing device (11) The information processing apparatus according to (9) or (10), wherein the content providing unit predicts the temporal sequence based on an environmental state of the user.
  • the content providing unit according to any one of (1) to (15), wherein the content providing unit provides content in which an attribute of a character or a virtual personality is determined according to a temporal or spatial sequence of the action.
  • Information processing device 17.
  • the information processing apparatus according to any one of (1) to (16), wherein the content providing unit provides content whose stage setting is determined according to a temporal or spatial sequence of the actions. .
  • the information processing apparatus according to item 1. (19) obtaining action information indicating the detected user action; A processor providing content that expands according to a temporal or spatial sequence of the actions. (20) a function of acquiring action information indicating the detected user action; A program for causing a computer to realize a function of providing contents to be developed according to a temporal or spatial sequence of the actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

検出されたユーザのアクションを示すアクション情報を取得する情報取得部と、上記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供するコンテンツ提供部とを備える情報処理装置が提供される。

Description

情報処理装置、情報処理方法、およびプログラム
 本開示は、情報処理装置、情報処理方法、およびプログラムに関する。
 例えばユーザに装着されたセンサによって提供されるセンサデータに基づいて、ユーザのさまざまな行動を検出する技術が種々提案されている。例えば、特許文献1には、センサデータの閾値処理によって認識されたユーザの行動のうち特定の行動に特化した複数の行動判定部を有し、それぞれの行動判定部における判定結果に基づいて行動情報を生成する情報処理装置が記載されている。
特開2010-198595号公報
 例えば特許文献1に記載されたような技術によって検出されるユーザの行動(アクション)には、情報の生成に限らず様々な活用の仕方がありうる。しかしながら、そのような活用の仕方については、必ずしもこれまで十分に提案されてきたとはいえない。
 そこで、本開示では、ユーザのアクションの検出結果に基づいて、ユーザに様々な便益をもたらすことが可能な、新規かつ改良された情報処理装置、情報処理方法、およびプログラムを提案する。
 本開示によれば、検出されたユーザのアクションを示すアクション情報を取得する情報取得部と、上記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供するコンテンツ提供部とを備える情報処理装置が提供される。
 また、本開示によれば、検出されたユーザのアクションを示すアクション情報を取得することと、プロセッサが、上記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供することとを含む情報処理方法が提供される。
 また、本開示によれば、検出されたユーザのアクションを示すアクション情報を取得する機能と、上記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供する機能とをコンピュータに実現させるためのプログラムが提供される。
 以上説明したように本開示によれば、ユーザのアクションの検出結果に基づいて、ユーザに様々な便益をもたらすことができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る情報処理装置の概略的な機能構成を示すブロック図である。 本開示の一実施形態において、ユーザのアクションに含まれるジャンプを検出するための処理の第1の例を示すフローチャートである。 図2に示したハイインパクト検出処理の例を示すフローチャートである。 図2に示した自由落下検出処理の第1の例を示すフローチャートである。 図2に示した自由落下検出処理の第2の例を示すフローチャートである。 本開示の一実施形態において、ユーザのアクションに含まれるジャンプを検出するための処理の第2の例を示すフローチャートである。 図6に示した候補区間検出処理の例を示すフローチャートである。 図7に示した鉛直方向加速度算出処理の例を示すフローチャートである。 図7に示した水平方向加速度算出処理の例を示すフローチャートである。 本開示の一実施形態において、ユーザのアクションに含まれるターン区間を検出するための処理の例を示すフローチャートである。 図10に示した回転区間検出処理の例を示すフローチャートである。 図10に示した首振り検出処理の例を示すフローチャートである。 図10に示したターン検出処理の例を示すチャートである。 本開示の一実施形態において、センサ装着状態を推定するための処理の例を示すブロック図である。 本開示の一実施形態において仮想的なゲームコースを提供するための処理の例を示すフローチャートである。 本開示の一実施形態において提供される仮想的なゲームコースの第1の例を示す図である。 本開示の一実施形態において提供される仮想的なゲームコースの第2の例を示す図である。 本開示の一実施形態において提供される仮想的なゲームコースの第2の例を示す図である。 本開示の一実施形態において提供される仮想的なゲームコースの第3の例を示す図である。 本開示の一実施形態において提供される仮想的なゲームコースの第4の例を示す図である。 本開示の一実施形態において提供される仮想的なゲームコースの第4の例を示す図である。 本開示の一実施形態において提供される音楽リズムゲームの例を示す図である。 本開示の実施形態に係る情報処理装置のハードウェア構成例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.情報処理装置の機能構成
 2.アクション検出処理の例
  2-1.ジャンプの検出-1
  2-2.ジャンプの検出-2
  2-3.ターンの検出
 3.付加的な処理の例
  3-1.アクションスコアの算出
  3-2.クラスタリング処理
  3-3.センサ装着状態の推定
 4.コンテンツ提供の例
  4-1.仮想的なゲームコースの提供
  4-2.音楽リズムゲームの提供
  4-3.アクションに応じてストーリーが展開するコンテンツの提供
  4-4.コレクションコンテンツの提供
 5.ハードウェア構成
 6.補足
 (1.情報処理装置の機能構成)
 図1は、本開示の一実施形態に係る情報処理装置の概略的な機能構成を示すブロック図である。図1を参照すると、情報処理装置100は、送信部101と、受信部102と、センサデバイス制御部103と、センサデータ解析部104と、解析結果処理部107と、検出区間情報保持部110と、付加的情報保持部111と、サービス制御部112とを含む。
 情報処理装置100は、例えば後述するいくつかの具体的な例において示されるように、ネットワーク上のサーバを構成する単一の装置、または装置の集合体でありうる。また、情報処理装置100は、ネットワークを介してサーバと通信する端末装置、または単独で動作する端末装置であってもよい。あるいは、情報処理装置100の機能は、ネットワークを介して互いに通信するサーバと端末装置とに分散して実現されてもよい。情報処理装置100、または情報処理装置100の機能を実現する複数の装置のそれぞれのハードウェア構成については後述する。
 送信部101および受信部102は、例えば有線または無線の各種通信方式によってセンサデバイスと通信する通信装置によって実現される。センサデバイスは、ユーザまたはユーザによって使用される器具に装着された少なくとも1つのセンサを含む。送信部101は、センサデバイス制御部103が出力する制御信号をセンサデバイスに送信する。受信部102は、センサデバイスからセンサデータおよび時刻情報(タイムスタンプ)を受信し、これらをセンサデバイス制御部103に入力する。図示された例において、受信部102は、ユーザまたはユーザによって使用される器具に装着されたセンサによって提供されるセンサデータを受信するセンサデータ受信部を実現する。なお、例えば情報処理装置100が、少なくとも1つのセンサを備える端末装置、より具体的にはモバイルデバイスやウェアラブルデバイスであるような場合には、センサからセンサデータを受信するドライバプログラムを実行するCPU(Central Processing Unit)などのプロセッサによってセンサデータ受信部が実現されてもよい。また、本実施形態に係る情報処理装置は、例えば、センサを備える外部の装置からセンサデータを取得する取得部を備えていてもよい。ここで、取得部は、例えば、“送信部101および受信部102を実現する上記通信装置などを介して、センサを備える外部の装置からセンサデータを受信するドライバプログラム”を実行するCPUなどのプロセッサによって、実現される。なお、取得部を備える場合、本実施形態に係る情報処理装置は、センサデータ受信部を備えない構成をとることも可能である
 センサデバイス制御部103は、例えばCPUなどのプロセッサが、メモリに格納されたプログラムに従って動作することによって実現される。センサデバイス制御部103は、受信部102からセンサデータおよび時刻情報を取得する。センサデバイス制御部103は、これらのデータをセンサデータ解析部104および解析結果処理部107に提供する。センサデバイス制御部103は、必要に応じて、データの前処理を実施してもよい。また、センサデバイス制御部103は、センサデバイスの制御信号を送信部101に出力する。いくつかの実施形態において、センサデバイス制御部103は、センサデータ解析部104または解析結果処理部107における処理の結果のフィードバックに基づいて、制御信号を出力してもよい。
 センサデータ解析部104は、例えばCPUなどのプロセッサが、メモリに格納されたプログラムに従って動作することによって実現される。センサデータ解析部104は、センサデバイス制御部103から提供されたセンサデータを用いた種々の解析を実行する。図示された例において、センサデータ解析部104は、特徴量抽出部105と、アクション検出部106とを含む。特徴量抽出部105は、センサデータから各種の特徴量を抽出する。アクション検出部106は、特徴量抽出部105によってセンサデータから抽出された特徴量に基づいて、ユーザのアクションを検出する。本実施形態において、アクション検出部106が検出するユーザのアクションには、ユーザのターンおよび/またはジャンプが含まれる。さらに、アクション検出部106は、歩く、走る、静止する、乗り物で移動するなどといった、その他のユーザのアクションを検出してもよい。ユーザのアクションは、それが発生した区間(アクション区間)を示す時刻情報(タイムスタンプ)に関連付けて検出されうる。センサデータ解析部104は、解析結果、より具体的には例えばアクション検出部106によって検出されたユーザのアクション区間を含む情報を、検出区間情報保持部110に格納する。また、センサデータ解析部104は、解析結果を、解析結果処理部107に提供する。
 解析結果処理部107は、例えばCPUなどのプロセッサが、メモリに格納されたプログラムに従って動作することによって実現される。解析結果処理部107は、センサデータ解析部104の解析結果、より具体的にはアクション検出部106によって検出されたユーザのアクションの情報に基づいて、後段のサービス制御部112によって利用される各種の付加的な情報を生成する。図示された例において、解析結果処理部107は、クラスタリング処理部108と、スコアリング処理部109とを含む。例えば、検出されたユーザのアクションが同じ種類の複数のアクションを含む場合、クラスタリング処理部108が、これらのアクションをその特徴量(特徴量抽出部105によって抽出された特徴量であってもよいし、アクション検出部106によって算出された中間的な特徴量であってもよい)に基づいてクラスタリングしてもよい。また、同じ場合、スコアリング処理部109が、特徴量に基づいてアクションの評価を示すスコアを算出してもよい。また、クラスタリング処理部108および/またはスコアリング処理部109は、センサデバイス制御部103から提供されたセンサデータに基づいて、新たに特徴量を算出してもよい。解析結果処理部107は、処理結果、より具体的にはクラスタリング処理部108によるクラスタリングの結果や、スコアリング処理部109によって算出されたスコアの情報を、時刻情報(タイムスタンプ)とともに付加的情報保持部111に格納する。
 検出区間情報保持部110および付加的情報保持部111は、例えば各種のメモリまたはストレージ装置によって実現される。検出区間情報保持部110および付加的情報保持部111は、上記のようにセンサデータ解析部104および解析結果処理部107から提供された情報を、一時的または永続的に格納する。検出区間情報保持部110に格納された情報と、付加的情報保持部111に格納された情報とは、例えば時刻情報(タイムスタンプ)によって互いに対応付けることが可能でありうる。また、検出区間情報保持部110および付加的情報保持部111には、複数のユーザのそれぞれに関する情報が格納されてもよい。
 サービス制御部112は、例えばCPUなどのプロセッサが、メモリに格納されたプログラムに従って動作することによって実現される。サービス制御部112は、検出区間情報保持部110および/または付加的情報保持部111に格納された情報を利用して、サービス113を制御する。より具体的には、例えば、サービス制御部112は、検出区間情報保持部110および/または付加的情報保持部111から読み出した情報に基づいて、サービス113においてユーザに提供される情報を生成する。なお、例えば情報処理装置100がサーバであるような場合、サービス制御部112によって出力された情報は、通信装置を介して端末装置に送信されうる。また、例えば情報処理装置100が端末装置であるような場合、サービス制御部112によって出力された情報は、端末装置が備えるディスプレイ、スピーカ、またはバイブレータなどの出力装置に提供されうる。
 (2.アクション検出処理の例)
 以下では、本開示の一実施形態において実行されるアクション検出処理の例について説明する。これらの例では、ユーザがスノーボードをしている場合に発生するジャンプおよびターンが検出される。例えば、スノーボードの場合、加速度センサおよび角速度センサなどを含むセンサデバイスは、ウェアに埋め込まれたり、ウェアラブル端末装置やモバイル端末装置に組み込まれたりすることによって、ユーザに直接的に装着されてもよい。あるいは、センサデバイスは、スノーボードの用具、例えばボードに装着されてもよい。
 なお、本実施形態で実行されるアクション検出処理はスノーボードで発生するジャンプやターンには限られず、例えばスノーボード以外のスポーツで発生するジャンプやターンについてアクション検出処理が実行されてもよい。ジャンプやターンは、さまざまなスポーツで共通して発生しうるアクションであるため、例えば以下で説明するような検出処理によって、スポーツの種類に関わらずジャンプやターンを検出することが可能でありうる。また、本実施形態で実行されるアクション検出処理では、ジャンプやターン以外のアクションが検出されてもよい。そのようなアクション検出処理には、例えば特開2010-198595号公報などに記載された行動認識の技術において利用されている様々な技術を応用することが可能である。
 (2-1.ジャンプの検出-1)
 図2は、本開示の一実施形態において、ユーザのアクションに含まれるジャンプを検出するための処理の第1の例を示すフローチャートである。図示された処理は、例えば上記の情報処理装置100に含まれるセンサデータ解析部104において実行される。
 まず、センサデータ解析部104は、所定のタイムフレームごとに、ハイインパクト検出処理(S110)と、自由落下検出処理(S120)とを実行する。なお、これらの処理の詳細については後述する。これらの処理の結果を受けて、センサデータ解析部104に含まれるアクション検出部106は、2つのハイインパクト区間(踏み切りおよび着地と推定される)に挟まれた区間が発生したか否かを判定する(S101)。そのような区間が発生した場合、アクション検出部106は、区間の持続時間(duration)が2つの閾値(TH1,TH2)の間にあるか否かを判定する(S102)。これらの閾値は、例えば、ジャンプとしては長すぎる区間や短すぎると判断される区間を除外する目的で設定される。
 S102の判定において持続時間が2つの閾値の間にあった場合、さらに、アクション検出部106は、当該区間における自由落下区間の比率が閾値(TH)を超えるか否かを判定する(S103)。自由落下区間の比率が閾値を超える場合、当該区間(2つのハイインパクト区間に挟まれた区間)がジャンプ区間であることが検出される(S104)。
 図3は、図2に示したハイインパクト検出処理(S110)の例を示すフローチャートである。図3を参照すると、ハイインパクト検出処理では、センサデータに含まれる加速度(D111)が利用される。まず、センサデータ解析部104に含まれる特徴量抽出部105が、加速度のノルムを算出し(S112)、さらにノルムをLPF(Low Pass Filter)によってスムージングする(S113)。続いて、特徴量抽出部105は、スムージングされた加速度のノルムについて、所定のタイムフレームで振幅のパワーを算出する(S114)。アクション検出部106は、パワーが閾値(TH)を上回るか否かを判定し(S115)、パワーが閾値を上回る場合、当該タイムフレームがハイインパクト区間であることを検出する(S116)。
 なお、本明細書および図面において、TH、TH1またはTH2などとして表記される閾値には、それぞれの処理において適切な値が設定される。つまり、これらの閾値がいずれもTHなどとして表記されていることは、これらの閾値が同じ値であることを示すものではない。
 図4は、図2に示した自由落下検出処理(S120)の第1の例を示すフローチャートである。図4を参照すると、第1の例に係る自由落下検出処理では、センサデータに含まれる加速度(D121)および角速度(D125)が利用される。まず、特徴量抽出部105が加速度のノルムを算出し(S122)、アクション検出部106が各区間におけるノルムが閾値(TH)を下回るか否かを判定する(S123)。アクション検出部106は、加速度のノルムが閾値を下回った区間について、当該区間が自由落下区間であることを検出する(S124)。
 一方、特徴量抽出部105は、角速度についてもノルムを算出し(S126)、さらに所定のタイムフレームにおけるノルムの分散を算出する(S127)。アクション検出部106は、角速度のノルムの分散が閾値(TH)を下回るか否かを判定し(S128)、分散が閾値を下回る場合、S124において検出された自由落下区間をマスクする(つまり、自由落下区間としての判定を取り消す)(S129)。このような角速度に基づくマスク処理は、ユーザがジャンプした場合には角速度の変化が発生するため、角速度の変化(分散)が小さい自由落下区間はジャンプ以外の原因で発生している、という知見に基づく。
 なお、上記の処理において、S126~S129におけるマスクの処理は、必ずしもS121~S124における自由落下区間の判定処理の後に実行されなくてもよい。例えば、アクション検出部106は、マスクの処理を先行して実行し、マスクする区間として特定された区間については自由落下区間の判定処理を実行しなくてもよい。あるいは、マスクの処理は、図2に示したジャンプ区間の検出処理(S104)の後に実行され、一旦ジャンプ区間として検出された区間がマスクされてもよい。さらにいえば、図4などに示す自由落下処理(S120)は、必ずしも図2に示した区間の発生判定(S101)の前に実行される必要はなく、区間の発生判定の後、例えば自由落下区間の比率に関する判定(S103)の前に、当該区間について自由落下検出処理が実行されてもよい。
 図5は、図2に示した自由落下検出処理(S120)の第2の例を示すフローチャートである。図5を参照すると、第2の例に係る自由落下検出処理では、ユーザまたはユーザによって使用される器具に装着された加速度センサによって提供されるセンサデータに含まれる加速度(D121)が利用される。S122~S124では、特徴量抽出部105およびアクション検出部106が上記の第1の例と同様の処理を実行し、自由落下区間を検出する。
 一方、本例において、特徴量抽出部105は、加速度のX軸成分およびY軸成分を抽出し(S132)、さらに加速度のX軸成分とY軸成分との間での共分散を算出する(S133)。より具体的には、例えば、特徴量抽出部105は、ユーザが基準面(水平面には限らず、傾斜面であってもよい)上を歩いたり走ったりしている場合に、加速度センサの座標軸のうちユーザの進行方向に最も近い軸をX軸、基準面の法線方向に最も近い軸をY軸とし、これらの軸方向の加速度成分(X軸成分、Y軸成分)の共分散を算出する。アクション検出部106は、共分散が閾値(TH)を下回るか否かを判定し(S134)、共分散が閾値を下回る場合、S124において検出された自由落下区間をマスクする(S129)。このような加速度の共分散に基づくマスク処理は、例えば、検出したいジャンプが専ら基準面の法線方向の変位を伴ういわゆる垂直跳びではなく、ユーザの進行方向への変位を伴うジャンプである場合に有効である。
 (2-2.ジャンプの検出-2)
 図6は、本開示の一実施形態において、ユーザのアクションに含まれるジャンプを検出するための処理の第2の例を示すフローチャートである。図示された処理は、上記の第1の例と同様に、例えば情報処理装置100に含まれるセンサデータ解析部104において実行される。
 まず、センサデータ解析部104は、候補セクション検出処理(S140)を実行する。なお、この処理の詳細については後述する。処理の結果を受けて、センサデータ解析部104に含まれるアクション検出部106は、候補区間が発生したか否かを判定する(S105)。候補区間が発生した場合、アクション検出部106は、上記の第1の例と同様に、区間の持続時間(duration)が2つの閾値(TH1,TH2)の間にあるか否かを判定する(S102)。持続時間が2つの閾値の間にあった場合、さらに、アクション検出部106は、区間における鉛直方向および水平方向の加速度の平均値(mean)がそれぞれの閾値(THs)を超えるか否かを判定する(S106)。加速度の平均値がそれぞれの閾値を超える場合、当該候補区間がジャンプ区間であることが検出される(S104)。
 図7は、図6に示した候補区間検出処理(S140)の例を示すフローチャートである。図7を参照すると、候補区間検出処理では、まず、上記で図3を参照して説明したハイインパクト検出処理(S110)と、鉛直方向加速度算出処理(S141)と、水平方向加速度算出処理(S142)とが実行される。さらに、センサデータ解析部104に含まれる特徴量抽出部105は、各区間について、S141,S142で算出された鉛直方向加速度と水平方向加速度との差分を算出する(S143)。その上で、アクション検出部106が、2つのハイインパクト区間(踏み切りおよび着地と推定される)に挟まれた区間が発生したか否かを判定する(S144)。そのような区間が発生した場合、アクション検出部106は、S143で算出された鉛直方向加速度と水平方向加速度との差分が、当該区間において閾値(TH)を超えるか否かを判定する(S145)。差分が閾値を超える場合、当該区間(2つのハイインパクト区間に挟まれた区間)がジャンプ区間の候補区間であることが検出される(S146)。
 図8は、図7に示した鉛直方向加速度算出処理(S141)の例を示すフローチャートである。図8を参照すると、鉛直方向加速度算出処理では、センサデータに含まれる加速度(D151)が利用される。まず、センサデータ解析部104に含まれる特徴量抽出部105が、加速度の平均値(mean)を算出する(S152)。ここで算出される平均値は、例えば移動平均でありうる。S152で算出された加速度の平均値に基づいて、特徴量抽出部105は重力成分加速度算出処理を実行する(S153)。さらに、特徴量抽出部105は、算出された重力成分加速度のノルムを算出する(S154)。なお、重力成分加速度は、移動平均などの平均値に基づいて算出されてもよいし、LPFなどのフィルタを用いて算出されてもよい。
 一方、特徴量抽出部105は、上記のS152~S154の処理とは別に、加速度(D151)をBPF(Band Pass Filter)で処理する(S155)。図示された例において、BPFは、低周波領域のフィルタによって加速度に含まれるDC成分(つまり、重力成分)を除去し、さらに高周波領域のフィルタによって加速度をスムージングすることを目的として用いられる。なお、S155のBPFは、例えばLPFやHPF(High Pass Filter)など、他の種類のフィルタの組み合わせによって代替されてもよい。特徴量抽出部105は、BPFによって処理された加速度について、S153で算出された重力成分加速度との内積を算出する(S156)。
 さらに、特徴量抽出部105は、S156で算出された内積を、S154で算出された重力成分加速度のノルムで割る(S157)。これによって、鉛直方向加速度(V158)が得られる。図示された例において、鉛直方向加速度は、BPF(S155)によって重力成分を除去した加速度を、重力成分加速度の方向に射影することによって算出されている。
 図9は、図7に示した水平方向加速度算出処理(S142)の例を示すフローチャートである。図9を参照すると、水平方向加速度算出処理でも、センサデータに含まれる加速度(D151)が利用される。また、水平方向加速度算出処理では、上記で図8を参照して説明した鉛直方向加速度算出処理(S141)において算出された鉛直方向加速度が利用される。より具体的には、センサデータ解析部104に含まれる特徴量抽出部105は、鉛直方向加速度を2乗して利用する(S161)。
 その一方で、特徴量抽出部加速度(D151)をBPFで処理し(S162)、加速度に含まれるDC成分を除去するとともに加速度をスムージングする。なお、S162のBPFも、例えばLPFやHPFなど、他の種類のフィルタの組み合わせによって代替されてもよい。特徴量抽出部105は、BPFによって処理された加速度のノルムを算出し(S163)、これを2乗する(S164)。さらに、特徴量抽出部105は、S161で算出された鉛直方向加速度の2乗と、S164で算出された水平方向加速度の2乗との差分を算出し(S165)、差分の平方根(S166)によって水平方向加速度(V167)を得る。
 以上で説明したような、本開示の一実施形態におけるジャンプ検出では、ジャンプ検出の第1の例(図2)で自由落下検出処理に第1の例(図4)を採用する場合と、同じくジャンプ検出の第1の例(図2)で自由落下検出処理に第2の例(図5)を採用する場合と、ジャンプ検出の第2の例(図6)の場合とで、合計3種類のジャンプ検出処理が可能である。アクション検出部106を含むセンサデータ解析部104は、これらの3種類のジャンプ検出処理をそれぞれ実行した上で、それらの結果に基づいて最終的なジャンプ区間を検出してもよい。より具体的には、例えば、アクション検出部106は、3種類のジャンプ検出処理のうちの少なくとも1つでジャンプ区間が検出された場合に、当該区間を最終的なジャンプ区間として検出してもよい。あるいは、アクション検出部106は、3種類のジャンプ検出処理のうちの2つ以上、または3種類すべてでジャンプ区間が検出された場合に、当該区間を最終的なジャンプ区間として検出してもよい。
 (2-3.ターンの検出)
 図10は、本開示の一実施形態において、ユーザのアクションに含まれるターン区間を検出するための処理の例を示すフローチャートである。図示された処理は、例えば上記の情報処理装置100に含まれるセンサデータ解析部104において実行される。以下の処理では、センサデータ解析部104が、ユーザのアクションに含まれる回転を検出し(S210)、さらにその回転に含まれる非ターン性の回転を検出し(S230)、回転から非ターン性の回転を除いたものの中からターンを検出する(S250)。
 ここで、非ターン性の回転は、例えば、センサがユーザの頭部、またはユーザの頭部に装着される器具に装着されるセンサを含む場合に、ユーザの首振りによって発生する回転を含む。非ターン性の回転は、他にも、ユーザの体動によって発生する回転、より具体的には、センサがユーザの腕部、またはユーザの腕部に装着される器具に装着されるセンサを含む場合に、ユーザの腕振りや腕回しによって発生する回転などを含みうる。
 本実施形態では、センサデータ解析部104が、このような非ターン性の回転を除いた上でターン区間を検出することで、より精度の高いターン区間の検出が可能になる。そのような意味で、非ターン性の回転は、検出対象であるターンに対するノイズであるともいえ、本実施形態において、センサデータ解析部104は、ユーザのアクションに含まれる回転を検出し、さらにその回転に含まれるノイズを検出し、回転からノイズを除いたものの中からターンを検出するともいえる。
 まず、センサデータ解析部104は、回転区間検出処理(S210)を実行する。本実施形態において、回転区間は、水平面方向の角速度が閾値を超える区間として定義される。センサデータ解析部104は、回転区間が発生したか否かを判定する(S201)。回転区間が発生した場合、まず、センサデータ解析部104は、首振り(HEAD SHAKE)検出処理(S230)を実行する。さらに、センサデータ解析部104は、首振りが検出されたか否かを判定し(S203)、首振りが検出されなかった場合に、さらにターン検出処理(S250)を実行する。このような処理によって、回転区間からユーザの首振り(例えば、センサが頭部装着型のウェアラブル端末装置に搭載されている場合などに発生する)によって生じた区間が除かれ、さらに回転半径や角速度、持続時間などが所望の条件を満たすターン区間を抽出することができる。
 図11は、図10に示した回転区間検出処理(S210)の例を示すフローチャートである。図11を参照すると、回転区間検出処理では、センサデータに含まれる加速度(D211)および角速度(D214)が利用される。まず、センサデータ解析部104に含まれる特徴量抽出部105が、加速度の平均値(mean)を算出する(S212)。ここで算出される平均値は、例えば移動平均でありうる。S212で算出された加速度の平均値に基づいて、特徴量抽出部105は重力成分加速度算出処理を実行する(S213)。さらに、特徴量抽出部105は、S213で算出された重力成分加速度と、角速度(D214)との内積を算出する(S215)。これによって、重力成分加速度の方向への角速度の射影、つまり水平面方向(鉛直軸回り)の角速度(V216)が得られる。
 ここで、特徴量抽出部105は、算出された角速度を一旦積分して(S217)、水平面方向の角変位(V218)を算出する。特徴量抽出部105は、角変位をLPFで処理する(S219)。さらに、特徴量抽出部105は、角変位を微分して(S220)、水平面方向の角速度(V221)にする。V221の角速度は、V218の角速度と比較して、S217で一旦積分され、さらに積分後の角変位がS219でLPFによって処理されたことによってスムージングされ、波形からノイズが除去されている。センサデータ解析部104に含まれるアクション検出部106は、水平面方向の角速度(V221)が閾値を上回るか否かを判定し(S222)、角速度が閾値を上回る区間を回転区間として検出する(S223)。
 図12は、図10に示した首振り検出処理(S230)の例を示すフローチャートである。図12を参照すると、首振り検出処理では、図11に示した回転区間検出処理で算出された、スムージング後の水平面方向の角速度(V221)を利用する。特徴量抽出部105は、角速度の符号を取得する(S231)。回転の向きに対する符号の定義はどのようなものでもよいが、図示された例において、角速度(V221)の符号として、時計回りの回転(V232)と、反時計回りの回転(V233)とを定義する。さらに、特徴量抽出部105は、逆向きの回転が発生した時間間隔を算出する(S234)。つまり、図示された例において、特徴量抽出部105は、時計回りの回転(V232)が発生してから反時計回りの回転(V233)が発生するまでの時間間隔、および反時計回りの回転(V233)が発生してから時計回りの回転(V232)が発生するまでの時間間隔を算出する。アクション検出部106は、S234で算出された時間間隔が閾値(TH)を下回るか否かを判定し(S235)、時間間隔が閾値を下回る場合に、首振りが発生していることを検出する(S236)。
 図13は、図10に示したターン検出処理(S250)の例を示すチャートである。ターン検出処理では、特徴量抽出部105によって複数の特徴量が算出され、それぞれの特徴量に基づいてアクション検出部106が閾値による判定を実施する。図13には、特徴量抽出部105がそれぞれの特徴量を算出するための処理が示されている。なお、以下の説明ではそれぞれの特徴量の算出の処理を順を追って説明するが、特徴量抽出部105による処理は必ずしも説明の順序に実行されなくてもよく、前提になる量が取得または算出されていれば、任意の順序で処理が実行されうる。
 まず、特徴量抽出部105は、センサデータに含まれる加速度(D251)のノルムを算出し(S252)、さらに所定のタイムフレームにおけるノルムの平均値を算出する(S253)。このようにして算出された加速度ノルム平均(V254)は、ターン検出のための特徴量の1つとして利用される。
 一方、特徴量抽出部105は、加速度(D251)を第1のLPFで処理し(S273)、重力成分加速度(V274)を算出する。さらに、特徴量抽出部105は、センサデータに含まれる角速度(D255)と重力成分加速度との内積を算出する(S256)。これによって、重力成分加速度の方向への角速度の射影、つまり水平面方向(鉛直軸回り)の角速度(V257)が得られる。特徴量抽出部105は、算出された角速度を積分して(S258)、水平面方向の角変位(V259)を算出する。角変位(V259)も、ターン検出のための特徴量の1つとして利用される。
 さらに、特徴量抽出部105は、角変位(V259)と、処理の対象になっている回転区間の持続時間(duration)(V260)とに基づいて、角速度(V261)を算出する。V261の角速度は、例えばD255の角速度と比べて、より長いタイムフレーム(例えば回転区間全体でスムージングされたものでありうる。回転区間の持続時間(V260)および角変化率(V261)も、ターン検出のための特徴量の1つとして利用される。
 また、特徴量抽出部105は、角変位(V259)を所定のタイムフレームについて解析する(S262)ことによって、いくつかの特徴量を算出する。より具体的には、特徴量抽出部105は、タイムフレーム内での角速度の最大値(S263,V268)、平均値(S264,V269)、分散(S265,V270)、尖度(S266,V271)、および歪度(S267,V272)を算出する。これらの特徴量も、ターン検出のための特徴量として利用される。
 一方で、特徴量抽出部105は、加速度(D251)を第2のLPFで処理する(S275)。図示された例では、第1のLPF(S273)が、加速度に含まれるDC成分である重力成分加速度(V274)を抽出するために用いられたのに対して、第2のLPF(S275)は、高周波領域をフィルタすることによって加速度をスムージングするために用いられる。従って、これらのLPFの通過帯域設定は異なりうる。
 特徴量抽出部105は、第2のLPF(S275)によってスムージングされた加速度と、第1のLPF(S273)によって抽出された重力成分加速度(V274)との内積を算出する(S276)。これによって、鉛直方向加速度(V277)が得られる。さらに、特徴量抽出部105は、重力成分加速度(V274)と鉛直方向加速度(V277)とを合成した加速度ベクトルの、第2のLPF(S275)によってスムージングされた加速度との差分を算出する(S278)。これによって、水平方向加速度(V279)が得られる。特徴量抽出部105は、水平方向加速度の平均値を算出する(S280).このようにして算出された水平方向加速度の平均値(V281)も、ターン検出のための特徴量として利用される。
 アクション検出部106は、例えば上記のようにしてセンサデータから抽出された特徴量に基づいて、ターンが発生したか否かの判定を実施する。図示された例において、アクション検出部106は、回転区間の持続時間(V260)、水平面方向の角変位(V259)、スムージングされた角速度(V261)、加速度ノルム平均(V254)、水平方向加速度の平均値(V281)、タイムフレーム内での角速度の最大値(V268)、平均値(V269)、分散(V270)、尖度(V271)、および歪度(V272)に基づいて判定を実施する。
 なお、判定に用いられる特徴量は上記の例には限られず、例えば上記の例以外の特徴量が用いられてもよいし、上記の例の特徴量の一部が用いられなくてもよい。例えば、センサデータから抽出可能な様々な種類の特徴量の中から、実際にターンが発生したときのセンサデータに基づく主成分分析によって、ターン検出に使用する特徴量の種類が決定されてもよい。あるいは、実際にターンが発生したときに現れるセンサデータの傾向に基づいて、判定に用いられる特徴量が決定されてもよい。例えば、上記の例のうち、加速度ノルム平均(V254)および水平方向加速度の平均値(V281)は、ターンの回転半径に関係する特徴量である。
 また、アクション検出部106による判定において適用される各特徴量の閾値は、例えば、実際にターンが発生した時のセンサデータに基づく機械学習の結果に従って決定される。このとき、実際にターンが発生したか否かは、例えば、センサデータと同時に取得されたアクションの映像を参照してマニュアルで決定されてもよい。また、単にターンが発生したか否かだけではなく、どのようなターンかを示すラベルが与えられてもよい。より具体的には、例えば、映像を参照した結果、サービス提供者側で、ターンとして検出したい、ターンとして検出したくない、またはどちらでもよいと判定されたアクションについて、それぞれの属性を示すラベルが与えられてもよい。
 以上、本開示の一実施形態において実行されるアクション検出処理のいくつかの例について説明した。既に説明した通り、本実施形態で実行されるアクション検出処理はスノーボードで発生するジャンプやターンには限られず、例えばスノーボード以外のスポーツ、またはスポーツ以外のシーンで発生するジャンプやターンについてアクション検出処理が実行されてもよい。また、本実施形態で実行されるアクション検出処理では、ジャンプやターン以外のアクションが検出されてもよい。一例として、アクション検出部106は、スノーボードなどで発生する転倒を検出してもよい。この場合、特徴量抽出部105が上述したジャンプやターンの検出と同様にして加速度のノルムを算出し、アクション検出部106が、加速度のノルムが閾値(例えば、通常の滑降では発生しない程度の大きな値でありうる)を上回った場合に、転倒の発生を検出してもよい。
 (3.付加的な処理の例)
 (3-1.アクションスコアの算出)
 例えば、解析結果処理部107に含まれるスコアリング処理部109は、上記で図2~図13を参照して説明したような処理によって検出されるジャンプ区間および/またはターン区間を含むアクション区間について、発生したアクションを評価するスコア(アクションスコア)を算出する。アクションスコアは、例えばアクション区間におけるセンサデータから、アクションの良し悪しや特徴を表す物理量(特徴量)を抽出し、それらを重みづけ加算することによって算出されうる。サービス制御部112は、このようにして算出されたスコアに基づいて、アクション(例えばジャンプまたはターン)に関する情報を生成する。
 例えば、ジャンプ区間の場合、区間の持続時間(duration)、区間におけるX軸/Y軸/Z軸回りの角変位)、自由落下区間の割合、踏切時/着地時の衝撃の大きさなどが、スコアを算出するための特徴量として抽出されうる。また、例えば、ターン区間の場合、区間の持続時間、変位角、各速度の平均値、最大値、および標準偏差、角加速度の最大値および標準偏差などが、スコアを算出するための特徴量として抽出されうる。
 なお、重みづけ加算の係数は、例えば、情報処理装置100によって提供されるサービス113において重視されるアクションの性質に応じて設定されうる。また、特徴量からアクションのスコアを算出するための方法は重みづけ加算には限られず、他の計算方法が用いられてもよい。例えば、線形回帰モデルなど、機械学習のアルゴリズムを適用することによってアクションスコアを算出してもよい。
 (3-2.クラスタリング処理)
 また、例えば、解析結果処理部107に含まれるクラスタリング処理部108は、上記で図2~図13を参照して説明したような処理によって検出されるジャンプ区間および/またはターン区間を含むアクション区間について、スコアリングのために抽出した特徴量などを利用してk-means法などのクラスタリングアルゴリズムを適用し、検出されたアクションをクラスタに分類する。ジャンプ区間やターン区間の場合、例えば、区間の持続時間の長短や、回転の大小によってアクションがクラスタに分類されてもよい。クラスタリングの結果は、例えば、サービスとしてダイジェスト動画を提供するような場合に、様々な種類のジャンプやターンなどのアクションが動画に含まれるようにアクション区間を抽出するために利用される。また、良かったアクションとそうでなかったアクションとを別々のクラスタに分類することによって、ユーザ自身がアクションを振り返ったり、アクションの改善のためのコーチングに役立てたりしてもよい。
 なお、解析結果処理部107は、クラスタリングと同様の処理として、特徴量の相関係数に基づいてアクション区間同士の類似度を算出してもよい(類似度が高いアクション区間は、同じクラスタに分類されたアクション区間と同様に扱うことができる)。また、例えば、解析結果処理部107は、典型的なタイプのアクションの特徴量パターンを予め用意しておき、k-NN法などによって、新たに発生したアクションがどのタイプに該当するかを判定してもよい。
(3-3.センサ装着状態の推定)
 図14は、本開示の一実施形態において、センサ装着状態を推定するための処理の例を示すブロック図である。より具体的には、図示された構成によって、センサデータを提供するセンサがユーザの身体に直接的に装着されているか、ユーザによって使用される器具に装着されているかが判定される。図示された処理は、例えば上記の情報処理装置100に含まれるセンサデータ解析部104において実行される。なお、図示された例では、フィルタの遮断周波数(Fc)やタイムフレームの長さが具体的に説明されているが、これらの数値は一例であり、実際のセンサの特性などに応じて適宜変更されうる。
 図示された例において、情報処理装置100の受信部102は、3軸(u,v,w)の加速度センサ121によって提供されるセンサデータを受信する。センサデータ解析部104は、センサデバイス制御部103を介してこのセンサデータを取得する。センサデータ解析部104は、まず、センサデータに含まれる加速度を1段のHPF122(Fc=0.5Hz)で処理し、その後ノルム算出123を実行する。さらに、センサデータ解析部104は、ノルムを2段のLPF124(Fc=2Hz)および2段のHPF(Fc=7Hz)でそれぞれ処理した結果について、タイムフレーム2secでの振幅(最大値と最小値の差)を算出する(125,127)。これらの結果(AおよびB)について、A/Bを演算する(128)。その結果を1段のHPF129(Fc=0.25Hz)で処理し、閾値判定130を実施する。
 上記のような判定の処理は、センサがユーザの身体に直接的に装着されている場合、身体がLPFとして機能することによって加速度の高周波成分が減衰することに基づいている。上記の例におけるA(LPF124を通過した低周波成分の振幅)/B(HPFを通過した高周波成分の振幅)は、元の加速度において高周波成分が減衰しているほど大きな値になる。従って、閾値判定130では、A/BをHPF129で処理した値が閾値よりも大きい場合にはセンサがユーザの身体に直接的に装着されていると判定し、そうでない場合にはセンサが器具に装着されていると判定することができる。
 上記のような推定の結果は、例えば、センサデータ解析部104の内部で利用されてもよい。この場合、センサデータ解析部104は、上述したようなユーザのアクションの検出の処理において、閾値やフィルタの設定値などを、センサが身体に装着されているか器具に装着されているかによって変更してもよい。あるいは、上記のような推定の結果は、センサデバイス制御部103にフィードバックされ、センサデバイスの測定に関するパラメータなどの設定や、センサデバイス制御部103によるセンサデータの前処理方法などを決定するために利用されてもよい。
 本実施形態では、例えば上記のセンサ装着状態の推定のように、センサデータの提供側の状態に関する推定に基づいて、センサデータの処理に関する適応的な制御が実施されてもよい。他の例として、センサデータ解析部104は、加速度センサなどによって検出された衝撃の強さや動きのパターンなどから、機械学習などのアルゴリズムを用いてアクションが発生しているスポーツの種類を推定してもよい。スポーツは、一般的に認識されている種目ごとに推定されてもよいし、ボードスポーツ、水上スポーツ、自転車競技、モータースポーツなどの系統ごとに推定されてもよい。また、例えば、センサデータ解析部104は、センサが器具に装着されている場合に、器具の種類(例えばスキーの場合、スキー板に装着されているか、ストックに装着されているか、など)を推定してもよい。推定の結果は、上記のセンサ装着状態の推定結果と同様に、例えばアクションの検出などにおける閾値やフィルタの設定値の制御に利用されてもよいし、センサデバイス制御部103にフィードバックされて、センサデバイスの制御やセンサデータの前処理方法の決定に利用されてもよい。
 (4.コンテンツ提供の例)
 ここで、再び図1を参照して、本実施形態に係る情報処理装置のコンテンツ提供に関する構成について説明する。本実施形態では、情報処理装置100において、検出されたユーザのアクションを示すアクション情報を取得する情報取得部と、アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供するコンテンツ提供部とが実現される。
 例えば、情報処理装置100において、受信部102は、センサデバイスから、センサデータおよび時刻情報(タイムスタンプ)を受信する。センサデータ解析部104に含まれるアクション検出部106は、センサデータに基づいて検出したユーザのアクションに上記のタイムスタンプを関連付けた情報を、検出区間情報保持部110に格納する。これによって、サービス制御部112は、検出区間情報保持部110から、ユーザのアクション情報と、アクションに関連付けられる時間座標(タイムスタンプ)とを取得することができる。なお、受信部102によるセンサデータの受信からアクション検出部106によるアクションの検出までの時間差が小さいような場合、アクション検出部106は、アクションが検出された時点での時刻情報(タイムスタンプ)を、センサデータとともに受信されるタイムスタンプの代わりに用いてもよい。
 上記の例において、さらに、受信部102がセンサデバイスから受信するデータにユーザの位置情報が関連付けられ、アクション検出部106がユーザのアクションに位置情報を関連付けた情報を検出区間情報保持部110に格納してもよい。この場合、サービス制御部112は、検出区間情報保持部110から、ユーザのアクション情報と、アクションに関連付けられる空間座標(位置情報)とを取得することができる。なお、アクション検出部106がユーザによって携帯または装着される端末装置において実現される場合、アクション検出部106は、アクションが検出された時点で当該端末装置によって取得された位置情報を、センサデータとともに受信される位置情報の代わりに用いてもよい。
 あるいは、サービス制御部112は、センサデータとは別に取得されたアクション映像を、タイムスタンプを用いてアクション情報とマッチングすることによって、アクションに関連付けられる空間座標を取得してもよい。ここで、アクションに関連付けられる空間座標は、例えば緯度経度などの絶対的な座標系によって定義されてもよいし、アクションが実行される環境、例えばスポーツ場合であればコースやコート、フィールドなどに対する相対的な座標系によって定義されてもよい。
 なお、本明細書において、アクション情報は、アクション検出部106によって検出されたユーザのアクションを直接的に示す情報に限らず、検出されたユーザのアクションに関連する様々な情報を含みうる。従って、上記の例において、アクション検出部106によって提供されるアクションの検出結果だけではなく、解析結果処理部107によって生成される付加的な情報も、アクション情報に含まれうる。
 上記の通り、サービス制御部112は、検出区間情報保持部110から、ユーザのアクション情報と、アクションに関連付けられる時間座標(タイムスタンプ)および/または空間座標(位置情報)とを取得することができる。あるいは、解析結果処理部107が、アクション検出部106からアクションの検出結果とともに提供されたタイムスタンプおよび/または位置情報を、アクションの検出結果に基づいて生成した付加的な情報に関連付けて付加的情報保持部111に格納する場合、サービス制御部112は、付加的情報保持部111から、アクションに関する付加的な情報と、アクションに関連付けられる時間座標(タイムスタンプ)および/または空間座標(位置情報)とを取得することができる。
 サービス制御部112は、これらの情報に基づいて、アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供することができる。コンテンツは、例えば映像または音声を含む。コンテンツは、ユーザのアクションを入力として進行するゲームコンテンツであってもよい。なお、コンテンツの展開には、アクションの内容、より具体的にはアクションの種類やアクションスコアなどが反映されてもよい。
 ここで、アクションの時間的なシーケンスは、検出されたアクションの時間座標の系列によって定義される。つまり、アクションの時間的なシーケンスは、ある時間的または空間的な範囲において発生した一連のアクションの発生順序および発生間隔によって定義される。より具体的には、例えば、アクションの時間的なシーケンスは、ユーザがスノーボードで斜面を滑降する間に発生する一連のジャンプやターンの発生順序および発生間隔(またはこれらを示す各アクションのタイムスタンプ)によって定義されてもよい。また、例えば、アクションの時間的なシーケンスは、午前10時から10時30分の間に発生するユーザの一連のアクションの発生順序および発生間隔(またはこれらを示す各アクションのタイムスタンプ)によって定義されてもよい。
 また、アクションの空間的なシーケンスは、検出されたアクションの空間座標の系列によって定義される。つまり、アクションの空間的なシーケンスは、ある時間的または空間的な範囲において発生した一連のアクションの発生位置によって定義される。より具体的には、例えば、アクションの空間的なシーケンスは、ユーザがスノーボードで斜面を滑降する間に発生する一連のジャンプやターンの発生位置(例えば、斜面に対する相対座標でありうる)によって定義されてもよい。また、例えば、アクションの空間的なシーケンスは、午前10時から10時30分の間に発生するユーザの一連のアクションの発生位置(例えば、緯度経度に対応する絶対座標でありうる)によって定義されてもよい。
 例えば、サービス制御部112は、既に検出されたアクションについて、時間的なシーケンスおよび/または空間的なシーケンスを定義し、それらに従って展開するコンテンツを提供してもよい。この場合、コンテンツは、ユーザがスノーボードで斜面を滑降する間に発生した一連のジャンプやターンに合ったテンポや曲調の変化を伴う楽曲や、ジャンプやターンに合ったタイミングで内容が変化する映像などを含んでもよい。あるいは、コンテンツは、1日の間に発生したユーザの一連のアクションが発生した時刻や場所に応じてストーリーなどの展開が変化するゲームコンテンツを含んでもよい。また、コンテンツは、さらに他の例を含んでもよい。そのような例の一部については後述する。
 また、例えば、サービス制御部112は、これから検出されるアクションについて、例えばユーザの環境状態に基づいて時間的なシーケンスおよび/または空間的なシーケンスを予測し、それらに従って展開するコンテンツを提供してもよい。この場合、コンテンツは、ユーザがスノーボードで斜面を滑降する間に発生する一連のジャンプやターンを課題アクションとして、アクションの時間的または空間的なシーケンスの中で課題アクションが検出されるべき時刻や位置を指定するゲームコンテンツを含んでもよい。あるいは、コンテンツは、例えば日常行動の中で、所定の時間内でのユーザのアクションが検出される場所や時刻を指定するゲームコンテンツを含んでもよい。また、コンテンツは、さらに他の例を含んでもよい。そのような例の一部については後述する。
 (4-1.仮想的なゲームコースの提供)
 図15は、本開示の一実施形態において仮想的なゲームコースを提供するための処理の例を示すフローチャートである。図示された例では、予測されるユーザのアクションの空間的なシーケンスに含まれる位置と、その位置で検出されるべき課題アクションとを指定するゲームコンテンツが提供される。
 図示された例において、まず、サービス制御部112は、開始トリガの入力を受け付ける(S301)。開始トリガは、例えばユーザ操作であってもよいし、ユーザがゲームコースの開始地点に設定されている実空間の位置に到達したことであってもよい。ここで、サービス制御部112は、受信部102によって受信されるセンサデータや、カメラからの画像などに基づいて環境状態を認識する(S303)。ここで、環境状態は、例えばこれからユーザのアクションが実行されるコースの長さ、幅、ゴールまでの経路、コース内に存在する障害物などの状態を含みうる。
 次に、サービス制御部112は、環境状態に応じてその後のユーザのアクションの空間的なシーケンスを予測した上で、空間的なシーケンスに含まれる1または複数の位置での課題アクションを設定する(S305)。課題アクションの具体的な例については後述する。さらに、サービス制御部112は、S303で認識された環境状態およびS305で設定された位置および課題アクションに基づいて、ゲームコースを設計する(S307)。サービス制御部112は、設計されたゲームコースを表示する仮想オブジェクトをユーザが装着するHMD(Head Mounted Display)などの透過型ディスプレイを用いて実空間に仮想表示させ(S309)、これでゲームの準備が完了する(S311)。
 続いて、サービス制御部112は、ゲームを開始させる(S313)。ゲームの開始タイミングは、ユーザ操作、またはユーザによるアクションの開始によって指定されてもよいし、ゲームの準備の完了後に自動的にゲームが開始されてもよい。このとき、ユーザが装着するHMDなどのディスプレイでは、仮想表示されたゲームコースとともに、ゲームを開始することを促すメッセージや、ゲームが開始されたことを通知するメッセージが表示されてもよい。ゲームの開始後、サービス制御部112は、逐次更新されるユーザの実空間での空間座標に基づいてユーザのゲームコース内での位置を更新し、S305で課題アクションを設定した位置でユーザが指定されたアクションに成功したか否かを判定する(S315)。ここで、ユーザが課題アクションに成功すればポイントが加算され(S317)、そうでなければポイントが減算される(S319)。サービス制御部112は、この判定を、ユーザがゲームコースのゴールに到達するまで繰り返す(S321)。
 ユーザがゲームコースのゴールに到達すると、サービス制御部112は、S315での判定結果に基づいて総合ポイントを算出する(S323)。総合ポイントの算出にあたっては、ゴールに到達するまでの所要時間なども考慮されうる。サービス制御部112は、算出された総合ポイントをユーザに提示する(S325)。このとき、サービス制御部112は、個別の課題アクションのポイントや、課題アクション以外の要素によるポイントなどの内訳を、総合ポイントとともにユーザに提示してもよい。以上でゲームは終了する(S327)。
 図16は、本開示の一実施形態において提供される仮想的なゲームコースの第1の例を示す図である。図16を参照すると、ゲーム画面1100は、スノーボードのコースCを含む実空間Rに重畳表示される。図示された例において、ゲーム画面1100は、ゲームコース1101を含む。ゲームコース1101上には、指定された位置と、それらの位置で検出されるべき課題アクションとを表示するオブジェクト、より具体的にはアイコン1103とテキスト1105とが、ゲームコース1101と同様に実空間Rに重畳表示されている。さらに、ゲーム画面1100には、現時点でのポイントや経過時間などを含むステータス1107が表示されてもよい。
 ここで、図示された例において、サービス制御部112は、ユーザのアクションの空間的なシーケンスを、ユーザの環境状態に基づいて予測している。より具体的には、サービス制御部112は、ゲームコース1101として表現される空間的なシーケンスの長さを、ゲームコンテンツの開始時のユーザの環境状態に基づいて決定している。例えば、サービス制御部112は、ユーザが装着したカメラや、コースCに設置されたカメラによって撮影されたユーザの周辺の画像を取得し、この画像に基づいて環境状態を認識している。上記の例において、サービス制御部112は、ユーザの環境状態として、コースCの長さ、幅、ゴールまでの経路、コースC内に存在する障害物などの状態を認識し、これらに基づいてゲームコース1101を設定する。この結果、ゲームコース1101はコースCに沿って、コースC内に存在する障害物Bを避けて設定されている。
 なお、上記のようなゲームコース1101、アイコン1103、およびテキスト1105などの表示には、AR(Augmented Reality)の技術が応用されうる。本例は、例えばユーザがHMDなどの透過型のディスプレイを装着し、実空間の像にゲーム画面1100を透過的に重畳させることが可能である場合を想定しているが、例えば、実空間が閉じられているなどしてユーザの安全が確保されるような場合であれば、ユーザが遮蔽型のHMDなどを装着して、実空間の像を含まないゲーム画面1100を見ながらゲームをプレイすることが可能であってもよい。また、遮蔽型のHMDや、スマートフォン、タブレットなどにおいて、カメラのライブビュー画像にゲーム画面1100を重畳させることによって、図16に示された例と同様の体験が可能であってもよい。以下で説明する図18~図22の例についても同様である。
 図示された例では、アイコン1103が、ターンの課題アクションが設定された位置を示すアイコン1103aと、ジャンプの課題アクションが設定された位置を示すアイコン1103bとを含む。ターンの詳細を示すテキスト1105aでは、例えばターンの回転方向と回転角度とが示される。例えば、「R40°」というテキスト1105aは、右回り(時計回り)で回転角度40度のターンが課題アクションとして指定されていることを示す。また、ジャンプの詳細を示すテキスト1105bでは、例えば課題アクションがジャンプであることと、ジャンプの高さとが示される。例えば、「JUMP 1m」というテキスト1105bは、高さ1mのジャンプが課題アクションとして指定されていることを示す。図示されているように、テキスト1105とともに、ターンの回転方向やジャンプの向きを示すアイコンが表示されてもよい。
 図17および図18は、本開示の一実施形態において提供される仮想的なゲームコースの第2の例を示す図である。図17および図18に示された例では、実空間において必ずしもコースが設定されていない場所、より具体的には市街地にゲームコースが設定されている。この場合、例えば、図17に示すように、サービス制御部112は、マップ情報に基づいてユーザの環境状態を認識する。より具体的には、サービス制御部は、マップ情報と、ゲームコンテンツの開始時のユーザの位置情報とに基づいて、ユーザが所定の時間内にたどることが予測されるコースの長さ、幅、ゴールまでの経路、コース内に存在する障害物などの状態を認識し、これらに基づいて、課題アクションが指定されるポイントを含むゲームコースを設定する。
 図18に示された例では、ゲーム画面1200が、実空間Rに重畳表示されている。ゲーム画面1200では、実空間Rにある道路Rdに沿って設定されたゲームコース1201が表示されている。道路Rdは必ずしも本来コースとして利用されるものではないが、例えば図17に示すようにポイントを任意に抽出した上で、コースとして利用することが可能である。ゲームコース1201上には、指定された位置を示すアイコン1203と、それらの位置で検出されるべき課題アクションを示すテキスト1205とが、ゲームコース1201と同様に実空間Rに重畳表示されている。テキスト1205は、ゲーム画面1200aにおけるテキスト1205aと、ゲーム画面1200bにおけるテキスト1205bとによって示されるように、アイコン1203までの距離が遠い場合と近い場合とで異なる内容を表示してもよい。図示された例において、テキスト1205aは課題アクションの存在を概略的に示し、テキスト1205bは課題アクションの内容を詳細に示している。
 ここで、上記で図16に示した第1の例におけるゲームコースと、図17および図18に示した第2の例におけるゲームコースとの共通点と相違点について説明する。
 第1の例では、実空間にあるスノーボードのコースCに沿ってゲームコース1101が設定される。ユーザはコースCに沿って滑降可能であるため、ユーザの実際の移動軌跡はゲームコース1101に近くなる。従って、例えば、移動軌跡がゲームコース1101から所定の範囲を超えてずれた場合には減点、というようなルールを設定してもよい。第1の例において、サービス制御部112は、まずコースCに沿ってゲームコース1101を決定した上で、課題アクションを設定する位置(アイコン1103によって示される)を決定してもよい。あるいは、滑降可能なコースCが複数あるような場合、サービス制御部112は、まず課題アクションを設定する位置を決定した上で、それらの位置を含むコースCに沿ってゲームコース1101を決定してもよい。
 また、第1の例では、ユーザがゲームコース1101に沿って連続的に滑降しながら課題アクションが設定された位置を順次通過するため、課題アクションを実行するタイミングを指定したり、複数の課題アクションを実行する間隔(例えば、3つ以上のアクションを等間隔で実行する、など)を指定したりすることも可能である。
 一方、第2の例では、実空間においては必ずしもコースではない市街地などでゲームコース1201が設定される。このような場合、サービス制御部112は、先に課題アクションを設定する位置(アイコン1203によって示される)を決定した上で、それらの位置を結ぶリンクとしてゲームコース1201を決定してもよい。この場合、例えば、課題アクションが設定された位置の間を最短距離で結ぶリンクとしてゲームコース1201が設定され、ユーザは次の目的地の方向を示すおおまかなガイドとしてゲームコース1201を参照しながら、実際の道路の形状や交通規制などに従って移動してもよい。あるいは、課題アクションが設定された位置の間を、道路の形状や交通規制などに従って移動可能なルートによって結ぶリンクとしてゲームコース1201が設定されてもよい。この場合、ユーザがゲームコース1201に沿って移動することをルールとして設定してもよい。
 また、第2の例では、ゲームコース1201上でのユーザの移動と、指定された位置での課題アクションの実行とが、不連続に発生しうる。例えば、図18に示されたゲーム画面1200bでは、テキスト1205bによって、ジャンプを50回することが指定されている。この場合、ユーザは、アイコン1203によって示される位置(歩道の一角)で移動を中断し、50回ジャンプしてから、次の位置に向かって移動を再開する。このような実行の不連続性を利用して、すごろくのようにダイスやルーレットなどを使って実行する課題アクションを選択したり(例えば、ダイスで6が出た場合、6つ先の位置で指定された課題アクションを実行すればよく、途中で指定されている位置は通過するだけでよいか、通過もしなくてよい、といった例が可能である。あるいは、同じ位置でも、ダイスやルーレットの目によって異なる課題アクションが設定される例も可能である)、ある位置で指定された課題アクションが実行された時点で次の位置と課題アクションとが明らかにされたり、といったような仕掛けがゲームコース1201に加えられてもよい。
 図19は、本開示の一実施形態において提供される仮想的なゲームコースの第3の例を示す図である。図19に示された例では、ゲーム画面1100において、上記の図16に示された例と同様に、実空間RにあるコースCに沿って設定されたゲームコース1101、および課題アクションが設定された位置を示すアイコン1103が表示される(図示されていないが、課題アクションの詳細を示すテキスト1105やステータス1107が同様に表示されてもよい)のに加えて、他のユーザのゲームコース1301および他のユーザについて課題アクションが設定された位置を示すアイコン1303(課題アクションを示すテキストなども同様に表示されうる)およびゲームコース1301を進む他のユーザのアバター1309が表示される。なお、アバター1309は、他のユーザを表示するオブジェクトの例である。
 図示された例において、第1のユーザのゲーム画面1100に表示される他のユーザのゲームコース1301は、例えば、第1のユーザとは異なる場所にいる第2のユーザの環境状態に基づいて構成されたものでありうる。従って、画面1100に表示されるゲームコース1301、アイコン1303、およびアバター1309は、全く仮想的なものでありうる。つまり、アバター1309によって表示されている第2のユーザは、アバター1309が重畳されている実空間Rの位置には存在しない。
 一方、図示された例において、第2のユーザは、第1のユーザとは異なる場所で、ゲーム画面1100と同様の画面の提供を受けている。第2のユーザに提供される画面は、第2のユーザについて、環境状態に基づいて構成されたゲームコース1101やアイコン1103などの表示を含む。また、第2のユーザに提供される画面は、第1のユーザについて、上記のゲームコース1301、アイコン1303、およびアバター1309と同様の表示を含む。
 このような構成によって、第1のユーザと第2のユーザとは、仮想的に並列して配置されたゲームコース1101,1301上で対戦することが可能である。実際には、上級者ではない複数のユーザが接近して滑降することは危険でありうるが、このように仮想的なコース上で対戦するのであれば、たとえ転倒などが発生しても危険はなく、ユーザ同士の対戦を楽しむことができる。
 さらに、上記のような仮想的な対戦のためのゲームコースでは、仮想的であることを利用した様々な仕掛けが設けられてもよい。例えば、ゲームコース1101とゲームコース1301とは、近い距離で並行したり、交差したりしていてもよい。また、ゲームコース1101上に表示されるアイコン1103と、ゲームコース1301上に表示されるアイコン1303とは、第1のユーザと第2のユーザとが競ったり、協力したりすることを促す課題アクションを示してもよい。より具体的には、課題アクションを先に達成した方にポイントが加算されたり、それぞれのユーザがシンクロナイズして(閾値未満の時間差で)課題アクションに成功した場合に双方にポイントが加算されたりするように課題アクションが設定されてもよい。
 図20および図21は、本開示の一実施形態において提供される仮想的なゲームコースの第4の例を示す図である。図20および図21に示された例では、互いに異なる場所にいる第1のユーザおよび第2のユーザに対して、第1のユーザにはゲーム画面1200cが、第2のユーザにはゲーム画面1200dが、それぞれ提供されている。ゲーム画面1200c,1200dは、例えば上記で図17および図18を参照して説明されたゲーム画面1200の例と同様に、市街地に設定されたコースに従って表示されるゲームコース1201、アイコン1203、およびテキスト1205を含む。
 図20に示す、第1のユーザに提供されるゲーム画面1200cでは、ゲームコース1201cと、アイコン1203cと、テキスト1205cとが表示されている。アイコン1203cおよびテキスト1205cは、「プレーヤB(第2のユーザ)と電車に乗る」という課題アクションを示している。一方、図21に示す、第2のユーザに提供されるゲーム画面1200dでは、ゲームコース1201dと、アイコン1203dと、テキスト1205dとが表示されている。アイコン1203dおよびテキスト1205dは、「プレーヤA(第1のユーザ)と電車に乗る」という課題アクションを示している。
 上記の例では、第1のユーザおよび第2のユーザにそれぞれ提供されるゲーム画面1200c,1200dにおいて、第1のユーザと第2のユーザとが協力することによって達成される課題アクションが提示されている。このようなゲーム画面1200c,1200dも、複数のユーザが協力してゲームをプレイすることを可能にするが、上記の図19の例とは異なり、例えば第1のユーザと第2のユーザとが指定された駅で待ち合わせて一緒に電車に乗るまで、互いのユーザは相手のゲーム画面1200に登場しない。
 なお、図20および図21の例では、第1のユーザと第2のユーザとが一緒に電車に乗り、それぞれのユーザのアクションとして「電車に乗っている」が検出された場合に、課題アクションが達成される。この場合、互いのユーザが出会うまでのコースはユーザが自由に選択してもよい。課題アクションを提示してから達成されるまでの間、サービス制御部112は予め完成されたゲームコース1201をそれぞれのユーザに提示するのではなく、ユーザが自らの意思で歩き回ったコースを、ゲームコース1201として認識してもよい。
 (4-2.音楽リズムゲームの提供)
 図22は、本開示の一実施形態において提供される音楽リズムゲームの例を示す図である。図示された例では、予測されるユーザのアクションの時間的なシーケンスに含まれる時刻と、その時刻で検出されるべき課題アクションとを指定するゲームコンテンツが提供される。
 図22を参照すると、ゲーム画面1400は、実空間Rに重畳表示される。ゲーム画面1400では、リズム譜1401と、課題アクションが設定された時刻を示すアイコン1403と、課題アクションの詳細を示すテキスト1405と、アイコン1403によって示される時刻が刻々と接近してくる様子を示す接近表示1407と、現時点でのポイントや経過時間などを含むステータス1409とが表示されている。図示された例では、スノーボードの滑降中のユーザのアクションに従って展開する音楽リズムゲームが提供される。図示されていないが、ゲームのプレイ中には、ユーザのアクションの時間的なシーケンスに対応付けられた楽曲も、ヘッドフォンやスピーカなどを介してユーザに提供される。
 このようなゲーム画面1400を提供するにあたり、サービス制御部112は、ユーザのアクションの時間的なシーケンスを予測し、時間的なシーケンスに対応付けられる楽曲を選択する。なお、楽曲は、ユーザ操作に従って選択され、サービス制御部112が予測される時間的なシーケンスに合わせて楽曲を編集してもよい。サービス制御部112は、ユーザのアクションの時間的なシーケンスを、ユーザの環境状態に基づいて予測する。より具体的には、例えば、サービス制御部112は、ゲームコンテンツが展開される時間的なシーケンスの長さを、ゲームコンテンツの開始時のユーザの環境状態に基づいて決定する。この場合、サービス制御部112は、ユーザが装着したカメラや、コースCに設置されたカメラによって撮影されたユーザの周辺の画像を取得し、この画像に基づいて環境状態を認識してもよい。
 上記の場合、例えば、サービス制御部112は、ユーザの環境状態として、コースCの長さ、幅、ゴールまでの経路などの状態を認識し、これらに基づいてゲームコンテンツが展開される時間的なシーケンスの長さ(つまり、時間的なシーケンスに対応して提供される楽曲の長さ)や、時間的なシーケンスの中で課題アクションが設定される時刻を設定する。また、サービス制御部112は、コースの幅や障害物の有無などに応じてテンポや曲調を選択したりしてもよい。サービス制御部112は、選択された楽曲の内容、より具体的にはテンポやメロディーに合わせて課題アクションを設定してもよい。
 例えば、コースCのスタート地点でユーザが楽曲を選択すると、サービス制御部112は、ユーザの位置情報や、既にコースCを滑降した他のユーザのアクション情報などに基づいてコースCの長さを推定する。さらに、サービス制御部112は、コースCの長さに応じて楽曲を編集し、課題アクションを設定する時刻を決定する。その後、ユーザが滑降を開始すると、ゲームがスタートし、楽曲の再生が開始されるとともに、リズム譜1401やアイコン1403などが動き出す。より具体的には、アイコン1403およびテキスト1405は、実空間RのコースCを滑降するユーザの足元をめがけて、接近表示1407に沿って接近してくる。なお、アイコン1403およびテキスト1405は、必ずしもコースC内の位置に関連付けられているわけではない。アイコン1403およびテキスト1405は、楽曲が課題アクションに関連付けられた再生時間に達したときにユーザの足元に到達するように、例えば一定の速さでユーザに向かって流れてくる。課題アクションは、例えばターンやジャンプでありうる。また、課題アクションとして、例えば楽曲の曲調の節目などで技を決めることがアイコン1403やテキスト1405などによって指定されてもよい。
 図示された例では、上記の例におけるゲームコース1101,1201のようなコースは設定されないため、ユーザが滑降するコースは自由でありうる。ユーザは、滑降する中で、再生されている楽曲に合わせて、より具体的にはアイコン1403およびテキスト1405が足元に来たときに課題アクション(図示された例の場合、左ターンや右ターン)を実行すればよい。このとき、サービス制御部112は環境状態として例えばコースCの幅を認識し、必要に応じてユーザが滑降するコースを補正できるように、課題アクションを動的に変更してもよい。課題アクションが指定された時刻(楽曲の再生時間)に近い時刻に実行された場合には高いポイントが加算される一方で、課題アクションが指定された時刻から大きくずれて実行されたり、課題アクションとは異なるアクションが実行されたりした場合には、ポイントが減算されうる。
 他の例として、サービス制御部112は、ジョギング中のユーザのアクションに従って展開する音楽リズムゲームを提供してもよい。この場合、例えば、ユーザがジョギングの予定持続時間(duration)を選択すると、サービス制御部112は予定持続時間に応じて楽曲を編集し、課題アクションを設定する時刻を決定する。なお、ジョギングの予定継続時間(ユーザの環境状態の1つ)は、例えばユーザが予め入力したスケジュールに基づいて認識されてもよい。その後、ユーザがジョギングを開始すると、ゲームがスタートし、楽曲の再生が開始されるとともに、リズム譜1401やアイコン1403などが動き出す。より具体的には、アイコン1403およびテキスト1405は、ジョギングしているユーザの足元をめがけて、接近表示1407に沿って接近してくる。例えば、1回のゲームがテンポの異なる複数の楽曲によって構成され、ユーザが変化する楽曲のテンポに合わせて課題アクションを実行しながらジョギングできた場合に高いポイントが与えられてもよい。
 (4-3.アクションに応じてストーリーが展開するコンテンツの提供)
 本開示の一実施形態において、サービス制御部112は、ユーザのアクションに応じてストーリーが展開するコンテンツを提供してもよい。以下、そのようなコンテンツのいくつかの例について説明する。
 (課題型イベント)
 例えば、サービス制御部112は、ユーザの日常生活の中で、ユーザに対して課題アクションを設定し、ユーザが指定された時間的または空間的なシーケンスに沿って課題アクションを実行することによってゲーム内のストーリーを展開させてもよい。例えば、ユーザの友人または恋人として登場するキャラクターとともにジョギングをするというイベントを発生させ、所定の時間以上継続してジョギングのアクションが検出された場合に、キャラクターからの好感度が上がってもよい。また、例えば、ある時刻までにキャラクターを指定された場所まで迎えに行くというイベントを発生させ、ユーザが実際に指定された時刻に指定された場所に到着したことが検出された場合に、キャラクターからの好感度が上がってもよい。
 (行動によるイベントトリガ)
 例えば、サービス制御部112は、ユーザのアクション検出結果によって示されるアクションの時間的または空間的なシーケンスに応じたイベントを発生させてもよい。より具体的には、例えば、サービス制御部112は、ユーザの帰宅が遅いことが続いた場合に、翌朝にユーザの好感度が高いキャラクターによるモーニングコールのイベントを発生させてもよい。
 (アクションパターンの活用)
 例えば、サービス制御部112は、ユーザの過去のアクション検出履歴から、通勤や食事などのアクションの時間的または空間的なシーケンスによって構成される習慣的なパターンを抽出し、新たに検出されたユーザのアクションがパターンと一致しているか、異なっているかに応じて異なるイベントを発生させてもよい。例えば、ユーザがいつもとは異なる時刻の(例えば1本遅い)バスに乗って通勤していることが検出された場合、ゲームにおいていつもとは異なるキャラクターが登場してもよい。
 (キャラクターの属性設定)
 例えば、サービス制御部112は、ユーザの過去のアクション検出履歴によって示されるアクションの時間的または空間的なシーケンスからユーザの属性を推定し、推定された属性に基づいて、ゲームに登場するキャラクターの属性を選択してもよい。ゲーム以外の例では、ユーザの端末装置などにおいてサービスを提供するエージェントプログラムの仮想人格が、ユーザの過去のアクション検出履歴によって示されるアクションの時間的または空間的なシーケンスから推定された属性に従って選択されてもよい。
 (アクションに基づく回想)
 例えば、サービス制御部112は、ユーザの過去のアクション検出履歴に含まれるアクションと同様の時間的または空間的なシーケンスをもつアクションが検出された場合に、以前に検出されたアクションに関連する情報に基づいて、ゲーム内のキャラクターやエージェントとユーザとの会話の内容を決定してもよい。例えば、スノーボードの滑降で発生するジャンプやターンなどのアクションが1年ぶりに検出された場合、キャラクターやエージェントが、1年前のスノーボードのときに検出された他のアクション、例えば、自動車での移動に時間がかかったことや、滑降で転倒が多かったことなどを話題にしてもよい。
 (コンテキストによる表現の変化)
 例えば、サービス制御部112は、アクション検出結果に含まれる時間的または空間的なシーケンスに関連する時刻および場所を、ゲーム内の表現に反映させてもよい。例えば、アクション検出結果からユーザが電車に乗っていることが推定される場合には、ゲーム内の舞台設定が電車の中に設定されてもよい。また、ユーザが乗っている路線が特定される場合には、ゲーム内での次の駅のアナウンスなどを、実際のユーザの場所に応じて提供してもよい。このとき、時刻(朝、夕方、夜など)についても、ゲーム内の設定を実際の検出結果に整合させてもよい。また、ユーザがいる場所に応じて、ゲーム内で出現するキャラクターの性格や容姿を変化させてもよい。例えば、特徴的な年代や階層の人々が集まる街にいる場合には、その街に多くいる人々に合わせた性格や容姿のキャラクターが、ゲーム内に登場してもよい。
 (4-4.コレクションコンテンツの提供)
 本開示の一実施形態において、サービス制御部112は、ユーザのアクション検出結果をコレクションとして用いるコンテンツを提供してもよい。ここで、コレクションとして用いる、とは、例えば、有形無形の価値をもったものとして収集や交換の対象にすることを意味する。より具体的には、サービス制御部112は、ユーザのアクション検出結果に基づいて各ユーザにポイントを付与し、ユーザはそのポイントを収集して何らかの有価物(例えば実体的なアイテムでもよいし、ソーシャルメディアで使用可能になるアバターのような仮想的なアイテムでもよい)に交換したり、保有するポイントの多さを競ったりしてもよい。以下、そのようなコンテンツのいくつかの例について説明する。
 (ポイント付与率の調整)
 例えば、サービス制御部112は、検出対象になるアクションの時間的または空間的なシーケンスに応じて異なる付与率で、アクションに応じたポイントをユーザに与えてもよい。例えば、移動のアクションにポイントを与える場合、移動距離が同じであれば、歩いて移動するアクション(移動に対応する時間的なシーケンスが長い)よりも走って移動するアクション(移動に対応する時間的なシーケンスが短い)に高いポイントを与えてもよい。また、例えば、スノーボードの滑降中のジャンプにポイントを与える場合、回転角度が大きいジャンプ(ジャンプに対応する空間的なシーケンスが大きい)により高いポイントを与えてもよい。なお、ポイント付与率は、時刻や場所などのコンテキスト情報との組み合わせによってさらに調整されてもよい。
 (協力して達成されるアクション)
 例えば、サービス制御部112は、アクションの時間的または空間的なシーケンスを含んで定義され、複数のユーザによるチームが協力して達成されるアクションにポイントを与えてもよい。より具体的には、例えば、「5人のチームで1週間に5000kcal以上をジョギングで消費する」(この場合、「1週間に」という部分が時間的なシーケンスにあたる)という課題アクションが与えられ、それぞれのユーザについて検出されたアクションから、5人のジョギングによる消費カロリーが5000kcalを超えたと判定された場合に、5人のユーザそれぞれにポイントが与えられてもよい。
 (アクション検出結果に対するベット)
 例えば、サービス制御部112は、1日に歩いた歩数や、スノーボードの滑降中のジャンプの高さなど、ユーザ間で競うことができるアクションの検出結果、より具体的にはアクションの時間的または空間的なシーケンスに従って算出されるスコアについて、ユーザによるポイントのベットを可能にしてもよい。より具体的には、例えば、ユーザは、自分以外のユーザのうち、アクションの検出結果について1番になるユーザを予想してポイントをベットする。例えば、1日や、所定の回数の滑降などのアクション検出の終了後、予想が当たったユーザに対して、オッズに応じてポイントが付与されてもよい。このようなベットは、例えば同じ場所でアクションを実行している複数のユーザで実施されてもよいし、ソーシャルメディアなどを介して多くのユーザが参加することが可能であってもよい。
 (5.ハードウェア構成)
 次に、図23を参照して、本開示の実施形態に係る情報処理装置のハードウェア構成について説明する。図23は、本開示の実施形態に係る情報処理装置のハードウェア構成例を示すブロック図である。
 情報処理装置900は、CPU(Central Processing unit)901、ROM(Read Only Memory)903、およびRAM(Random Access Memory)905を含む。また、情報処理装置900は、ホストバス907、ブリッジ909、外部バス911、インターフェース913、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923、通信装置925を含んでもよい。さらに、情報処理装置900は、必要に応じて、撮像装置933、およびセンサ935を含んでもよい。情報処理装置900は、CPU901に代えて、またはこれとともに、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などの処理回路を有してもよい。
 CPU901は、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置919、またはリムーバブル記録媒体927に記録された各種プログラムに従って、情報処理装置900内の動作全般またはその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータなどを記憶する。RAM905は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータなどを一次記憶する。CPU901、ROM903、およびRAM905は、CPUバスなどの内部バスにより構成されるホストバス907により相互に接続されている。さらに、ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなど、ユーザによって操作される装置である。入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール装置であってもよいし、情報処理装置900の操作に対応した携帯電話などの外部接続機器929であってもよい。入力装置915は、ユーザが入力した情報に基づいて入力信号を生成してCPU901に出力する入力制御回路を含む。ユーザは、この入力装置915を操作することによって、情報処理装置900に対して各種のデータを入力したり処理動作を指示したりする。
 出力装置917は、取得した情報をユーザに対して視覚や聴覚、触覚などの感覚を用いて通知することが可能な装置で構成される。出力装置917は、例えば、LCD(Liquid Crystal Display)または有機EL(Electro-Luminescence)ディスプレイなどの表示装置、スピーカまたはヘッドフォンなどの音声出力装置、もしくはバイブレータなどでありうる。出力装置917は、情報処理装置900の処理により得られた結果を、テキストもしくは画像などの映像、音声もしくは音響などの音声、またはバイブレーションなどとして出力する。
 ストレージ装置919は、情報処理装置900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)などの磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイスなどにより構成される。ストレージ装置919は、例えばCPU901が実行するプログラムや各種データ、および外部から取得した各種のデータなどを格納する。
 ドライブ921は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブル記録媒体927のためのリーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。ドライブ921は、装着されているリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されているリムーバブル記録媒体927に記録を書き込む。
 接続ポート923は、機器を情報処理装置900に接続するためのポートである。接続ポート923は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポートなどでありうる。また、接続ポート923は、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポートなどであってもよい。接続ポート923に外部接続機器929を接続することで、情報処理装置900と外部接続機器929との間で各種のデータが交換されうる。
 通信装置925は、例えば、通信ネットワーク931に接続するための通信デバイスなどで構成された通信インターフェースである。通信装置925は、例えば、有線または無線のLAN(Local Area Network)、Bluetooth(登録商標)、NFC(Near Field Communication)、またはWUSB(Wireless USB)用の通信カードなどでありうる。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデムなどであってもよい。通信装置925は、例えば、インターネットや他の通信機器との間で、TCP/IPなどの所定のプロトコルを用いて信号などを送受信する。また、通信装置925に接続される通信ネットワーク931は、有線または無線によって接続されたネットワークであり、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信などを含みうる。
 撮像装置933は、例えば、CMOS(Complementary Metal Oxide Semiconductor)またはCCD(Charge Coupled Device)などの撮像素子、および撮像素子への被写体像の結像を制御するためのレンズなどの各種の部材を用いて実空間を撮像し、撮像画像を生成する装置である。撮像装置933は、静止画を撮像するものであってもよいし、また動画を撮像するものであってもよい。
 センサ935は、例えば、加速度センサ、角速度センサ、地磁気センサ、照度センサ、温度センサ、気圧センサ、圧力センサ、距離センサ、または音センサ(マイクロフォン)などの各種のセンサである。センサ935は、例えば情報処理装置900の筐体の姿勢など、情報処理装置900自体の状態に関する情報や、情報処理装置900の周辺の明るさや騒音など、情報処理装置900の周辺環境に関する情報を取得する。また、センサ935は、GNSS(Global Navigation Satellite System)信号を受信して装置の緯度、経度および高度を測定するGNSS受信機を含んでもよい。
 以上、情報処理装置900のハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。かかる構成は、実施する時々の技術レベルに応じて適宜変更されうる。
 (6.補足)
 本開示の実施形態は、例えば、上記で説明したような情報処理装置、システム、情報処理装置またはシステムで実行される情報処理方法、情報処理装置を機能させるためのプログラム、およびプログラムが記録された一時的でない有形の媒体を含みうる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)検出されたユーザのアクションを示すアクション情報を取得する情報取得部と、
 前記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供するコンテンツ提供部と
 を備える情報処理装置。
(2)前記コンテンツ提供部は、前記空間的なシーケンスに含まれる位置と、該位置で検出されるべき課題アクションとを指定するゲームコンテンツを提供する、前記(1)に記載の情報処理装置。
(3)前記コンテンツ提供部は、前記位置と前記課題アクションとを表示するオブジェクトを含むゲーム画面を、前記アクションが発生する実空間に重畳させて前記ユーザに提示する、前記(2)に記載の情報処理装置。
(4)前記ゲーム画面は、第1のユーザについての前記位置を表示するオブジェクトと、前記第1のユーザとは異なる第2のユーザについての前記位置を表示するオブジェクトと、前記第2のユーザを表示するオブジェクトとを含む、前記(3)に記載の情報処理装置。
(5)前記コンテンツ提供部は、前記空間的なシーケンスを、前記ユーザの環境状態に基づいて予測する、前記(2)~(4)のいずれか1項に記載の情報処理装置。
(6)前記コンテンツ提供部は、前記空間的なシーケンスの長さを、前記ゲームコンテンツの開始時の前記ユーザの環境状態に基づいて決定する、前記(5)に記載の情報処理装置。
(7)前記コンテンツ提供部は、前記ユーザの周辺を撮影した画像に基づいて前記環境状態を認識する、前記(5)または(6)に記載の情報処理装置。
(8)前記コンテンツ提供部は、前記ユーザの位置情報とマップ情報とに基づいて前記環境状態を認識する、前記(5)~(7)のいずれか1項に記載の情報処理装置。
(9)前記コンテンツ提供部は、前記時間的なシーケンスに含まれる時刻と、該時刻に検出されるべき課題アクションとを指定するゲームコンテンツを提供する、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(10)前記コンテンツ提供部は、前記時刻と前記課題アクションとを表示するオブジェクトを含むゲーム画面を、前記アクションが発生する実空間に重畳させて前記ユーザに提示する、前記(9)に記載の情報処理装置。
(11)前記コンテンツ提供部は、前記時間的なシーケンスを、前記ユーザの環境状態に基づいて予測する、前記(9)または(10)に記載の情報処理装置。
(12)前記コンテンツ提供部は、前記時間的なシーケンスの長さを、前記ゲームコンテンツの開始時の前記ユーザの環境状態に基づいて決定する、前記(11)に記載の情報処理装置。
(13)前記コンテンツ提供部は、前記ユーザのスケジュールに基づいて前記環境状態を認識する、前記(11)または(12)に記載の情報処理装置。
(14)前記時間的なシーケンスは、楽曲に対応付けられ、
 前記コンテンツ提供部は、前記ゲームコンテンツとともに前記楽曲を前記ユーザに提供する、前記(11)~(13)のいずれか1項に記載の情報処理装置。
(15)前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従ってストーリーが展開するコンテンツを提供する、前記(1)~(14)のいずれか1項に記載の情報処理装置。
(16)前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従ってキャラクターまたは仮想人格の属性が決定されるコンテンツを提供する、前記(1)~(15)のいずれか1項に記載の情報処理装置。
(17)前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従って舞台設定が決定されるコンテンツを提供する、前記(1)~(16)のいずれか1項に記載の情報処理装置。
(18)前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従って算出されるスコアに対する他のユーザのベットを可能にするコンテンツを提供する、前記(1)~(17)のいずれか1項に記載の情報処理装置。
(19)検出されたユーザのアクションを示すアクション情報を取得することと、
 プロセッサが、前記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供することと
 を含む情報処理方法。
(20)検出されたユーザのアクションを示すアクション情報を取得する機能と、
 前記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供する機能と
 をコンピュータに実現させるためのプログラム。
 100  情報処理装置
 101  送信部
 102  受信部
 103  センサデバイス制御部
 104  センサデータ解析部
 105  特徴量抽出部
 106  アクション検出部
 107  解析結果処理部
 108  クラスタリング処理部
 109  スコアリング処理部
 112  サービス制御部

Claims (20)

  1.  検出されたユーザのアクションを示すアクション情報を取得する情報取得部と、
     前記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供するコンテンツ提供部と
     を備える情報処理装置。
  2.  前記コンテンツ提供部は、前記空間的なシーケンスに含まれる位置と、該位置で検出されるべき課題アクションとを指定するゲームコンテンツを提供する、請求項1に記載の情報処理装置。
  3.  前記コンテンツ提供部は、前記位置と前記課題アクションとを表示するオブジェクトを含むゲーム画面を、前記アクションが発生する実空間に重畳させて前記ユーザに提示する、請求項2に記載の情報処理装置。
  4.  前記ゲーム画面は、第1のユーザについての前記位置を表示するオブジェクトと、前記第1のユーザとは異なる第2のユーザについての前記位置を表示するオブジェクトと、前記第2のユーザを表示するオブジェクトとを含む、請求項3に記載の情報処理装置。
  5.  前記コンテンツ提供部は、前記空間的なシーケンスを、前記ユーザの環境状態に基づいて予測する、請求項2に記載の情報処理装置。
  6.  前記コンテンツ提供部は、前記空間的なシーケンスの長さを、前記ゲームコンテンツの開始時の前記ユーザの環境状態に基づいて決定する、請求項5に記載の情報処理装置。
  7.  前記コンテンツ提供部は、前記ユーザの周辺を撮影した画像に基づいて前記環境状態を認識する、請求項5に記載の情報処理装置。
  8.  前記コンテンツ提供部は、前記ユーザの位置情報とマップ情報とに基づいて前記環境状態を認識する、請求項5に記載の情報処理装置。
  9.  前記コンテンツ提供部は、前記時間的なシーケンスに含まれる時刻と、該時刻に検出されるべき課題アクションとを指定するゲームコンテンツを提供する、請求項1に記載の情報処理装置。
  10.  前記コンテンツ提供部は、前記時刻と前記課題アクションとを表示するオブジェクトを含むゲーム画面を、前記アクションが発生する実空間に重畳させて前記ユーザに提示する、請求項9に記載の情報処理装置。
  11.  前記コンテンツ提供部は、前記時間的なシーケンスを、前記ユーザの環境状態に基づいて予測する、請求項9に記載の情報処理装置。
  12.  前記コンテンツ提供部は、前記時間的なシーケンスの長さを、前記ゲームコンテンツの開始時の前記ユーザの環境状態に基づいて決定する、請求項11に記載の情報処理装置。
  13.  前記コンテンツ提供部は、前記ユーザのスケジュールに基づいて前記環境状態を認識する、請求項11に記載の情報処理装置。
  14.  前記時間的なシーケンスは、楽曲に対応付けられ、
     前記コンテンツ提供部は、前記ゲームコンテンツとともに前記楽曲を前記ユーザに提供する、請求項11に記載の情報処理装置。
  15.  前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従ってストーリーが展開するコンテンツを提供する、請求項1に記載の情報処理装置。
  16.  前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従ってキャラクターまたは仮想人格の属性が決定されるコンテンツを提供する、請求項1に記載の情報処理装置。
  17.  前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従って舞台設定が決定されるコンテンツを提供する、請求項1に記載の情報処理装置。
  18.  前記コンテンツ提供部は、前記アクションの時間的または空間的なシーケンスに従って算出されるスコアに対する他のユーザのベットを可能にするコンテンツを提供する、請求項1に記載の情報処理装置。
  19.  検出されたユーザのアクションを示すアクション情報を取得することと、
     プロセッサが、前記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供することと
     を含む情報処理方法。
  20.  検出されたユーザのアクションを示すアクション情報を取得する機能と、
     前記アクションの時間的または空間的なシーケンスに従って展開するコンテンツを提供する機能と
     をコンピュータに実現させるためのプログラム。
PCT/JP2015/079175 2015-01-05 2015-10-15 情報処理装置、情報処理方法、およびプログラム WO2016111067A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016568284A JP6658545B2 (ja) 2015-01-05 2015-10-15 情報処理装置、情報処理方法、およびプログラム
EP15876940.6A EP3243557B1 (en) 2015-01-05 2015-10-15 Information processing device, information processing method, and program
US15/527,068 US20170352226A1 (en) 2015-01-05 2015-10-15 Information processing device, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000415 2015-01-05
JP2015-000415 2015-01-05

Publications (1)

Publication Number Publication Date
WO2016111067A1 true WO2016111067A1 (ja) 2016-07-14

Family

ID=56342227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079175 WO2016111067A1 (ja) 2015-01-05 2015-10-15 情報処理装置、情報処理方法、およびプログラム

Country Status (5)

Country Link
US (1) US20170352226A1 (ja)
EP (1) EP3243557B1 (ja)
JP (1) JP6658545B2 (ja)
CN (2) CN105759953B (ja)
WO (1) WO2016111067A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132913A (ja) * 2017-02-15 2018-08-23 清水建設株式会社 構造物可視化装置及び構造物可視化システム
JP2018171279A (ja) * 2017-03-31 2018-11-08 株式会社愛和ライト 情報処理装置及び情報処理システム
WO2019240070A1 (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 動作確認システム
WO2019240062A1 (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 報知システム
CN110646227A (zh) * 2018-06-27 2020-01-03 斯凯孚公司 具有近场通信调试硬件的无线状况监测传感器
JP2020092910A (ja) * 2018-12-13 2020-06-18 株式会社ドリコム 情報処理システム、情報処理方法および情報処理プログラム
CN117232819A (zh) * 2023-11-16 2023-12-15 湖南大用环保科技有限公司 基于数据分析的阀体综合性能测试系统
JP7506648B2 (ja) 2020-03-27 2024-06-26 株式会社バンダイ プログラム、端末、ゲームシステム及びゲーム管理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11210772B2 (en) 2019-01-11 2021-12-28 Universal City Studios Llc Wearable visualization device systems and methods
JP7168757B2 (ja) * 2019-02-26 2022-11-09 マクセル株式会社 映像表示装置及び映像表示方法
CN110180189B (zh) * 2019-06-14 2022-10-21 广州好酷信息科技有限公司 一种基于游戏游艺设备的积分排名方法及系统
EP3940586A1 (en) 2020-07-17 2022-01-19 Sony Group Corporation An electronic device and a related method for detecting and counting an action
JP7143872B2 (ja) * 2020-08-14 2022-09-29 カシオ計算機株式会社 情報処理装置、ランニング指標導出方法及びプログラム
JP7185670B2 (ja) * 2020-09-02 2022-12-07 株式会社スクウェア・エニックス ビデオゲーム処理プログラム、及びビデオゲーム処理システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353249A (ja) * 1999-06-11 2000-12-19 Mr System Kenkyusho:Kk 複合現実空間における指示表示及び指示表示方法
JP2007007081A (ja) * 2005-06-29 2007-01-18 Namco Bandai Games Inc ゲームシステム、楽音生成システム、曲選択システム、プログラム及び情報記憶媒体
JP2009018127A (ja) * 2007-07-13 2009-01-29 Panasonic Corp 学習支援装置および学習支援方法
JP2010240185A (ja) * 2009-04-07 2010-10-28 Kanazawa Inst Of Technology 動作学習支援装置
JP2012095914A (ja) * 2010-11-04 2012-05-24 Ns Solutions Corp ゴルフプレイヤー支援システム、ユーザ端末装置、ゴルフプレイヤー支援方法及びプログラム
JP2012239719A (ja) * 2011-05-20 2012-12-10 Konami Digital Entertainment Co Ltd ゲーム装置、ゲーム制御方法、ならびに、プログラム
JP2014054303A (ja) * 2012-09-11 2014-03-27 Casio Comput Co Ltd 運動支援装置、運動支援方法及び運動支援プログラム
JP2014174589A (ja) * 2013-03-06 2014-09-22 Mega Chips Corp 拡張現実システム、プログラムおよび拡張現実提供方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538295A (ja) * 2005-01-10 2008-10-23 アイポイント リミテッド 体力トレーニング用音楽ペースメーカー
US20060288846A1 (en) * 2005-06-27 2006-12-28 Logan Beth T Music-based exercise motivation aid
US20070074619A1 (en) * 2005-10-04 2007-04-05 Linda Vergo System and method for tailoring music to an activity based on an activity goal
US20070254271A1 (en) * 2006-04-28 2007-11-01 Volodimir Burlik Method, apparatus and software for play list selection in digital music players
US20110183754A1 (en) * 2010-01-25 2011-07-28 Mansour Ali Saleh Alghamdi Game system based on real time and location of user
KR20130000401A (ko) * 2010-02-28 2013-01-02 오스터하우트 그룹 인코포레이티드 대화형 머리­장착식 아이피스 상의 지역 광고 컨텐츠
US9317660B2 (en) * 2011-03-31 2016-04-19 Adidas Ag Group performance monitoring system and method
US9155964B2 (en) * 2011-09-14 2015-10-13 Steelseries Aps Apparatus for adapting virtual gaming with real world information
US8847988B2 (en) * 2011-09-30 2014-09-30 Microsoft Corporation Exercising applications for personal audio/visual system
DE202013103775U1 (de) * 2012-08-23 2013-09-05 Jakub Jirus Konditions- und/oder Fitnessgerät
US8758127B2 (en) * 2012-11-08 2014-06-24 Audible, Inc. In-vehicle gaming system for a driver
CN104008296A (zh) * 2014-06-08 2014-08-27 蒋小辉 将视频转化为游戏的方法和一种视频类游戏及其实现方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353249A (ja) * 1999-06-11 2000-12-19 Mr System Kenkyusho:Kk 複合現実空間における指示表示及び指示表示方法
JP2007007081A (ja) * 2005-06-29 2007-01-18 Namco Bandai Games Inc ゲームシステム、楽音生成システム、曲選択システム、プログラム及び情報記憶媒体
JP2009018127A (ja) * 2007-07-13 2009-01-29 Panasonic Corp 学習支援装置および学習支援方法
JP2010240185A (ja) * 2009-04-07 2010-10-28 Kanazawa Inst Of Technology 動作学習支援装置
JP2012095914A (ja) * 2010-11-04 2012-05-24 Ns Solutions Corp ゴルフプレイヤー支援システム、ユーザ端末装置、ゴルフプレイヤー支援方法及びプログラム
JP2012239719A (ja) * 2011-05-20 2012-12-10 Konami Digital Entertainment Co Ltd ゲーム装置、ゲーム制御方法、ならびに、プログラム
JP2014054303A (ja) * 2012-09-11 2014-03-27 Casio Comput Co Ltd 運動支援装置、運動支援方法及び運動支援プログラム
JP2014174589A (ja) * 2013-03-06 2014-09-22 Mega Chips Corp 拡張現実システム、プログラムおよび拡張現実提供方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132913A (ja) * 2017-02-15 2018-08-23 清水建設株式会社 構造物可視化装置及び構造物可視化システム
JP2018171279A (ja) * 2017-03-31 2018-11-08 株式会社愛和ライト 情報処理装置及び情報処理システム
JPWO2019240065A1 (ja) * 2018-06-11 2021-06-24 本田技研工業株式会社 動作評価システム
JP7424974B2 (ja) 2018-06-11 2024-01-30 本田技研工業株式会社 動作評価システム
WO2019240065A1 (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 動作評価システム
JP7523347B2 (ja) 2018-06-11 2024-07-26 本田技研工業株式会社 動作確認システム
JP7424973B2 (ja) 2018-06-11 2024-01-30 本田技研工業株式会社 報知システム
JPWO2019240062A1 (ja) * 2018-06-11 2021-06-24 本田技研工業株式会社 報知システム
WO2019240070A1 (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 動作確認システム
JPWO2019240070A1 (ja) * 2018-06-11 2021-07-29 本田技研工業株式会社 動作確認システム
WO2019240062A1 (ja) * 2018-06-11 2019-12-19 本田技研工業株式会社 報知システム
CN110646227B (zh) * 2018-06-27 2024-05-28 斯凯孚公司 具有近场通信调试硬件的无线状况监测传感器
CN110646227A (zh) * 2018-06-27 2020-01-03 斯凯孚公司 具有近场通信调试硬件的无线状况监测传感器
JP2020092910A (ja) * 2018-12-13 2020-06-18 株式会社ドリコム 情報処理システム、情報処理方法および情報処理プログラム
JP7506648B2 (ja) 2020-03-27 2024-06-26 株式会社バンダイ プログラム、端末、ゲームシステム及びゲーム管理装置
CN117232819B (zh) * 2023-11-16 2024-01-26 湖南大用环保科技有限公司 基于数据分析的阀体综合性能测试系统
CN117232819A (zh) * 2023-11-16 2023-12-15 湖南大用环保科技有限公司 基于数据分析的阀体综合性能测试系统

Also Published As

Publication number Publication date
US20170352226A1 (en) 2017-12-07
JPWO2016111067A1 (ja) 2017-10-12
EP3243557B1 (en) 2020-03-04
JP6658545B2 (ja) 2020-03-04
CN205730297U (zh) 2016-11-30
EP3243557A1 (en) 2017-11-15
CN105759953A (zh) 2016-07-13
CN105759953B (zh) 2020-04-21
EP3243557A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6658545B2 (ja) 情報処理装置、情報処理方法、およびプログラム
CN105749548B (zh) 信息处理装置、信息处理方法以及程序
TWI786701B (zh) 用於在hmd環境中利用傳至gpu之預測及後期更新的眼睛追蹤進行快速注視點渲染的方法及系統以及非暫時性電腦可讀媒體
CN112400150B (zh) 基于预测扫视着陆点的动态图形渲染
JP6683134B2 (ja) 情報処理装置、情報処理方法、およびプログラム
CN106659932B (zh) 头戴式显示器中的传感刺激管理
CN103357177B (zh) 使用便携式游戏装置来记录或修改在主游戏系统上实时运行的游戏或应用
US10317988B2 (en) Combination gesture game mechanics using multiple devices
US20170216675A1 (en) Fitness-based game mechanics
CN108379809A (zh) 基于ar的滑雪场虚拟轨迹引导和训练控制方法
US20180374270A1 (en) Information processing device, information processing method, program, and server
WO2016092933A1 (ja) 情報処理装置、情報処理方法およびプログラム
WO2020090223A1 (ja) 情報処理装置、情報処理方法及び記録媒体
US11173375B2 (en) Information processing apparatus and information processing method
US20240303018A1 (en) Head mounted processing apparatus
CN117122910A (zh) 用于将真实世界声音添加到虚拟现实场景的方法和系统
KR102433084B1 (ko) 가상 현실 게임용 플레이어 감정 분석 방법, 플레이어 감정 기반 가상 현실 서비스 운용 방법 및 가상 현실 시스템
US20230381649A1 (en) Method and system for automatically controlling user interruption during game play of a video game
US20240045496A1 (en) Improving accuracy of interactions for gaze-enabled ar objects when in motion
CN114995642A (zh) 基于增强现实的运动训练方法、装置、服务器及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568284

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527068

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015876940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE