WO2016107752A1 - Pièce d'horlogerie ou de bijouterie en alliage précieux léger comportant du titane - Google Patents

Pièce d'horlogerie ou de bijouterie en alliage précieux léger comportant du titane Download PDF

Info

Publication number
WO2016107752A1
WO2016107752A1 PCT/EP2015/080211 EP2015080211W WO2016107752A1 WO 2016107752 A1 WO2016107752 A1 WO 2016107752A1 EP 2015080211 W EP2015080211 W EP 2015080211W WO 2016107752 A1 WO2016107752 A1 WO 2016107752A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
alloy
metals
including terminals
traces
Prior art date
Application number
PCT/EP2015/080211
Other languages
English (en)
Other versions
WO2016107752A4 (fr
Inventor
Gaëtan Villard
Denis Vincent
Stéphane Lauper
Original Assignee
Montres Breguet S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Breguet S.A. filed Critical Montres Breguet S.A.
Priority to EP15810677.3A priority Critical patent/EP3241078B1/fr
Priority to CN201580071445.1A priority patent/CN107208187B/zh
Priority to US15/533,471 priority patent/US10206465B2/en
Priority to JP2017546041A priority patent/JP6514354B2/ja
Publication of WO2016107752A1 publication Critical patent/WO2016107752A1/fr
Publication of WO2016107752A4 publication Critical patent/WO2016107752A4/fr
Priority to HK18103140.3A priority patent/HK1243743B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • A44C27/003Metallic alloys
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C5/00Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • G04B45/0076Decoration of the case and of parts thereof, e.g. as a method of manufacture thereof

Definitions

  • the invention relates to a cladding component for a timepiece or jewelery, made of precious alloy light comprising titanium.
  • the invention also relates to a timepiece or jewelery comprising at least one such dressing component.
  • the invention relates to the field of timepieces for clocks, jewelery, or jewelry.
  • a characteristic common to most precious alloys used in watchmaking is their relatively high density (> 10 g / cm 3 ). Indeed, the two main precious metals used in watchmaking, namely gold and platinum, have respective densities of about 19.3 and 21.5 g / cm 3 . This has the consequence of making their alloys relatively heavy. Silver and palladium are lighter (10.5 and 12 g / cm 3 respectively) but much less used in watchmaking.
  • WO 2012/1 19647 A1 describes ceramic-precious metal composites that can reach relatively low densities ( ⁇ 8 g / cm 3 ).
  • the TiPd, TiPt and TiAu equi-atomic alloys have been known for a long time and have been the subject of several studies involving high-temperature shape-memory alloys.
  • TiPd and TiAu alloys are titrable and therefore of interest for watchmaking and jewelery as particularly precious precious metals.
  • the document EP0267318 in the name of HAFNER mentions certain palladium alloys: from 25 to 50% by weight of palladium, with from 37 to 69% of silver, and a complement of copper, zinc, gallium, cobalt, indium, tin, iron, aluminum, nickel, germanium, rhenium, but without titanium, and other alloys, from 51 to 95% of palladium, with contributions of different metals, of which only one alloy comprises gold, with mass 70% palladium, 15% silver, 5% copper, 5% zinc, 3% platinum, 2% gold.
  • the only composition disclosed with titanium, Ti 5 Pd 95 type relates to an alloy with 5% titanium, and 95% palladium.
  • the document EP0239747 in the name of SUMITOMO describes the addition of 0.001 to 20% of chromium to a titanium-palladium type alloy with 40 to 60 atomic% of titanium, the balance being made on palladium.
  • the disclosures relate to seven alloys at 50 atomic% titanium, with 40 to 50 atomic% palladium, and 0 to 10 atomic% chromium: Ti 50 Pd 4 o, Ti 5 oPd 45 C r 5, Ti 5 oPd 43 Cr7 , T550Pd 42 Cr8, T5dPd 4 i .5Cr8.5, T5dPd 4 iCrg, T5dPd 4 oCrio-
  • the invention proposes to make watchmaking components, both valuable to benefit the title and the resistance over time and corrosion, and lighter than known alloys.
  • the invention relates to a dressing component for timepiece or jewelery, according to claim 1.
  • the invention also relates to a timepiece or jewelery comprising at least one such dressing component.
  • FIG. 1 compares the stress-strain curves of alloys tested in compression with a strain rate of 0.001 / s:
  • FIG. 2 shows a watch comprising a box and a bracelet according to the invention.
  • the invention is concerned with the replacement of gold and palladium in alloys comprising titanium.
  • the invention relates to a dressing component 1 of watchmaking or jewelery (including jewelery) precious alloy light comprising titanium, and any timepiece or jewelery comprising such a component.
  • the invention relates to two families of alloys, described successively.
  • the first family of alloys describes nine type compositions (first to ninth), using five groups of metals (first to seventh) and some of their subgroups.
  • alloys as described above in Table 1, which are overloaded with precious metal with respect to the titles to which they can be punched, generates an unnecessary extra cost.
  • advantageous substitutes may be suitable for the overloading of precious metal, and in particular the metals of a second group comprising: Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Nb, V, Mo , Ta, W.
  • the compression ductility alloys Ti 5 OPD 5.5Nbi4.5 3, Ti 5 OPD 2Fei8 3 and Ti 4 4.5Pd35Nbi i 9 .5 Fe (at.%) Is not significantly different from that of an alloy Equi-atomic binary TiPd, as visible in Figure 1, which compares the stress-strain curves of alloys Ti 5 oPd 3 5.5Nbi4.5, Ti 5 oPd 3 2Fei8, Ti 44 .5Pd 3 5Nbn Fe9.5 and Ti 50 Pd 5 o, tested in compression with a deformation rate of 0.001 / s.
  • the elements of a third group comprising: Cr, Mn, Cu, Zn and Ag can be introduced in a limited amount ( ⁇ 10 at%) in the TiPd and TiAu alloys instead of palladium and gold, respectively.
  • the elements of a fourth group comprising: Al, Si, Ge, Sn, Sb and In can be introduced in small quantities ( ⁇ 4 at%) in TiPd and TiAu alloys in place of titanium or palladium and gold, respectively.
  • substitute materials should not generate health risks.
  • the substitute materials of the latter must not be valuable.
  • the substitute materials in order not to overload the alloy, the substitute materials, ideally, are not heavier than the substituted metal.
  • a particularly advantageous embodiment of the invention relates to the substitution of a portion of the palladium in a TiPd alloy.
  • the invention thus relates to a ductile alloy based on Ti-Pd equ atomic intermetallic, in which the excess of palladium relative to the mass content of Pd500 is partially or totally replaced by a non-precious element, such that titanium always represents 50 atomic% of the final alloy.
  • a ductile alloy based on Ti-Pd equ atomic intermetallic, in which the excess of palladium relative to the mass content of Pd500 is partially or totally replaced by a non-precious element, such that titanium always represents 50 atomic% of the final alloy.
  • Such an alloy has sufficient ductility to provide a formability similar to that of conventional titanium alloys.
  • TiPdFe and TiPdNb ternary alloys make it possible to attain the desired title.
  • TiPdNb alloys do not exhibit a parasitic shape memory effect, which is advantageous.
  • composition of the alloy may be formulated according to one of the following compositions, in which all the fractions are atomic:
  • titanium Part of the titanium is replaced by the same atomic quantity of zirconium or hafnium, these three elements having very similar chemical properties and being easily substitutable with each other:
  • M one or more of a first group consisting of: Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, If, Ge, Sn, Sb, In.
  • a defines the offset with respect to the equi-atomic composition.
  • x defines the degree of replacement of titanium by Zr and Hf. defines the fraction of substitution element.
  • compositions which follow are particularly suitable:
  • Composition according to the fifth composition and for which M comprises Fe and / or Nb as majority elements.
  • composition according to the sixth composition and containing 50% by weight of palladium.
  • Ti49.7Pd32Fe15.3Cr3 atomic composition has interesting characteristics: low memory effect, low second phase quantity, and not too high mechanical properties.
  • compositions of this ninth composition containing atomically 12.5 and 10.5% of niobium exhibit a shape memory effect while the Ti5oPd35 composition.
  • 5 Nbi4.5 of Figure 1 containing 14.5% niobium has no effect of this nature.
  • This 14.5% niobium composition makes it possible to overcome these effects thanks to its two-phase nature.
  • compositions in particular as regards titanium, of the order of 0.3% of the total, do not fundamentally change the properties of these various compositions, and do not affect their ability to replace alloys. classics.
  • the invention thus relates to a cladding component for a timepiece or jewelery, made of a precious precious alloy comprising titanium.
  • a cladding component for a timepiece or jewelery made of a precious precious alloy comprising titanium.
  • the composition of this alloy obeys the atomic composition:
  • M being one or more of a first group consisting of: Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al , Si, Ge, Sn, Sb, In.
  • this alloy comprises between 15 and 60 atomic% of titanium, between 0 and 69 atomic% of palladium, between 1 and 40 atomic% of gold, and the complement at 100 atomic% comprises a total included between 0 and 15% atomic composition of zirconium and hafnium, and one or more components selected from a subgroup of the first group consisting of: Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Pt, Cr, Mn , Cu, Zn, Ag, Al, Si, Ge, Sn, Sb, In.
  • the alloy comprises in atomic% more palladium than gold.
  • the alloy comprises between 30% and 60% by weight of titanium, and the remainder of said alloy comprises a majority of palladium, and, in an amount greater than 10% by weight of the total of the alloy, at least one metal of a second group comprising: Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Nb, V, Mo, Ta, W.
  • the alloy comprises between 30% and 60% by weight of titanium, and the remainder of this alloy comprises a majority of gold, and, in an amount greater than 10% by weight of the total of the alloy, at least a metal of a second group comprising: Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Nb, V, Mo, Ta, W.
  • the alloy comprises at least one metal of a third group comprising: Cr, Mn, Cu, Zn and Ag, the total quantity of the metals of said third group is less than 10 atomic% of the total of the alloy .
  • the alloy comprises at least one metal of a fourth group comprising: Al, Si, Ge, Sn, Sb and In, the overall quantity of the metals of the fourth group is less than 4 atomic% of the total of the alloy.
  • the alloy comprises between 49.0 and 51.0 atomic% of titanium.
  • the total atomic% of titanium, zirconium, and hafnium is between 49.0 and 51.0 atomic%.
  • the alloy obeys the atomic composition Ti a- x (Zr, Hf) x M y Pdi- a -y, with 0.3 ⁇ a ⁇ 0.6; 0 ⁇ x ⁇ 0.05; 0.01 ⁇ y ⁇ 0.4.
  • the alloy obeys the atomic composition Ti a- x (Zr, Hf) ⁇ M y Pd z , with 0.3 ⁇ a ⁇ 0.6; 0 ⁇ x ⁇ 0.05; 0.01 ⁇ y ⁇ 0.4; 0.2 ⁇ z ⁇ 0.55.
  • the alloy obeys the atomic composition Ti a . x (Zr, Hf) x M y Pd z, with 0.44 ⁇ a ⁇ 0.55; 0 ⁇ x ⁇ 0.05; 0.07 ⁇ y ⁇ 0.28; 0.25 ⁇ z ⁇ 0.45.
  • the alloy obeys the atomic composition Ti r Pd s Au v , with r between
  • the alloy obeys the atomic composition Tio.50Pdo.404Auo.09.
  • M comprises one or more elements taken from a fifth group comprising: Nb, Mo, Fe, Cr, Mn, Cu, Zn, Ag, Al, Si, Ge, Sn, In.
  • M comprises Fe and / or Nb as majority elements.
  • the alloy comprises 50% by weight of palladium. This mass proportion of the total of the alloy does not naturally come into conflict with the atomic proportions of the alloying elements, this is an additional condition, which is by no means incompatible.
  • the second family of alloys describes compositions, including three groups of metals (main group of metals and two subgroups of metals) and five groups of traces (main group of traces and four subgroups of traces) . The following is about this second family.
  • the invention relates to a cladding component 1 for a timepiece or jewelery, made of light precious alloy of this second family of alloys, comprising titanium and palladium.
  • This alloy obeys the atomic formulation
  • the alloy comprises at most two metals M, selected from a main group of metals consisting of: Nb, V, Fe, Co, Au, Pt, the atomic fraction c being the total of the atomic fractions of the metals M,
  • the atomic fraction d is the total of the atomic fractions of traces of metals T, each trace of metal T being taken with an atomic proportion of less than 3.0% of the total of the alloy, the traces of metal T being taken from a main group of traces comprising Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, with the exception of the metals M incorporated in the alloy, which alloy comprises at least 0.05% boron,
  • this alloy comprises, in atomic proportions of the total, less than 0.3% of boron.
  • these atomic fractions a, b, c, d are such that:
  • these at most two metals M are taken from a first subgroup of metals composed of: Nb, V, Fe, the atomic fraction c being the total of the atomic fractions of the metals M,
  • the traces of metal T are taken from a first subgroup of traces comprising Nb, V, Mo, Ta, W, Fe, Ni, Ru, Rh, Ir, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, with the exception of the metals M incorporated in the alloy.
  • the traces of metal T are taken from a second subgroup of traces comprising Nb, V, Fe, Ru, Rh, Au, Pt, Cr, B, with the exception of the M metals incorporated in the alloy.
  • these at most two metals M are taken from a second subgroup of metals composed of: Nb, Fe, the atomic fraction c being the total of the atomic fractions M metals,
  • the alloy comprises a single metal M consisting of iron
  • the alloy obeys the atomic formulation Ti a Pd b Fe c T d ,
  • the traces of metal T are taken from a third subgroup of traces comprising Nb, V, Ru, Rh, Au, Pt, Cr, B,
  • the alloy comprises a single metal M consisting of iron
  • the alloy comprises at most two traces of metal T taken from chromium and boron, and the atomic fractions a, b, c, d are such that:
  • the alloy has a single metal trace T constituted by chromium, the alloy obeying the Ti atomic formulation Pd b Fe c Cr d.
  • the alloy comprises a single metal M consisting of niobium
  • the alloy obeys the atomic formulation Ti a Pd b Nb c T d ,
  • the traces of metal T are taken from a fourth subgroup of traces comprising V, Fe, Ru, Rh, Au, Pt, Cr, B,
  • the alloy comprises a single metal M consisting of niobium
  • the alloy comprises at most two traces of metal T taken from chromium and boron, and the atomic fractions a, b, c, d are such that:
  • the alloy comprises a single metal M consisting of niobium
  • the alloy comprises a single trace metal T consists of chromium
  • the alloy obeys the Ti atomic formulation Pd b Nb c Cr d
  • the mass content of the palladium is less than or equal to 60.0% of the total of the alloy.
  • the mass content of palladium is less than or equal to 55.0% of the total of the alloy.
  • the mass content of the palladium is less than or equal to 52.5% of the total of the alloy.
  • the mass content of palladium is less than or equal to 51.0% of the total of the alloy.
  • the invention also relates to a timepiece 10 or jewelery, including a watch, comprising at least one such dressing component 1.
  • the various alloys selected above are ductile, and therefore allow shaping by the usual methods of deformation.
  • alloys with substitution components according to the invention makes it possible, again, to eliminate the shape memory effect observed in most of the base alloys described.
  • the alloy Tio.5Pdo.354Nbo.146 has an almost zero shape memory effect.
  • the invention authorizes many applications, and in particular and without limitation:
  • - trim elements middle, back, watch glasses, and external trim elements (pushers, clasps, bracelets);

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Adornments (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

Composant d'habillage (1) pour pièce d'horlogerie ou de bijouterie, en alliage précieux léger comportant du titane et du palladium, selon la formulation atomique TiaPdbMcTd, où a, b, c, d sont des fractions atomiques du total, telles que a+b+c+d= 1, - a compris entre 0.44 et 0.55, - b compris entre 0.30 et 0.45, - c compris entre 0.04 et 0.24, - d compris entre 0.001 et 0.03, - où ledit alliage comporte au plus deux métaux M, pris parmi Nb, V, Fe, Co, Au, Pt, - où chaque trace de métal T a proportion atomique inférieure à 3,0% du total dudit alliage, parmi Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, - ledit alliage comporte au moins 0.05% de bore, et comporte au moins 50% en masse de palladium.

Description

Pièce d'horlogerie ou de bijouterie en alliage précieux léger comportant du titane Domaine de l'invention
L'invention concerne un composant d'habillage pour pièce d'horlogerie ou de bijouterie, réalisé en alliage précieux léger comportant du titane.
L'invention concerne encore une pièce d'horlogerie ou de bijouterie comportant au moins un tel composant d'habillage.
L'invention concerne le domaine des pièces d'habillage d'horlogerie, de bijouterie, ou de joaillerie.
Arrière-plan de l'invention
Une caractéristique commune à la plupart des alliages précieux utilisés en horlogerie est leur masse volumique relativement élevée (> 10 g/cm3). En effet, les deux principaux métaux précieux utilisés en horlogerie, à savoir l'or et le platine, ont des masses volumiques respectives d'environ 19.3 et 21 .5 g/cm3. Ceci a pour conséquence de rendre leurs alliages relativement lourds. L'argent et le palladium sont plus légers (10.5 et 12 g/cm3 respectivement) mais beaucoup moins utilisés dans l'horlogerie.
D'autre part, l'utilisation de matériaux légers comme le titane et, dans une moindre mesure, l'aluminium, dans des éléments d'habillage horloger est relativement répandue de nos jours. Toutefois, à l'heure actuelle, peu d'alliages peuvent être considérés comme précieux (titrables) et légers à la fois.
Le document WO 2012/1 19647 A1 décrit des composites céramique-métal précieux pouvant atteindre des masses volumiques relativement faibles (<8 g/cm3).
La réalisation d'alliages de métaux légers et de métaux précieux ne permet généralement pas d'obtenir des matériaux ductiles, et aboutit dans la quasi-totalité des cas à des phases intermétalliques fragiles.
Toutefois, une exception existe pour les phases équi-atomiques
Ti(Pd/Pt/Au). En effet, ces phases peuvent s'apparenter à la phase équi-atomique TiNi utilisée dans certains alliages à mémoire de forme. De la même manière, les phases équi-atomiques TiPd, TiPt et TiAu possèdent une certaine ductilité et peuvent, sous certaines conditions, présenter des comportements typiques de ceux des alliages à mémoire de forme TiNi. Les alliages équi-atomiques TiPd, TiPt et TiAu sont connus de longue date et ont fait l'objet de plusieurs études visant les alliages à mémoire de forme à haute température.
L'effet de l'ajout d'éléments d'addition autres que Ni, Pd, Pt, Au dans ces systèmes a principalement été étudié pour les alliages TiNi. Les recherches portant sur les ajouts ternaires aux alliages TiPd, TiPt et TiAu sont sensiblement plus rares. On sait néanmoins que l'ajout de fer au système TiPd a une influence sur les transformations de phases du système.
La majorité de la littérature portant sur les ajouts aux alliages binaires équi- atomiques TiNi, TiPd, TiPt et TiAu se concentre sur la modification des propriétés de mémoire de forme et des propriétés dites super-élastiques de ces alliages (amplitude, température de transition). Cependant, aucune étude ne concerne la problématique de l'utilisation de tels alliages en bijouterie/horlogerie et des contraintes y associées, à savoir la formabilité et le titre (pourcentage de métal précieux).
Les compositions massiques des phases équi-atomiques ductiles des alliages TiPd, TiPt et TiAu sont présentées dans le tableau 1 , qui établit la composition des phases équi-atomiques Ti-(Pd, Pt, Au) et la comparaison avec les titres légaux en vigueur en Suisse.
Figure imgf000004_0001
On remarque que les alliages TiPd et TiAu sont titrables et donc intéressants pour l'horlogerie et la bijouterie comme métaux précieux particulièrement légers.
Le document EP0267318 au nom de HAFNER cite certains alliages au palladium : de 25 à 50% en masse de palladium, avec de 37 à 69% d'argent, et un complément parmi le cuivre, le zinc, le gallium, le cobalt, l'indium, l'étain, le fer, l'aluminium, le nickel, le germanium, le rhénium, mais sans titane, et d'autres alliages, de 51 à 95% de palladium, avec des apports de différents métaux, dont un seul alliage comporte de l'or, avec en masse 70% de palladium, 15% d'argent, 5% de cuivre, 5% de zinc, 3% de platine, 2% d'or. La seule composition divulguée avec du titane, de type Ti5Pd95, concerne un alliage avec 5% de titane, et 95% de palladium,.
Le document EP0239747 au nom de SUMITOMO décrit l'ajout de 0.001 à 20% de chrome à un alliage de type titane-palladium avec de 40 à 60% atomiques de titane, la balance étant faite sur le palladium. Les divulgations concernent sept alliages à 50% atomiques de titane, avec de 40 à 50% atomiques de palladium, et 0 à 10% atomiques de chrome : Ti50Pd4o, Ti5oPd45Cr5, Ti5oPd43Cr7, TÎ5oPd42Cr8,TÎ5oPd4i .5Cr8.5, TÎ5oPd4iCrg, TÎ5oPd4oCrio-
Le document CH704233 au nom de RICHEMONT décrit l'utilisation en horlogerie d'alliages de titane, de type Ti-10-2-3 comportant du vanadium, du fer et de l'aluminium, de type TM 3-1 1 -3 comportant du vanadium, du chrome et de l'aluminium, de type Ti-15-3 comportant du vanadium, du chrome, de l'aluminium, et de l'étain, de type Ti-5-5-5-3 comportant de l'aluminium, du vanadium, du molybdène et du chrome. Ces alliages ne comportent ni palladium, ni or. Résumé de l'invention
L'invention se propose de réaliser des composants d'habillage d'horlogerie, à la fois précieux pour bénéficier du titre et de la tenue dans le temps et à la corrosion, et plus légers que les alliages connus.
A cet effet, l'invention concerne un composant d'habillage pour pièce d'horlogerie ou de bijouterie, selon la revendication 1 .
L'invention concerne encore une pièce d'horlogerie ou de bijouterie comportant au moins un tel composant d'habillage.
Description sommaire des dessins
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
- la figure 1 compare les courbes contrainte-déformation d'alliages testés en compression avec une vitesse de déformation de 0.001 /s :
o en trait interrompu Ti5oPd35.5Nbi4.5, o en trait continu Ti5oPd32Fei8,
o en trait pointillé Ti44 5Ρά35Ν ιι Fe9 5
o en trait mixte Ti5oPd5o.
la figure 2 représente une montre comportant une boîte et un bracelet selon l'invention.
Description détaillée des modes de réalisation préférés
Toutes les concentrations exprimées dans la description ci-dessous sont atomiques, sauf mention contraire.
L'invention s'intéresse au remplacement de l'or et du palladium dans des alliages comportant du titane.
L'invention concerne un composant d'habillage 1 d'horlogerie ou de bijouterie (incluant la joaillerie) en alliage précieux léger comportant du titane, et toute pièce d'horlogerie ou de bijouterie comportant un tel composant.
L'invention concerne deux familles d'alliages, décrites successivement. La première famille d'alliages décrit neuf compositions-type (première à neuvième), faisant appel à cinq groupes de métaux (premier à septième) et à certains de leurs sous-groupes.
L'utilisation d'alliages, tels que décrits plus haut dans le tableau 1 , qui sont surchargés en métal précieux par rapport aux titres auxquels ils peuvent être poinçonnés, engendrent un surcoût inutile. Afin de résoudre ce problème, des substituts avantageux peuvent convenir pour la surcharge de métal précieux, et notamment les métaux d'un deuxième groupe comportant : Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Nb, V, Mo, Ta, W.
Ces éléments peuvent être introduits en grande quantité (>10% atomique) dans les alliages TiPd et TiAu en remplacement du palladium et de l'or, respectivement. Par exemple, la ductilité en compression des alliages Ti5oPd35.5Nbi4.5, Ti5oPd32Fei8 et Ti44.5Pd35Nbi i Fe9.5 (% at.) n'est pas significativement différente de celle d'un alliage binaire équi-atomique TiPd, tel que visible sur la figure 1 , qui compare les courbes contrainte-déformation d'alliages Ti5oPd35.5Nbi4.5, Ti5oPd32Fei8, Ti44.5Pd35Nbn Fe9.5 et Ti50Pd5o, testés en compression avec une vitesse de déformation de 0.001 /s.
Les éléments d'un troisième groupe comportant : Cr, Mn, Cu, Zn et Ag, peuvent être introduits en quantité limitée (<10% at.) dans les alliages TiPd et TiAu en remplacement du palladium et de l'or, respectivement. Finalement, les éléments d'un quatrième groupe comportant : Al, Si, Ge, Sn, Sb et In, peuvent être introduits en faible quantité (<4% at.) dans les alliages TiPd et TiAu en remplacement du titane ou du palladium et de l'or, respectivement.
Idéalement, pour des applications en contact avec le corps humain, les matériaux de substitution ne doivent pas générer de risques pour la santé. Pour réduire efficacement le surcoût dû à la présence de métal précieux, les matériaux de substitution de ce dernier ne doivent pas être précieux. Finalement, afin de ne pas trop alourdir l'alliage, les matériaux de substitution, idéalement, ne sont pas plus lourds que le métal substitué.
Une mise en œuvre particulièrement avantageuse de l'invention concerne la substitution d'une partie du palladium dans un alliage TiPd.
L'invention concerne alors un alliage ductile basé sur l'intermétallique équi- atomique Ti-Pd, dans lequel le surplus de palladium par rapport au titre massique de Pd500 est partiellement ou totalement remplacé par un élément non précieux, de telle sorte que le titane représente toujours 50% atomique de l'alliage final. Un tel alliage présente une ductilité suffisante pour offrir une formabilité similaire à celle d'alliages de titane conventionnels.
Il s'agit donc de réduire le surtitrage, par une substitution d'une partie du palladium, sans impacter défavorablement la ductilité.
Les alliages ternaires TiPdFe et TiPdNb permettent d'atteindre le titre souhaité. Tout particulièrement, les alliages TiPdNb ne présentent pas d'effet parasite de mémoire de forme, ce qui est avantageux.
La composition de l'alliage peut être formulée selon une des compositions suivantes, où toutes les fractions sont atomiques :
Première composition :
On remplace une partie du titane par une même quantité atomique de zirconium ou de hafnium, ces trois éléments ayant des propriétés chimiques très proches et étant facilement substituables les uns par les autres :
Figure imgf000007_0001
0.3<a<0.6 ; 0<x<0.15 ; 0.01 <y<0.4
M = un ou plusieurs parmi un premier groupe composé de : Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, Si, Ge, Sn, Sb, In.
a définit le décalage par rapport à la composition équi-atomique.
x définit le degré de remplacement du titane par Zr et Hf. y définit la fraction d'élément de substitution.
Deuxième composition :
T ZnHfkMyPdi-a-y
0.3<a<0.6 ; 0<x<0.05 ; 0.01 <y<0.4
Restriction du taux de Zr, Hf, par rapport à la première composition
Troisième composition :
Tia_x(Zr,Hf)xMyPdz
0.3<a<0.6 ; 0<x<0.05 ; 0.01 <y<0.4 ; 0.2<z<0.55
Quatrième composition :
Tia_x(Zr,Hf)xMyPdz
0.44<a<0.55 ; 0<x<0.05 ; 0.07<y<0.28 ; 0.25<z<0.45
Parmi la quatrième composition, les compositions particulières qui suivent conviennent particulièrement bien :
Tio.5pdo.32Feo.18 a = 0.5, x = 0, y = 0.18, z =
0.32
Tio.5pdo.354Nbo.146 a = 0.5, x = 0, y = 0.146, z =
0.354
Ti0.5pd0.404AU0.09 a = 0.5, x = 0, y = 0.096, z =
0.404
Tio.5pdo.323coo.177 a = 0.5, x = 0, y = 0.177, z =
0.323
Tio.5pdo.32Feo.17Cro.01 a = 0.5, x = 0, y = 0.18, z =
0.32
Ti0.5pd0.32Fe0.17CU0.01 a = 0.5, x = 0, y = 0.18, z =
0.32
Tio.49zro.01 pdo.323Feo.177 a = 0.5, x = 0.01 , y = 0.177, z
= 0.323
Ti0.49pd0.317Fe0.173 I0.02 a = 0.49, x = 0, y = 0.193, z =
0.317
Tio.445Pdo.35 bo.11 Feo.095 a = 0.445, x = 0, y = 0.205, z =
0.35 Cinquième composition:
Composition selon la quatrième composition, et pour laquelle M comporte un ou plusieurs éléments pris parmi un cinquième groupe comportant : Nb, Mo, Fe, Cr, Mn, Cu, Zn, Ag, Al, Si, Ge, Sn, In.
En substitution totale du palladium, le chrome et le cuivre rendent l'alliage fragile. Le manganèse, le zinc, l'argent, l'aluminium, le silicium, le germanium, l'indium, l'étain et le molybdène peuvent avoir, dans certaines conditions, un effet similaire. Leur teneur doit donc être limitée, et le fer et le niobium sont préférés pour constituer les éléments de substitution majoritaires.
Sixième composition :
Composition selon la cinquième composition, et pour laquelle M comporte Fe et/ou Nb comme éléments majoritaires.
Septième composition :
Composition selon la sixième composition, et contenant 50% en masse de palladium.
Huitième composition :
Alliages TiPdFeCr
Atomique Massique
Ti Pd Fe Cr Total Ti Pd Fe Cr Total 49.7 32 15.3 3 100 35.01 50.12 12.57 2.3 100
49.7 32 12.3 6 100 35.07 50.2 10.13 4.6 100
49.7 31 .9 10.4 8 100 35.14 50.14 8.58 6.14 100
Plus particulièrement, la composition atomique Ti49.7Pd32Fe15.3Cr3 présente des caractéristiques intéressantes : effet mémoire faible, quantité de deuxième phase faible, et propriétés mécaniques pas trop élevées.
Neuvième composition :
Alliages TiPdNb
Atomique Massique
Ti Pd Nb Total Ti Pd Nb Total
49.7 37.8 12.5 100 31 .46 53.18 15.36 100
49.7 39.8 10.5 100 31 .34 55.8 12.86 100
Les compositions de cette neuvième composition contenant atomiquement 12.5 et 10.5 % de niobium présentent un effet mémoire de forme alors que la composition Ti5oPd35.5Nbi4.5 de la figure 1 contenant 14.5% de niobium ne présente pas d'effet de cette nature. Cette composition à 14.5% de niobium permet de s'affranchir de ces effets grâce à sa nature biphasée.
De façon générale, de faibles écarts de compositions, notamment concernant celle du titane, de l'ordre de 0,3% du total, ne changent pas foncièrement les propriétés de ces différentes compositions, et n'altèrent pas leur aptitude au remplacement des alliages classiques.
L'invention concerne ainsi un composant d'habillage pour pièce d'horlogerie ou de bijouterie, réalisé en alliage précieux léger comportant du titane. Selon la première composition exposée plus haut, la composition de cet alliage obéit à la composition atomique :
Tia_x(Zr,Hf)xMyPd1-a-y,
avec 0.3<a<0.6, 0<x<0.15, 0.01 <y<0.4,
et M étant un ou plusieurs parmi un premier groupe composé de : Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, Si, Ge, Sn, Sb, In.
Plus particulièrement, cet alliage comporte entre 15 et 60 % atomique de titane, entre 0 et 69% atomique de palladium, entre 1 et 40% atomique d'or, et le complément à 100% atomique comporte un total compris entre 0 et 15% atomique de zirconium et hafnium, et un ou plusieurs composants pris parmi un sous-groupe du premier groupe composé de : Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Pt, Cr, Mn, Cu, Zn, Ag, Al, Si, Ge, Sn, Sb, In.
Dans une alternative, l'alliage comporte en % atomique davantage de palladium que d'or.
Plus particulièrement, l'alliage comporte entre 30% et 60% atomique de titane, et le reste du dit alliage comporte une majorité de palladium, et, en quantité supérieure à 10% atomique du total de l'alliage, au moins un métal d'un deuxième groupe comportant : Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Nb, V, Mo, Ta, W.
Dans une autre alternative, l'alliage comporte entre 30% et 60% atomique de titane, et le reste de cet alliage comporte une majorité d'or, et, en quantité supérieure à 10% atomique du total de l'alliage, au moins un métal d'un deuxième groupe comportant : Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Nb, V, Mo, Ta, W.
Dans une réalisation particulière, l'alliage comporte au moins un métal d'un troisième groupe comportant : Cr, Mn, Cu, Zn et Ag, la quantité globale des métaux dudit troisième groupe est inférieure à 10% atomique du total de l'alliage. Dans une autre réalisation particulière, l'alliage comporte au moins un métal d'un quatrième groupe comportant : Al, Si, Ge, Sn, Sb et In, la quantité globale des métaux du quatrième groupe est inférieure à 4% atomique du total de l'alliage.
Dans une réalisation particulière, l'alliage comporte entre 49.0 et 51 .0% atomique de titane.
Dans une autre réalisation particulière, le total en % atomique du titane, du zirconium, et du hafnium, est compris entre 49.0 et 51 .0 % atomique.
Selon la deuxième composition exposée plus haut, l'alliage obéit à la composition atomique Tia-x(Zr,Hf)xMyPdi-a-y, avec 0.3<a<0.6 ; 0<x<0.05 ; 0.01 <y<0.4.
Selon la troisième composition exposée plus haut, l'alliage obéit à la composition atomique Tia-x(Zr,Hf)xMyPdz, avec 0.3<a<0.6 ; 0<x<0.05 ; 0.01 <y<0.4 ; 0.2<z<0.55.
Selon la quatrième composition exposée plus haut, l'alliage obéit à la composition atomique Tia.x(Zr,Hf)xMyPdz, avec 0.44<a<0.55 ; 0<x<0.05 ; 0.07<y<0.28 ; 0.25<z<0.45.
Plus particulièrement, selon des variantes de cette quatrième composition : l'alliage obéit à la composition atomique TirPdsFet, avec r compris entre 49.5 et 50.5 % atomique, s compris entre 31 .5 et 32.5% atomique, t compris entre 17.5 et 18.5% atomique, avec r+s+t=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.50Pdo.32Feo.i8.
l'alliage obéit à la composition atomique TirPdsNbu, avec r compris entre 49.5 et 50.5% atomique, s compris entre 34.9 et 35.9% atomique, u compris entre 14.1 et 15.1 % atomique, avec r+s+u=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.50Pdo.354Nbo.146.
l'alliage obéit à la composition atomique TirPdsNbu, avec r compris entre 49.2 et 50.2% atomique, s compris entre 37.3 et 40.3% atomique, u compris entre 10.0 et 13.0% atomique, avec r+s+u=100, avec des variantes selon la neuvième composition exposée ci-dessus :
l'alliage obéit à la composition atomique TirPdsNbu, avec r compris entre 49.2 et 50.2% atomique, s compris entre 37.3 et 38.3% atomique, u compris entre 12.0 et 13.0% atomique, avec r+s+u=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.497Pdo.378Nbo.125 l'alliage obéit à la composition atomique TirPdsNbu, avec r compris entre 49.2 et 50.2% atomique, s compris entre 39.3 et 40.3% atomique, u compris entre 10.0 et 1 1 .0% atomique, avec r+s+u=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.497Pdo.398Nbo.105
- l'alliage obéit à la composition atomique TirPdsAuv, avec r compris entre
49.5 et 50.5% atomique, s compris entre 39.9 et 40.9% atomique, v compris entre 8.5 et 9.5% atomique, avec r+s+v=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.50Pdo.404Auo.09.
l'alliage obéit à la composition atomique TirPdsCow, avec r compris entre 49.5 et 50.5% atomique, s compris entre 31 .8 et 32.8% atomique, w compris entre 17.2 et 18.2% atomique, avec r+s+w=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.50Pdo.323Coo.177.
l'alliage obéit à la composition atomique TirPdsFecCrd, avec r compris entre 49.5 et 50.5% atomique, s compris entre 31 .5 et 32.5% atomique, c compris entre 16.5 et 17.5% atomique, d compris entre 0.5 et 1 .5% atomique, avec r+s+c+d=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.50Pdo.32Feo.17Cro.01.
l'alliage obéit à la composition atomique TirPdsFecCrd, avec r compris entre 49.2 et 50.2% atomique, s compris entre 31 .4 et 32.5% atomique, c compris entre 9.9 et 15.8% atomique, d compris entre 2.5 et 8.5% atomique, avec c+d compris entre 17.8 et 18.9% atomique, avec r+s+c+d=100. Selon des variantes décrites selon la huitième composition exposée ci-dessus
l'alliage obéit à la composition atomique TirPdsFecCrd, avec r compris entre 49.2 et 50.2% atomique, s compris entre 31 .4 et 32.5% atomique, c compris entre 14.8 et 15.8% atomique, d compris entre 2.5 et 3.5% atomique, avec c+d compris entre 17.8 et 18.9% atomique, avec r+s+c+d=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.497Pdo.32Feo.153Cro.03. Selon d'autres variantes :
l'alliage obéit à la composition atomique TirPdsFecCrd, avec r compris entre 49.2 et 50.2% atomique, s compris entre 31 .4 et 32.5% atomique, c compris entre 1 1 .8 et 12.8% atomique, d compris entre 5.5 et 6.5% atomique, avec c+d compris entre 17.8 et 18.9% atomique, avec r+s+c+d=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.497Pdo.32Feo.123Cro.06 l'alliage obéit à la composition atomique TirPdsFecCrd, avec r compris entre 49.2 et 50.2% atomique, s compris entre 31 .4 et 32.5% atomique, c compris entre 9.9 et 10.9% atomique, d compris entre 7.7 et 8.5% atomique, avec c+d compris entre 17.8 et 18.9% atomique, avec r+s+c+d=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.497Pdo.319Feo.104Cro.08
l'alliage obéit à la composition atomique TirPdsFeeCuf, avec r compris entre 49.5 et 50.5% atomique, s compris entre 31 .5 et 32.5% atomique, e compris entre 16.5 et 17.5% atomique, f compris entre 0.5 et 1 .5% atomique, avec r+s+e+f=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.50Pdo.32Feo.17Cuo.01.
l'alliage obéit à la composition atomique TirPdsFegZrh, avec r compris entre 48.5 et 49.5% atomique, s compris entre 31 .8 et 32.8% atomique, g compris entre 17.2 et 18.2% atomique, h compris entre 0.5 et 1 .5% atomique, avec r+s+g+h=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.49Zro.01 Pdo.323Feo.177.
l'alliage obéit à la composition atomique TirPdsFejAlk, avec r compris entre 48.5 et 49.5% atomique, s compris entre 31 .2 et 32.2% atomique, j compris entre 16.8 et 17.8% atomique, k compris entre 1 .5 et 2.5% atomique, avec r+s+j+k=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.49Pdo.317Feo.173Alo.02.
- l'alliage obéit à la composition atomique TirPdsFemNbn, avec r compris entre 44.0 et 45.0 % atomique, s compris entre 34.5 et 35.5% atomique, m compris entre 9.0 et 10.0% atomique, n compris entre 10.5 et 1 1 .5% atomique, avec r+s+m+n=100. Plus particulièrement, l'alliage obéit à la composition atomique Tio.445Pdo.35Nbo.n Feo .095.
Selon la cinquième composition exposée ci-dessus, M comporte un ou plusieurs éléments pris parmi un cinquième groupe comportant : Nb, Mo, Fe, Cr, Mn, Cu, Zn, Ag, Al, Si, Ge, Sn, In.
Selon la sixième composition exposée ci-dessus, M comporte Fe et/ou Nb comme éléments majoritaires.
Selon la septième composition exposée ci-dessus, l'alliage comporte 50% en masse de palladium. Cette proportion en masse du total de l'alliage ne vient naturellement pas en contradiction avec les proportions atomiques des éléments d'alliage, il s'agit ici d'une condition supplémentaire, nullement incompatible. La deuxième famille d'alliages décrit des compositions, faisant notamment appel à trois groupes de métaux (groupe principal de métaux et deux sous- groupes de métaux) et à cinq groupes de traces (groupe principal de traces et quatre sous-groupes de traces). Ce qui suit concerne cette deuxième famille.
L'invention concerne un composant d'habillage 1 pour pièce d'horlogerie ou de bijouterie, réalisé en alliage précieux léger de cette deuxième famille d'alliages, comportant du titane et du palladium. Cet alliage obéit à la formulation atomique
TiaPdbMJd,
où a, b, c, d sont des fractions atomiques du total, telles que a+b+c+d= 1 , avec :
- a compris entre 0.44 et 0.55, bornes comprises,
- b compris entre 0.30 et 0.45, bornes comprises,
- c compris entre 0.04 et 0.24, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises,
- où l'alliage comporte au plus deux ' métaux M, pris parmi un groupe principal de métaux composé de : Nb, V, Fe, Co, Au, Pt, la fraction atomique c étant le total des fractions atomiques des métaux M,
- où la fraction atomique d est le total des fractions atomiques de traces de métaux T, chaque trace de métal T étant prise avec une proportion atomique inférieure à 3,0% du total de l'alliage, les traces de métal T étant prises parmi un groupe principal de traces comportant Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, à l'exception des métaux M incorporés dans l'alliage, lequel alliage comporte au moins 0.05% de bore,
- le complément atomique à 100% étant constitué de ces au plus deux métaux M, - et où l'alliage comporte au moins 50% en masse de palladium.
Plus particulièrement, cet alliage comporte, en proportions atomiques du total, moins de 0.3% de bore.
Dans une composition particulière à fourchette réduite en titane, ces fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.48 et 0.52, bornes comprises,
- b compris entre 0.30 et 0.43, bornes comprises,
- c compris entre 0.05 et 0.21 , bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises. Dans une variante dont l'or, le platine et le cobalt sont écartés de la liste des métaux M,
- ces au plus deux métaux M sont pris parmi un premier sous-groupe de métaux composé de : Nb, V, Fe, la fraction atomique c étant le total des fractions atomiques des métaux M,
et les fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.30 et 0.38, bornes comprises,
- c compris entre 0.09 et 0.20, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
Plus particulièrement encore dans cette même variante sans or, platine ni cobalt, les traces de métal T sont prises parmi un premier sous-groupe de traces comportant Nb, V, Mo, Ta, W, Fe, Ni, Ru, Rh, Ir, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, à l'exception des métaux M incorporés dans l'alliage.
Plus particulièrement encore, toujours dans cette même variante sans or, platine ni cobalt, les traces de métal T sont prises parmi un deuxième sous-groupe de traces comportant Nb, V, Fe, Ru, Rh, Au, Pt, Cr, B, à l'exception des métaux M incorporés dans l'alliage.
Dans une même variante sans or, platine ni cobalt, et sans vanadium, - ces au plus deux métaux M, sont pris parmi un deuxième sous-groupe de métaux composé de: Nb, Fe, la fraction atomique c étant le total des fractions atomiques des métaux M,
et les fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.30 et 0.38, bornes comprises,
- c compris entre 0.09 et 0.19, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
Dans une sous-variante où l'alliage comporte un seul métal M constitué par le fer,
- l'alliage obéit à la formulation atomique TiaPdbFecTd,
- les traces de métal T sont prises parmi un troisième sous-groupe de traces comportant Nb, V, Ru, Rh, Au, Pt, Cr, B,
et les fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises, - b compris entre 0.31 et 0.35, bornes comprises,
- c compris entre 0.1 1 et 0.19, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
Plus particulièrement, dans cette variante où l'alliage comporte un seul métal M constitué par le fer, l'alliage comporte au plus deux traces de métal T prises parmi le chrome et le bore, et les fractions atomiques a, b, c, d sont telles que:
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.31 et 0.33, bornes comprises,
- c compris entre 0.14 et 0.19, bornes comprises,
- d compris entre 0.010 et 0.030, bornes comprises.
Plus particulièrement encore, l'alliage comporte une seule trace de métal T constituée par le chrome, l'alliage obéissant à la formulation atomique TiaPdbFecCrd.
Dans une autre sous-variante où l'alliage comporte un seul métal M constitué par le niobium,
- l'alliage obéit à la formulation atomique TiaPdbNbcTd,
- les traces de métal T sont prises parmi un quatrième sous-groupe de traces comportant V, Fe, Ru, Rh, Au, Pt, Cr, B,
- et les fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.34 et 0.38, bornes comprises,
- c compris entre 0.09 et 0.16, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
Dans une composition particulière de cette sous-variante où l'alliage comporte un seul métal M constitué par le niobium, l'alliage comporte au plus deux traces de métal T prises parmi le chrome et le bore, et les fractions atomiques a, b, c, d sont telles que:
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.34 et 0.36, bornes comprises,
- c compris entre 0.1 1 et 0.15, bornes comprises,
- d compris entre 0.010 et 0.030, bornes comprises.
Dans une autre composition de cette même sous-variante où l'alliage comporte un seul métal M constitué par le niobium, l'alliage comporte une seule trace de métal T constituée par le chrome, l'alliage obéit à la formulation atomique TiaPdbNbcCrd,
et les fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.34 et 0.36, bornes comprises,
- c compris entre 0.1 1 et 0.15, bornes comprises,
- d compris entre 0.010 et 0.030, bornes comprises.
Pour l'ensemble de cette deuxième famille d'alliages, on peut avantageusement réduire le taux de palladium pour réduire le coût de l'alliage.
Ainsi, dans une variante, la teneur massique du palladium est inférieure ou égale à 60.0% du total de l'alliage.
Plus particulièrement, la teneur massique du palladium est inférieure ou égale à 55.0% du total de l'alliage.
Plus particulièrement encore, la teneur massique du palladium est inférieure ou égale à 52.5% du total de l'alliage.
Plus particulièrement encore, la teneur massique du palladium est inférieure ou égale à 51 .0% du total de l'alliage.
L'invention concerne encore une pièce d'horlogerie 10 ou de bijouterie, notamment une montre, comportant au moins un tel composant d'habillage 1 .
En résumé, pour l'ensemble des compositions selon l'invention, les différents alliages sélectionnés ci-dessus sont ductiles, et permettent donc une mise en forme par les procédés habituels de déformation.
Ces alliages sont encore :
- précieux, au sens légal du terme (aloi) ;
- particulièrement légers en comparaison avec la majorité des alliages précieux, au sens légal du terme ;
- sans danger pour le corps humain ;
- très résistants à la corrosion.
La réalisation de composants d'habillage horloger en l'un des alliages cités plus haut bénéficie de l'optimisation de la composition de l'alliage selon différents angles :
- ajout d'éléments abaissant le point de fusion afin de faciliter la mise en œuvre ;
- modification de la teneur en élément de remplacement du métal précieux afin de modifier les propriétés mécaniques de l'alliage ; - diverses modifications légères visant à obtenir des alliages à durcissement structural.
La sélection des alliages avec composants de substitution selon l'invention permet, encore, de supprimer l'effet mémoire de forme observé dans la plupart des alliages de base décrits. Par exemple, l'alliage Tio.5Pdo.354Nbo.146 présente un effet mémoire de forme quasi nul.
L'invention autorise de nombreuses applications, et, notamment et de façon non limitative :
- éléments d'habillage: carrures, fonds, lunettes de montres, et éléments d'habillage externe (poussoirs, fermoirs, bracelets) ;
- bijoux, composants de mouvement et d'habillage interne de montres.

Claims

R EVE N D I CAT I O NS
1 . Composant d'habillage (1 ) pour pièce d'horlogerie ou de bijouterie, réalisé en alliage précieux léger comportant du titane et du palladium, caractérisé en ce que ledit alliage obéit à la formulation atomique TiaPdbMcTd,
où a, b, c, d sont des fractions atomiques du total, telles que a+b+c+d= 1 , avec :
- a compris entre 0.44 et 0.55, bornes comprises,
- b compris entre 0.30 et 0.45, bornes comprises,
- c compris entre 0.04 et 0.24, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises,
- où ledit alliage comporte au plus deux métaux M, pris parmi un groupe principal de métaux composé de : Nb, V, Fe, Co, Au, Pt, la fraction atomique c étant le total des fractions atomiques desdits métaux M,
- où la fraction atomique d est le total des fractions atomiques de traces de métaux T, chaque dite trace de métal T étant prise avec une proportion atomique inférieure à 3,0% du total dudit alliage, lesdites traces de métal T étant prises parmi un groupe principal de traces comportant Nb, V, Mo, Ta, W, Fe, Co, Ni, Ru, Rh, Ir, Au, Pt, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, à l'exception desdits métaux M incorporés dans ledit alliage, lequel alliage comporte au moins 0.05% de bore, - le complément atomique à 100% étant constitué desdits au plus deux métaux M,
- et caractérisé en ce que ledit alliage comporte au moins 50% en masse de palladium.
2. Composant d'habillage (1 ) selon la revendication 1 , caractérisé en ce que ledit alliage comporte, en proportions atomiques du total, moins de 0.3% de bore.
3. Composant d'habillage (1 ) selon la revendication 1 ou 2, caractérisé en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.48 et 0.52, bornes comprises,
- b compris entre 0.30 et 0.43, bornes comprises,
- c compris entre 0.05 et 0.21 , bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
4. Composant d'habillage (1 ) selon la revendication 3, caractérisé en ce que :
- lesdits au plus deux dits métaux M, sont pris parmi un premier sous-groupe de métaux composé de : Nb, V, Fe, la fraction atomique c étant le total des fractions atomiques desdits métaux M, et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.30 et 0.38, bornes comprises,
- c compris entre 0.09 et 0.20, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
5. Composant d'habillage (1 ) selon la revendication 4, caractérisé en ce que lesdites traces de métal T sont prises parmi un premier sous-groupe de traces comportant Nb, V, Mo, Ta, W, Fe, Ni, Ru, Rh, Ir, Cr, Mn, Cu, Zn, Ag, Al, B, Si, Ge, Sn, Sb, In, à l'exception desdits métaux M incorporés dans ledit alliage.
6. Composant d'habillage (1 ) selon la revendication 4, caractérisé en ce que lesdites traces de métal T sont prises parmi un deuxième sous-groupe de traces comportant Nb, V, Fe, Ru, Rh, Au, Pt, Cr, B, à l'exception desdits métaux M incorporés dans ledit alliage.
7. Composant d'habillage (1 ) selon la revendication 6, caractérisé en ce que : - lesdits au plus deux dits métaux M, sont pris parmi un deuxième sous-groupe de métaux composé de: Nb, Fe, la fraction atomique c étant le total des fractions atomiques desdits métaux M,
et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.30 et 0.38, bornes comprises,
- c compris entre 0.09 et 0.1 9, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
8. Composant d'habillage (1 ) selon la revendication 7, caractérisé en ce que :
- ledit alliage comporte un seul dit métal M constitué par le fer,
ledit alliage obéit à la formulation atomique TiaPdbFecTd,
en ce que lesdites traces de métal T sont prises parmi un troisième sous-groupe de traces comportant Nb, V, Ru, Rh, Au, Pt, Cr, B,
et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.31 et 0.35, bornes comprises,
- c compris entre 0.1 1 et 0.1 9, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
9. Composant d'habillage (1 ) selon la revendication 7, caractérisé en ce que :
- ledit alliage comporte un seul dit métal M constitué par le niobium, ledit alliage obéit à la formulation atomique TiaPdbNbcTd,
en ce que lesdites traces de métal T sont prises parmi un quatrième sous-groupe de traces comportant V, Fe, Ru, Rh, Au, Pt, Cr, B,
et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.34 et 0.38, bornes comprises,
- c compris entre 0.09 et 0.16, bornes comprises,
- d compris entre 0.001 et 0.03, bornes comprises.
10. Composant d'habillage (1 ) selon la revendication 8, caractérisé en ce que ledit alliage comporte au plus deux dites traces de métal T prises parmi le chrome et le bore, et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.31 et 0.33, bornes comprises,
- c compris entre 0.14 et 0.19, bornes comprises,
- d compris entre 0.010 et 0.030, bornes comprises.
1 1 . Composant d'habillage (1 ) selon la revendication 10, caractérisé en ce que ledit alliage comporte une seule dite trace de métal T constituée par le chrome, ledit alliage obéissant à la formulation atomique TiaPdbFecCrd.
12. Composant d'habillage (1 ) selon la revendication 9, caractérisé en ce que ledit alliage comporte au plus deux dites traces de métal T prises parmi le chrome et le bore, et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.34 et 0.36, bornes comprises,
- c compris entre 0.1 1 et 0.15, bornes comprises,
- d compris entre 0.010 et 0.030, bornes comprises.
13. Composant d'habillage (1 ) selon la revendication 9, caractérisé en ce que ledit alliage comporte une seule dite trace de métal T constituée par le chrome, ledit alliage obéit à la formulation atomique TiaPdbNbcCrd,
et en ce que lesdites fractions atomiques a, b, c, d sont telles que :
- a compris entre 0.49 et 0.51 , bornes comprises,
- b compris entre 0.34 et 0.36, bornes comprises,
- c compris entre 0.1 1 et 0.15, bornes comprises,
- d compris entre 0.010 et 0.030, bornes comprises.
14. Composant d'habillage (1 ) selon l'une des revendications 1 à 13, caractérisé en ce que la teneur massique du palladium est inférieure ou égale à 60.0% du total dudit alliage.
15. Composant d'habillage (1 ) selon la revendication 14, caractérisé en ce que la teneur massique du palladium est inférieure ou égale à 55.0% du total dudit alliage.
16. Composant d'habillage (1 ) selon la revendication 15, caractérisé en ce que la teneur massique du palladium est inférieure ou égale à 52.5% du total dudit alliage.
17. Composant d'habillage (1 ) selon la revendication 16, caractérisé en ce que la teneur massique du palladium est inférieure ou égale à 51 .0% du total dudit alliage.
18. Pièce d'horlogerie (10) ou de bijouterie comportant au moins un composant d'habillage (1 ) selon l'une des revendications précédentes.
PCT/EP2015/080211 2014-12-29 2015-12-17 Pièce d'horlogerie ou de bijouterie en alliage précieux léger comportant du titane WO2016107752A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15810677.3A EP3241078B1 (fr) 2014-12-29 2015-12-17 Pièce d'horlogerie ou de bijouterie en alliage précieux léger comportant du titane
CN201580071445.1A CN107208187B (zh) 2014-12-29 2015-12-17 由包含钛的轻质贵金属合金制成的钟表或珠宝
US15/533,471 US10206465B2 (en) 2014-12-29 2015-12-17 Timepiece or piece of jewellery made of a light precious alloy containing titanium
JP2017546041A JP6514354B2 (ja) 2014-12-29 2015-12-17 チタンを含有する軽い高貴な合金で作られた計時器又は装飾品
HK18103140.3A HK1243743B (zh) 2014-12-29 2018-03-05 由包含鈦的輕質貴金屬合金製成的鐘錶或珠寶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14200381.3 2014-12-29
EP14200381.3A EP3040790A1 (fr) 2014-12-29 2014-12-29 Pièce d'horlogerie ou de bijouterie en alliage précieux léger à base de titane

Publications (2)

Publication Number Publication Date
WO2016107752A1 true WO2016107752A1 (fr) 2016-07-07
WO2016107752A4 WO2016107752A4 (fr) 2016-09-15

Family

ID=52130164

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2015/080211 WO2016107752A1 (fr) 2014-12-29 2015-12-17 Pièce d'horlogerie ou de bijouterie en alliage précieux léger comportant du titane
PCT/EP2015/080270 WO2016107755A1 (fr) 2014-12-29 2015-12-17 Alliage précieux léger de titane et d'or et composant d'horlogerie ou de bijouterie réalisé dans un alliage précieux léger de titane et d'or

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/080270 WO2016107755A1 (fr) 2014-12-29 2015-12-17 Alliage précieux léger de titane et d'or et composant d'horlogerie ou de bijouterie réalisé dans un alliage précieux léger de titane et d'or

Country Status (6)

Country Link
US (2) US10136708B2 (fr)
EP (3) EP3040790A1 (fr)
JP (2) JP6389561B2 (fr)
CN (2) CN107208187B (fr)
HK (1) HK1243743B (fr)
WO (2) WO2016107752A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572549A1 (fr) 2018-05-24 2019-11-27 Richemont International S.A. Article de joaillerie
CN109881044B (zh) * 2019-04-11 2021-07-27 福建工程学院 一种高硬高耐磨钛合金及其制备方法和应用
EP3889691B1 (fr) * 2019-05-07 2024-02-21 Nivarox-FAR S.A. Spiral horloger en alliage nb-hf
CN110284021B (zh) * 2019-06-27 2020-06-30 袁海 提高足金、足银硬度的中间合金及其制备方法与应用
EP3800511B1 (fr) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Axe de pivotement d'un organe réglant
CN112813299A (zh) * 2019-11-12 2021-05-18 新疆大学 一种高强度低成本耐蚀钛合金
CN111020272A (zh) * 2019-12-14 2020-04-17 深圳晶辉应用材料有限公司 一种高性能金基银钯合金键合材料
EP4026923A1 (fr) 2021-01-07 2022-07-13 Officine Panerai AG Alliage à base de titane et d'or
CN115178913B (zh) * 2022-09-13 2023-01-10 中国航发北京航空材料研究院 一种钎料及其制备方法和钎焊方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876887A (en) * 1957-07-12 1961-09-06 Degussa Gold alloys, for use as material for electric resistances
EP0239747A1 (fr) * 1986-03-12 1987-10-07 Sumitomo Electric Industries, Ltd. Alliage à mémoire de forme et son procédé de fabrication
EP0267318A2 (fr) * 1986-11-13 1988-05-18 C. HAFNER GmbH &amp; Co. Alliage pour objets de parure

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851058A (en) * 1982-09-03 1989-07-25 General Motors Corporation High energy product rare earth-iron magnet alloys
JPH02225655A (ja) * 1989-02-28 1990-09-07 Agency Of Ind Science & Technol 光沢のある黒色に着色する金合金とその着色法
JPH03110046A (ja) * 1989-09-26 1991-05-10 Tokin Corp 合金細線及びその製造方法
JPH06145843A (ja) * 1992-11-10 1994-05-27 Tokin Corp バーン・イン試験用素子及びバーン・イン試験装置
DE4306542A1 (de) 1993-01-14 1994-07-21 Sunder Plassmann Paul Dr Verwendung von Gold/Titan-Legierungen als Dentallegierungen
TW360716B (en) * 1993-02-19 1999-06-11 Citizen Watch Co Ltd Golden decorative part and process for producing the same
US5617377A (en) * 1995-12-13 1997-04-01 Perret, Jr.; Gerard A. Watchband connector pin utilizing shape memory material
CN1061384C (zh) * 1998-04-25 2001-01-31 湖北金兰首饰集团有限公司 首饰用超强高纯金合金材料
JPH11310836A (ja) * 1998-04-30 1999-11-09 Tanaka Kikinzoku Kogyo Kk 装飾用時効硬化性材料
US6675610B2 (en) * 1999-12-23 2004-01-13 Guy Beard Jewelry including shape memory alloy elements
US6849344B2 (en) * 2002-09-25 2005-02-01 Titanium Metals Corp. Fabricated titanium article having improved corrosion resistance
GB0419062D0 (en) * 2004-08-27 2004-09-29 Johnson Matthey Plc Platinum alloy catalyst
US20060231171A1 (en) * 2005-04-19 2006-10-19 Davis Samuel A Method for adding boron to metal alloys
CH697875B1 (fr) 2005-07-16 2009-03-13 Ludwig Mueller Alliage de métal précieux.
CN100543166C (zh) * 2006-10-13 2009-09-23 北京航空航天大学 含有微元素的合金及器具
JP5079555B2 (ja) * 2008-03-17 2012-11-21 シチズンホールディングス株式会社 装飾部品
SG160266A1 (en) 2008-09-08 2010-04-29 Autium Pte Ltd Coloured gold alloy and method for forming the same
US8361250B2 (en) * 2009-02-13 2013-01-29 California Institute Of Technology Amorphous platinum-rich alloys
CH704233B1 (fr) * 2010-12-17 2015-05-15 Richemont Int Sa Pièce d'habillage en alliage de titane pour l'horlogerie et procédé de fabrication de cet alliage.
CN103534369B (zh) * 2011-05-02 2016-11-16 洛桑联邦理工学院 铂基合金
PT2546371T (pt) 2011-07-12 2017-02-14 Cendres + Métaux Sa Ouro branco de 18 quilates
CH707539B1 (fr) 2013-02-06 2017-01-13 Rolex Sa Alliage d'or rose pour pièce d'horlogerie.
JP6156865B2 (ja) * 2013-02-07 2017-07-05 国立研究開発法人物質・材料研究機構 超弾性合金

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876887A (en) * 1957-07-12 1961-09-06 Degussa Gold alloys, for use as material for electric resistances
EP0239747A1 (fr) * 1986-03-12 1987-10-07 Sumitomo Electric Industries, Ltd. Alliage à mémoire de forme et son procédé de fabrication
EP0267318A2 (fr) * 1986-11-13 1988-05-18 C. HAFNER GmbH &amp; Co. Alliage pour objets de parure

Also Published As

Publication number Publication date
CN107208187B (zh) 2019-02-19
US20170226613A1 (en) 2017-08-10
EP3240915B1 (fr) 2020-07-08
EP3240915A1 (fr) 2017-11-08
HK1243743B (zh) 2020-03-20
EP3241078A1 (fr) 2017-11-08
CN106460094B (zh) 2019-05-14
WO2016107755A1 (fr) 2016-07-07
JP2018503480A (ja) 2018-02-08
US20170367446A1 (en) 2017-12-28
EP3040790A1 (fr) 2016-07-06
JP2017518442A (ja) 2017-07-06
US10136708B2 (en) 2018-11-27
WO2016107752A4 (fr) 2016-09-15
US10206465B2 (en) 2019-02-19
CN107208187A (zh) 2017-09-26
JP6389561B2 (ja) 2018-09-12
CN106460094A (zh) 2017-02-22
EP3241078B1 (fr) 2021-05-26
JP6514354B2 (ja) 2019-05-15

Similar Documents

Publication Publication Date Title
WO2016107752A1 (fr) Pièce d&#39;horlogerie ou de bijouterie en alliage précieux léger comportant du titane
EP3543368B1 (fr) Alliages à haute entropie pour composants d&#39;habillage
EP3077561B1 (fr) Alliage amorphe massif à base de zirconium sans béryllium
EP3128035B1 (fr) Alliage amorphe massif à base de zirconium sans nickel
BE1006333A3 (fr) Nouvel alliage ternaire a base d&#39;argent.
EP2588635B1 (fr) Alliage d&#39;or à dureté améliorée
EP2546371B1 (fr) Or gris 18 carats
EP2728028B1 (fr) Alliage d&#39;acier inoxydable sans nickel
CH710562A2 (fr) Composant d&#39;habillage pour pièce d&#39;horlogerie ou de bijouterie en alliage précieux léger à base de titane.
WO1992009713A1 (fr) Alliages et composes intermetalliques a base de niobium ou de tantale a haute resistance specifique
CH708928A2 (fr) Alliage amorphe massif à base de zirconium sans béryllium.
CH718454A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et procédé de fabrication de ce ressort spiral.
CH703379B1 (fr) Alliage d&#39;or à dureté améliorée.
CH703143B1 (fr) Alliage à base de palladium.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810677

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015810677

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017546041

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15533471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE