EP3128035B1 - Alliage amorphe massif à base de zirconium sans nickel - Google Patents

Alliage amorphe massif à base de zirconium sans nickel Download PDF

Info

Publication number
EP3128035B1
EP3128035B1 EP15179473.2A EP15179473A EP3128035B1 EP 3128035 B1 EP3128035 B1 EP 3128035B1 EP 15179473 A EP15179473 A EP 15179473A EP 3128035 B1 EP3128035 B1 EP 3128035B1
Authority
EP
European Patent Office
Prior art keywords
equal
nickel
amorphous alloy
alloys
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15179473.2A
Other languages
German (de)
English (en)
Other versions
EP3128035A1 (fr
Inventor
Alban Dubach
Yves Winkler
Tommy Carozzani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP15179473.2A priority Critical patent/EP3128035B1/fr
Priority to US15/188,588 priority patent/US9933754B2/en
Priority to JP2016137321A priority patent/JP6313821B2/ja
Priority to CN201610608175.XA priority patent/CN106399871B/zh
Publication of EP3128035A1 publication Critical patent/EP3128035A1/fr
Application granted granted Critical
Publication of EP3128035B1 publication Critical patent/EP3128035B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Definitions

  • the invention relates to a solid amorphous alloy.
  • the invention also relates to a timepiece component made of such an alloy.
  • the invention also relates to a watch comprising at least one such component.
  • the invention relates to the fields of watchmaking, jewelery, and fine jewelry, in particular for structures: watch cases, middle parts, plates, glasses, pushers, crowns, buckles, bracelets, rings, earrings. and others.
  • Amorphous alloys are more and more used in the fields of watchmaking, jewelry, and fine jewelry, in particular for structures: watch cases, casebands, plates, glasses, pushers, crowns, buckles, bracelets, and others.
  • Amorphous alloys based on zirconium without nickel and without beryllium generally show critical diameters which are smaller than those of alloys with nickel and beryllium, which is unfavorable for the production of solid parts. It is therefore a question of developing alloys such that the critical diameter D c * is sufficiently large.
  • the invention proposes to produce massive amorphous alloys based on zirconium, either nickel-free, or both nickel-free and beryllium-free, for watchmaking applications.
  • the invention proposes to increase the critical diameter of amorphous alloys based on zirconium at least without nickel, or even at the same time without nickel and without beryllium, while keeping a high value of ⁇ Tx (difference between the crystallization temperature Tx and the glass transition temperature Tg).
  • the invention relates to a solid amorphous alloy based on zirconium or / and hafnium, free of nickel, with the addition of other elements to increase its critical diameter, according to claim 1.
  • the invention also relates to a timepiece or jewelry component made of such an alloy.
  • the invention relates to the fields of watchmaking, jewelery, and fine jewelry, in particular for structures: watch cases, middle parts, plates, glasses, pushers, crowns, buckles, bracelets, rings, earrings. and others.
  • the invention proposes to produce massive amorphous alloys based on zirconium without nickel, or at the same time without nickel and without beryllium, for watchmaking applications, these alloys according to the invention being designed to have properties similar to those of alloys amorphous containing nickel, or containing nickel and beryllium.
  • the invention proposes to increase the critical diameter of amorphous zirconium alloys at least without nickel, or at the same time without nickel and without beryllium, while keeping a high value of ⁇ Tx.
  • free of Z is meant that, in the alloy, the content of Z is preferably zero, if not very low, in the same way as impurities, and preferably less than or equal to 0.1%.
  • a nickel-free alloy that is to say containing less than 0.1% in atomic%, of nickel, and “alloy without nickel and beryllium-free ”an alloy containing less than 0.1%, in atomic%, of nickel and comprising less than 0.1%, in atomic%, of beryllium.
  • alloys which include nickel substitute elements, or both nickel and beryllium, which do not pose any problem in contact with the skin, alloys which have values of the critical diameter D c * and the interval ⁇ Tx.
  • the invention relates to a solid amorphous alloy based on zirconium, nickel free, with the addition of certain specific components to increase the critical diameter D c *.
  • the experimentation carried out within the framework of the present invention makes it possible to establish that the possibility of a good production of a timepiece covering component, of a given thickness E, produced in an amorphous alloy, is closely associated with the critical diameter D c * of this amorphous alloy.
  • maximum advantage is taken of the critical diameter D c *.
  • the critical diameter D c * is greater than 1.8 times the thickness E. More particularly, the critical diameter D c * is close to twice the thickness E, in particular between 1.8 E and 2.2 E.
  • a family of zirconium alloys comprising at least copper and aluminum, in particular Zr-Cu-Al and Zr-Cu-Al-Ag is described in the document "Mater Trans, Vol 48, No 7 (2007) 1626-1630" . Its known properties are the increase in the critical diameter from 8mm to 12mm, by adding silver to the alloy, for example by transforming a Zr 46 Cu 46 Al 8 alloy into a Zr 42 Cu 42 Al 8 Ag 8 alloy. Due to the high percentage of copper (Cu / Zr ratio ⁇ 1), the corrosion resistance of this family of alloys is very poor and these compositions even have a tendency to discolour or darken over time at room temperature. The compositions do not contain iron.
  • a family of zirconium-based alloys comprising at least titanium, copper and aluminum, in particular Zr-Ti-Cu-Al and Zr-Ti-Nb-Cu-Al, is known from the document US2013032252 .
  • the alloys Zr 45-69 Ti 0.25-8 Cu 21 - 35 Al 7.5-15 , and Zr 45-69 (Nb, Ti) 0.25-15 Cu 21-35 Al 7.5-13 with 0.25 ⁇ Ti ⁇ 8 are known in particular .
  • the compositions do not contain iron.
  • the critical diameter disclosed is less than 10mm. It suits to emphasize that the values displayed in the literature do not always correspond to reality.
  • a family of zirconium alloys comprising at least palladium, copper and aluminum, of the Zr-Cu-Pd-Al type is known from the document WO2004022118 , which discloses a composition with 10% palladium, therefore of high price. The critical diameter remains quite small. The composition does not contain iron.
  • a family of zirconium alloys comprising at least niobium, copper and aluminum, of the Zr-Nb-Cu-Al type is known from the document WO2013075829 .
  • This family allows the manufacture of amorphous alloys using elements which are not very pure, for example with the use of industrial zirconium instead of pure zirconium. Consequently, the compositions also contain traces of Fe, Co, Hf and O: Zr 64.2-72 Hf 0.01-3.3 (Fe, Co) 0.01-0.15 Nb 1.3-2.4 O 0.01-0.13 Cu 23.3-25.5 Al 3.4-4.2 (% by mass).
  • the critical diameter is close to 5mm.
  • a family of zirconium-based alloys comprising at least niobium, copper, palladium and aluminum, of the Zr-Nb-Cu-Pd-Al type is known from the document "J Mech Behav Biomed, Vol 13 (2012) 166-173" , which deals with the development of amorphous alloys in the Zr 45 + x Cu 40-x Al 7 Pd 5 Nb 3 system .
  • the compositions do not contain iron.
  • the tests carried out in the context of the development of the invention have shown that these compositions of the Zr-Nb-Cu-Pd-Al type do not resist corrosion.
  • a family of zirconium-based alloys comprising at least copper, iron, aluminum, and silver, of the Zr-Cu-Fe-Al-Ag type is known from the document. "MSEA, Vol 527 (2010) 1444-1447” , which studies the influence of Fe on the thermophysical properties of the alloy (Zr 46 Cu 39.2 Ag 7.8 Al 7 ) 100-y Fe y with 0 ⁇ y ⁇ 7. The Cu / Zr ratio is high, and therefore the corrosion resistance is not good.
  • a family of zirconium alloys comprising at least copper, iron, aluminum, and silver, of the Zr-Cu-Fe-Al-X type, with X being at least one element of the family Ti, Hf, V, Nb, Y, Cr, Mo, Fe, Co, Sn, Zn, P, Pd, Ag, Au, Pt, is known from the document WO2006026882 relating to the alloy Zr 33-81 Cu 6-45 (Fe, Co) 3-15 Al 5-21 -X 0-6 .
  • the invention comprises only alloys comprising at least 0.5% iron.
  • the Zr-Cu-Fe-Al system is chosen as a starting point, because the literature teaches that this system has a relatively high vitrification ability (GFA, glass-forming ability) (greater than for ternary alloys Zr-Cu-AI).
  • the critical diameter of the Zr-Cu-Fe-Al quaternary alloys is not yet large enough to produce massive cladding pieces, such as a middle part or the like.
  • the objective with a critical diameter D c * close to 9 mm, or greater than this value, takes into account the fact that, at least in fine watchmaking, the thickness of a middle part is typically close to 5mm.
  • X being at least one element of the family Ti, Hf, V, Nb, Y, Cr, Mo, Fe, Co, Sn , Zn, P, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os.
  • compositions 1 and 2 are known, do not comprise any additional component X, and correspond to the teachings of the document WO2006026882 .
  • compositions 3 and 4 relate to compositions which have not been disclosed in the literature, however, they are covered by certain ranges disclosed by the document. WO2006026882 .
  • Composition 3 comprises a unique additional component X which is silver, the critical diameter is better than that of compositions 1 and 2, but insufficient to satisfy the specifications of the invention.
  • Composition 4 has two additional X components, niobium and silver, with a total% of 6, and the critical diameter is of the same order as that of sample 3.
  • the test campaign shows that the only way to significantly increase the critical diameter D c * is to have at least two components X in the alloy, and with a% greater than or equal to 6.3.
  • compositions 5-12 are entirely new, and do not overlap with the ranges of the prior art. Among them, compositions 5 to 11 have a critical diameter D c * greater than or equal to 9.5 mm. Composition 12 shows that a cumulative percentage “a” of the components X greater than a certain value, in this case 10% in atomic percentage, does not bring any beneficial effect, on the contrary even, since the critical diameter D c * is significantly lower than the previous ones.
  • the results show that the addition of elements X increases the critical diameter D c * and that ideally it is necessary to add at least two elements X to maximize their effect.
  • the tests show that the critical diameter D c * is maximum when the cumulative percentage "a" of the elements X is between 6 and 10%.
  • the first filler metal and the second filler metal are taken from the family comprising Ti, Nb, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, and Hf when said base n 'does not, and Zr when said base does not, with the cumulative atomic percentage of these at least two filler metals being greater than or equal to 6.0, and less than or equal to 10.0.
  • the first filler metal and the second filler metal are taken from the family comprising Ti, Nb, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, with the cumulative atomic percentage of these at least two filler metals being greater than or equal to 6.0, and less than or equal to 10.0.
  • the alloy according to the invention comprises only zirconium and no hafnium.
  • the alloy according to the invention comprises only hafnium and no zirconium.
  • the alloy according to the invention is free of nickel and beryllium.
  • the alloy according to the invention is free of cobalt and / or chromium.
  • the alloys according to the invention resist corrosion, and have a stable color (no tarnishing or discoloration when worn)
  • the invention also relates to a component 1 of timepieces or jewelry made of such an amorphous alloy.
  • the critical diameter D c * of the amorphous alloy according to the invention, which constitutes this component, is greater than 1.8 times the greatest thickness E of this component 1.
  • the invention also relates to a watch 2 comprising at least one such covering component 1.
  • this watch 2 comprises such a covering component 1 which is a middle part of maximum thickness E between 4.0 and 5.0 mm produced in such an amorphous alloy having a critical diameter D c * greater than 8 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adornments (AREA)

Description

    Domaine de l'invention
  • L'invention concerne un alliage amorphe massif.
  • L'invention concerne encore un composant d'horlogerie réalisé en un tel alliage.
  • L'invention concerne encore une montre comportant au moins un tel composant.
  • L'invention concerne les domaines de l'horlogerie, de la bijouterie, et de la joaillerie, en particulier pour les structures : boîtes de montres, carrures, platines, lunettes, poussoirs, couronnes, boucles, bracelets, bagues, boucles d'oreilles et autres.
  • Arrière-plan de l'invention
  • Les alliages amorphes sont de plus en plus utilisés dans les domaines de l'horlogerie, de la bijouterie, et de la joaillerie, en particulier pour les structures : boîtes de montres, carrures, platines, lunettes, poussoirs, couronnes, boucles, bracelets, et autres.
  • Les composants à usage externe, destinés à être en contact avec la peau de l'utilisateur, doivent obéir à certaines contraintes, en particulier en raison de la toxicité ou des effets allergènes de certains métaux, notamment le béryllium et le nickel. Malgré les qualités intrinsèques particulières de tels métaux, on s'attache à mettre sur le marché, au moins pour les composants susceptibles d'entrer en contact avec l'épiderme de l'utilisateur, des alliages comportant peu voire pas de béryllium ou de nickel.
  • Les alliages amorphes massifs à base de zirconium sont connus depuis les années 90. Les publications suivantes concernent de tels alliages:
    1. [1] Zhang, et al., Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K, Materials Transactions, JIM, Vol. 32, No. 11 (1991) pp. 1005-1010.
    2. [2] Lin, et al., Effect of Oxygen Impurity on Crystallization of an Undercooled Bulk Glass Forming Zr-Ti-Cu-Ni-Al Alloy, Materials Transactions, JIM, Vol. 38, No. 5 (1997) pp. 473-477.
    3. [3] Brevet US6592689 .
    4. [4] Inoue, et al., Formation, Thermal Stability and Mechanical Properties of Bulk Glassy Alloys with a Diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu System, Materials Transactions, JIM, Vol. 50, No. 2 (2009) pp. 388-394.
    5. [5] Demande de brevet US 2012/0247948 A1 .
    6. [6] Inoue et al., "Recent development and application products of bulk glassy alloys", ACTA MATERIALIA, Vol. 59, No. 6 (2010), pp. 2243-2267.
  • Les alliages amorphes avec les meilleures aptitudes à la vitrification, aptitude couramment désignée sous le vocable GFA utilisé ci-après (« glass-forming ability»), et liée au diamètre critique Dc*, se trouvent dans les systèmes :
    • Zr-Ti-Cu-Ni-Be,
    • et Zr-Cu-Ni-Al.
  • Les compositions (en % atomique) des alliages les plus souvent utilisés/caractérisés sont listées ci-dessous :
    • Zr44Ti11Cu9.8Ni10.2Be25 (LM1b)
    • Zr65Cu17.5Ni10Al7.5 [1]
    • Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) [2]
    • Zr57Cu15.4Ni12.6Al10Nb5 (Vit106) et Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 (Vit106a) [3]
    • Zr61Cu17.5Ni10Al7.5Ti2Nb2 [4]
    • Zr62.5Cu22.5Al10Fe5 [5], [6]
  • Vu le potentiel allergène du nickel, ces alliages ne sont pas utilisables pour des applications en contact avec la peau, comme des pièces d'habillage ou similaire. En plus, à cause de la toxicité du béryllium la fabrication et l'usinage de certains de ces alliages nécessitent des mesures de précaution spéciales. C'est dommage, car ces deux éléments stabilisent la phase amorphe, et facilitent l'obtention d'alliages ayant un diamètre critique Dc* élevé. De plus, le nickel a un effet positif sur la résistance à la corrosion des alliages amorphes à base de zirconium.
  • Les alliages amorphes à base zirconium sans nickel et sans béryllium montrent en général des diamètres critiques qui sont inférieurs à ceux des alliages avec nickel et béryllium, ce qui est défavorable pour la réalisation de pièces massives. Il s'agit donc de mettre au point des alliages tels que le diamètre critique Dc* soit suffisamment important.
  • Résumé de l'invention
  • L'invention se propose de réaliser des alliages amorphes massifs à base de zirconium, ou bien sans nickel, ou bien à la fois sans nickel et sans béryllium, pour des applications horlogères.
  • L'invention se propose d'augmenter le diamètre critique des alliages amorphes à base zirconium au moins sans nickel, ou encore à la fois sans nickel et sans béryllium, tout en gardant une valeur élevée de ΔTx (différence entre la température de cristallisation Tx et la température de transition vitreuse Tg).
  • L'invention concerne un alliage amorphe massif à base de zirconium ou/et de hafnium, exempt de nickel, avec rajout d'autres éléments pour augmenter son diamètre critique, selon la revendication 1.
  • L'invention concerne encore un composant d'horlogerie ou de joaillerie réalisé en un tel alliage.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée, la mesure du diamètre critique Dc* dans un échantillon conique ;
    • la figure 2 représente, de façon schématisée, une pièce d'horlogerie réalisée en un alliage selon l'invention.
    Description détaillée des modes de réalisation préférés
  • L'invention concerne les domaines de l'horlogerie, de la bijouterie, et de la joaillerie, en particulier pour les structures : boîtes de montres, carrures, platines, lunettes, poussoirs, couronnes, boucles, bracelets, bagues, boucles d'oreilles et autres.
  • L'invention se propose de réaliser des alliages amorphes massifs à base de zirconium sans nickel, ou à la fois sans nickel et sans béryllium, pour des applications horlogères, ces alliages selon l'invention étant conçus pour présenter des propriétés analogues à celles des alliages amorphes contenant du nickel, ou contenant du nickel et du béryllium.
  • L'invention se propose d'augmenter le diamètre critique des alliages amorphes à base de zirconium au moins sans nickel, ou encore à la fois sans nickel et sans béryllium, tout en gardant une valeur élevée de ΔTx.
  • Par « exempt de Z » on entend que, dans l'alliage, la teneur de Z est, de préférence nulle, sinon très faible, au même titre que des impuretés, et de préférence inférieure ou égale à 0.1%.
  • On appellera ci-après « alliage sans nickel » un alliage exempt de nickel, c'est-à-dire comportant moins de 0.1% en % atomique, de nickel, et « alliage sans nickel et sans béryllium » un alliage comportant moins de 0.1%, en % atomique, de nickel et comportant moins de 0.1%, en % atomique, de béryllium.
  • Il s'agit donc d'élaborer une fabrication d'alliages, qui comportent des éléments de substitution au nickel, ou à la fois au nickel et au béryllium, qui ne posent pas de problème en contact avec la peau, alliages qui présentent des valeurs élevées du diamètre critique Dc* et de l'intervalle ΔTx.
  • Aussi l'invention concerne un alliage amorphe massif à base de zirconium, sans nickel, avec rajout de certains composants particuliers pour augmenter le diamètre critique Dc*.
  • En effet, l'expérimentation menée dans le cadre de la présente invention permet d'établir que la possibilité d'une bonne réalisation d'un composant d'habillage d'horlogerie, d'une épaisseur E donnée, réalisé dans un alliage amorphe, est étroitement associée au diamètre critique Dc* de cet alliage amorphe. Dans une exécution particulièrement avantageuse, on tire parti au maximum du diamètre critique Dc*. De façon préférée, le diamètre critique Dc* est supérieur à 1,8 fois l'épaisseur E. Plus particulièrement, le diamètre critique Dc* est voisin du double de l'épaisseur E, notamment compris entre 1.8 E et 2.2 E.
  • Différentes familles de compositions sans nickel sont déjà connues dans la littérature, mais avec des diamètres critiques faibles et/ou des mauvaises résistances à la corrosion.
  • Une famille d'alliages de zirconium comportant au moins du cuivre et de l'aluminium, notamment Zr-Cu-Al et Zr-Cu-Al-Ag est décrite dans le document «Mater Trans, Vol 48, No 7 (2007) 1626-1630 ». Ses propriétés connues sont l'augmentation du diamètre critique de 8mm à 12mm, en rajoutant de l'argent dans l'alliage, par exemple en transformant un alliage Zr46Cu46Al8 en un alliage Zr42Cu42Al8Ag8. Du fait du pourcentage élevé de cuivre (rapport Cu/Zr ≈ 1), la résistance à la corrosion de cette famille d'alliages est très mauvaise et ces compositions ont même une tendance à se décolorer ou à noircir avec le temps à température ambiante. Les compositions ne contiennent pas de fer.
  • Une famille d'alliages à base de zirconium comportant au moins du titane, du cuivre et de l'aluminium, notamment Zr-Ti-Cu-Al et Zr-Ti-Nb-Cu-Al, est connue par le document US2013032252 . On connaît en particulier les alliages Zr45-69Ti0.25-8Cu21-35Al7.5-15, et Zr45-69(Nb,Ti)0.25-15Cu21-35Al7.5-13 avec 0.25≤Ti≤8. Les compositions ne contiennent pas de fer. Le diamètre critique divulgué est inférieur à 10mm. Il convient de souligner que les valeurs affichées dans la littérature ne correspondent pas toujours à la réalité. Par exemple, dans le cas de ce document US2013032252 , les meilleures compositions se trouvent autour de Zr60-62Ti2Cu24-28Al10-12. La réalisation à titre de comparaison, menée lors de l'expérimentation de l'invention, selon le mode opératoire décrit ci-dessous, d'un alliage Zr61Ti2Cu26AI11 censé avoir un diamètre critique de 10mm, n'a permis d'obtenir qu'un diamètre critique Dc* de 4.5mm. Ceci incite à la plus grande méfiance à l'égard des résultats très optimistes affichés dans certains documents de l'art antérieur.
  • Une famille d'alliages de zirconium comportant au moins du palladium, du cuivre et de l'aluminium, de type Zr-Cu-Pd-Al est connue par le document WO2004022118 , qui divulgue une composition avec 10% de palladium, donc de prix élevé. Le diamètre critique reste assez petit. La composition ne contient pas de fer.
  • Une famille d'alliages de zirconium comportant au moins du niobium, du cuivre et de l'aluminium, de type Zr-Nb-Cu-Al est connue par le document WO2013075829 . Cette famille permet la fabrication des alliages amorphes en utilisant des éléments pas très purs, par exemple avec une utilisation de zirconium industriel au lieu de zirconium pur. Par conséquent, les compositions contiennent également des traces de Fe, Co, Hf et O : Zr64.2-72Hf0.01-3.3(Fe,Co)0.01-0.15Nb1.3-2.4O0.01-0.13Cu23.3-25.5Al3.4-4.2 (% massique). Le diamètre critique est voisin de 5mm.
  • Une famille d'alliages à base de zirconium comportant au moins du niobium, du cuivre, du palladium et de l'aluminium, de type Zr-Nb-Cu-Pd-Al est connue par le document « J Mech Behav Biomed, Vol 13 (2012) 166-173 », qui traite du développement des alliages amorphes dans le système Zr45+xCu40-xAl7Pd5Nb3. Les compositions ne contiennent pas de fer. Les essais menés dans le cadre de la mise au point de l'invention ont montré que ces compositions de type Zr-Nb-Cu-Pd-Al ne résistent pas à la corrosion.
  • Une famille d'alliages à base de zirconium comportant au moins du cuivre, du fer, de l'aluminium, et de l'argent, de type Zr-Cu-Fe-Al-Ag est connue par le document « MSEA, Vol 527 (2010) 1444-1447 », qui étudie l'influence du Fe sur les propriétés thermophysiques de l'alliage (Zr46Cu39.2Ag7.8Al7)100-yFey avec 0<y<7. Le rapport Cu/Zr est élevé, et de fait la résistance à la corrosion n'est pas bonne. Une famille d'alliages de zirconium comportant au moins du cuivre, du fer, de l'aluminium, et de l'argent, de type Zr-Cu-Fe-Al-X, avec X étant au moins un élément de la famille Ti, Hf, V, Nb, Y, Cr, Mo, Fe, Co, Sn, Zn, P, Pd, Ag, Au, Pt, est connue par le document WO2006026882 relatif à l'alliage Zr33-81Cu6-45(Fe,Co)3-15Al5-21-X0-6.
  • La même famille est encore connue par le document CN102534439 , qui concerne plus particulièrement l'alliage Zr60-70Ti1-2.5Nb0-2.5Cu5-15Fe5-15Ag0-10Pd0-10Al7.5-12.5.
  • Au vu des limitations mentionnées dans ces différentes divulgations de la littérature, la mise au point de l'invention a nécessité une importante campagne d'essais pour améliorer les propriétés, et notamment le diamètre critique, des alliages amorphes sans nickel, et sans béryllium et sans nickel.
  • Malgré les enseignements - a priori rédhibitoires - relatifs aux alliages de type Zr-Cu-Fe-Al-Ag, ou de type Zr-Cu-Fe-Al-X, qui ne sont pas compatibles avec le cahier des charges et notamment en ce qui concerne la résistance à la corrosion, qui doit être parfaite pour des composants d'habillage d'horlogerie, la démarche inventive a cherché à établir si le rôle particulier joué par le fer, avec son influence favorable sur les propriétés thermophysiques de l'alliage, pourrait servir de base à la définition de compositions particulières d'alliages avec un diamètre critique Dc* de préférence supérieur ou égal à 9 mm, et présentant une très bonne résistance à la corrosion, et une excellente stabilité de coloris dans le temps.
  • A cette fin, l'invention ne comporte que des alliages comportant au moins 0.5% de fer.
  • En effet, le système Zr-Cu-Fe-Al est choisi comme point de départ, car la littérature enseigne que ce système a une aptitude à la vitrification (GFA, glass-forming ability) relativement grande (plus grande que pour les alliages ternaires Zr-Cu-AI).
  • Principalement, le fer a été choisi pour les raisons suivantes :
    • le fait d'avoir 4 éléments (Zr-Cu-Al + Fe) augmente la complexité de l'alliage (il est plus difficile de former une structure ordonnée), et donc augmente son GFA ;
    • généralement, les meilleures compositions se trouvent autour des eutectiques profonds dans le diagramme des phases. Il est connu que le fer forme un eutectique profond avec le Zr, et des calculs thermodynamiques ont montré que le fer abaisse le liquidus dans le système quaternaire. Des eutectiques profonds se situent près de Zr60Cu25Fe5Al10 et Zr62.5Cu22.5Fe5Al10;
    • de plus, pour augmenter le GFA, l'énergie de mélange entre les principaux éléments doit être négative (ce qui est le cas pour Zr-Fe et Al-Fe).
  • Pourtant, le diamètre critique des alliages quaternaires Zr-Cu-Fe-Al n'est pas encore suffisamment grand pour réaliser des pièces d'habillage massives, telles qu'une carrure ou similaire. L'objectif d'un diamètre critique Dc* voisin de 9 mm, ou supérieur à cette valeur, tient compte du fait que, du moins en haute horlogerie, l'épaisseur d'une carrure est typiquement voisine de 5mm.
  • La stratégie d'expérimentation a consisté à rajouter, à un alliage quaternaire de départ, des éléments supplémentaires afin d'augmenter le diamètre critique en utilisant la démarche principale suivante :
    • 1. Définir une base constituée d'un alliage quaternaire de départ Zr-Cu-Fe-Al. Par exemple : Zr58Cu27Fe5Al10. Le zirconium peut être remplacé par du hafnium, ou par un mélange zirconium-hafnium
    • 2. Choisir au moins deux (ou davantage) éléments X, pris dans une famille comportant Ti, V, Nb, Y, Cr, Mo, Co, Sn, Zn, P, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, et Hf quand la base n'en comporte pas, et Zr quand la base n'en comporte pas ; dans l'expression Xa, on désigne par « a » le pourcentage cumulé de tous les éléments de type X
    • 3. Si un élément X choisi est parmi (Ti, Nb, Ta) il remplace le Zr. En effet, les éléments (Ti, Nb, Ta) sont chimiquement plus proches du Zr, en raison de leur proximité dans le tableau périodique des éléments, et de la facilité de formation de solutions solides avec le Zr, et ils sont donc utilisés pour remplacer le Zr
    • 4. Si un élément X est parmi (Pd, Pt, Ag, Au, Ru, Rh, Ir, Os) et donc, de façon similaire, chimiquement plus proche du Cu, il remplace le Cu
    • 5. Figer une composition d'alliage ainsi obtenue. Par exemple: X1= Nb, et X2= Ag ; l'alliage choisi est Zr58-X1Nbx1Cu25-X2AgX2Fe5Al12
    • 6. Fabriquer des alliages avec différentes teneurs de X1 et X2. Par exemple X1 =2% et 3%, et X2= 3.5% et 4.5%
    • 7. Mesurer les propriétés et surtout le diamètre critique Dc* des alliages, et identifier la meilleure composition. Par exemple Zr56Nb2Cu22.5Ag4.5Fe5Al10.
  • Pour chaque alliage expérimental, des charges d'environ 70g d'alliage ont été préparées dans un four à arc en utilisant des éléments purs, de pureté supérieure à 99.95%. Ce pré-alliage a été ensuite refondu dans une machine de coulée centrifuge, avec creuset en oxyde de silicium, sous atmosphère d'argon, et coulé dans un moule en cuivre sous forme d'un cône (épaisseur max. 11 mm, largeur 20mm, angle d'ouverture 6.3°). Une coupe métallographique a été préparée au milieu de chaque cône dans le sens de sa longueur pour mesurer le diamètre critique Dc*, qui correspond à l'épaisseur du cône où la zone cristalline commence, tel que visible en figure 1.
  • Le tableau ci-dessous résume les essais réalisés dans un système Zr-Cu-Fe-Al-X, X étant au moins un élément de la famille Ti, Hf, V, Nb, Y, Cr, Mo, Fe, Co, Sn, Zn, P, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os.
  • Les compositions 1 et 2 sont connues, ne comportent pas de composant additionnel X, et correspondent aux enseignements du document WO2006026882 .
  • Les compositions 3 et 4 concernent des compositions non divulguées dans la littérature, elles sont toutefois couvertes par certaines plages divulguées par le document WO2006026882 . La composition 3 comporte un composant X additionnel unique qui est l'argent, le diamètre critique est meilleur que celui des compositions 1 et 2, mais insuffisant pour satisfaire au cahier des charges de l'invention. La composition 4 comporte deux composants X additionnels, le niobium et l'argent, avec un % total de 6, et le diamètre critique est du même ordre que celui de l'échantillon 3.
  • La campagne d'essais montre que le seul moyen d'augmenter sensiblement le diamètre critique Dc* est d'avoir dans l'alliage au moins deux composants X, et avec un % supérieur ou égal à 6,3.
  • Les compositions 5-12 sont entièrement nouvelles, et ne recoupent pas les plages de l'art antérieur. Parmi elles, les compositions 5 à 11 ont un diamètre critique Dc* supérieur ou égal à 9,5 mm. La composition 12 montre qu'un pourcentage cumulé « a » des composants X supérieur à une certaine valeur, en l'occurrence 10% en pourcentage atomique, n'apporte pas d'effet bénéfique, au contraire même, puisque le diamètre critique Dc* est sensiblement plus faible que les précédents.
  • Les résultats montrent que le rajout d'éléments X augmente le diamètre critique Dc* et qu'idéalement il faut rajouter au moins deux éléments X pour maximiser leur effet. Les essais montrent que le diamètre critique Dc* est maximal quand le pourcentage cumulé « a » des éléments X se situe entre 6 et 10%.
  • L'expérimentation prouve, encore, que l'ajout de terres rares, en petite quantité, est favorable pour amortir l'effet négatif de l'oxygène présent dans l'alliage (« oxygen scavenger »).
    Composition (en % atomique) Dc* (mm) % cumulé de X
    1 Zr58Cu22Fe8Al10 5.0 0
    2 Zr62.5Cu22.5Fe5Al10 6.1 0
    3 (Zr58Cu22Fe8Al10)0.95Ag5 7.1 5
    4 Zr56Nb2Cu21Ag4Fe5Al12 7.0 6
    5 Zr55.9Nb2.1Cu22.8Ag2.1Pd2.1Fe4Al11 9.6 6.3
    6 Zr56Ti2Cu22.5Ag4.5Fe5Al10 10.5 6.5
    7 Zr56Nb2Cu22.5Ag4.5Fe5Al10 10.5 6.5
    8 Zr56Cu22.5Ag4.5Pd2Fe5Al10 9.5 6.5
    9 Zr57.5Nb20.5Cu21Ag4.5Fe4.5Al10 10 7
    10 Zr56Nb2Cu21.5Ag5.5Fe5Al10 10 7.5
    11 Zr55Nb2Cu21.5Ag4.5Pd2Fe5Al10 10 8.5
    12 Zr57.5Nb3.5Cu20Ag3.5Pd2Fe3Al10.5 6.6 9
  • L'invention concerne ainsi un alliage amorphe massif, caractérisé en ce qu'il est exempt de nickel, et qu'il consiste, en valeurs en % atomique, en :
    • une base composée de zirconium ou/et hafnium, dont la teneur constitue la balance, avec un total zirconium et hafnium supérieur ou égal à 52.0, et inférieur ou égal à 62.0 ;
    • du cuivre: supérieur ou égal à 16.0, et inférieur ou égal à 28.0 ;
    • du fer: supérieur ou égal à 0.5, et inférieur ou égal à 10.0 ;
    • de l'aluminium: supérieur ou égal à 7.0, et inférieur ou égal à 13.0 ;
    • au moins un premier métal d'apport et un deuxième métal d'apport dits X pris dans la famille comportant Ti, V, Nb, Y, Cr, Mo, Co, Sn, Zn, P, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, et Hf quand ladite base n'en comporte pas, et Zr quand ladite base n'en comporte pas, avec le pourcentage atomique cumulé « a » desdits au moins deux métaux d'apport étant supérieur ou égal à 6.0, et inférieur ou égal à 10.0.
  • Plus particulièrement, le premier métal d'apport et le deuxième métal d'apport sont pris dans la famille comportant Ti, Nb, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, et Hf quand ladite base n'en comporte pas, et Zr quand ladite base n'en comporte pas, avec le pourcentage atomique cumulé de ces au moins deux métaux d'apport étant supérieur ou égal à 6.0, et inférieur ou égal à 10.0.
  • Plus particulièrement encore, le premier métal d'apport et le deuxième métal d'apport sont pris dans la famille comportant Ti, Nb, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, avec le pourcentage atomique cumulé de ces au moins deux métaux d'apport étant supérieur ou égal à 6.0, et inférieur ou égal à 10.0.
  • Dans une variante particulière, l'alliage selon l'invention ne comporte que du zirconium et pas de hafnium.
  • Dans une autre variante particulière, l'alliage selon l'invention ne comporte que du hafnium et pas de zirconium.
  • De façon plus particulière, l'alliage selon l'invention est exempt de nickel et de béryllium.
  • Les meilleurs résultats jusqu'à présent ont été réalisés avec :
    • X = Ag+Nb;
    • X=Ag+Ti;
    • X = Nb+Ag+Pd.
  • De façon plus particulière encore, l'alliage selon l'invention est exempt de cobalt ou/et de chrome.
  • En somme, les alliages selon l'invention résistent à la corrosion, et ont une couleur stable (pas de ternissement ou décoloration au porté)
  • L'invention concerne encore un composant 1 d'horlogerie ou de joaillerie réalisé en un tel alliage amorphe.
  • Plus particulièrement, le diamètre critique Dc* de l'alliage amorphe selon l'invention, qui constitue ce composant, est supérieur à 1.8 fois la plus forte épaisseur E de ce composant 1.
  • L'invention concerne encore une montre 2 comportant au moins un tel composant 1 d'habillage.
  • Plus particulièrement, cette montre 2 comporte un tel composant 1 d'habillage qui est une carrure d'épaisseur maximale E comprise entre 4.0 et 5.0 mm réalisée dans un tel alliage amorphe présentant un diamètre critique Dc* supérieur à 8 mm.

Claims (9)

  1. Alliage amorphe massif, caractérisé en ce qu'il est exempt de nickel, et qu'il consiste, en valeurs en % atomique, en :
    - une base composée de zirconium ou/et hafnium, dont la teneur constitue la balance, avec un total zirconium et hafnium supérieur ou égal à 52.0, et inférieur ou égal à 62.0 ;
    - cuivre: supérieur ou égal à 16.0, et inférieur ou égal à 28.0 ;
    - fer: supérieur ou égal à 0.5, et inférieur ou égal à 10.0 ;
    - aluminium: supérieur ou égal à 7.0, et inférieur ou égal à 13.0 ;
    - au moins un premier métal d'apport et un deuxième métal d'apport dits (X) pris dans la famille comportant Ti, V, Nb, Y, Cr, Mo, Co, Sn, Zn, P, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, et Hf quand ladite base n'en comporte pas, et Zr quand ladite base n'en comporte pas, avec le pourcentage atomique cumulé desdits au moins deux métaux d'apport étant supérieur ou égal à 6.0, et inférieur ou égal à 10.0.
  2. Alliage amorphe massif selon la revendication 1, caractérisé en ce que ledit premier métal d'apport et ledit deuxième métal d'apport sont pris dans la famille comportant Ti, Nb, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, et Hf quand ladite base n'en comporte pas, et Zr quand ladite base n'en comporte pas, avec le pourcentage atomique cumulé desdits au moins deux métaux d'apport étant supérieur ou égal à 6.0, et inférieur ou égal à 10.0.
  3. Alliage amorphe massif selon la revendication 2, caractérisé en ce que ledit premier métal d'apport et ledit deuxième métal d'apport sont pris dans la famille comportant Ti, Nb, Pd, Ag, Au, Pt, Ta, Ru, Rh, Ir, Os, avec le pourcentage atomique cumulé desdits au moins deux métaux d'apport étant supérieur ou égal à 6.0, et inférieur ou égal à 10.0.
  4. Alliage amorphe massif selon l'une des revendications 1 à 3, caractérisé en ce que ledit alliage est exempt de nickel et de béryllium.
  5. Alliage amorphe massif selon l'une des revendications 1 à 4, caractérisé en ce que ledit alliage est exempt de cobalt ou/et de chrome.
  6. Composant (1) d'horlogerie ou de joaillerie réalisé en un alliage amorphe selon l'une des revendications 1 à 5.
  7. Composant (1) selon la revendication 6, caractérisé en ce que le diamètre critique (Dc*) dudit alliage amorphe qui constitue ledit composant (1) est supérieur à 1.8 fois la plus forte épaisseur (E) dudit composant
  8. Montre (2) comportant au moins un dit composant (1) d'habillage selon la revendication 6 ou 7.
  9. Montre (2) selon la revendication 8, caractérisée en ce que ladite montre (2) comporte un dit composant (1) d'habillage qui est une carrure d'épaisseur maximale (E) comprise entre 4.0 et 5.0 mm réalisée dans un alliage amorphe selon l'une des revendications 1 à 6 présentant un diamètre critique (Dc*) supérieur à 8 mm.
EP15179473.2A 2015-08-03 2015-08-03 Alliage amorphe massif à base de zirconium sans nickel Active EP3128035B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15179473.2A EP3128035B1 (fr) 2015-08-03 2015-08-03 Alliage amorphe massif à base de zirconium sans nickel
US15/188,588 US9933754B2 (en) 2015-08-03 2016-06-21 Nickel-free zirconium and/or hafnium-based bulk amorphous alloy
JP2016137321A JP6313821B2 (ja) 2015-08-03 2016-07-12 ニッケル非含有ジルコニウム及び/又はハフニウム系バルク非晶質合金
CN201610608175.XA CN106399871B (zh) 2015-08-03 2016-07-28 无镍的锆和/或铪基块体非晶合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15179473.2A EP3128035B1 (fr) 2015-08-03 2015-08-03 Alliage amorphe massif à base de zirconium sans nickel

Publications (2)

Publication Number Publication Date
EP3128035A1 EP3128035A1 (fr) 2017-02-08
EP3128035B1 true EP3128035B1 (fr) 2020-03-04

Family

ID=53773345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15179473.2A Active EP3128035B1 (fr) 2015-08-03 2015-08-03 Alliage amorphe massif à base de zirconium sans nickel

Country Status (4)

Country Link
US (1) US9933754B2 (fr)
EP (1) EP3128035B1 (fr)
JP (1) JP6313821B2 (fr)
CN (1) CN106399871B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353428B2 (en) * 2012-03-29 2016-05-31 Washington State University Zirconium based bulk metallic glasses with hafnium
CN206372035U (zh) * 2016-10-10 2017-08-04 东莞市坚野材料科技有限公司 具有抗菌功能的非晶态合金制成的可穿戴设备
CN106756647B (zh) * 2016-12-12 2019-06-11 北京科技大学 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法
CN110479982B (zh) * 2019-08-09 2021-07-30 飞亚达(集团)股份有限公司 手表外观件的制造方法
CN111996470A (zh) * 2020-08-26 2020-11-27 燕山大学 一种锆基大块非晶合金及其制备方法
CN114606452B (zh) * 2022-02-25 2022-12-06 中国科学院宁波材料技术与工程研究所 一种高塑性Hf基双相非晶合金及其制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126449A (en) * 1977-08-09 1978-11-21 Allied Chemical Corporation Zirconium-titanium alloys containing transition metal elements
WO1981000861A1 (fr) * 1979-09-21 1981-04-02 Hitachi Metals Ltd Alliages amorphes
JPH07122120B2 (ja) * 1989-11-17 1995-12-25 健 増本 加工性に優れた非晶質合金
JP3359750B2 (ja) * 1994-09-09 2002-12-24 明久 井上 ジルコニウム非晶質合金棒材の製造方法及び金型で鋳造成型されたジルコニウム非晶質合金
US5618359A (en) * 1995-02-08 1997-04-08 California Institute Of Technology Metallic glass alloys of Zr, Ti, Cu and Ni
US5735975A (en) * 1996-02-21 1998-04-07 California Institute Of Technology Quinary metallic glass alloys
US5772803A (en) * 1996-08-26 1998-06-30 Amorphous Technologies International Torsionally reacting spring made of a bulk-solidifying amorphous metallic alloy
US5797443A (en) * 1996-09-30 1998-08-25 Amorphous Technologies International Method of casting articles of a bulk-solidifying amorphous alloy
US6592689B2 (en) 2000-05-03 2003-07-15 California Institute Of Technology Fractional variation to improve bulk metallic glass forming capability
US6562156B2 (en) * 2001-08-02 2003-05-13 Ut-Battelle, Llc Economic manufacturing of bulk metallic glass compositions by microalloying
US7300529B2 (en) * 2001-08-30 2007-11-27 Leibniz-Institut Fuer Festkoerper-Und Werkstoffforschung Dresden E.V. High-strength beryllium-free moulded body made from zirconium alloys which may be plastically deformed at room temperature
US6682611B2 (en) * 2001-10-30 2004-01-27 Liquid Metal Technologies, Inc. Formation of Zr-based bulk metallic glasses from low purity materials by yttrium addition
US6805758B2 (en) * 2002-05-22 2004-10-19 Howmet Research Corporation Yttrium modified amorphous alloy
JP2004089580A (ja) 2002-09-03 2004-03-25 Kozo Nakamura 生体材料部材
US6896750B2 (en) * 2002-10-31 2005-05-24 Howmet Corporation Tantalum modified amorphous alloy
JP2006002238A (ja) * 2004-06-21 2006-01-05 Ykk Corp ロール金型及びその製造方法
EP1632584A1 (fr) * 2004-09-06 2006-03-08 Eidgenössische Technische Hochschule Zürich Alliage amorphe à base de Zr et son utilisation
KR20110055399A (ko) * 2009-11-19 2011-05-25 한국생산기술연구원 다성분 합금계 스퍼터링 타겟 모물질 및 다기능성 복합코팅 박막 제조방법
US20130032252A1 (en) 2011-08-04 2013-02-07 Institute Of Metal Research Chinese Academy Of Science Amorphous nickel-free zirconium alloy
EP2597166B1 (fr) 2011-11-24 2014-10-15 Universität des Saarlandes Alliage à formation de verre métallique en masse
CN102534439B (zh) 2012-02-12 2014-07-30 北京航空航天大学 一种无镍低铜锆基块体非晶合金及其制备方法
US9334553B2 (en) * 2012-03-29 2016-05-10 Washington State University Zirconium based bulk metallic glasses
US9963769B2 (en) * 2012-07-05 2018-05-08 Apple Inc. Selective crystallization of bulk amorphous alloy
EP2881488B1 (fr) * 2013-12-06 2017-04-19 The Swatch Group Research and Development Ltd. Alliage amorphe massif à base de zirconium sans béryllium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106399871B (zh) 2021-03-23
US9933754B2 (en) 2018-04-03
EP3128035A1 (fr) 2017-02-08
JP2017031504A (ja) 2017-02-09
CN106399871A (zh) 2017-02-15
JP6313821B2 (ja) 2018-04-18
US20170038733A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
CH711398B1 (fr) Alliage amorphe massif à base de zirconium sans nickel.
EP3128035B1 (fr) Alliage amorphe massif à base de zirconium sans nickel
EP3543368B1 (fr) Alliages à haute entropie pour composants d&#39;habillage
EP3241078B1 (fr) Pièce d&#39;horlogerie ou de bijouterie en alliage précieux léger comportant du titane
EP2588635B1 (fr) Alliage d&#39;or à dureté améliorée
EP3147378A1 (fr) Acier inoxydable austénitique sans nickel
EP2251444A1 (fr) Alliage d&#39;or gris sans nickel et sans cuivre
EP2546371B1 (fr) Or gris 18 carats
CH708928A2 (fr) Alliage amorphe massif à base de zirconium sans béryllium.
WO2009092920A2 (fr) Pièce de bijouterie ou d&#39;horlogerie en alliage d&#39;or massif, de couleur blanche, éclatante dans toute la masse
CH710562A2 (fr) Composant d&#39;habillage pour pièce d&#39;horlogerie ou de bijouterie en alliage précieux léger à base de titane.
EP1297192B1 (fr) Compositions d&#39;acier, procede pour son obtention et pieces fabriquees a partir de ces compositions
EP4053299A1 (fr) Alliage d&#39;or violet à comportement mécanique amélioré
CH703143B1 (fr) Alliage à base de palladium.
CH703379B1 (fr) Alliage d&#39;or à dureté améliorée.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170808

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180727

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 45/10 20060101AFI20191028BHEP

Ipc: C22C 1/00 20060101ALI20191028BHEP

INTG Intention to grant announced

Effective date: 20191120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015048045

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1240438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015048045

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 9

Ref country code: DE

Payment date: 20230720

Year of fee payment: 9