WO2004022118A1 - 生体材料部材 - Google Patents

生体材料部材 Download PDF

Info

Publication number
WO2004022118A1
WO2004022118A1 PCT/JP2003/011263 JP0311263W WO2004022118A1 WO 2004022118 A1 WO2004022118 A1 WO 2004022118A1 JP 0311263 W JP0311263 W JP 0311263W WO 2004022118 A1 WO2004022118 A1 WO 2004022118A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
amorphous alloy
biomaterial
modulus
potential
Prior art date
Application number
PCT/JP2003/011263
Other languages
English (en)
French (fr)
Inventor
Kozo Nakamua
Isao Ohnishi
Takao Hanawa
Sachiko Hiromoto
Norio Maruyama
Toshio Arai
Hitoshi Ofune
Mamoru Ishida
Original Assignee
Ykk Corporation
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ykk Corporation, National Institute For Materials Science filed Critical Ykk Corporation
Priority to AU2003261912A priority Critical patent/AU2003261912A1/en
Publication of WO2004022118A1 publication Critical patent/WO2004022118A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • A61B17/742Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
    • A61B17/744Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck the longitudinal elements coupled to an intramedullary nail
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a biomaterial made of an amorphous alloy (metallic glass), and more particularly, to an orthopedic spinal fixation material such as an intramedullary nail or an osteosynthesis plate, a fracture fixation material, an artificial joint, or an intervertebral joint.
  • the present invention relates to a biological material member useful for dental crowns, inlays, crowns, artificial beds, artificial dental roots, orthodontic wires, etc., and surgical instruments for general surgery. Background art
  • the requirements for medical materials include non-toxicity, non-carcinogenicity, non-allergenicity, suitability for living tissues, and biocompatibility for safety, as well as medical functionality for enhancing medical effects. And the like.
  • Medical functionality includes mechanical properties (mechanical strength, fatigue resistance, wear resistance) and chemical properties (corrosion resistance, biofluid corrosion resistance).
  • a Co_Cr-based alloy, stainless steel, or a titanium alloy has been conventionally used, and various titanium alloys have been proposed. (See, for example, JP-A-58-124244).
  • stainless steel SUS316L and Ni-Ti alloys contain Ni and are a source of allergy.
  • titanium alloys have also caused allergies, and the use of stainless steel or titanium alloys is not always optimal for living organisms.
  • titanium alloy is used for intramedullary nails, etc.
  • stress shield problem problem of load cut-off
  • the present invention has been made in view of the above-mentioned circumstances, and has as its object the purpose of not including Ni as an allergic source, having excellent corrosion resistance to biological fluids, high strength, and low elastic modulus.
  • Another object of the present invention is to provide a biomaterial member that is difficult to react with a living body, is easy to remove after treatment, and hardly causes problems such as stress shield and pulmonary infarction when used as an intramedullary nail or the like. Disclosure of the invention
  • a polarization resistance in a degassed Hanks solution is 4 ⁇ 10 6 ⁇ cm 2 or more, and an immersion potential-pitting potential window is 0.25 V or more.
  • a biomaterial member comprising an amorphous alloy of the above is provided.
  • the biomaterial is made of an amorphous alloy having a Young's modulus of 10 OGPa or less.
  • the biomaterial member of the present invention does not contain Ni as an allergic source, has excellent corrosion resistance to biological fluids, has high strength and a low elastic modulus, is difficult to react with a living body, and is removed after the treatment. When used as an intramedullary nail or the like, problems such as so-called stress shielding and pulmonary infarction are unlikely to occur.
  • the biomaterial member may be an amorphous alloy having a polarization resistance in a degassed Hanks solution of 4 ⁇ 10 6 ⁇ cm 2 or more, and an immersion potential-pitting potential window of 0.25 V or more. Since it is preferably made of an amorphous alloy having a Young's modulus of 100 GPa or less, it has excellent in vivo corrosion resistance, excellent specific strength, low Young's modulus, and physical properties closer to bone. . For this reason, a smaller osteosynthesis material with the same strength can be manufactured, and it is less susceptible to stress shields, which is advantageous for bone fusion, and a conventional thick intramedullary nail is inserted into the bone marrow.
  • the fat that overflows from the bone marrow mixes into the blood, thereby forming a blood clot in the lungs, which makes it easier to cause pulmonary infarction.
  • the effect of reducing the increase in intramedullary pressure can be obtained.
  • the space occupation in the bone marrow can be minimized, blood vessels in the bone marrow can be preserved to a maximum extent, and bone formation in the bone marrow is hardly inhibited.
  • the most preferable application mode of the biomaterial member of the present invention is at least one of an intramedullary nail for orthopedic surgery, a osteosynthesis plate, a locking nail, and a bone fixing screw.
  • Figure 1 is a schematic diagram of order to explain the method for obtaining the polarization resistance R p from the polarization curve of the corrosion potential neighbors.
  • FIG. 3 is a schematic partial cross-sectional front view showing an embodiment in which the biomaterial made of the amorphous alloy of the present invention is applied to an intramedullary nail.
  • FIG. 4 shows the application of the biomaterial made of the amorphous alloy of the present invention to an osteosynthesis plate. It is a schematic front view showing an embodiment.
  • biomaterials used as intramedullary nails, osteosynthesis plates, etc. are not only non-toxic, non-allergic, but also suitable for blood, such as biocompatibility for safety, as well as mechanical properties ( Mechanical strength, fatigue resistance, and abrasion resistance) and chemical properties (corrosion resistance, corrosion resistance to biological fluids) are required.
  • polarization resistance is 4 x 1 0 6 ⁇ cm 2 or more, immersion potential - from the pitting potential window 0 2 5 V or more amorphous alloy, preferably a Young's modulus of 1 0 0 GP a less amorphous alloy.
  • the first feature of the biomaterial member of the present invention is that it is an amorphous alloy having a polarization resistance of 4 ⁇ 10 6 ⁇ cm 2 or more in a degassed Hanks solution.
  • metal material corrodes in a living body, metal ions are eluted and a corrosion product is formed.
  • the metallic material does not show toxicity such as allergy or carcinogenesis as it is, but in order to exhibit toxicity, it is eluted as metal ions by corrosion and binds to biomolecules in the form of ions or metal salts, or is similar to abrasion powder. It must be in a proper form.
  • the destruction of metallic materials in vivo is attributed to fatigue and fretting fatigue.However, these are not singly occurring, but are phenomena related to corrosion such as corrosion fatigue and fretting corrosion. .
  • the corrosion phenomena of metallic materials in the living environment is important from the viewpoint of the toxicity and durability of the material, and measurement for clarifying the corrosion phenomena in the living environment in vitro is required.
  • a degassed Hanks solution is used as a test solution, and an amorphous alloy having a polarization resistance of 4 ⁇ 10 6 ⁇ cm 2 or more is used.
  • the polarization resistance used for evaluating the corrosion reaction : p is the ratio of the current or voltage change obtained when a small voltage variation ⁇ ? 7 or a current variation ⁇ i is given. / ⁇ ; ⁇ ), and the corrosion potential E c of the polarization curve as shown in FIG.
  • the polarization resistance in the degassed Hanks solution is 4 ⁇ 10 6 ⁇ cm 2 or less.
  • the corrosion current density I increases as the polarization resistance Rp increases.
  • a second feature of the biomaterial member of the present invention is that the biomaterial member is an amorphous alloy having an immersion potential-pitting corrosion potential window of 0.25 V or more.
  • the immersion potential-pitting potential window is simply the potential difference between the pitting potential and the immersion potential on the anodic polarization curve, and indicates the allowable range of an environmental change that causes pitting.
  • the immersion potential is the potential of a metal when the metal is immersed in a solution and no action is applied from the outside.
  • an environmental change such as pH change of the solution
  • the immersion potential of the metal changes, and if the immersion potential after the environmental change becomes higher than the pitting potential, pitting occurs. Therefore, the larger the difference between the pitting potential and the immersion potential, the wider the allowable range for metal potential changes due to environmental changes.
  • the pitting corrosion resistance of the metal with respect to the environmental change is defined by an immersion potential-porosity potential window by a polarization test. Things.
  • the immersion potential-pitting potential window is specified to be 0.25 V or more for the following reason.
  • the immersion potential-pitting potential window is 0.25 V or more, preferably 0.3 V or more, it is determined that pitting does not occur even by environmental changes in the living body.
  • an amorphous alloy having an immersion potential-pitting potential window of 0.25 V or more is used. Since it is determined that pitting does not occur due to environmental changes, there is no point in setting the upper limit of the immersion potential-pitting potential window, and only the condition of 0.25 V or more has to be satisfied.
  • the biomaterial for orthopedic surgery of the present invention is made of an amorphous alloy satisfying a specific corrosion resistance condition. It also has the advantage of the above.
  • the characteristics of an amorphous alloy (metallic glass) vary depending on the combination of its constituent elements.
  • the structure has super fine transferability
  • the Young's modulus is important in the properties required for biomaterials for orthopedic surgery, especially for intramedullary nails, osteosynthesis materials, interlocking nails, and screws for bone fixation. Below, preferably 90 GPa or less is desirable. However, it is desirable to have a Young's modulus of about 20 GPa or more, which is close to that of bone.
  • the Young's modulus at the densest bone part in the living body is at most about 20 GPa, which is about 1/10 that of stainless steel.
  • the Young's modulus at the densest bone part in the living body is at most about 20 GPa, which is about 1/10 that of stainless steel.
  • calcium phosphate was observed on the surface of the titanium alloy after extraction and sulfide was observed on stainless steel, whereas no product was observed on the amorphous alloy.
  • calcium phosphate is formed, as in titanium alloys, it strengthens the bond between bone and the material, making it difficult to remove after bone fusion.However, in the case of amorphous alloys, such products are not generated. However, it becomes easy to remove after bone fusion, and it is most suitable as an intramedullary nail or osteosynthesis material.
  • Young's modulus and tensile strength are shown in Table 2 below for some examples of amorphous alloys.
  • amorphous alloys have excellent specific strength, low Young's modulus, and have physical properties closer to bone. For this reason, it is possible to produce an osteosynthesis material having the same strength and a smaller size (for example, the diameter of a hole having the same strength as a titanium alloy rod having a diameter of about 20 mm is about 15 to 16 mm) It is considered that it is hardly affected by load shedding and is advantageous for bone union. Therefore, when a thick intramedullary nail is inserted into the bone marrow as in the past, fat overflowing from the bone marrow enters the blood.
  • the amorphous state without grain boundaries is often higher in corrosion resistance than the crystalline metal, and is extremely advantageous as a material for medical use, particularly as an osteosynthesis material. is there.
  • amorphous alloys have lower Young's modulus and higher strength than crystalline metals, but these are very valuable properties for biomaterials.
  • the biomaterial member of the present invention is most suitable as an artificial bone material because of its low Young's modulus.
  • a fracture fixing material for shaping a spinal column fixing material, a fracture fixing material, an artificial joint, an intervertebral spacer, etc. It is useful as a material for various medical uses, such as surgical materials, dental materials such as crowns, inlays, crowns, prostheses, artificial roots, orthodontic wires, and general surgical materials such as surgical instruments.
  • the biomaterial member of the present invention has a polarization resistance in the degassed Hanks solution of 4 ⁇ 10 6 ⁇ cm 2 or more, and an immersion potential-pitting potential window of 0.25 V or more, preferably
  • any substantially amorphous alloy material containing an amorphous phase having a Young's modulus of 100 GPa or less and at least a volume fraction of 50% or more can be applied without particular limitation.
  • the present invention can be suitably applied to an amorphous alloy having a composition represented by any one of the formulas (1) and (2). If the volume ratio is less than 50%, the invention can be applied to an amorphous alloy containing nanocrystals or quasicrystals.
  • M 1 is one, two or three elements selected from Zr, Hf and Ti; M 2 is Cu, Fe, Co, Mn, Nb, V, Cr, Zn, At least one element selected from the group consisting of Al, Sn and Ga; M 3 is at least one element selected from the group consisting of B, C, N, P, Si and 0; and M 4 is Ta , W And at least one element selected from the group consisting of Mo, M 5 is Au, P t, at least one element selected from the group consisting of Pd and Ag, a, b, c, d, and e it It is in atomic%, 25 ⁇ a ⁇ 85, 15 ⁇ b ⁇ 75, 0 ⁇ c30, 0 ⁇ d ⁇ 15, 0 ⁇ e ⁇ 15. )
  • M 1 is an essential-based metal element order to form an amorphous
  • M 2 decreases the melting point by combining the M 1, eutectic This has the effect of easily causing supercooling during solidification, and can facilitate the formation of amorphous.
  • M 4 promotes passivation of the surface of the amorphous phase and improves corrosion resistance.
  • M 5 is improves the corrosion resistance, is suppressed oxidation of the molten metal by the flux effect, the degree of supercooling for reducing heteronuclear production formation site increases, improving the amorphous formation capability.
  • an amorphous alloy having a glass transition region having a temperature width of 30 K or more is preferable.
  • FIG. 3 shows an embodiment in which the biomaterial made of the amorphous alloy of the present invention is applied to an intramedullary nail.
  • the intramedullary nail 1 After being implanted in bone A, the intramedullary nail 1 is fixed with an interlocking nail (side stop screw) 2.
  • the intramedullary nail 1 and the inner rocking nail 2 are made from the amorphous alloy of the present invention.
  • Fig. 4 shows the application of a biomaterial made of the amorphous alloy of the present invention to an osteosynthesis plate.
  • 2 shows an embodiment according to the invention.
  • the joint plate 3 is applied to the bone A fractured at the fracture site X, and is fixed by the osteosynthesis plate fixing screw (screw) 4.
  • the joint plate 3 and the screw 4 for fixing the osteosynthesis plate are made of the amorphous alloy of the present invention.
  • the surface polished with # 600 SiC abrasive paper was used for measurement.
  • the surface polished with # 600 SiC abrasive paper was used for measurement.
  • Figure 5 shows the measured polarization curves.
  • Table 3 shows the corrosion characteristic values obtained from the polarization curves.
  • R p of the amorphous alloy an order of magnitude higher than SUS 3 16 L steel, since was several times higher than the pure T i, the corrosion resistance of the amorphous alloys than S US 3 1 6 L Steel It was found to be very high and equal to or higher than pure i.
  • the passivation current density of this amorphous alloy was as low as that of pure Ti. From this, it was found that the passivation film of the present amorphous alloy had a protective property equal to or higher than that of pure Ti.
  • pitting was observed on the polarization curve of the amorphous alloy. It was evaluated by the potential difference between the p en and pitting power position (E pit). Since the potential difference of the amorphous alloy was almost the same as that of SUS316L steel, it is considered that the pitting corrosion resistance of this amorphous alloy is equivalent to that of SSUS316L steel.
  • an amorphous alloy rod with a diameter of 2 mm and a length of 35 mm was inserted into the bone marrow, and for biosafety, blood metal concentration (Cu) and metal content in tissues were included. Evaluation was based on the amount (Cu).
  • a group in which Ti-6A1-4V alloy and SUS316L steel were inserted intramedullary and a control group in which no metal was introduced were used as comparison controls.
  • the corrosion and wear of the amorphous alloy removed after implantation were evaluated using a scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS).
  • the metal materials for comparison were Ti-16A1-4V alloy and SUS316L.
  • Test Example 2 The results of Test Example 2 are summarized below.
  • the amorphous alloy ribbon was implanted for 6 weeks, but no effect on the living body was observed in the optical microscope image of the surrounding tissue.
  • the concentration of CU in the blood which could adversely affect the living body, did not increase. From the above, there was no adverse effect on living tissues when the amorphous alloy was implanted into the bone surface for 6 weeks.
  • the amorphous alloy alloy was inserted for 6 weeks and 12 weeks, but neither the blood concentration of Cu nor the metal content in the tissue increased compared to the Ti-6A1-4V alloy group and the control group.
  • the amorphous alloy alloy was inserted for 6 weeks and 12 weeks, but neither the blood concentration of Cu nor the metal content in the tissue increased compared to the Ti-6A1-4V alloy group and the control group.
  • the average bone mass ratio compared to the contralateral side (non-operative side) tended to be higher than that of the group using the SUS316L rod and T1-6A1-4V rod for the amorphous alloy.
  • the amorphous alloy is safe as an osteosynthesis material, and is advantageous for bone fusion at a fracture.
  • the biomaterial member of the present invention does not contain Ni as an allergic source, has excellent corrosion resistance to biological fluids, has high strength, has a low elastic modulus, does not easily react with the living body, and has completed the treatment. It is easy to remove later, and when used as an intramedullary nail etc., it is unlikely to cause so-called stress shield ⁇ pulmonary infarction.
  • dental crowns, inlays, crowns, prostheses, and human roots such as orthopedic spinal fixation materials such as intramedullary nails and osteosynthesis plates, fracture fixation materials, human joints, and intervertebral spacers It can be suitably used as a biomaterial member useful for an orthodontic wire, a surgical instrument for general surgery, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

  脱気Hanks液中での分極抵抗が4×106Ωcm2以上、浸漬電位−孔食電位ウインドウが0.25V以上の非晶質合金からなる生体材料部材が提供される。好適な態様においては、前記生体材料部材はヤング率が100GPa以下の非晶質合金からなる。このような生体材料部材は、アレルギー源としてのNiを含まず、生体液に対する耐食性に優れていると共に、高強度でしかも弾性率が低く、生体と反応し難く、処置終了後に抜去が容易で、髄内釘等として利用した場合にも所謂ストレスシールドや肺梗塞等の問題を起こし難いため、骨A内に埋入された後、インターロッキングネイル(横止めビス)(2)により固定される髄内釘(1)や、骨接合板、骨固定用ビス等の人工骨材料として最適である。

Description

明 細 書 生体材料部材 技術分野
本発明は、 非晶質合金 (金属ガラス) からなる生体材料部材に関し、 さら に詳しくは、 髄内釘や骨接合板等の整形外科用の脊柱固定材、 骨折固定材、 人工関節、 椎間スぺ一サなど、 歯科用の歯冠、 インレイ、 クラウン、 義床、 人工歯根、 歯列矯正ワイヤなど、 及び一般外科用の手術機器に有用な生体材 料部材に関する。 背景技術
医療用材料に要求される条件としては、 非毒性、 非発ガン性、 非アレルギ —性、 生体組織に対する適性など、 安全のための生体適合性に加えて、 医療 効果を上げるための医用機能性などが挙げられる。 医用機能性としては、 力 学的特性 (機械的強度、 耐疲労性、 耐摩耗性) や、 化学的特性 (耐食性、 耐 生体液腐食性) が挙げられる。
近年、 医学の進歩と共に、 様々な人工骨や人工臓器などの金属材料が生体 内に長期間にわたって留置されるケースが多くなつた。 それに伴い、 このよ うな材料に起因する様々な医療上のトラブルが起こってきた。
例えば、人工股関節や人工歯根等の硬組織代替器具の構成用材料としては、 従来、 C o _ C r系合金やステンレス鋼、 チタン合金が使用されており、 ま た種々のチタン合金が提案されている (例えば、 特開昭 5 8— 1 2 4 4 3 8 号等参照) 。
しかしながら、 ステンレス鋼 S U S 3 1 6 Lや N i— T i合金は N iを含 むため、 アレルギー源となる。 実際、 最近の報告ではチタン合金でもアレル ギ一が生じたという報告があり、 ステンレス鋼やチタン合金の俾用が必ずし も生体にとって最適とは言えない状況にある。 また、 チタン合金を髄内釘等 として利用した場合、 骨に癒合して骨癒合後に抜去し難くなるという問題の 他、 ストレスが骨の組織に伝わり難く、 骨への荷重負荷が遮断されるために 骨吸収が促進され、 骨萎縮の原因となる、 所謂ス トレスシールドの問題 (荷 重遮断という問題) を起こし易くなる。
一方、 生体材料部材として有機高分子材料を使用することも種々提案され ており、 例えば、 生体内分解,吸収性のボリラクチド及びその共重合体、 ポ リグリコール酸等との共重合体を用いた骨接合材 (特開平 3— 1 7 6 0 6 6 号参照) や、 リン酸カルシウム質ガラスファイバ一と生体親和性を阻害しな い有機高分子材料とを含有する複合材料からなる骨接合材 (特開平 5 — 1 4 6 5 0 2号参照) が提案されている。
しかしながら、 有機高分子材料は体液に対する耐食性の問題の他に、 強度 が低いという致命的な欠点がある。 そのため、 いきおい太いサイズとせざる を得ないが、 例えば太い髄内釘を骨髄に挿入すると、 骨髄の中から溢れた脂 肪が血液の中に混入し、 それによつて肺の中で血栓となり、 肺梗塞を起こし 易くなるという問題がある。 また、 骨髄腔を広く占拠し、 骨髄内の血行を阻 害し、 骨癒合を遅延する恐れがある。
本発明は、 前記したような事情に鑑みなされたものであり、 その目的は、 アレルギー源としての N iを含まず、 生体液に対する耐食性に優れていると 共に、 高強度でしかも弾性率が低く、 生体と反応し難く、 処置終了後に抜去 が容易で、 髄内釘等として利用した場合にも所謂ス トレスシールドや肺梗塞 等の問題を起こし難い生体材料部材を提供することにある。 発明の開示
前記目的を達成するために、 本発明によれば、 脱気 H a n k s液中での分 極抵抗が 4 X 1 0 6 Ω c m 2以上、 浸漬電位—孔食電位ウィンドウが 0 . 2 5 V以上の非晶質合金からなることを特徴とする生体材料部材が提供される。 好適な態様においては、 前記生体材料部材はヤング率が 1 0 O G P a以下 の非晶質合金からなる。 本発明の生体材料部材は、 アレルギ一源としての N iを含まず、 生体液に 対する耐食性に優れていると共に、 高強度でしかも弾性率が低く、 生体と反 応し難く、 処置終了後に抜去が容易で、 髄内釘等として利用した場合にも所 謂ストレスシールドゃ肺梗塞等の問題を起こし難い。
また、 上記生体材料部材は、 脱気 H a n k s液中での分極抵抗が 4 X 1 0 6 Ω c m 2以上、 浸漬電位—孔食電位ウィンドウが 0 . 2 5 V以上の非晶質合 金、 好ましくはヤング率が 1 0 0 G P a以下の非晶質合金から作製されてい るため、 生体内での耐食性に優れる他、 比強度に優れ、 低ヤング率であり、 骨により近い物理特性を有する。 このため、 同じ強度でサイズのより小さい 骨接合材料が作製可能であり、 かつ、 ストレスシ一ルドの影響を受け難く、 骨癒合に有利であり、 従来のように太い髄内釘を骨髄に挿入した場合に骨髄 の中から溢れた脂肪が血液の中に混入し、それによつて肺の中で血栓となり、 肺梗塞を起こし易くなるといった問題がより少なく、 また、 サイズを小さく できるため、 手術時の骨髄内圧の上昇を軽減できるという効果も得られる。 さらに、 骨髄内の空間占拠を最小限にでき、 骨髄内の血管の最大限の温存が 可能となり、 骨髄内の骨形成が阻害され難いという効果も得られる。
本発明の生体材料部材の最も好適な適用態様は、 整形外科用の髄内釘、 骨 接合板、 イン夕一ロッキングネイル、 骨固定用ビスの少なくともいずれかで ¾)る。 図面の簡単な説明
図 1は、 腐食電位近傍の分極曲線から分極抵抗 R pを求める方法を説明す るための概略図である。
図 2は、 Z r 5。A 1 1 Q C u 4 Q非晶質合金の浸漬電位の p H依存性を示す グラフである。
図 3は、 本発明の非晶質合金からなる生体材料部材を髄内釘に適用した実 施態様を示す概略部分断面正面図である。
図 4は、 本発明の非晶質合金からなる生体材料部材を骨接合板に適用した 実施態様を示す概略正面図である。
図 5は、 Z r 5 0 A 1 1 0 C u 4 0非晶質合金と比較対照である純 T i及び S U S 3 1 6 L鋼の脱気 H a n k s液中でのァノ一ド分極曲線を示すグラフで おる。 発明を実施するための最良の形態
前記したように、髄内釘や骨接合板等として利用される生体材料部材には、 非毒性、 非アレルギー性、 血液に対する適性など、 安全のための生体適合性 に加えて、 力学的特性 (機械的強度、 耐疲労性、 耐摩耗性) や、 化学的特性 (耐食性、 耐生体液腐食性) が要求されるが、 本発明者らの研究によれば、 脱気 H a n k s液中での分極抵抗が 4 x 1 0 6 Ω c m 2以上、浸漬電位—孔食 電位ウインドウが 0 . 2 5 V以上の非晶質合金、 好ましくはヤング率が 1 0 0 G P a以下の非晶質合金から作製した場合、 上記のような要求特性を殆ど 満たし、 生体材料部材として最適であることを見出し、 本発明を完成するに 至ったものである。
即ち、 本発明の生体材料部材の第一の特徴は、 脱気 H a n k s液中での分 極抵抗が 4 X 1 0 6 Ω c m 2以上の非晶質合金である点にある。
生体内で金属材料が腐食すれば、金属イオンが溶出し腐食生成物ができる。 金属材料はそのままでアレルギーや発癌といった毒性を示すことはなく、 毒 性を示すためには、 腐食によって金属イオンとして溶出し、 イオンや金属塩 の形で生体分子と結合するか、摩耗粉のような形態になる必要がある。 また、 生体内で起こる金属材料の破壊は疲労ゃフレッティング疲労が原因とされて いるが、 これらは単独で起こるのではなく、 腐食疲労ゃフレツティング腐食 疲労など腐食が関係.した現象である'。 このように金属材料の生体環境での腐 食現象は、 材料の毒性及び耐久性の面から重要であり、 生体環境での腐食現 象を生体外で明らかにする計測が必要となる。
生体材料の腐食計測に使用する溶液の選択は極めて重要である。 使用璟境 と同じ条件で試験することが理想的であるが、 体液と全く同じ組成かつ同じ 状態の溶液を生体外で使用することは事実上不可能である。 金属材料の腐食 には、 一般に C 1—が関与するため、 腐食測定のための最も簡単な溶液とし て 0. 9%Na C l溶液 (生理食塩水) が使用される。 しかし、 この溶液は 体液に含まれる多くのイオンを含有していない。 その他、 リンゲル液ではリ ン酸イオンが含有されておらず、 逆にリン酸塩類緩衝溶液 (PB S (―) ) では、 C a 2 +や Mg 2 +などのカチオンが含有されていない。 これに対し、 ハ ンクス (Hanks) 液は、 下記表 1に示されるように、 細胞外液に近い組 成を持つ。
Figure imgf000007_0001
そこで、 本発明では、 試験液として脱気した H a nk s液を用い、 この中 での分極抵抗が 4 X 106 Ω cm2以上の非晶質合金を用いるものである。 周知のように、 腐食反応の評価に用いられる分極抵抗: pは、 微小な電圧 変分 Δ ?7又は電流変分 Δ iを与えたときに得られる電流又は電圧変化との比 (厶? ?/Δ ;ί) であり、 図 1に示すように分極曲線の腐食電位 E cr付近の 接線の勾配から Rpを求める方法、 I △?? 1 < 1 OmVの定電位ステップを 与えて電流を読む方法、 あるいは I Δτ? Iく 1 OmVになるような電流を選 び、定電流ステップを与え、電位変化を読む方法などが広く行なわれており、 いずれも可能であるが、 簡便で精度良く測定できることから図 1に示すよう に分極曲線の = 0付近の接線の勾配から Rpを求める方法が好ましい。 本発明では、 脱気した H a nk s液中での分極抵抗が 4 x 106 Ω c m2以 上の非晶質合金を用いるが、分極抵抗 R pが大きくなるほど腐食電流密度 I。
rは小さくなり、 腐食速度は小さくなる。 従って、 分極抵抗の上限は特に設 定する意味はなく、 分極抵抗が 4 X 1 0 6 Ω c m 2以上という条件さえ満たせ ばよい。
次に、 本発明の生体材料部材の第二の特徴は、 浸漬電位一孔食電位ウィン ドウが 0 . 2 5 V以上の非晶質合金である点にある。
ここで、 浸漬電位一孔食電位ウィンドウとは、 端的には、 アノード分極曲 線上の孔食電位と浸漬電位の電位差をいい、 孔食を起こすような環境変化の 許容範囲を示している。
浸漬電位は、 金属を或る溶液に浸潰し、 外部から何ら作用を加えない場合 の金属の電位である。 ここで、 溶液の p H変化などの環境変化があると、 金 属の浸漬電位が変化し、 環境変化後の浸漬電位が孔食電位よりも高くなると 孔食が発生してしまう。 従って、 孔食電位と浸漬電位の差が大きい方が、 環 境変化による金属の電位変化に対して許容範囲が広いことを意味している。 このように、 金属に対する環境変化は、 金属の電位変化に模すことができる ため、 本発明では、 金属の環境変化に対する耐孔食性を分極試験による浸漬 電位一孔食電位ウィンドウで規定しているものである。
本発明において、 浸漬電位—孔食電位ウィンドウが 0 . 2 5 V以上と規定 しているのは以下の理由による。
p Hの異なるリン酸—クェン酸溶液 (塩化物イオン濃度: 0モル/ L、 p H : 2 . 2〜8 . 0、 溶存酸素:脱気、 温度 3 1 0 K ) 中で、 単ロール液体 急冷法で作製したリボン状の Z r 5。 A 1 i。 C u 4。の組成の非晶質合金の浸 漬電位を測定した場合、 図 2に示すように、 p H 7 . 5 (通常) から p H 2 . 2まで変化すると、 該合金の浸漬電位は約 0 . 2 5 V高くなつた。 炎症部位 の p Hが 5 . 2程度と知られているので、 この非晶質合金においては、 炎症 などによる浸潰電位の変化は 0 . 2 5 V未満であると言える。 従って、 浸漬 電位一孔食電位ウィンドウが 0 . 2 5 V以上、 好ましくは 0 . 3 V以上であ れば、生体内での環境変化によっても孔食を生ずることはないと判断される。 本発明では、 浸漬電位—孔食電位ウィンドウが 0 . 2 5 V以上の非晶質合 金を用いるが、 浸漬電位一孔食電位ウィンドウが 0 . 2 5 V以上であれば、 生体内での環境変化によっても孔食を生ずることはないと判断されるため、 浸漬電位一孔食電位ウィンドウの上限は特に設定する意味はなく、 0 . 2 5 V以上という条件さえ満たせばよい。
前記したように、 本発明の整形外科用の生体材料部材は、 特定の耐食性条 件を満足する非晶質合金から作製されるが、当然のことながら非晶質合金(金 属ガラス)の特性による利点も併せ具有している。非晶質合金(金属ガラス) の特性は、 その構成元素の組合わせにより様々であるが、 主として
①同一組成の結晶金属よりも耐食性が高い、
②ヤング率/強度比が小さく、 より生体材料としての用途に有用である、
③溶融温度よりもはるかに低い過冷却液体ゾーンから成形できる、
④錶造では超微細転写性がある、
などが挙げられ、 これらの特性に基づく利点が得られる。
前記した特性の中でも、 整形外科用の生体材料部材、 特に髄内釘、 骨接合 材料、 インターロッキングネイル、 骨固定用ビスに要求される特性ではヤン グ率が重要であり、 1 0 0 G P a以下、 好ましくは 9 0 G P a以下が望まし い。 但し、 骨のヤング率に近い約 2 0 G P a以上のヤング率を有することが 望ましい。
生体で一番密度の高い骨の部分でのヤング率は高々 2 0 G P a程度であ り、 ステンレス鋼の 1 / 1 0程度である。 例えば、 骨接合用部材の場合、 ャ ング率が高いと荷重が骨に伝わらず金属プレートにかかり、 ストレスが骨の 組織に伝わらない (いわゆるストレスシールドの問題) 。 その結果、 骨癒合 が遅延し、 また骨折部が癒合しても弱くなつてしまうことがある。 さらに硬 い人工材料が骨を圧迫して部材と骨との界面での血流障害を起こす可能性が 同い
本発明者らの研究によれば、髄内釘や骨接合材料のヤング率が小さいほど、 骨の癒合が良好であることが見出された。後述する試験例に示されるように、 ラッ ト大腿骨に骨折固定用の髄内釘として埋入した場合、 ヤング率が約 2 0 0 G P aのステンレス鋼 ( S U S 3 1 6 L ) やそれよりもヤング率の低い T i - 6 A 1 - 4 V合金に比べて、 非晶質合金の場合には骨形成量が最も多く なった。 これは、 材料の弾性率が低いと、 骨は荷重を適度に分担するので、 このことが骨形成を促すためである。 また、 摘出後のチタン合金表面ではリ ン酸カルシウムが、 ステンレス鋼では硫化物が観察されたのに対し、 非晶質 合金では生成物は確認されなかった。 チタン合金のようにリン酸カルシウム が生成した場合、 これが骨と材料の接合を強化してしまうので、 骨癒合後に 抜去し難くなるが、非晶質合金の場合にはこのような生成物を生じないので、 骨癒合後に抜去し易くなり、 髄内釘や骨接合材料として最適である。
参考までに、 非晶質合金の幾つかの例について、 ヤング率と引張強さを下 記表 2にまとめて示す。
表 2
Figure imgf000010_0001
前述したように、 従来の金属系生体用骨接合材料は生体適合性、 生体安全 性、 耐食性、 耐久性などに問題があることが指摘されており、 また、 骨に比 較してヤング率が大きいため、 骨接合材料として使用した場合、 骨形成に必 要な荷重が遮断され、 時に骨癒合が遷延する傾向があった。
これに対し、 非晶質合金は比強度に優れ、 低ヤング率であり、 骨により近 い物理特性を有する。 このため、 同じ強度でサイズのより小さい骨接合材料 が作製可能であり (例えば、 約 2 0 mm径のチタン合金ロッ ドと同じ強度の 口ヅ ドの径は約 1 5〜 1 6 mmとすることができる) 、 かつ、 荷重遮断の影 響を受け難く、 骨癒合に有利であると考えられる。 従って、 従来のように太 い髄内釘を骨髄に挿入した場合に骨髄の中から溢れた脂肪が血液の中に混入 し、 それによつて肺の中で血栓となり、 肺梗塞を起こし易くなるといった問 題がより少なく、 また、 サイズを小さくできるため、 手術時の骨髄内圧の上 昇を軽減できるという効果も得られる。 さらに、 骨髄内の空間占拠を最小限 にでき、 骨髄内の血管の最大限の温存が可能となり、 骨髄内の骨形成が阻害 され難いという効果も得られる。
このように、 同じ金属元素で構成した材料でも、 結晶金属よりも粒界のな いアモルファス状態の方が多くの場合は耐食性が高く、 医療甩途の材料、 特 に骨接合材料として極めて有利である。
前記したように、 非晶質合金は結晶金属と比較してヤング率が小さく、 強 度が高いが、 生体材料としてはこれは大変貴重な特性である。 本発明の生体 材料部材は、 低ヤング率であるが故に人工骨材料として最適であるが、 これ 以外の用途でも、 例えば、 脊柱固定材、 骨折固定材、 人工関節、 椎間スベー サ等の整形外科用材料、 歯冠、 インレイ、 クラウン、 義床、 人工歯根、 歯列 矯正ワイヤ等の歯科用材料、 手術機器等の一般外科用材料など、 各種医療用 途の材料として有用である。
本発明の生体材料部材は、 前記した脱気 H a nk s液中での分極抵抗が 4 X 106 Ω c m2以上、 浸漬電位—孔食電位ウインドウが 0. 25 V以上、 好 ましくはさらにヤング率が 100 GP a以下の、 少なく とも体積率 50 %以 上の非晶質相を含む実質的に非晶質の合金材料であれば特に限定されること なく適用できるが、 特に下記一般式 ( 1) 又は (2) のいずれか 1つで示さ れる組成を有する非晶質合金に好適に適用できる。 尚、 体積率で 50%未満 であれば、 ナノ結晶又はノ及び準結晶を含有する非晶質合金であっても適用 できる。
一般式 ( 1 ) :
Figure imgf000011_0001
(但し、 M1は Z r、 Hf及び T iから選ばれる 1種、 2種又は 3種の元素、 M2は Cu、 F e、 C o、 Mn、 Nb、 V、 C r、 Z n、 Al、 Sn及び G aよりなる群から選ばれる少なくとも 1種の元素、 M3は B、 C、 N、 P、 S i及び 0よりなる群から選ばれる少なく とも 1種の元素、 M4は Ta、 W 及び Moよりなる群から選ばれる少なくとも 1種の元素、 M5は Au、 P t、 Pd及び Agよりなる群から選ばれる少なく とも 1種の元素、 a、 b、 c、 d、 及び eはそれそれ原子%で、 25≤a≤85、 1 5≤ b≤ 75 , 0≤ c 30、 0≤d≤ 1 5、 0≤e≤ 15である。 )
一般式 (2) :原子%表示で A 1 : l〜1 0%、 Ga : 0. 5〜4%、 P : 9〜15%、 C : 5〜7%、 B : 2〜10%、 S i : 0〜: L 5%、 G e : 0 〜4%、 F e :残部の組成よりなる F e基非晶質合金。
上記一般式 ( 1) で示される非晶質合金において、 M1は非晶質を形成す るための必須のベース金属元素であり、 M2は M1と組み合わせることで融点 を下げ、 共晶を形成し、 凝固の際の過冷却を起こさせ易くする ¾果があり、 非晶質形成を容易にできる。 M3は非晶質金属の耐食性を向上させると共に、 過冷却液体領域 (ガラス遷移領域) ΔΤχ (=Τχ— T g : Τχは結晶化温 度、 Tgはガラス遷移温度) の温度幅を広げる効果があり、 結晶化に対して 安定化できる。 但し、 M3元素が多すぎると非晶質を形成しなくなる。 M4は 非晶質相の表面の不働態化を促進し、 耐食性を向上させる。 M5は耐食性を 向上させると共に、 フラックス効果により溶湯の酸化が抑制され、 異種核生 成サイ トを減少させるため過冷度が大きくなり、非晶質形成能を向上させる。 これらの中でも、 温度幅 30 K以上のガラス遷移領域を有する非晶質合金が 好ましい。
以下、 添付図面を参照しながら、 本発明の実施態様の幾つかについて説明 し、 また、 本発明の効果を具体的に確認した試験例を示して、 本発明につい てより具体的に説明するが、 本発明が下記実施態様や試験例に限定されるも のでないことは勿論である。
図 3は、 本発明の非晶質合金からなる生体材料部材を髄内釘に適用した実 施態様を示している。 髄内釘 1は、 骨 A内に埋入された後、 インタ一ロッキ ングネイル (横止めビス) 2により固定される。 ここで、 髄内釘 1及びイン 夕一ロッキングネイル 2は本発明の非晶質合金から作製される。
次に、 図 4は本発明の非晶質合金からなる生体材料部材を骨接合板に適用 した実施態様を示している。 骨折箇所 Xで骨折した骨 Aに接合板 3を当てた 状態で、 骨接合板固定用ビス (螺子) 4により固定される。 ここで、 接合板 3及び骨接合板固定用ビス 4は本発明の非晶質合金から作製される。
試験例 1
脱気した H a n k s液中での Z r 50 A 1 x 0 C u40非晶質合金、 ステンレ ス鋼 S U S 3 1 6 L及び純 T iのアノード分極試験を行なった。 試験条件は 以下のとおりである。
5ϊ\ι料:
( 1) Z r5。Al 10〇 114。非晶質合金リボン、 3種類 (η= 3) 急冷状態のままの急冷時のアルゴンガス側の表面を測定に供した。
(2) ステンレス鋼 SUS 3 16 L (市販品 1種類 (η = 1 ) )
# 600 S i C研磨紙で研磨した表面を測定に供した。
(3) 純 T i (市販品 J I S 2種 (n=2) )
# 600 S i C研磨紙で研磨した表面を測定に供した。
測定した分極曲線を図 5に示す。 また、 分極曲線より求めた腐食特性値を 表 3に示す。
表 3
Figure imgf000013_0001
図 5に示される分極曲線から明らかなように、 Z r^Al ^ C iiA。非晶 質合金は、 脱気した H a nk s液中でのアノード分極に伴い速やかに自己不 働態化し、 一定の不働態維持電流を示した後、 孔食を発生した。 通常の体液 環境での各合金の電位は、 本分極曲線における自然浸漬電位(E。p en)付近 であると考えられる。そこで、 E。p e nでの材料の耐腐食性に相応する分極抵 抗 (Rp) を、 E。p e nでの電流密度の傾きから求めた。 本非晶質合金の Rp は、 SUS 3 16 L鋼よりも一桁高く、純 T iよりも数倍高かったことから、 本非晶質合金の耐食性は S US 3 1 6 L鋼よりも非常に高く、 純 iと同等 以上であることがわかった。 また、 本非晶質合金の不働態維持電流密度は純 T iと同等に低かった。 これより、 本非晶質合金の不働態皮膜の保護性は、 純 T iと同等以上であることがわかった。 ここで、 本非晶質合金の分極曲線 上には、孔食の発生がみられたことから、合金の耐孔食性を E。 p e nと孔食電 位 (Ep i t) の電位差で評価した。 非晶質合金の電位差は SUS 3 1 6 L鋼 での電位差とほぼ同じであったことから、 本非晶質合金の耐孔食性は SU S 31 6 L鋼と同等であると考えられる。
試験例 2
Z r 5 Q A 110 Cu40非晶質合金を使用し、 動物モデルとして 14週齢、 ウイス夕一 (Wistar) 系ラッ トのォスを使用し、 以下の試験に供した。
( 1) 骨膜下骨外埋入非晶質合金が生体組織に与える影響
プレートへの臨床応用を検討するため、 長さ 10 mm、 幅 2 mm、厚さ 0. 05 mmの非晶質合金リボンを骨表面に埋入し、 生体組織に与える影響を組 織学的所見及び血中金属濃度 (Cu) により評価した。
(2) 骨髄内挿入非晶質合金が生体組織に与える影響
髄内釘への臨床応用を検討するため、 径 2mm、 長さ 35mmの非晶質合 金ロッ ドを骨髄内に挿入し、 生体安全性について血中金属濃度 (Cu) 、 組 織中金属含有量 (Cu) により評価した。 比較のために、 T i— 6A1— 4 V合金及び SUS 3 1 6 L鋼を髄内に挿入した群と、 金属を揷入しないコン トロール群を比較対照とした。
(3) 非晶質合金の生体内での耐食性、 耐久性の評価
埋入後に取り出した非晶質合金の腐食、 摩耗の評価を、 走査型電子顕微鏡 (S EM)、 エネルギー分散型 X線分光法 (ED S) にて行なった。 比較対照 の金属材料は T i一 6 A1— 4V合金及び SUS 3 16 Lとした。
(4) 非晶質合金骨接合材料が骨折の骨癒合に及ぼす影響 大腿骨骨折モデルに非晶質合金口ッドを髄内釘として使用し、 骨形成や骨 癒合の経過を定量評価した。 比較対照の金属材料は T i— 6 A 1— 4 V合金 及び S U S 3 1 6 Lとした。
前記試験例 2の結果を以下にまとめて示す。
( 1) 骨外埋入非晶質合金が生体組織に与える影響
非晶質合金リボンを 6週間埋入したが、 周辺組織の光学顕微鏡像にて生体 に対する影響はみられなかった。 また、 非晶質合金の金属組成のうち生体に 悪影響を及ぼす可能性のある C Uの血中濃度はともに増加して.いなかった。 以上より、 非晶質合金を骨表面に 6週間埋入しても生体組織に悪影響がみら れなかった。
(2) 骨髄内挿入非晶質合金が生体組織に与える影響
非晶質合金口ヅ ドを 6週間及び 12週間挿入したが、 T i一 6A1— 4V 合金群、 コントロール群と比較して、 Cuの血中濃度、 組織中金属含有量は 共に増加していなかった。
(3) 非晶質合金の生体内での耐食性、 耐久性
埋入後に取り出した非晶質合金は、 リボン、 ロッ ド共に破損ゃ孔食はなか つた。 ED Sにて金属表面組成の定性分析を行なったところ、 SUS 3 1 6 Lで S、 Τ Ϊ - 6Α1-4 V合金で P及び C aが特に髄内で著明に現れてい たのに対し、非晶質合金では髄内でわずかに C aが現れている程度であった。 この結果は、 髄内で、 SUS 3 16 Lは腐食して Sを腐食生成物として取り 込み易く、 T i— 6 A 1—4 V合金はリン酸カルシウムを表面に生成し易い のに対し、 非晶質合金はほぼ不活性であることを示している。
( 4 ) 非晶質合金骨接合材料が骨折の骨癒合に及ぼす影響
大腿骨骨折モデルに金属材料を髄内釘として 6週間挿入した後の大腿骨の 骨量を D EX Aにて測定した (n= 3) 。 反対側 (非手術側) と比較した骨 量比の平均は、 非晶質合金で SUS 3 16 Lロ ヅ ド及び T 1- 6A1-4V ロッ ド使用群より大きい傾向があった。 また、 大腿骨骨折に髄内釘として 1 2週間挿入した後の骨癒合部位の骨形成を p Q C Tにて測定した(n = 7 )。 チタン合金ロッ ド使用群に比較し、 非晶質合金群では骨折部での皮質骨化が 旺盛に起こり、 骨強度が大きくなる傾向があった。
以上の結果より、 非晶質合金は骨接合材料として安全で、 骨折部の骨癒合 に有利であることが示された。 産業上の利用可能性
以上のように、 本発明の生体材料部材は、 アレルギー源としての N iを含 まず、 生体液に対する耐食性に優れていると共に、 高強度でしかも弾性率が 低く、 生体と反応し難く、 処置終了後に抜去が容易で、 髄内釘等として利用 した場合にも所謂ストレスシールドゃ肺梗塞等の問題を起こし難い。
従って、 髄内釘や骨接合板等の整形外科用の脊柱固定材、 骨折固定材、 人 ェ関節、 椎間スぺーサなど、 歯科用の歯冠、 インレイ、 クラウン、 義床、 人 ェ歯根、 歯列矯正ワイヤなど、 及び一般外科用の手術機器に有用な生体材料 部材として好適に用いることができる。

Claims

請 求 の 範 囲
1. 脱気 H a nk s液中での分極抵抗が 4 x 106 Ω c m2以上、 浸漬電 位一孔食電位ウィンドウが 0. 25 V以上の非晶質合金からなることを特徴 とする生体材料部材。
2. ヤング率が 100 GP a以下の非晶質合金からなる請求項 1に記載 の生体材料部材。
3. 前記非晶質合金が、 下記一般式 ( 1) 又は (2) のいずれか 1つで 示される組成を有する請求項 1に記載の生体材料部材。
一般式 ( 1) : Μ^Μ^Μ'^Μ^Μ^
(但し、 M1は Z r、 Hf及び T iから選ばれる 1種、 2種又は 3種の元素、 M2は Cu、 F e、 C o、 Mn、 Nb、 V、 C r、 Z n、 A l、 Sn及び G aよりなる群から選ばれる少なくとも 1種の元素、 M3は B、 C;、 N、 P、 S i及び 0よりなる群から選ばれる少なくとも 1種の元素、 M4は T a、 W 及び Moよりなる群から選ばれる少なくとも 1種の元素、 M5ほ Au、 P t、 P d及び A gよりなる群から選ばれる少なくとも 1種の元素、 a、 b、 c、 d、 及び eはそれそれ原子%で、 2 5≤a≤85、 15≤ b≤ 75 0≤ c ≤ 30, 0≤ d≤ 1 5, 0≤e≤ 1 5である。 )
一般式 (2) :原子%表示で A 1 : l〜 10%、 Ga : 0. 5〜4%、 P : 9〜15%、 C : 5~7%、 B : 2〜: L 0%、 S i : 0〜: L 5%、 Ge : 0 〜4%、 F e :残部の組成よりなる F e基非晶質合金。
4. 生体材料部材が髄内釘、 骨接合板、 インタ一ロッキングネイル、 骨 固定用ビスの少なくともいずれかである請求項 1乃至 3のいずれか一項に記 載の生体材料部材。
PCT/JP2003/011263 2002-09-03 2003-09-03 生体材料部材 WO2004022118A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003261912A AU2003261912A1 (en) 2002-09-03 2003-09-03 Biomaterial member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002258120A JP2004089580A (ja) 2002-09-03 2002-09-03 生体材料部材
JP2002-258120 2002-09-03

Publications (1)

Publication Number Publication Date
WO2004022118A1 true WO2004022118A1 (ja) 2004-03-18

Family

ID=31973015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011263 WO2004022118A1 (ja) 2002-09-03 2003-09-03 生体材料部材

Country Status (3)

Country Link
JP (1) JP2004089580A (ja)
AU (1) AU2003261912A1 (ja)
WO (1) WO2004022118A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328312A (zh) * 2014-10-20 2015-02-04 东北大学 一种医用生物可降解锌合金及其制备方法
CN104587532A (zh) * 2014-03-19 2015-05-06 西安爱德万思医疗科技有限公司 一种人体可吸收的耐蚀高强韧锌镁合金植入材料
EP3128035A1 (fr) 2015-08-03 2017-02-08 The Swatch Group Research and Development Ltd. Alliage amorphe massif à base de zirconium sans nickel

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
EP1632584A1 (en) * 2004-09-06 2006-03-08 Eidgenössische Technische Hochschule Zürich Amorphous alloys on the base of Zr and their use
US7473278B2 (en) 2004-09-16 2009-01-06 Smith & Nephew, Inc. Method of surface oxidizing zirconium and zirconium alloys and resulting product
WO2006082682A1 (ja) * 2005-02-01 2006-08-10 Japan Basic Material Co., Ltd Ti-Nb-Zr系合金
JP4617465B2 (ja) * 2005-09-27 2011-01-26 国立大学法人東北大学 生体内使用部材用貴金属基金属ガラス合金
KR100887315B1 (ko) * 2006-03-29 2009-03-06 이인환 근관치료용 합금
US8361381B2 (en) 2008-09-25 2013-01-29 Smith & Nephew, Inc. Medical implants having a porous coated surface
WO2015030131A1 (ja) * 2013-08-30 2015-03-05 株式会社Ihi 生体用ジルコニウム合金、その製造方法およびその生体用ジルコニウム合金を用いた生体用医療器具
JP6924990B2 (ja) * 2016-06-17 2021-08-25 吉川工業株式会社 溶射皮膜及び溶射皮膜部材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROMOTO S. ET AL.: "Surface composition and anodic polarization behavior of zirconium-based amorphous alloys in a phosphate-buffered saline solution", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 149, no. 4, April 2002 (2002-04-01), pages B117 - B122, XP002969375 *
LOPEZ M.F. ET AL.: "In vitro corrosion behavior of titanium alloys without vanadium", ELECTRO CHIMICA ACTA, vol. 47, no. 9, February 2002 (2002-02-01), pages 1359 - 1364, XP004339047 *
SHOKO HIROMOTO: "Amorphous gokin no taiseitai kankyosei-amorphous gokin no seitai kankyo deno tokuiteki fushoku kyodo-", FUSHOKU BOSHOKU SYMPOSIUM SHIRYO, vol. 126, 1999, pages 64 - 71, XP002969376 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104587532A (zh) * 2014-03-19 2015-05-06 西安爱德万思医疗科技有限公司 一种人体可吸收的耐蚀高强韧锌镁合金植入材料
CN104328312A (zh) * 2014-10-20 2015-02-04 东北大学 一种医用生物可降解锌合金及其制备方法
EP3128035A1 (fr) 2015-08-03 2017-02-08 The Swatch Group Research and Development Ltd. Alliage amorphe massif à base de zirconium sans nickel

Also Published As

Publication number Publication date
JP2004089580A (ja) 2004-03-25
AU2003261912A1 (en) 2004-03-29
AU2003261912A8 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
WO2004022118A1 (ja) 生体材料部材
US6258182B1 (en) Pseudoelastic β titanium alloy and uses therefor
Manivasagam et al. Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices
Alvarado et al. Biomechanics of hip and knee prostheses
Niinomi et al. Development of low rigidity β-type titanium alloy for biomedical applications
US20230381382A1 (en) Degradable magnesium-based implant devices for bone fixation
US20030111142A1 (en) Bulk metallic glass medical instruments, implants, and methods of using same
JPH0673475A (ja) 医療移植体用の生体適合性低モジュラスチタン合金
Park et al. Metallic implant materials
JP5924825B2 (ja) 生体用超弾性ジルコニウム合金、医療用器具および眼鏡
Aronson et al. Tantalum markers in radiography: an assessment of tissue reactions
Desai et al. Metallic and ceramic biomaterials: current and future developments
Mudali et al. Failures of stainless steel orthopedic devices-causes and remedies
JP2006523482A (ja) 析出硬化型マルテンサイトステンレス鋼の使用
US20190201576A1 (en) Biocompatible alloy and medical product
JP2012021198A (ja) 非晶質合金及び生体材料
Manik et al. Biocompatibility of NiTi
Sridhar et al. Biomaterials corrosion
Imai et al. In vivo evaluation of Zr-based bulk metallic glass alloy intramedullary nails in rat femora
Okazaki et al. Osteocompatibility of Stainless Steel, Co–Cr–Mo, Ti–6Al–4V and Ti–15Zr–4Nb–4Ta Alloy Implants in Rat Bone Tissue
JP3779368B2 (ja) 生体用複合インプラント材
KR20130076438A (ko) 고강도와 저탄성 계수의 내식성 티타늄계 합금
Chapala et al. Novel Ti-Nb alloys with improved wear resistance for biomedical implant application
Pani et al. Corrosion Behaviour of Metallic Biomaterials in Physiological Environments
KR102209078B1 (ko) 월라스토나이트, 하이드록시아파타이트 및 다이옵사이드를 포함하는 생체활성 결정화 유리세라믹 및 이의 용도

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase