WO2016104571A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016104571A1
WO2016104571A1 PCT/JP2015/085955 JP2015085955W WO2016104571A1 WO 2016104571 A1 WO2016104571 A1 WO 2016104571A1 JP 2015085955 W JP2015085955 W JP 2015085955W WO 2016104571 A1 WO2016104571 A1 WO 2016104571A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
limit value
axial force
control unit
electric power
Prior art date
Application number
PCT/JP2015/085955
Other languages
English (en)
French (fr)
Inventor
徹 坂口
利和 尾上
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/522,418 priority Critical patent/US10173719B2/en
Priority to EP15873139.8A priority patent/EP3222497B1/en
Priority to CN201580071092.5A priority patent/CN107207041B/zh
Priority to JP2016566424A priority patent/JP6090551B2/ja
Publication of WO2016104571A1 publication Critical patent/WO2016104571A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0469End-of-stroke control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type

Definitions

  • the present invention relates to an electric power steering apparatus that calculates a current command value based on at least a steering torque, drives a motor based on the current command value, and applies an assist force to a steering system of a vehicle.
  • the assist torque is reduced by reducing the current command value in the vicinity of the rack end, the momentum at the end is reduced, the impact energy is lowered, and the driver's unpleasant sound (abnormal noise) is suppressed.
  • the present invention also relates to an electric power steering apparatus with improved steering feeling.
  • An electric power steering device that applies an assist force to a vehicle steering system by a rotational force of a motor assists a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a reduction gear by a driving force of the motor. It is designed to give power.
  • EPS electric power steering device
  • Such a conventional electric power steering apparatus performs feedback control of motor current in order to accurately generate assist torque.
  • the motor applied voltage is adjusted so that the difference between the current command value and the motor current detection value becomes small.
  • the adjustment of the motor applied voltage is performed by the duty of PWM (pulse width modulation) control. It is done by adjustment.
  • the general configuration of the electric power steering apparatus will be described with reference to FIG. 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. .
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11. Based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, the control unit 30 calculates the current command value of the assist command using the assist map, and calculates the calculated current.
  • the current supplied to the motor 20 is controlled by a voltage control value Vref obtained by compensating the command value.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (including an MPU and MCU). General functions executed by a program inside the CPU are shown in FIG. The structure is
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are input to and calculated by the torque control unit 31 that calculates the current command value.
  • the current command value Iref1 is input to the subtraction unit 32B and is subtracted from the motor current detection value Im.
  • the motor 20 is PWM driven via the inverter 37 with the PWM signal.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • a rotation angle sensor 21 such as a resolver is connected to the motor 20, and the rotation angle ⁇ is detected and output.
  • Patent Document 1 Japanese Patent Publication No. 6-4417 (Patent Document 1) is provided with a steering angle determining means for determining that the steering angle of the steering system is a predetermined value before the maximum steering angle, and the steering angle is the maximum steering angle.
  • an electric power steering apparatus provided with a correction means for reducing the assist torque by reducing the electric power supplied to the motor when the angle is a predetermined value before the angle.
  • Patent Document 2 determines whether or not the adjusting mechanism is approaching the end position, and if it is found that the adjusting mechanism is approaching the end position, the steering assist is reduced.
  • An electric power steering device is shown in which the adjustment speed determined by the position sensor is evaluated in order to control the drive means and determine the speed at which the adjustment mechanism approaches the end position.
  • Patent Document 2 shows only changing the characteristics to be reduced according to the speed, and is not based on a physical model. In addition, since feedback control is not performed, characteristics or results may change depending on road surface conditions (load conditions).
  • the present invention has been made under the circumstances described above, and an object of the present invention is to configure a control system based on a physical model so that the output of the control target (distance to the rack end) follows the reference model. It is an object of the present invention to provide an electric power steering device that constitutes a simple model following control, suppresses the generation of noise at the end of contact without causing the driver to feel uncomfortable steering, and attenuates the impact force. It is another object of the present invention to prevent overheating of the ECU and the motor that may occur when the steered state is continued before the rack end, and to take a safety measure for model following control.
  • the present invention relates to an electric power steering apparatus that calculates a current command value 1 based on at least a steering torque and drives a motor based on the current command value 1 to assist control the steering system.
  • the above object of the present invention is configured as a model following control using a viscoelastic model as a reference model within a predetermined angle range in front of the rack end, and limits a range of a control amount in the model following control. This is achieved by suppressing the impact force at the end of the rack end.
  • the control system based on the physical model is configured, it is easy to make a constant design perspective, and the output of the control target (distance to the rack end) follows the reference model. Therefore, there is an advantage that end contact suppression control that is robust to load conditions (disturbances) and fluctuations in the control target is possible.
  • FIG. 10 is a diagram illustrating a change example of a limit value in Example 8. It is a figure which shows the example of a change of the limit value in Example 9.
  • FIG. 10 is a flowchart which shows the operation example (Example 9) of a control amount restriction
  • FIG. It is a figure which shows the example of a change of the limit value in Example 11.
  • FIG. 20 is a block diagram illustrating a configuration example of a control amount restriction unit according to a twelfth embodiment.
  • FIG. 20 is a block diagram illustrating a configuration example of a control amount restriction unit according to a thirteenth embodiment. It is a figure which shows the example of a characteristic of the high-speed gain with respect to a vehicle speed. It is a figure which shows the example of a characteristic of the gain at the time of low speed with respect to a vehicle speed. It is a flowchart which shows the operation example (Example 13) of a control amount restriction
  • the present invention constitutes a control system based on a physical model in the vicinity of the rack end, uses a viscoelastic model (spring constant, viscous friction coefficient) as a reference model, and outputs the control target (distance to the rack end) to the reference model.
  • a viscoelastic model spring constant, viscous friction coefficient
  • This is an electric power steering device that constitutes model following control such that the driver follows, suppresses the generation of abnormal noise at the end of contact without causing the driver to feel uncomfortable steering, and attenuates the impact force.
  • Model following control is composed of a viscoelastic model following control unit, and the viscoelastic model following control unit is composed of a feedback control unit or a feedforward control unit and a feedback control unit, and normal assist control outside a predetermined angle before the rack end.
  • the model following control is performed within a predetermined angle before the rack end, and the impact force when hitting the rack end is attenuated.
  • offset process a process for giving an offset to the input or output to the viscoelastic model
  • maximum value limiting process a process for limiting the maximum value of the assist force
  • the motor current may be reduced, and this may occur when the steering state is maintained before the rack end. Prevent overheating of ECU and motor. Specifically, the offset is subtracted from the rack axial force or column shaft torque input to the viscoelastic model follow-up control unit, or the target rack displacement (target steering angle) output from the viscoelastic model. Thereby, the rack axial force or column shaft torque output from the viscoelastic model follow-up control unit is suppressed, and the suppression is fed back to the current command value, and the motor current is reduced.
  • the offset is calculated by the overheat protection control unit.
  • the overheat protection control unit has a large motor current flowing in the steered state based on the current command value, the steering torque, the motor rotation speed, the rack displacement speed, etc., which are vehicle state information, within a predetermined angle before the rack end. (Hereinafter, a condition used for this determination is referred to as an “offset calculation condition”), and if the state continues, an offset is calculated. And by gradually increasing the offset value, the motor current is intermittently reduced. However, if part of the conditions for determining the steered state is not satisfied, the increase in the offset value is interrupted, and the rack When the angle is outside the predetermined angle before the end, the offset is reset to zero so that no offset is given.
  • the motor current is prevented from becoming excessively small.
  • the lower limit value of the current command value is set instead of the upper limit value of the offset, and the offset value when the current command value reaches the lower limit value is stored as the upper limit offset.
  • the value may remain at the upper limit offset so that the motor current does not become excessively small.
  • the assist force is output so as to be balanced with the sum of the reaction force from the tire side (if the friction between the tire and the road surface is extremely low, only the manual input by the driver).
  • the maximum value of the assist force is limited by the maximum value limiting process in consideration of safety.
  • the maximum assist force is also limited when assisting in the same direction as the driver's steering direction.
  • FIG. 3 shows an example of an embodiment of the present invention corresponding to FIG. 2.
  • the current command value Iref1 is converted into the rack axial force f by the conversion unit 101, and the rack axial force f is converted into the viscoelastic model following control unit 120. Is input.
  • the rack axial force f is equivalent to the column axial torque, but in the following description, it will be described as a rack axial force for convenience.
  • symbol is attached
  • the rotation angle ⁇ from the rotation angle sensor 21 is input to the rack position conversion unit 100 and converted to the determination rack position Rx.
  • Determination rack position Rx is input to the rack end approach determination unit 110, the rack end approach determination unit 110 as shown in FIG. 4, the determination rack position Rx is determined that there is within a predetermined position x 0 of the front rack end Sometimes the end contact suppression control function is activated to output the rack displacement x and the switching signal SWS.
  • the switching signal SWS and the rack displacement x are input to the viscoelastic model follow-up control unit 120 together with the rack axial force f, and the rack axial force ff controlled and calculated by the viscoelastic model follow-up control unit 120 is converted into a current command value Iref2 by the conversion unit 102.
  • the current command value Iref2 is added to the current command value Iref1 by the adding unit 103 to become the current command value Iref3.
  • the assist control described above is performed based on the current command value Iref3.
  • the predetermined position x 0 to set the rack end proximal region shown in FIG. 4 can be set at an appropriate position.
  • Predetermined position x 0 is the rack ratio stroke models, unambiguously not determined by field or the like, is set to approximately normal rack end before 1 ⁇ 50 mm.
  • the rotation angle ⁇ is obtained from the rotation angle sensor 21 connected to the motor, it may be obtained from the steering angle sensor.
  • the rack axial force f is input to the feedforward control unit 130 and the feedback control unit 140, and the rack displacement x is input to the feedback control unit 140.
  • the rack axial force FF from the feedforward control unit 130 is input to the switching unit 121, and the rack axial force FB from the feedback control unit 140 is input to the switching unit 122.
  • the switching units 121 and 122 are turned on / off by the switching signal SWS, and when the switching units 121 and 122 are turned off by the switching signal SWS, the outputs u 1 and u 2 are zero.
  • the rack shaft force FF from the switching unit 121 is output as the rack shaft force u 1
  • the rack shaft force FB from the switching unit 122 as a rack axial force u 2 Is output.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123, and the added rack axial force ff is output from the viscoelastic model following control unit 120.
  • the rack axial force ff is converted into a current command value Iref2 by the converter 102.
  • the rack displacement x is input to the feedforward control unit 130 and the feedback control unit 140
  • the rack axial force f is input to the feedback control unit 140.
  • the rack axial force FF from the feedforward control unit 130 is input to the switching unit 121
  • the rack axial force FB from the feedback control unit 140 is input to the switching unit 122 as in the first embodiment of FIG.
  • the switching units 121 and 122 are turned on / off by the switching signal SWS, and when the switching units 121 and 122 are turned off by the switching signal SWS, the outputs u 1 and u 2 are zero.
  • the rack shaft force FF from the switching unit 121 is output as the rack shaft force u 1
  • the rack shaft force FB from the switching unit 122 as a rack axial force u 2 Is output.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123, and the added rack axial force ff is output from the viscoelastic model following control unit 120.
  • the rack axial force ff is converted into a current command value Iref2 by the converter 102.
  • the switching units 121 and 122 are turned off by the switching signal SWS.
  • the torque control unit 31 calculates the current command value Iref1 based on the steering torque Th and the vehicle speed Vel (step S10), and the rack position conversion unit 100 calculates the rotation angle ⁇ from the rotation angle sensor 21. Conversion to the determination rack position Rx (step S11).
  • the rack end approach determination unit 110 determines whether the rack end is approaching based on the determination rack position Rx (step S12). If the rack end approach is not approaching, the rack axial force ff is obtained from the viscoelastic model following control unit 120.
  • the normal steering control based on the current command value Iref1 is executed without being output (step S13), and is continued until the end (step S14).
  • the viscoelastic model tracking control by the viscoelastic model tracking control unit 120 is executed (step S20). That is, as shown in FIG. 8, the switching signal SWS is output from the rack end approach determination unit 110 (step S201), and the rack displacement x is output (step S202). Further, the conversion unit 101 converts the current command value Iref1 into the rack axial force f according to the equation 1 (step S203). In Embodiment 1 of FIG. 5, the feedforward control unit 130 performs feedforward control based on the rack axial force f (step S204), and the feedback control unit 140 performs feedback control based on the rack displacement x and the rack axial force f.
  • step S205 This is performed (step S205).
  • the feedforward control unit 130 performs feedforward control based on the rack displacement x (step S204), and the feedback control unit 140 performs feedback control based on the rack displacement x and the rack axial force f. Is performed (step S205). In any case, the order of the feedforward control and the feedback control may be reversed.
  • the switching signal SWS from the rack end approach determination unit 110 is input to the switching units 121 and 122, and the switching units 121 and 122 are turned on (step S206).
  • the switching unit 121 and 122 is turned ON, the output rack shaft force FF from the feedforward controller 130 is a rack axial force u 1, the output rack shaft force from the feedback control unit 140 FB is a rack axial force u 2 Is done.
  • the rack axial forces u 1 and u 2 are added by the adding unit 123 (step S207), and the rack axial force ff as an addition result is converted by the converting unit 102 into the current command value Iref2 according to the equation 2 (step S208). .
  • the viscoelastic model follow-up control unit 120 of the present invention is a control system based on a physical model in the vicinity of the rack end, and the viscoelastic model (spring constant k 0 [N / m], viscous friction coefficient ⁇ [N / (m / s)]) as a model model (input: force, output: physical model described by displacement), and a model following control is configured.
  • the impact force is attenuated.
  • FIG. 9 shows a schematic diagram in the vicinity of the rack end, and the relationship between the mass m and the forces F 0 and F 1 is Equation 3.
  • the calculation of the viscoelastic model equation is described in, for example, Journal of Science and Engineering of Kansai University “Science and Technology” Vol. 17 (2010), “Basics of Elastic Films and Viscoelastic Mechanics” (Kenkichi Ohba).
  • Equations 4 to 6 are established.
  • Equation 7 is obtained by substituting Equation 4 to Equation 6 into Equation 3.
  • Equation 11 Equation 11 below.
  • Equation 14 is a third-order physical model (transfer function) indicating the characteristics from the input force f to the output displacement x.
  • Equation 15 the quadratic function expressed by Equation 15 will be described as the reference model Gm. That is, Equation 16 is used as the reference model Gm.
  • ⁇ 1 ⁇ .
  • N and D are expressed by the following equation (18).
  • the numerator of N is the numerator of P and the numerator of D is the denominator of P.
  • Equation 19 is derived from Equations 16 and 18.
  • the block N / F of the feedback control unit is the following equation (20).
  • the block D / F of the feedforward control unit is the following equation (21).
  • Equation 24 is derived.
  • FIG. 11 when the feedforward control system is considered by the route of block 144 ⁇ actual plant P, FIG. 11 is obtained.
  • P N / D
  • FIG. 11A becomes FIG. 11B
  • FIG. From FIG. 11C, f (m ⁇ s 2 + ⁇ ⁇ s + k0) x. Therefore, when this is inverse Laplace transformed, the following equation 29 is obtained.
  • the number 30 When the number 30 is arranged, the following 31 is obtained.
  • the number 31 When the number 31 is arranged for the input f, the number 32 is obtained.
  • Example 1 in FIG. 14 corresponds to Embodiment 1 in FIG. 5, and the rack axial force f is input to the feedforward element 144 (D / F expressed by Formula 21) in the feedforward control unit 130 and the feedback control unit 140. Then, the rack displacement x is input to the feedback control unit 140. 15 corresponds to the second embodiment of FIG. 6, and the rack displacement x is input to the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130, and the rack axial force f is fed back. Input to the control unit 140.
  • Example 14 in Example 1, the rack axial force FF from the feedforward element 144 is input to the b1 contact of the switching unit 121. Further, in the second embodiment of FIG. 15, the outputs of the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130 are subtracted by the subtraction unit 133, and the rack axial force FF that is the subtraction result of the subtraction unit 133 is obtained. The signal is input to the b1 contact of the switching unit 121. A fixed value “0” is input from the fixing unit 125 to the a1 contact of the switching unit 121.
  • the feedback control unit 140 includes a feedback element (N / F) 141, a subtraction unit 142, and a control element unit 143.
  • the rack axial force FB that is, the output of the control element unit 143 is input to the b2 contact of the switching unit 122.
  • a fixed value “0” is input from the fixing unit 126 to the a2 contact of the switching unit 122.
  • the feedback element (N / F) 141 is a reference model as described above, corresponds to a viscoelastic model, and the output from the feedback element (N / F) 141 becomes the target rack displacement.
  • Example 1 of FIG. 14 the rack axial force f is input to the feedforward element 144 in the feedforward control unit 130 and also to the feedback element (N / F) 141 of the feedback control unit 140.
  • the rack displacement x is subtracted and input to the subtraction unit 142 of the feedback control unit 140 and is also input to the parameter setting unit 124.
  • the parameter setting unit 124 outputs, for example, a spring constant k 0 and a viscous friction coefficient ⁇ having characteristics as shown in FIG. 16 with respect to the rack displacement x.
  • the spring constant k 0 and the viscous friction coefficient ⁇ are supplied to the feedforward control unit 130.
  • the feed forward element 144 and the feedback element (N / F) 141 in the feedback control unit 140 are input.
  • the rack displacement x is input to the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130, and is also input to the subtraction unit 142 of the feedback control unit 140 for further parameter setting.
  • the rack axial force f is input to the feedback element (N / F) 141 of the feedback control unit 140.
  • the parameter setting unit 124 outputs a spring constant k 0 and a viscous friction coefficient ⁇ similar to those described above for the rack displacement x, and the spring constant k 0 is input to the spring constant term 131 and the feedback element (N / F) 141.
  • the viscous friction coefficient ⁇ is input to the viscous friction coefficient term 132 and the feedback element (N / F) 141.
  • the switching signal SWS is input to the switching units 121 and 122 in the first and second embodiments, and the contacts of the switching units 121 and 122 are normally connected to the contacts a1 and a2, respectively. Each of the contacts b1 and b2 is switched.
  • a switching signal SWS is output from the rack end approach determination unit 110 (step S21), and a rack displacement x is output (step S22).
  • the rack displacement x is input to the spring constant term 131, the viscous friction coefficient term 132, the parameter setting unit 124, and the subtraction unit 142.
  • the parameter setting unit 124 calculates the spring constant k 0 and the viscous friction coefficient ⁇ obtained according to the characteristics of FIG. 16 according to the rack displacement x, the spring constant term 131, the viscous friction coefficient term 132, and the feedback element (N / F) 141. (Step S23).
  • the converter 101 converts the current command value Iref1 into the rack axial force f (step S23A), and the rack axial force f is input to the feedback element (N / F) 141 and is subjected to N / F calculation (step S24). .
  • the N / F calculation value is added to the subtraction unit 142, the rack displacement x is subtracted (step S24A), and the subtraction value is Cd calculated by the control element unit 143 (step S24B).
  • the calculated rack axial force FB is output from the control element unit 143 and input to the contact point b2 of the switching unit 122.
  • Viscous friction coefficient term 132 in the feed-forward control unit 130 based on the viscous friction coefficient ⁇ "( ⁇ - ⁇ ) ⁇ s" performs the operation of (step S25), and setting the spring constant k 0 to the spring constant term 131 (Step S25A), the subtraction unit subtracts the spring constant k 0 and “( ⁇ ) ⁇ s” (Step S25B), and outputs the rack axial force FF as the calculation result.
  • the rack axial force FF is input to the contact b1 of the switching unit 121. Note that the calculation order of the feedforward control unit 130 and the feedback control unit 140 may be reversed.
  • the switching signal SWS from the rack end approach determination unit 110 is input to the switching units 121 and 122, and the contacts of the switching units 121 and 122 are switched from a1 to b1 and from a2 to b2, and the racks from the switching units 121 and 122 are switched.
  • the axial forces u 1 and u 2 are added by the adding unit 123 (step S26), and the rack axial force ff as the addition result is converted into the current command value Iref2 by the converting unit 102 (step S26A).
  • the current command value Iref2 is input to the adding unit 103, added to the current command value Iref1 (step S27), steering control is executed, and the process goes to step S14.
  • the control element unit 143 may have any configuration of PID (proportional integral derivative) control, PI control, and PD control.
  • PID proportional integral derivative
  • PI control PI control
  • PD control PD control.
  • the operation of the first embodiment shown in FIG. 14 is the same except that the portion (element) to which the rack axial force f and the rack displacement x are input is different.
  • control calculations of both the feedforward control unit 130 and the feedback control unit 140 are executed, but the configuration of only the feedforward control unit 130 may be used. Only the feedback control unit 140 may be configured.
  • FIG. 18 shows an embodiment of the present invention for performing offset processing corresponding to FIG. 3, and a rack displacement speed calculation unit 150 and an overheat protection control unit 160 are added to the embodiment shown in FIG. .
  • the rack displacement x and the switching signal SWS output from the rack end approach determination unit 110 include the rack displacement x in the rack displacement speed calculation unit 150 and the switching signal in the overheat protection control unit 160, in addition to the viscoelastic model following control unit 220. Each SWS is input.
  • the rack displacement speed calculation unit 150 calculates the rack displacement speed Rv from the rack displacement x and outputs the rack displacement speed Rv to the overheat protection control unit 160.
  • the overheat protection control unit 160 inputs a steering torque Th, a vehicle speed Vel, and a current command value Iref3 described later, and calculates an offset of.
  • the offset of is input to the viscoelastic model follow-up control unit 220 together with the rack axial force f, the switching signal SWS, and the rack displacement x, and the rack axial force ff controlled and calculated by the viscoelastic model follow-up control unit 220 is converted into a current by the conversion unit 102. It is converted into a command value Iref2.
  • Other configurations are the same as those of the embodiment shown in FIG.
  • FIG. 19 Details of the viscoelastic model follow-up control unit 220 are shown in FIG. 19 (Example 3) corresponding to FIG. 5, and in FIG. 20 (Example 4) corresponding to FIG.
  • the offset of output from the overheat protection control unit 160 is input to the feedback control unit 240.
  • the other configuration is the same as that of the first embodiment in FIG. 5 or the second embodiment in FIG.
  • FIG. 21 is a flowchart showing an overall operation example. Compared with the flowchart of FIG. 7, step S12A is added, and the operation of the viscoelastic model following control is changed as described later (step S20A). ). Other operations are the same as those in the first or second embodiment.
  • step S12A when the rack end approach determination unit 110 determines whether or not the rack end approach is based on the determination rack position Rx, the result of the rack end approach is not the rack end approach, and the value of the offset of in the overheat protection control unit 160 is set to zero.
  • the resetting operation is executed.
  • viscoelastic model follow-up control is performed by the overheat protection control unit 160 and the viscoelastic model follow-up control unit 220 (step S20A).
  • FIG. 22 is a flowchart showing an operation example of the viscoelastic model following control. Compared with the flowchart of FIG. 8, steps S203A and S203B are added, and the operation of the feedback control is changed (from steps S205 to S205A). Other changes are the same as those in the first or second embodiment.
  • the feedback control in step S205A is executed by the feedback control unit 240. The operation will be described in the detailed description of the viscoelastic model follow-up control unit 220 described later.
  • step S203A the rack displacement speed calculation unit 150 inputs the rack displacement x output from the rack end approach determination unit 110, and the operation of calculating the rack displacement speed Rv from the rack displacement x is executed.
  • step S203B the overheat protection control unit 160 detects the rack end approach based on the switching signal SWS, and calculates the offset of based on the steering torque Th, the vehicle speed Vel, the rack displacement speed Rv, and the current command value Iref3.
  • the calculation of the offset of in the overheat protection control unit 160 is executed in the procedure as shown in FIG.
  • the offset of is updated when the offset calculation condition is satisfied only for a predetermined time, and a flag (hereinafter referred to as “predetermined time elapse flag”) indicating whether or not the offset calculation condition is satisfied is provided. It is OFF at the start stage. The value of the offset of is zero at the start stage.
  • the overheat protection control unit 160 When the overheat protection control unit 160 detects the approach of the rack end based on the output of the switching signal SWS, the overheat protection control unit 160 reads the current command value Iref3, the steering torque Th, the rack displacement speed Rv, and the vehicle speed Vel, which are vehicle state information (step S301), for a predetermined time. The progress flag is confirmed (step S302).
  • the predetermined time elapsed flag is OFF, it is confirmed whether the offset calculation condition is satisfied for a predetermined time (step S303).
  • the offset calculation conditions are “the vehicle speed Vel is smaller than the predetermined vehicle speed value”, “the steering torque Th is larger than the predetermined steering torque value”, “the rack displacement speed Rv is smaller than the predetermined speed value”, and “the current command value Iref3. Is larger than a predetermined current command value ”, and the time when the offset calculation condition is satisfied is measured using a time counter. If the offset calculation condition is satisfied for a predetermined time, the predetermined time elapse flag is turned on (step S304), and the offset of is output (step S305). If the offset calculation condition is not satisfied for a predetermined time, the predetermined time elapsed flag is left as it is, and the offset of is output (step S305).
  • step S306 it is confirmed whether a part of the condition for determining the steering holding state is not satisfied. That is, at least one of the three conditions “the vehicle speed Vel is smaller than the predetermined vehicle speed value”, “the steering torque Th is larger than the predetermined steering torque value”, or “the rack displacement speed Rv is smaller than the predetermined speed value”. Check whether the two conditions are not satisfied. If all three conditions are satisfied, the offset of is updated by adding a predetermined value to the offset of (step S307). Then, it is confirmed whether or not the updated offset of exceeds a predetermined upper limit value (step S308). If the offset is exceeded, the predetermined upper limit value is set as the value of the offset of (step S309).
  • step S305 The value of is not changed and the offset of is output (step S305). If at least one of the above three conditions is not satisfied, the predetermined time elapsed flag is turned off (step S310), and the offset of is output without being updated (step S305). When turning off the predetermined time elapsed flag, the time counter used in step S303 is cleared to zero.
  • step S12A If the angle is outside the predetermined angle before the rack end and it is determined that the rack end is not approaching, as described above, the value of the offset of is reset to zero (step S12A).
  • the offset of calculated as described above is input to the feedback control unit 240 of the viscoelastic model following control unit 220.
  • the motor rotational speed may be used instead of the rack displacement speed Rv, and the condition that “the motor rotational speed is smaller than a predetermined rotational speed” may be used.
  • the motor rotation speed is calculated from the rotation angle ⁇ output from the rotation angle sensor 21.
  • the offset of is updated by adding a predetermined value.
  • other methods such as exponential increase are used. It may be updated.
  • FIG. 24 the viscoelastic model follow-up control unit 220 will be described in further detail with reference to FIGS. 24 and 25.
  • FIG. 24 the viscoelastic model follow-up control unit 220 will be described in further detail with reference to FIGS. 24 and 25.
  • FIG. 24 shows a specific configuration example of the viscoelastic model follow-up control unit 220 in Example 4 in FIG. This corresponds to the second embodiment shown in FIG. 15, and the feedback control unit 140 is replaced with the feedback control unit 240. Since other configurations are the same as those of the second embodiment, the description thereof is omitted.
  • the feedback control unit 240 includes a feedback element (N / F) 141, a control element unit 143, a subtraction unit 142, and a subtraction unit 145, and an offset of from the overheat protection control unit 160 is subtracted and input to the subtraction unit 145.
  • the rack axial force f input to the feedback control unit 240 is added to the subtraction unit 145, and the offset of the subtraction input to the subtraction unit 145 is subtracted, and the rack axial force f ′ is input to the feedback element (N / F) 141. Entered.
  • the switching signal SWS and the rack displacement x are output from the rack end approach determination unit 110 (steps S21 and S22), and the rack displacement x is a spring constant term 131,
  • the viscous friction coefficient term 132, the parameter setting unit 124, and the subtraction unit 142 are input.
  • the parameter setting unit 124 sets the spring constant k 0 and the viscous friction coefficient ⁇ to the spring constant term 131, the viscous friction coefficient term 132, and the feedback element (N / F) 141 (step S23), and the conversion unit 101 sets the current command value.
  • Iref1 is converted into a rack axial force f (step S23A).
  • the rack axial force f is added and input to the subtracting unit 145.
  • the rack displacement speed calculation unit 150 calculates the rack displacement speed Rv from the rack displacement x (step S23B), and the rack displacement speed Rv together with the switching signal SWS, the steering torque Th, the vehicle speed Vel, and the current command value Iref3, the overheat protection control unit 160. And the offset of is calculated by the overheat protection control unit 160 (step S23C).
  • the offset of is subtracted and input to the subtracting unit 145, and the rack axial force f ′ obtained by subtracting the offset of is input to the feedback element (N / F) 141, and N / F calculation is performed (step S24).
  • a specific configuration example can be obtained.
  • the operation of the configuration example is the same as the operation in the fourth embodiment, except that the portion (element) to which the rack axial force f and the rack displacement x are input is different.
  • FIG. 26 shows an image of changes in each data (signal) due to the offset.
  • the horizontal axis is time
  • the vertical axis is the size of each data.
  • the size of each data is different from the actual size.
  • the timing at which each data changes may actually cause a deviation, but there is no deviation, and the rack axial force f and the rack displacement x input to the viscoelastic model following control unit 220 are constant. .
  • the N / F calculation value which is the output from the viscoelastic model
  • the deviation from the rack displacement x calculated by the subtraction unit 142 increases, and the control element unit (Cd) 143 that receives the deviation as input.
  • the rack axial force FB which is the output of, decreases.
  • the current command value also decreases.
  • each data remains constant as shown by a dotted line in FIG. 26.
  • the motor current is not reduced, and the ECU and the motor may be overheated. Can be seen to work effectively.
  • the upper limit value is set for the offset so that the motor current does not become excessively small, but instead of the upper limit value of the offset.
  • Set the lower limit value of the current command value store the offset value when the current command value reaches the lower limit value as the upper limit offset, and keep the offset value as the upper limit offset while the current command value is less than the lower limit value. By doing so, it is possible to prevent the motor current from becoming excessively small.
  • the configuration of the embodiment is the same as that of the above embodiment (embodiment 3 and embodiment 4), but there is a difference in the operation of calculating the offset of in the overheat protection control unit 160.
  • FIG. 27 is a flowchart showing an operation example of calculation of the offset of in the overheat protection control unit 160 in the fifth embodiment.
  • the current command value Iref3 which is vehicle state information
  • the steering Steps S301A to S301D are added after the reading of the torque Th, the rack displacement speed Rv and the vehicle speed Vel (step S301), and the processing after the update of the offset of (step S307) is changed from step S308 and S309 to steps S308A and S309A. It is changing.
  • a flag hereinafter referred to as “limit flag”) indicating whether or not the current command value has reached the lower limit value is provided, and is OFF at the start stage.
  • the overheat protection control unit 160 checks whether or not the read current command value Iref3 is smaller than a predetermined lower limit value (step S301A). If smaller, the value of the offset of at that time is stored as an upper limit offset (step S301B), and a limit flag Is turned ON (step S301C). If the current command value Iref3 is not smaller than the lower limit value, the limit flag is turned OFF (step S301D).
  • step S308A After the offset of is updated (step S307), the limit flag is confirmed (step S308A).
  • the limit flag is ON, the upper limit offset is set to the value of the offset of (step S309A), and when it is OFF, the value of the offset of. Does not change.
  • the subtraction of the offset is not performed on the rack axial force f input to the feedback element (N / F) 141, which is a viscoelastic model, but to the N / F calculation value output from the feedback element (N / F) 141. It is also possible to do this.
  • FIG. 28 shows the N / F calculation value output from the feedback element (N / F) 141 by subtracting the offset of from the configuration example of the viscoelastic model follow-up control unit in the fourth embodiment shown in FIG.
  • the structural example (Example 6) at the time of performing it with respect to it is shown.
  • the configuration other than the feedback control unit 250 is the same as the configuration of the fourth embodiment in FIG. 24, and the components are the same in the feedback control unit 250, but the connection of the components is different.
  • the rack axial force f is input to the feedback element (N / F) 141 instead of the subtraction unit 145, and the N / F calculation value output from the feedback element (N / F) 141 is not the subtraction unit 142 but the subtraction unit 145. Is added and input.
  • the subtracting unit 145 the offset of is subtracted from the N / F calculation value, the subtracted value is added to the subtracting unit 142, the rack displacement x is subtracted, and input to the control element unit 143.
  • the flow of the rack axial force in the feedback control unit is the same in the sixth embodiment and the other embodiments (third to fifth embodiments), and an offset is given in the same flow. However, an effect equivalent to that of the other embodiments can be obtained.
  • the offset of is subtracted from the N / F calculation value output from the feedback element (N / F) 141. It is possible.
  • the processing executed using the rack displacement x in the above-described embodiments is the displacement of the rotation angle ⁇ of the motor (hereinafter referred to as “rotation angle displacement”) ⁇ d instead of the rack displacement x. It is also possible to execute using The rack position and the rotation angle are interlocked so that the rotation angle ⁇ is converted to the determination rack position Rx in the rack position conversion unit 100 in the above embodiment, so that the predetermined position or angle before the rack end is set. Substitution is possible between the rack displacement and the rotation angle displacement as the base point.
  • FIG. 29 shows an example (Example 7) in which the rotational angular displacement ⁇ d is used instead of the rack displacement x in correspondence with FIG.
  • the rack position conversion unit 100 since it is not necessary to obtain the rack position, the rack position conversion unit 100 is unnecessary, and the rack end approach determination unit 110 replaces the rack end approach determination unit 210 and replaces the rack displacement speed calculation unit 150.
  • the overheat protection control unit 160 is replaced with the overheat protection control unit 260
  • the viscoelastic model follow-up control unit 220 is replaced with the viscoelastic model follow-up control unit 320.
  • the rotation angle ⁇ from the rotation sensor 21 is input to the rack end approach determination unit 210.
  • the rack end approach determination unit 210 has a rotation angle corresponding to the rack end and a rotation angle corresponding to a predetermined position before the rack end.
  • the suppression control function When it is determined that it is between ⁇ 0 , the suppression control function is activated to output a rotation angle displacement ⁇ d that is a deviation between the rotation angle ⁇ and the rotation angle ⁇ 0 and a switching signal SWS.
  • the rotational angular displacement ⁇ d is input to the viscoelastic model follow-up control unit 320 and the motor rotation number calculation unit 250, and the switching signal SWS is input to the viscoelastic model follow-up control unit 320 and the overheat protection control unit 260.
  • the motor rotational speed calculation unit 250 calculates the motor rotational speed ⁇ from the rotational angular displacement ⁇ d and outputs it to the overheat protection control unit 260.
  • the overheat protection control unit 260 calculates the offset of using the motor rotation speed ⁇ instead of the rack displacement speed Rv.
  • the viscoelastic model follow-up control unit 320 calculates the rack axial force ff using the rotational angular displacement ⁇ d instead of the rack displacement x.
  • the overall operation example of the seventh embodiment is as shown in FIG. 30, and compared with the operation example shown in FIG. 21, the rack position conversion process (step S11) for converting the rotation angle ⁇ into the determination rack position Rx is unnecessary. It has become.
  • the rotation angle displacement ⁇ d is calculated and used instead of the rack displacement x, and the operation is the same except that the motor rotational speed ⁇ is calculated and used instead of the rack displacement speed Rv. .
  • the rack axial force (and column shaft torque) is positive when the handle is turned to the right (hereinafter referred to as “right turn steering”), and the handle is turned to the left. It is assumed that it is set to a negative value when it is set (hereinafter referred to as “left turn steering”).
  • FIG. 31 shows a configuration example of Example 8 corresponding to FIG. 3.
  • a control amount restriction unit 170 is added to the embodiment shown in FIG. 3, and the rack end approach determination unit 110 is changed to rack end. It replaces the approach determination unit 210.
  • the rack end approach determination unit 210 outputs a direction signal Sd indicating the steering direction of the steering wheel in addition to the rack displacement x and the switching signal SWS.
  • the steering direction of the steering wheel is determined based on the determination rack position Rx input to the rack end approach determination unit 210.
  • the direction signal Sd is set to “right turn” and output, and in the case of left turn steering. Outputs the direction signal Sd with “left turn”.
  • the control amount restriction unit 170 restricts the maximum value and the minimum value of the rack axial force ff (control amount) output from the viscoelastic model follow-up control unit 120.
  • an upper limit value and a lower limit value for the rack axial force ff (hereinafter, a generic term of the upper limit value and the lower limit value is referred to as “limit value”). Set the limit value for each case.
  • the upper limit value (hereinafter referred to as “right turn upper limit value”) RU1 is set to a predetermined value Fx1 (for example, 2 Nm (Newton meter)) as shown in Equation 33 below, and the lower limit value (hereinafter referred to as “ RL1 is a value obtained by subtracting a predetermined value Fx2 (for example, 10 Nm) from a value obtained by inverting the sign of the maximum output fmax (positive value) of the system as shown in the following equation 34.
  • Fx1 for example, 2 Nm (Newton meter)
  • RL1 is a value obtained by subtracting a predetermined value Fx2 (for example, 10 Nm) from a value obtained by inverting the sign of the maximum output fmax (positive value) of the system as shown in the following equation 34.
  • the rack shaft force ff is limited using the right turn upper limit value RU1 and the right turn lower limit value RL1, and when the direction signal Sd is “left turn”, the left turn upper limit
  • the rack axial force ff is limited using the value LU1 and the lower left limit LL1.
  • the limited rack axial force ff is output to the conversion unit 102 as the rack axial force ffm.
  • FIG. 32 is a flowchart showing an overall operation example. Compared with the flowchart of FIG. 7, an output of a direction signal Sd (step S11A) is added, and normal steering (step S13) and viscoelastic model following control (step S20) are added. ) Is added to the control amount restriction unit 170, so that a change has occurred (steps S13B and S20B).
  • step S11A the rack end approach determination unit 210 determines the steering direction of the steering wheel based on the input determination rack position Rx, and uses the determination result (right turn, left turn) as the direction signal Sd as the control amount restriction unit 170. Output to.
  • step S207A An example of operation in the viscoelastic model following control (step S20B) is shown in the flowchart of FIG. Compared with the flowchart of FIG. 8, step S207A is added.
  • step S207A the rack axial force ff output from the viscoelastic model follow-up control unit 120 is limited based on the direction signal Sd output from the rack end approach determination unit 210.
  • FIG. 34 shows a detailed operation example of step S207A.
  • the control amount restriction unit 170 receives the direction signal Sd (step S207B).
  • step S207C When the direction signal Sd is “right turn” (step S207C), if the rack axial force ff is equal to or greater than the right turn upper limit RU1 (step S207D), the rack axial force ff is set to the right turn upper limit RU1 (step S207D). S207E) If the rack axial force ff is less than or equal to the lower right limit RL1 (step S207F), the rack axial force ff is set to the lower right limit RL1 (step S207G), otherwise the rack axial force ff is It does not change.
  • step S207C When the direction signal Sd is “left turn” (step S207C), if the rack axial force ff is equal to or greater than the left turn upper limit LU1 (step S207H), the value of the rack axial force ff is set to the left turn upper limit LU1 (step S207I). If the rack axial force ff is less than or equal to the lower left turn lower limit value LL1 (step S207J), the rack axial force ff is set to the lower left turn lower limit value LL1 (step S207K), otherwise the rack axial force ff value is not changed. .
  • the restricted rack axial force ff is output as the rack axial force ffm (step S207L), the rack axial force ffm is converted into the current command value Iref2 by the converting unit 102 (step S208A), and the current command value is output by the adding unit 103. It is added to Iref1.
  • the rack axial force ff output from the viscoelastic model follow-up control unit 120 is limited as in the case of the viscoelastic model follow-up control.
  • the rack axial force ff is output as it is as the rack axial force ffm without being limited.
  • the left-cut upper limit value and the left-cut lower limit value are values obtained by exchanging the right-cut upper limit value and the right-cut lower limit value. However, they may not be changed by using different predetermined values. Further, the same limit value may be used in the case of right-turn steering and left-turn steering. In this case, the direction signal Sd is unnecessary, and therefore the steering direction of the steering wheel in the rack end approach determination unit 210 is not necessary. It is not necessary to switch the operation by the direction signal Sd in the determination and control amount restriction unit 170.
  • Example 9 of the present invention will be described.
  • Example 8 the limit value for the rack axial force ff is a fixed value, but in Example 9, it is set based on the rack axial force f converted from the current command value Iref1. By setting based on the rack axial force f, a more appropriate limit value can be set.
  • FIG. 35 shows a configuration example of the ninth embodiment.
  • the control amount restriction unit 170 is replaced with the control amount restriction unit 270.
  • the control amount limiting unit 270 receives the rack axial force f output from the conversion unit 101, and the rack amount based on the direction signal Sd and the rack axial force f is input. Limit the maximum and minimum values of force ff.
  • the upper right limit value RU2 is a value obtained by adding a predetermined value Fx3 (for example, 2Nm) to the rack axial force f as shown in the following equation 37
  • the lower right switch lower limit value RL2 is expressed as a rack as shown in the following equation 38.
  • FIG. 38 is a flowchart showing an operation example of the control amount limiting unit 270.
  • the rack axial force ff output from the viscoelastic model follow-up control unit 120 is a limit value.
  • Each of the limit values is set based on the rack axial force f output from the conversion unit 101. That is, before comparing the rack shaft force ff with the right turn upper limit value RU2, the right turn upper limit value RU2 is set by Equation 37 (step S207d), and the rack shaft force ff is turned right before the right turn lower limit value RL2 is compared.
  • the lower limit value RL2 is set by the equation 38 (step S207f), and the left turn upper limit value LU2 is set by the equation 39 before the rack shaft force ff is compared with the left turn upper limit value LU2 (step S207h).
  • the left-cutting lower limit value LL2 is set by Equation 40 (step S207j).
  • Other operations are the same as those of the eighth embodiment.
  • predetermined values Fx1 and Fx2 used in the eighth embodiment may be used as the predetermined values Fx3 and Fx4 used in the limit value calculation.
  • the left-cut upper limit value and the left-cut lower limit value are not replaced with the right-cut upper limit value and the right-cut lower limit value, but are replaced by using different predetermined values.
  • the same limit value may be used for right-turn steering and left-turn steering.
  • Example 10 of the present invention will be described.
  • the limit value is set based on the rack axial force f.
  • the right turn is set so that the steering wheel and the end direction can be steered.
  • addition and subtraction of predetermined values are reversed from those in the ninth embodiment.
  • the right turn lower limit value should not exceed zero and the left turn upper limit value should not be less than zero.
  • the configuration example of the tenth embodiment is basically the same as the configuration example of the ninth embodiment shown in FIG. 35, but the operation in the control amount limiting unit is different. That is, in the control amount limiting unit, for example, the right turn upper limit RU3 is a value obtained by adding a predetermined value Fx5 (for example, 2 Nm) to the rack axial force f as shown in the following equation 41, and the right turn lower limit RL3 is expressed by the following equation 42.
  • Fx5 for example, 2 Nm
  • a value obtained by adding a predetermined value Fx6 (for example, 5 Nm) to a value obtained by inverting the sign of the rack axial force f is set to be a value, but when the right turn lower limit RL3 exceeds zero, the right turn lower limit RL3 is set to zero.
  • RU3 f + Fx5
  • RL3 ⁇ f + Fx6
  • the left-cut upper limit value LU3 and the left-cut lower limit value LL3 are values such as the following formulas 43 and 44 obtained by replacing the right-cut upper limit value RU3 and the right-cut lower limit value RL3, but the left-cut upper limit value LU3 is less than zero.
  • the upper left limit LU3 is set to zero.
  • LU3 ⁇ f ⁇ Fx6
  • the operation of the tenth embodiment is the same as the operation of the control amount limiting unit as described above except that the operation is different from the operation example of the ninth embodiment.
  • the predetermined values Fx5 and Fx6 used in the limit value calculation may be used.
  • the left-cut upper limit value and the left-cut lower limit value are not values obtained by replacing the right-cut upper limit value and the right-cut lower limit value, and may not be changed by using different predetermined values.
  • Example 11 of the present invention will be described.
  • the limit value is set by combining the limit value setting methods in the eighth and ninth embodiments.
  • the upper right limit value and the lower left limit value are set as in the eighth embodiment
  • the lower right limit value and the left upper limit value are set as in the ninth embodiment. That is, the right turn upper limit value RU4, the right turn lower limit value RL4, the left turn upper limit value LU4, and the left turn lower limit value LL4 are set as in the following formulas 45 to 48.
  • the configuration example and the operation example of the eleventh embodiment are the same as the configuration example and the operation example of the ninth embodiment except that the operation in the control amount limiting unit is different as described above.
  • the right turn upper limit value and the left turn lower limit value are set as in the ninth embodiment, and the right turn lower limit value and the left turn upper limit value are set in the eighth embodiment. You may set as follows. Further, the limit value setting methods in the eighth and tenth embodiments may be combined.
  • Example 12 of the present invention will be described.
  • the limit value is set based on the rack axial force f, but in the twelfth embodiment, the limit value is further changed depending on the steering speed.
  • FIG. 41 shows a configuration example of the twelfth embodiment.
  • the control amount restriction unit 270 is replaced with the control amount restriction unit 370.
  • the control amount restriction unit 370 includes the rack axial force ff, the direction signal Sd, and the rack shaft. In addition to the force f, the steering speed ⁇ s is input.
  • the control amount limiting unit 370 sets a limit value by the setting method in the ninth embodiment in order to strongly control the virtual rack end, and when the steering speed is low, The limit value is set by the setting method in the tenth embodiment in which the limit is increased.
  • each limit value set by the setting method in the ninth and tenth embodiments is multiplied by a gain so that the transition of the setting method is gradually performed, and a value obtained by adding them is set as the limit value.
  • the control amount limiting unit 370 includes a high steering limit value calculating unit 371, a low steering limit value calculating unit 372, a high steering gain unit 373, a low steering gain unit 374, a limiting unit 375, and adding units 376 and 377. Has been.
  • the high steering gain unit 373 multiplies the upper steering wheel ⁇ s by the high steering gain GH having the characteristics shown in FIG. 43, for example, by the upper limit value UPH and the lower limit value LWH. LWHg is calculated.
  • the characteristics of the high steering gain GH shown in FIG. 43 are 0% up to a predetermined steering speed ⁇ s1, and increase in proportion to the steering speed ⁇ s between the predetermined steering speed ⁇ s1 and ⁇ s2 ( ⁇ s2> ⁇ s1). The characteristic is 100% when a predetermined steering speed ⁇ s2 is exceeded.
  • the low-steering gain unit 374 multiplies the upper steering wheel ⁇ s by the low steering gain GL having characteristics as shown in FIG. 44, for example, by the upper limit value UPL and the lower limit value LWL, respectively. LWLg is calculated.
  • the characteristic of the low steering gain GL shown in FIG. 44 is opposite to the characteristic of the high steering gain GH shown in FIG.
  • the addition unit 376 calculates the upper limit value UP by adding the upper limit values UPHg and UPLg.
  • Adder 377 adds lower limit values LWHg and LWLg to calculate lower limit value LW.
  • the limiting unit 375 limits the rack axial force ff using the upper limit value UP and the lower limit value LW.
  • FIG. 45 is a flowchart showing an operation example of the control amount restriction unit 370.
  • the operation of the twelfth embodiment is the same as that of the eighth to eleventh embodiments except that the operation of the control amount restriction unit 370 is different. is there.
  • the direction signal Sd output from the rack end approach determination unit 210 and the rack axial force f output from the conversion unit 101 are input to the high steering limit value calculation unit 371 and the low steering limit value calculation unit 372 (step). S401).
  • step S402 When the direction signal Sd is “right turn” (step S402), the high steering time limit value calculation unit 371 outputs the right turn upper limit value RU2 as the upper limit value UPH and the right turn lower limit value RL2 as the lower limit value LWH (step S402). S403).
  • step S402 When the direction signal Sd is “left turn” (step S402), the left turn upper limit LU2 is output as the upper limit UPH, and the left turn lower limit LL2 is output as the lower limit LWH (step S404).
  • the low steering time limit value calculation unit 372 outputs the right turn upper limit value RU3 as the upper limit value UPL and the right turn lower limit value RL3 as the lower limit value LWL (step S405). S406).
  • the left turn upper limit value LU3 is output as the upper limit value UPL
  • the left turn lower limit value LL3 is output as the lower limit value LWL (step S407).
  • the order of the operation at the high steering limit value calculation unit 371 and the operation at the low steering limit calculation unit 372 may be reversed or executed in parallel.
  • the high steering gain unit 373 receives the upper limit value UPH, the lower limit value LWH, and the steering speed ⁇ s, obtains the high steering gain GH with respect to the steering speed ⁇ s using the characteristics shown in FIG. 43, and obtains the upper limit value UPH and the lower limit value.
  • the low steering gain unit 374 receives the upper limit value UPL, the lower limit value LWL, and the steering speed ⁇ s, obtains the low steering gain GL with respect to the steering speed ⁇ s using the characteristics shown in FIG. 44, and calculates the upper limit value UPL and the lower limit value.
  • the order of the operation at the high steering gain unit 373 and the operation at the low steering gain unit 374 may be reversed or executed in parallel.
  • the upper limit values UPHg and UPLg are input to the adding unit 376, and the addition result is output as the upper limit value UP (step S410).
  • the lower limit values LWHg and LWLg are input to the adding unit 377, and the addition result is output as the lower limit value LW (step S411).
  • the upper limit value UP and the lower limit value LW are input to the limiting unit 375 together with the rack axial force ff output from the viscoelastic model following control unit. If the rack axial force ff is greater than or equal to the upper limit value UP (step S412), the limiting unit 375 sets the rack axial force ff to the upper limit value UP (step S413), and if the rack axial force ff is less than or equal to the lower limit value LW (step S413) In step S414, the value of the rack axial force ff is set to the lower limit value LW (step S415). Otherwise, the value of the rack axial force ff is not changed. The limited rack axial force ff is output as the rack axial force ffm (step S416).
  • the characteristics between the steering speeds ⁇ s1 and ⁇ s2 of the high steering gain GH and the low steering gain GL are not limited to the linear characteristics as shown in FIGS. 43 and 44, and the high steering gain GH is low. If the sum of the steering gain GL is 100%, curvilinear characteristics may be used.
  • the limit value may be set by the setting method according to the eighth embodiment in the high steering time limit value calculation unit 371 and / or the low steering time limit value calculation unit 372. In this case, when the steering speed is fast, the upper limit value and the lower limit value are adjusted so that the virtual rack end is strongly controlled, and when the steering speed is slow, the control amount is increased to increase the safety.
  • Example 13 of the present invention will be described.
  • Example 12 the limit value is changed depending on the steering speed, but in Example 13, the limit value is changed depending on the vehicle speed. For example, during extremely low speed running including stopping, the control is strongly performed so as to become a virtual rack end, and the limit value is gradually changed as the low speed running is exceeded.
  • FIG. 46 shows a configuration example of the thirteenth embodiment. Compared to the configuration example of the twelfth embodiment shown in FIG. 41, the control amount restriction unit 370 is replaced with the control amount restriction unit 470, and the vehicle speed Vel is input to the control amount restriction unit 470 instead of the steering speed ⁇ s. ing.
  • the control amount limiting unit 470 sets a limit value by the setting method in the ninth embodiment in order to strongly control the virtual rack end, and when the vehicle speed becomes high, Set the limit value using the setting method. Then, as in the twelfth embodiment, each limit value set by the setting method in the ninth and tenth embodiments is multiplied by a gain so that the transition of the setting method is gradually performed. Is the limit value.
  • the control amount limiting unit 470 includes a high-speed limit value calculating unit 471, a low-speed limit value calculating unit 472, a high-speed gain unit 473, a low-speed gain unit 474, a limiting unit 375, and adding units 376 and 377.
  • the limiter 375 and the adders 376 and 377 operate in the same manner as in the twelfth embodiment and will not be described.
  • the high speed limit value calculation unit 471 uses the direction signal Sd and the rack axial force f to set the upper limit value UpH and the upper limit value UpH.
  • a lower limit LwH is calculated.
  • the low speed limit value calculation unit 472 uses the direction signal Sd and the rack axial force f to set the upper limit value UpL and the upper limit value UpL.
  • a lower limit LwL is calculated.
  • the high speed gain unit 473 calculates the upper limit value UpHg and the lower limit value LwHg by multiplying the upper speed value UpH and the lower limit value LwH, respectively, by the high speed gain gH having characteristics as shown in FIG. To do.
  • the characteristic of the high-speed gain gH shown in FIG. 48 is 0% up to the predetermined vehicle speed Vel1, and increases in proportion to the vehicle speed Vel between the predetermined vehicle speed Vel1 and Vel2 (Vel2> Vel1), and the predetermined vehicle speed Vel2 It is a characteristic which will be 100% when exceeding.
  • the low speed gain unit 474 calculates the upper limit value UpLg and the lower limit value LwLg by multiplying the upper speed value UpL and the lower limit value LwL, respectively, by the low speed gain gL having the characteristics shown in FIG. 49, for example, with respect to the vehicle speed Vel. To do.
  • the characteristic of the low speed gain gL shown in FIG. 49 is the reverse of the characteristic of the high speed gain gH shown in FIG.
  • FIG. 50 is a flowchart showing an operation example of the control amount restriction unit 470.
  • the operation of the thirteenth embodiment is the same as that of the twelfth embodiment except that the operation of the control amount restriction unit 470 is different.
  • the direction signal Sd and the rack axial force f are input to the high speed limit value calculator 471 and the low speed limit value calculator 472 (step S401A).
  • step S402A When the direction signal Sd is “right turn” (step S402A), the high speed limit value calculation unit 471 outputs the right turn upper limit value RU3 as the upper limit value UpH and the right turn lower limit value RL3 as the lower limit value LwH (step S403A). ).
  • step S402A When the direction signal Sd is “left turn” (step S402A), the left turn upper limit LU3 is output as the upper limit value UpH, and the left turn lower limit value LL3 is output as the lower limit value LwH (step S404A).
  • the low speed limit value calculation unit 472 When the direction signal Sd is “right turn” (step S405A), the low speed limit value calculation unit 472 outputs the right turn upper limit value RU2 as the upper limit value UpL and the right turn lower limit value RL2 as the lower limit value LwL (step S406A). ).
  • the direction signal Sd is “left turn” (step S405A)
  • the left turn upper limit LU2 is output as the upper limit UpL
  • the left turn lower limit LL2 is output as the lower limit LwL (step S407A).
  • the order of the operation in the high speed limit value calculation unit 471 and the operation in the low speed limit value calculation unit 472 may be reversed or executed in parallel.
  • the high speed gain unit 473 receives the upper limit value UpH, the lower limit value LwH, and the vehicle speed Vel, obtains the high speed gain gH for the vehicle speed Vel using the characteristics shown in FIG. 48, and multiplies the upper limit value UpH and the lower limit value LwH, respectively.
  • the low speed gain unit 474 receives the upper limit value UpL, the lower limit value LwL, and the vehicle speed Vel, obtains the low speed gain gL for the vehicle speed Vel using the characteristics shown in FIG. 49, and multiplies the upper limit value UpL and the lower limit value LwL, respectively.
  • the order of the operation in the high speed gain unit 473 and the operation in the low speed gain unit 474 may be reversed or executed in parallel.
  • the upper limit value UpHg and UpLg and the lower limit value LwHg and LwLg are calculated from the upper limit value Up and the lower limit value Lw via the adding units 376 and 357 (steps S410 and S411).
  • the rack axial force ff is output from the upper limit value Up, the lower limit value Lw, and the rack axial force ff via the limiting unit 375 (steps S412 to S416).
  • the characteristics between the vehicle speeds Vel1 and Vel2 of the high speed gain gH and the low speed gain gL are not limited to the linear characteristics as shown in FIGS. 48 and 49, and the high speed gain gH and the low speed gain gL If the sum is 100%, curvilinear characteristics may be used. Further, the limit value may be set by the setting method in the eighth embodiment in the high-speed limit value calculation unit 471 and / or the low-speed limit value calculation unit 472.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】物理モデルに基づいた制御系を構成し、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を抑制し、モータの過熱を防止し、モデルフォローイング制御に対して安全方策を取れる電動パワーステアリング装置を提供する。 【解決手段】少なくとも操舵トルクに基づいて電流指令値1を演算し、電流指令値1に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置において、ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、過熱防止のために粘弾性モデルへの入力又は出力にオフセットを与え、ラックエンド端当てを抑制する。

Description

電動パワーステアリング装置
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算し、電流指令値によってモータを駆動し、車両の操舵系にアシスト力を付与するようにした電動パワーステアリング装置に関し、特に粘弾性モデルを規範モデルとし、ラックエンド近傍で電流指令値を絞ることによりアシストトルクを減少させ、端当て時の勢いを減衰して衝撃エネルギーを低くし、運転者の不快に感じる打音(異音)を抑制し、操舵フィーリングを向上した電動パワーステアリング装置に関する。
 車両の操舵系にモータの回転力でアシスト力を付与する電動パワーステアリング装置(EPS)は、モータの駆動力で減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸にアシスト力を付与するようになっている。かかる従来の電動パワーステアリング装置は、アシスト力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、電流指令値とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいて、アシストマップを用いてアシスト指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Velは電流指令値を演算するトルク制御部31に入力され、演算された電流指令値Iref1は減算部32Bに入力され、モータ電流検出値Imと減算される。減算部32Bでの減算結果である偏差I(=Iref1-Im)はPI制御等の電流制御部35で制御され、電流制御された電圧制御値VrefがPWM制御部36に入力されてデューティを演算され、PWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。モータ20にはレゾルバ等の回転角センサ21が連結されており、回転角θが検出されて出力される。
 このような電動パワーステアリング装置では、操舵系の最大舵角(ラックエンド)の近傍で大きなアシストトルクがモータにより付加されると、操舵系が最大舵角に至った時点で大きな衝撃が生じ、打音(異音)が発生して、運転者が不快に感じる可能性がある。
 そのため、特公平6-4417号公報(特許文献1)には、操舵系の操舵角が最大操舵角より所定値手前になったことを判定する操舵角判定手段を備えると共に、操舵角が最大操舵角より所定値手前になったときにモータへ供給する電力を減少させて、アシストトルクを減少させる補正手段を備えた電動式パワーステアリング装置が開示されている。
 また、特許第4115156号公報(特許文献2)には、調節機構が端位置に近づいているかどうかを決定し、調節機構が端位置に近づいていることがわかった場合、ステアリング補助を減少するように駆動手段を制御し、調節機構が端位置に近付く速度を決定するため、位置センサによって決定された調節速度が評価される電動パワーステアリング装置が示されている。
特公平6-4417号公報 特許第4115156号公報
 しかしながら、特許文献1に開示された電動式パワーステアリング装置では、操舵角が最大操舵角より所定値手前になったことで電力を減少させており、操舵速度等を全く考慮していないので、微細な電流低減制御ができない。また、モータのアシストトルクを減少させる特性が全く示されておらず、具体的な構成となっていない。
 また、特許文献2に開示された電動パワーステアリング装置では、アシスト量が終端に向かうに従って減少していくが、終端に近づく速度に応じてアシスト量低減の速さを調整し、終端での速度を十分に落とすようにしている。しかし、特許文献2では、速度に応じて低減する特性を変化させることのみを示しており、物理的なモデルには基づいていない。また、フィードバック制御していないため、路面状況(負荷状態)によっては特性或いは結果が変化する恐れがある。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、物理モデルに基づいた制御系を構成し、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を減衰する電動パワーステアリング装置を提供することにある。また、ラックエンド手前で保舵状態を継続した場合に発生する可能性があるECUやモータの過熱を防止すること、モデルフォローイング制御に対して安全方策を取れるようにすることも目的とする。
 本発明は、少なくとも操舵トルクに基づいて電流指令値1を演算し、前記電流指令値1に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置に関し、本発明の上記目的は、ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、過熱防止のために前記粘弾性モデルへの入力又は出力にオフセットを与え、ラックエンド端当て時の衝撃力を抑制することにより達成される。
 また、本発明の上記目的は、ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、前記モデルフォローイング制御での制御量の範囲を制限し、ラックエンド端当て時の衝撃力を抑制することにより達成される。
 本発明の電動パワーステアリング装置によれば、物理モデルに基づいた制御系を構成しているので、定数設計に見通しが立て易くなり、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成しているので、負荷状態(外乱)や制御対象の変動にロバスト(頑健)な端当て抑制制御が可能となる利点がある。
 また、粘弾性モデルへの入力又は出力にオフセットを与えているので、モータに流れる電流を小さくすることができ、ECUやモータの過熱を防ぐことができる。
 更に、モデルフォローイング制御での制御量の範囲に制限を設けているので、制御量過多による違和感を抑えることができる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 本発明の構成例を示すブロック図である。 ラック位置変換部の特性例を示す図である。 粘弾性モデル追従制御部の構成例(実施形態1)を示すブロック図である。 粘弾性モデル追従制御部の構成例(実施形態2)を示すブロック図である。 本発明の動作例(全体)を示すフローチャートである。 粘弾性モデル追従制御部の動作例を示すフローチャートである。 粘弾性モデルの模式図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細な構成例(実施例1)を示すブロック図である。 粘弾性モデル追従制御部の詳細な構成例(実施例2)を示すブロック図である。 ラック位置によって規範モデルのパラメータを変更する例を示す図である。 粘弾性モデル追従制御部の動作例(実施例2)を示すフローチャートである。 本発明の構成例(実施例3、4)を示すブロック図である。 粘弾性モデル追従制御部の構成例(実施例3)を示すブロック図である。 粘弾性モデル追従制御部の構成例(実施例4)を示すブロック図である。 本発明の動作例(実施例3、4)を示すフローチャートである。 粘弾性モデル追従制御部の動作例(実施例3、4)を示すフローチャートである。 過熱保護制御部の動作例(実施例3、4)を示すフローチャートである。 粘弾性モデル追従制御部の詳細な構成例(実施例4)を示すブロック図である。 粘弾性モデル追従制御部の動作例(実施例4)を示すフローチャートである。 オフセット付与によるデータの変化例を示すイメージ図である。 過熱保護制御部の他の動作例(実施例5)を示すフローチャートである。 粘弾性モデル追従制御部の他の詳細な構成例(実施例6)を示すブロック図である。 本発明の構成例(実施例7)を示すブロック図である。 本発明の動作例(実施例7)を示すフローチャートである。 本発明の構成例(実施例8)を示すブロック図である。 本発明の動作例(実施例8)を示すフローチャートである。 粘弾性モデル追従制御の動作例(実施例8)を示すフローチャートである。 制御量制限部の動作例(実施例8)を示すフローチャートである。 本発明の構成例(実施例9)を示すブロック図である。 実施例8での制限値の変化例を示す図である。 実施例9での制限値の変化例を示す図である。 制御量制限部の動作例(実施例9)を示すフローチャートである。 実施例10での制限値の変化例を示す図である。 実施例11での制限値の変化例を示す図である。 本発明の構成例(実施例12)を示すブロック図である。 実施例12の制御量制限部の構成例を示すブロック図である。 操舵速度に対する高操舵時ゲインの特性例を示す図である。 操舵速度に対する低操舵時ゲインの特性例を示す図である。 制御量制限部の動作例(実施例12)を示すフローチャートである。 本発明の構成例(実施例13)を示すブロック図である。 実施例13の制御量制限部の構成例を示すブロック図である。 車速に対する高速時ゲインの特性例を示す図である。 車速に対する低速時ゲインの特性例を示す図である。 制御量制限部の動作例(実施例13)を示すフローチャートである。
 本発明は、ラックエンド近傍の物理モデルに基づいた制御系を構成し、粘弾性モデル(バネ定数、粘性摩擦係数)を規範モデルとし、その規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を減衰する電動パワーステアリング装置である。
 モデルフォローイング制御は粘弾性モデル追従制御部で構成し、粘弾性モデル追従制御部をフィードバック制御部又はフィードフォワード制御部及びフィードバック制御部で構成し、ラックエンド手前の所定角度外では通常のアシスト制御を行い、ラックエンド手前の所定角度内でモデルフォローイング制御を行い、ラックエンドに当たる時の衝撃力を減衰する。
 また、本発明では、粘弾性モデルへの入力又は出力にオフセットを与える処理(以下、「オフセット処理」とする)及びアシスト力の最大値を制限する処理(以下、「最大値制限処理」とする)を行う。
 オフセット処理では、粘弾性モデル追従制御部での粘弾性モデルの入力又は出力にオフセットを与えることにより、モータ電流を小さくし、ラックエンド手前で保舵状態を継続した場合に発生する可能性があるECUやモータの過熱を防止する。具体的には、粘弾性モデル追従制御部に入力されるラック軸力若しくはコラム軸トルク、又は粘弾性モデルから出力される目標ラック変位(目標舵角)からオフセットを減算する。これにより、粘弾性モデル追従制御部から出力されるラック軸力若しくはコラム軸トルクが抑制され、その抑制が電流指令値にフィードバックされ、モータ電流が小さくなる。オフセットは過熱保護制御部で演算される。過熱保護制御部は、ラックエンド手前の所定角度内において、車両状態情報である電流指令値、操舵トルク、モータ回転数若しくはラック変位速度等に基づいて保舵状態で大きいモータ電流が流れていることを判定(以下、この判定に使用する条件を「オフセット算出条件」とする)し、その状態が継続したらオフセットを算出する。そして、オフセットの値を徐々に大きくすることにより、断続的にモータ電流を小さくするが、保舵状態判定の条件の一部が不成立となったら、オフセットの値を大きくすることを中断し、ラックエンド手前の所定角度外となったら、オフセットをゼロにリセットし、オフセットを与えないようにする。また、オフセットに上限値を設定することにより、モータ電流が過度に小さくならないようにする。オフセットの上限値の代わりに電流指令値の下限値を設定し、電流指令値が下限値となったときのオフセットの値を上限オフセットとして記憶し、電流指令値が下限値未満の間はオフセットの値は上限オフセットのままとすることにより、モータ電流が過度に小さくならないようにしても良い。ラックエンド手前の所定角度内においてモデルフォローイング制御と粘弾性モデルの入出力へのオフセット付与を統合して実行することにより、ラックエンドに当たることを防ぎながら過熱保護を行えるようにすると共に、両機能を個別に起動することにより電流値がハンチング(変動)を起こし、運転者に違和感を与える可能性を小さくすることができる。
 モデルフォローイング制御では、仮想ラックエンドがあるように、即ち、運転者がハンドルを切り込もうとしてもラックエンドであるかのようにハンドルが進まないようにするために、運転者の手入力とタイヤ側からの反力との和に釣り合うようにアシスト力を出力する(タイヤと路面の摩擦が極低い場合は、運転者の手入力分だけとなる)。しかし、この場合、運転者の操舵方向と逆方向にアシストすることになるために、安全性を考慮して、最大値制限処理によりアシスト力の最大値を制限する。また、運転者の操舵方向と同じ方向へのアシストにおいても、同様に、アシスト力の最大値を制限する。
 以下に、本発明の実施形態を、図面を参照して説明する。
 図3は本発明の実施形態の一例を図2に対応させて示しており、電流指令値Iref1は変換部101でラック軸力fに変換され、ラック軸力fは粘弾性モデル追従制御部120に入力される。ラック軸力fはコラム軸トルクと等価であるが、以下の説明では便宜的にラック軸力として説明する。なお、図2に示される構成と同一構成には同一符号を付して説明は省略する。
 電流指令値Iref1からラック軸力fへの変換は、下記数1に従って行われる。
(数1)
f=G1×Iref1
ここで、Ktをトルク定数[Nm/A]、Grを減速比、Cfを比ストローク[m/rev.]として、G1=Kt×Gr×(2π/Cf)である。
 回転角センサ21からの回転角θはラック位置変換部100に入力され、判定用ラック位置Rxに変換される。判定用ラック位置Rxはラックエンド接近判定部110に入力され、ラックエンド接近判定部110は図4に示すように、判定用ラック位置Rxがラックエンド手前の所定位置x以内にあると判定したときに端当て抑制制御機能を働かせ、ラック変位xを出力すると共に切替信号SWSを出力する。切替信号SWS及びラック変位xは、ラック軸力fと共に粘弾性モデル追従制御部120へ入力され、粘弾性モデル追従制御部120で制御演算されたラック軸力ffは変換部102で電流指令値Iref2に変換され、電流指令値Iref2は加算部103で電流指令値Iref1と加算されて電流指令値Iref3となる。電流指令値Iref3に基づいて、上述したアシスト制御が行われる。
 なお、図4に示すラックエンド近接領域を設定する所定位置xは、適宜な位置に設定可能である。所定位置xはラック比ストローク、車種、フィール等により一義的には定まらず、通常ラックエンド手前1~50mm程度に設定される。また、回転角θをモータに連結された回転角センサ21から得ているが、舵角センサから取得するようにしても良い。
 変換部102でのラック軸力ffから電流指令値Iref2への変換は、下記数2に従って行われる。
(数2)
Iref2=ff/G1
 
 粘弾性モデル追従制御部120の詳細を、図5又は図6に示す。
 図5の実施形態1では、ラック軸力fはフィードフォワード制御部130及びフィードバック制御部140に入力され、ラック変位xはフィードバック制御部140に入力される。フィードフォワード制御部130からのラック軸力FFは切替部121に入力され、フィードバック制御部140からのラック軸力FBは切替部122に入力される。切替部121及び122は切替信号SWSによってON/OFFされ、切替信号SWSによってOFFされているときは、各出力u及びuはゼロである。切替信号SWSによって切替部121及び122がONされたとき、切替部121からのラック軸力FFがラック軸力uとして出力され、切替部122からのラック軸力FBがラック軸力uとして出力される。切替部121及び122からのラック軸力u及びuが加算部123で加算され、加算値のラック軸力ffが粘弾性モデル追従制御部120から出力される。ラック軸力ffは、変換部102で電流指令値Iref2に変換される。
 また、図6の実施形態2では、ラック変位xはフィードフォワード制御部130及びフィードバック制御部140に入力され、ラック軸力fはフィードバック制御部140に入力される。以下は図5の実施形態1と同様に、フィードフォワード制御部130からのラック軸力FFは切替部121に入力され、フィードバック制御部140からのラック軸力FBは切替部122入力される。切替部121及び122は切替信号SWSによってON/OFFされ、切替信号SWSによってOFFされているときは、各出力u及びuはゼロである。切替信号SWSによって切替部121及び122がONされたとき、切替部121からのラック軸力FFがラック軸力uとして出力され、切替部122からのラック軸力FBがラック軸力uとして出力される。切替部121及び122からのラック軸力u及びuが加算部123で加算され、加算値のラック軸力ffが粘弾性モデル追従制御部120から出力される。ラック軸力ffは変換部102で電流指令値Iref2に変換される。
 このような構成において、先ず本発明の動作例全体を図7のフローチャートを参照して、次いで粘弾性モデル追従制御(実施形態1及び2)の動作例を図8のフローチャートを参照して説明する。
 スタート段階においては、切替部121及び122は切替信号SWSによってOFFされている。そして、動作がスタートすると先ず、トルク制御部31は操舵トルクTh及び車速Velに基づいて電流指令値Iref1を演算し(ステップS10)、ラック位置変換部100は回転角センサ21からの回転角θを判定用ラック位置Rxに変換する(ステップS11)。ラックエンド接近判定部110は判定用ラック位置Rxに基づいてラックエンド接近か否かを判定し(ステップS12)、ラックエンド接近でない場合には、粘弾性モデル追従制御部120からラック軸力ffは出力されず、電流指令値Iref1に基づく通常の操舵制御が実行され(ステップS13)、終了となるまで継続される(ステップS14)。
 一方、ラックエンド接近判定部110でラックエンド接近が判定された場合には、粘弾性モデル追従制御部120による粘弾性モデル追従制御が実行される(ステップS20)。即ち、図8に示すように、ラックエンド接近判定部110から切替信号SWSが出力されると共に(ステップS201)、ラック変位xが出力される(ステップS202)。また、変換部101は、前記数1に従って電流指令値Iref1をラック軸力fに変換する(ステップS203)。図5の実施形態1では、フィードフォワード制御部130はラック軸力fに基づいてフィードフォワード制御を行い(ステップS204)、フィードバック制御部140はラック変位x及びラック軸力fに基づいてフィードバック制御を行う(ステップS205)。また、図6の実施形態2では、フィードフォワード制御部130はラック変位xに基づいてフィードフォワード制御を行い(ステップS204)、フィードバック制御部140はラック変位x及びラック軸力fに基づいてフィードバック制御を行う(ステップS205)。なお、いずれの場合も、フィードフォワード制御及びフィードバック制御の順番は、逆であっても良い。
 ラックエンド接近判定部110からの切替信号SWSは切替部121及び122に入力され、切替部121及び122がONされる(ステップS206)。切替部121及び122がONされると、フィードフォワード制御部130からのラック軸力FFがラック軸力uとして出力され、フィードバック制御部140からのラック軸力FBがラック軸力uとして出力される。ラック軸力u及びuは加算部123で加算され(ステップS207)、加算結果としてのラック軸力ffが変換部102で、前記数2に従って電流指令値Iref2に変換される(ステップS208)。
 ここで、本発明の粘弾性モデル追従制御部120は、ラックエンド近辺の物理モデルに基づいた制御系となっており、ラックエンド手前の所定角度以内で粘弾性モデル(バネ定数k[N/m]、粘性摩擦係数μ[N/(m/s)])を規範モデル(入力:力、出力:変位で記述された物理モデル)としたモデルフォローイング制御を構成し、ラックエンドに当たる時の衝撃力を減衰している。
 図9はラックエンド近傍の模式図を示しており、質量mと力F,Fの関係は数3である。粘弾性モデルの方程式の算出は、例えば関西大学理工学会誌「理工学と技術」Vol.17(2010)の「弾性膜と粘弾性の力学の基礎」(大場謙吉)に示されている。
Figure JPOXMLDOC01-appb-M000001
そして、ラック変位x、xに対して、k、kをバネ定数とすると、数4~数6が成立する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
従って、上記数3に上記数4~数6を代入して数7となる。
Figure JPOXMLDOC01-appb-M000005
上記数7を微分すると、下記数8となり、μ/kを両辺に乗算すると数9となる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
そして、数7と数9を加算すると、数10となる。
Figure JPOXMLDOC01-appb-M000008
数10に上記数4及び数6を代入すると、下記数11となる。
Figure JPOXMLDOC01-appb-M000009
ここで、μ/k=τ,k=E,μ(1/k+1/k)=τδとすると、上記数11は数12となり、ラプラス変換すると数13が成立する。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
上記数13をX(s)/F(s)で整理すると、下記数14となる。
Figure JPOXMLDOC01-appb-M000012
数14は入力力fから出力変位xまでの特性を示す3次の物理モデル(伝達関数)となり、バネ定数k=∞のバネとするとτ→0であり、τδ=μ・1/kであるので、2次関数の下記数15が導かれる。
Figure JPOXMLDOC01-appb-M000013
 
 本発明では、数15で表される2次関数を規範モデルGmとして説明する。即ち、数16を規範モデルGmとしている。ここで、μ=μとしている。
Figure JPOXMLDOC01-appb-M000014
 
 次に、電動パワーステアリング装置の実プラント146を下記数17で表わされるPとし、本発明の規範モデル追従型制御を2自由度制御系で設計すると、Pn及びPdを実際のモデルとして図10の構成となる。ブロック143(Cd)は制御要素部を示している。(例えば朝倉書店発行の前田肇、杉江俊治著「アドバンスト制御のためのシステム制御理論」参照)
Figure JPOXMLDOC01-appb-M000015
実プラントPを安定な有理関数の比で表わすために、N及びDを下記数18で表わす。Nの分子はPの分子、Dの分子はPの分母となる。ただし、αは(s+α)=0の極が任意に選択できる。
Figure JPOXMLDOC01-appb-M000016
 
 図10の構成を規範モデルGmに適用すると、x/f=Gmとなるためには、1/Fを下記数19のように設定する必要がある。なお、数19は、数16及び数18より導かれる。
Figure JPOXMLDOC01-appb-M000017
フィードバック制御部のブロックN/Fは下記数20である。
Figure JPOXMLDOC01-appb-M000018
フィードフォワード制御部のブロックD/Fは下記数21である。
Figure JPOXMLDOC01-appb-M000019
 
 2自由度制御系の一例を示す図10において、実プラントPへの入力(ラック軸力若しくはコラム軸トルクに対応する電流指令値)uは、下記数22で表される。
Figure JPOXMLDOC01-appb-M000020
また、実プラントPの出力(ラック変位)xは下記数23である。
Figure JPOXMLDOC01-appb-M000021
数23を整理し、出力xの項を左辺に、fの項を右辺に揃えると、数24が導かれる。
Figure JPOXMLDOC01-appb-M000022
数24を入力fに対する出力xの伝達関数として表わすと、数25となる。ここで、3項目以降ではP=Pn/Pdとして表現している。
Figure JPOXMLDOC01-appb-M000023
 
 実プラントPを正確に表現できたとすれば、Pn=N、Pd=Dとすることができ、入力fに対する出力xの特性は、Pn/F(=N/F)として表わされるので、数26が成立する。
Figure JPOXMLDOC01-appb-M000024
入力fに対して出力xの特性(規範モデル(伝達関数))を、下記数27のようにすると考えるとき、
Figure JPOXMLDOC01-appb-M000025
1/Fを下記数28のようにすることで達成できる。
Figure JPOXMLDOC01-appb-M000026
 
 図10において、フィードフォワード制御系をブロック144→実プラントPの経路で考えると、図11となる。ここで、P=N/Dとすると、図11(A)は図11(B)となり、数20より図11(C)が得られる。図11(C)より、f=(m・s+μ・s+k0)xとなるので、これを逆ラプラス変換すると、下記数29が得られる。
Figure JPOXMLDOC01-appb-M000027
 
 一方、図12に示すようなフィードフォワード制御系の伝達関数ブロックを考えると、下記数30が入力f及び出力xにおいて成立する。
Figure JPOXMLDOC01-appb-M000028
数30を整理すると下記31となり、数31を入力fについて整理すると、数32が得られる。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
数32を逆ラプラス変換すると上記数29となり、結果的に図13に示すように2つのフィードフォワード制御部A及びBは等価である。
 上記前提を踏まえ、以下に本発明の具体的な構成例を図14及び図15に示して説明する。図14の実施例1は図5の実施形態1に対応し、ラック軸力fがフィードフォワード制御部130内のフィードフォワード要素144(数21で示されるD/F)及びフィードバック制御部140に入力され、ラック変位xがフィードバック制御部140に入力される。また、図15の実施例2は図6の実施形態2に対応し、ラック変位xがフィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132に入力され、ラック軸力fがフィードバック制御部140に入力される。
 図14の実施例1ではフィードフォワード要素144からのラック軸力FFは切替部121のb1接点に入力される。また、図15の実施例2では、フィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132の出力を減算部133で減算し、減算部133の減算結果であるラック軸力FFが切替部121のb1接点に入力される。切替部121のa1接点には、固定部125から固定値「0」が入力されている。
 図14の実施例1及び図15の実施例2のいずれにおいても、フィードバック制御部140はフィードバック要素(N/F)141、減算部142、制御要素部143で構成され、フィードバック制御部140からのラック軸力FB、つまり制御要素部143の出力は切替部122のb2接点に入力される。切替部122のa2接点には、固定部126から固定値「0」が入力されている。フィードバック要素(N/F)141が、前述のように規範モデルであり、粘弾性モデルに相当し、フィードバック要素(N/F)141からの出力が目標ラック変位となる。
 図14の実施例1では、ラック軸力fはフィードフォワード制御部130内のフィードフォワード要素144に入力されると共に、フィードバック制御部140のフィードバック要素(N/F)141に入力される。ラック変位xはフィードバック制御部140の減算部142に減算入力されると共に、パラメータ設定部124に入力される。パラメータ設定部124はラック変位xに対して、例えば図16に示すような特性のバネ定数k及び粘性摩擦係数μを出力し、バネ定数k及び粘性摩擦係数μは、フィードフォワード制御部130内のフィードフォワード要素144及びフィードバック制御部140内のフィードバック要素(N/F)141に入力される。
 図15の実施例2では、ラック変位xはフィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132に入力されると共に、フィードバック制御部140の減算部142に入力され、更にパラメータ設定部124に入力される。ラック軸力fはフィードバック制御部140のフィードバック要素(N/F)141に入力される。パラメータ設定部124はラック変位xに対して、上述と同様なバネ定数k及び粘性摩擦係数μを出力し、バネ定数kはバネ定数項131及びフィードバック要素(N/F)141に入力され、粘性摩擦係数μは粘性摩擦係数項132及びフィードバック要素(N/F)141に入力される。
 また、切替信号SWSは、実施例1及び2においていずれも切替部121及び122に入力され、切替部121及び122の接点は通常時はそれぞれ接点a1及びa2に接続されており、切替信号SWSによってそれぞれ接点b1及びb2に切替えられるようになっている。
 このような構成において、図15の実施例2の動作例を図17のフローチャートを参照して説明する。
 ラックエンド接近判定部110から切替信号SWSが出力されると共に(ステップS21)、ラック変位xが出力される(ステップS22)。ラック変位xはバネ定数項131、粘性摩擦係数項132、パラメータ設定部124及び減算部142に入力される。パラメータ設定部124は、ラック変位xに応じて図16の特性に従って求められたバネ定数k及び粘性摩擦係数μを、バネ定数項131、粘性摩擦係数項132及びフィードバック要素(N/F)141に設定する(ステップS23)。また、変換部101は電流指令値Iref1をラック軸力fに変換し(ステップS23A)、ラック軸力fはフィードバック要素(N/F)141に入力され、N/F演算される(ステップS24)。N/F演算値は減算部142に加算入力され、ラック変位xが減算され(ステップS24A)、その減算値が制御要素部143でCd演算される(ステップS24B)。制御要素部143から、演算されたラック軸力FBが出力されて切替部122の接点b2に入力される。
 フィードフォワード制御部130内の粘性摩擦係数項132は、粘性摩擦係数μに基づいて“(μ-η)・s”の演算を行い(ステップS25)、バネ定数項131にバネ定数kを設定し(ステップS25A)、減算部でバネ定数k及び“(μ-η)・s”の減算を行い(ステップS25B)、演算結果としてラック軸力FFを出力する。ラック軸力FFは切替部121の接点b1に入力される。なお、フィードフォワード制御部130及びフィードバック制御部140の演算の順番は、逆であっても良い。
 ラックエンド接近判定部110からの切替信号SWSは切替部121及び122に入力され、切替部121及び122の各接点がa1からb1へ、a2からb2へ切替えられ、切替部121及び122からのラック軸力u及びuが加算部123で加算され(ステップS26)、加算結果としてのラック軸力ffが変換部102で電流指令値Iref2に変換される(ステップS26A)。電流指令値Iref2は加算部103に入力され、電流指令値Iref1に加算され(ステップS27)、操舵制御が実行され、ステップS14へとつながる。
 なお、制御要素部143(Cd)は任意のPID(比例積分微分)制御、PI制御、PD制御の構成のいずれでも良い。また、図14の実施例1の動作も、ラック軸力f及びラック変位xが入力する部分(要素)が異なるだけで、同様である。更に、図14の実施例1及び図15の実施例2では、フィードフォワード制御部130及びフィードバック制御部140の両方の制御演算を実行しているが、フィードフォワード制御部130のみの構成でも良く、フィードバック制御部140のみの構成でも良い。
 次に、オフセット処理を行う本発明の実施例(実施例3~7)について説明する。
 図18はオフセット処理を行う本発明の実施例を図3に対応させて示しており、図3に示される実施形態に対してラック変位速度演算部150及び過熱保護制御部160が追加されている。ラックエンド接近判定部110から出力されるラック変位x及び切替信号SWSは、粘弾性モデル追従制御部220の他に、ラック変位速度演算部150にラック変位xが、過熱保護制御部160に切替信号SWSがそれぞれ入力される。ラック変位速度演算部150はラック変位xよりラック変位速度Rvを算出し、過熱保護制御部160に出力する。過熱保護制御部160は、切替信号SWS及びラック変位速度Rvの他に、操舵トルクTh、車速Vel及び後述の電流指令値Iref3を入力し、オフセットofを算出する。オフセットofは、ラック軸力f、切替信号SWS及びラック変位xと共に粘弾性モデル追従制御部220に入力され、粘弾性モデル追従制御部220で制御演算されたラック軸力ffは変換部102で電流指令値Iref2に変換される。他の構成は図3に示される実施形態と同じであるから、説明は省略する。
 粘弾性モデル追従制御部220の詳細を、図5に対応させて図19(実施例3)に、図6に対応させて図20(実施例4)にそれぞれ示す。
 過熱保護制御部160から出力されるオフセットofはフィードバック制御部240に入力される。その他は、図5の実施形態1又は図6の実施形態2と同じ構成である。
 このような構成において、全体の動作例及び粘弾性モデル追従制御の動作例を、図21、図22及び図23のフローチャートを参照して説明する。
 図21に全体の動作例をフローチャートで示しており、図7のフローチャートと比べると、ステップS12Aが追加されており、粘弾性モデル追従制御の動作が、後述のように変更されている(ステップS20A)。その他の動作は実施形態1又は実施形態2と同じである。
 ステップS12Aでは、ラックエンド接近判定部110が判定用ラック位置Rxに基づいてラックエンド接近か否かを判定した結果がラックエンド接近でない場合、過熱保護制御部160でのオフセットofの値をゼロにリセットする動作が実行される。
 ラックエンド接近判定部110でラックエンド接近が判定された場合には、過熱保護制御部160及び粘弾性モデル追従制御部220による粘弾性モデル追従制御が実行される(ステップS20A)。
 図22に粘弾性モデル追従制御の動作例をフローチャートで示しており、図8のフローチャートと比べると、ステップS203A及びS203Bが追加され、フィードバック制御の動作に変更が加わっており(ステップS205からS205Aに変更)、その他は実施形態1又は実施形態2の動作と同じである。なお、ステップS205Aのフィードバック制御はフィードバック制御部240で実行されるが、その動作については、後述の粘弾性モデル追従制御部220の詳細説明のところで説明する。
 ステップS203Aでは、ラックエンド接近判定部110から出力されたラック変位xをラック変位速度演算部150が入力し、ラック変位xよりラック変位速度Rvを算出する動作が実行される。そして、ステップS203Bでは、過熱保護制御部160が、切替信号SWSによりラックエンド接近を検知し、操舵トルクTh、車速Vel、ラック変位速度Rv及び電流指令値Iref3に基づいてオフセットofを算出する。
 過熱保護制御部160でのオフセットofの算出は、図23に示されるような手順で実行される。
 オフセットofはオフセット算出条件が所定時間だけ成立したときに更新されるが、所定時間だけ成立したか否かをON/OFFで示すフラグ(以下、「所定時間経過フラグ」とする)が設けられており、スタート段階ではOFFとなっている。オフセットofの値は、スタート段階ではゼロとなっている。
 過熱保護制御部160は、切替信号SWSの出力によりラックエンド接近を検知したら、車両状態情報である電流指令値Iref3、操舵トルクTh、ラック変位速度Rv及び車速Velを読み取り(ステップS301)、所定時間経過フラグを確認する(ステップS302)。
 所定時間経過フラグがOFFの場合、オフセット算出条件が所定時間だけ成立しているかを確認する(ステップS303)。オフセット算出条件は、「車速Velが所定の車速値より小さく」且つ「操舵トルクThが所定の操舵トルク値より大きく」且つ「ラック変位速度Rvが所定の速度値より小さく」且つ「電流指令値Iref3が所定の電流指令値より大きい」であり、オフセット算出条件が成立している時間は時間カウンタを使用して計測する。オフセット算出条件が所定時間だけ成立している場合は、所定時間経過フラグをONにして(ステップS304)、オフセットofを出力する(ステップS305)。オフセット算出条件が所定時間だけ成立していない場合は、所定時間経過フラグはそのままにして、オフセットofを出力する(ステップS305)。
 所定時間経過フラグがONの場合、保舵状態判定の条件の一部が不成立となっていないか確認する(ステップS306)。即ち、「車速Velが所定の車速値より小さい」、「操舵トルクThが所定の操舵トルク値より大きい」又は「ラック変位速度Rvが所定の速度値より小さい」の3つの条件のうちの少なくとも1つの条件が不成立となっていないか確認する。3条件とも成立している場合、オフセットofに所定の値を加算することにより、オフセットofを更新する(ステップS307)。そして、更新されたオフセットofが所定の上限値を超えているか確認し(ステップS308)、超えていた場合、所定の上限値をオフセットofの値とし(ステップS309)、超えていない場合は、オフセットofの値は変更せず、オフセットofを出力する(ステップS305)。上記の3つの条件のうちの少なくとも1つの条件が不成立の場合、所定時間経過フラグをOFFにして(ステップS310)、オフセットofは更新せずに出力する(ステップS305)。所定時間経過フラグをOFFにする際に、ステップS303で使用する時間カウンタをゼロクリアする。
 ラックエンド手前の所定角度外となり、ラックエンド接近でないと判定されたら、上述のように、オフセットofの値はゼロにリセットされる(ステップS12A)。
 以上により算出されたオフセットofは粘弾性モデル追従制御部220のフィードバック制御部240に入力される。
 なお、オフセット算出条件において、車速Velに関する条件はなくても良く、他の条件を付加しても良い。また、ラック変位速度Rvの代わりにモータ回転数を使用し、「モータ回転数が所定の回転数より小さくなる」という条件に代えても良い。この場合、モータ回転数は回転角センサ21から出力される回転角θより算出する。更に、オフセットofの更新は所定の値を加算することにより行っているが、オフセットofが徐々に大きくなるように更新されるのであれば、これ以外の方法、例えば指数関数的に大きくなるように更新しても良い。
 ここで、粘弾性モデル追従制御部220について、更に詳細を、図24及び図25を用いて説明する。
 図20の実施例4での粘弾性モデル追従制御部220の具体的な構成例を図24に示す。これは、図15に示される実施例2に対応しており、フィードバック制御部140がフィードバック制御部240に代わっている。その他の構成は実施例2と同じであるから、説明は省略する。
 フィードバック制御部240はフィードバック要素(N/F)141、制御要素部143、減算部142及び減算部145で構成され、過熱保護制御部160からのオフセットofは減算部145に減算入力される。
 フィードバック制御部240に入力されるラック軸力fは減算部145に加算入力され、減算部145に減算入力されたオフセットofが減算され、ラック軸力f’としてフィードバック要素(N/F)141に入力される。
 このような構成における動作例が図25のフローチャートで示されている。
 まず、図17に示される実施例2での動作と同様に、ラックエンド接近判定部110から切替信号SWS及びラック変位xが出力され(ステップS21、S22)、ラック変位xはバネ定数項131、粘性摩擦係数項132、パラメータ設定部124及び減算部142に入力される。パラメータ設定部124はバネ定数k及び粘性摩擦係数μを、バネ定数項131、粘性摩擦係数項132及びフィードバック要素(N/F)141に設定し(ステップS23)、変換部101は電流指令値Iref1をラック軸力fに変換する(ステップS23A)。ラック軸力fは減算部145に加算入力される。ラック変位速度演算部150はラック変位xよりラック変位速度Rvを算出し(ステップS23B)、ラック変位速度Rvは、切替信号SWS、操舵トルクTh、車速Vel及び電流指令値Iref3と共に過熱保護制御部160に入力され、過熱保護制御部160にてオフセットofが算出される(ステップS23C)。オフセットofは減算部145に減算入力され、オフセットofを減算されたラック軸力f’がフィードバック要素(N/F)141に入力され、N/F演算される(ステップS24)。
 その後は、実施例2でのステップS24A~S27と同様の動作が実行され、ステップS14へとつながる。
 なお、図14に示される実施例1においてフィードバック制御部140を図24の実施例4でのフィードバック制御部240に置き換えた構成を、図19の実施例3での粘弾性モデル追従制御部220の具体的な構成例とすることができる。その構成例の動作は、ラック軸力f及びラック変位xが入力する部分(要素)が異なるだけで、実施例4での動作と同様である。
 ここで、オフセット付与による各データ(信号)の変化のイメージを図26に示す。図26において、横軸は時間で、縦軸は各データの大きさであるが、ここでは変化の様子を示すことを目的としているので、各データの大きさは実際とは異なっている。また、各データが変化するタイミングには、実際にはズレが生じることがあるが、ズレはないとし、粘弾性モデル追従制御部220に入力されるラック軸力f及びラック変位xは一定とする。
 ラックエンド手前の所定角度内において、時点tでオフセット算出条件が所定時間だけ成立したとすると、オフセットofの値が徐々に増加し、その分だけラック軸力f’は減少していく。その結果、粘弾性モデルからの出力であるN/F演算値も減少し、減算部142で算出されるラック変位xとの偏差は大きくなり、その偏差を入力とする制御要素部(Cd)143の出力であるラック軸力FBは減少する。そのラック軸力FBの減少を受け、電流指令値も減少する。
 オフセット付与の機能がなかった場合、各データは、図26の点線で示されるように一定のままとなり、その結果、モータ電流が低減されず、ECUやモータが過熱するおそれがあるので、本機能が有効に作用することがわかる。
 時点tでオフセットofが上限値に達したとすると、時点t以降、オフセットofは上限値で一定となり、他のデータも時点tでの値で一定となる。これにより、電流指令値が下がり過ぎるのを防ぐことができる。
 上述のように、上記の実施例(実施例3、実施例4)では、オフセットに上限値を設定することにより、モータ電流が過度に小さくならないようにしているが、オフセットの上限値の代わりに電流指令値の下限値を設定し、電流指令値が下限値となったときのオフセットの値を上限オフセットとして記憶し、電流指令値が下限値未満の間はオフセットの値は上限オフセットのままとすることにより、モータ電流が過度に小さくならないようにすることも可能である。
 この場合の実施例(実施例5)の構成は上記の実施例(実施例3、実施例4)と同様であるが、過熱保護制御部160でのオフセットofの算出の動作に違いがある。
 図27は実施例5での過熱保護制御部160でのオフセットofの算出の動作例を示したフローチャートであり、図23に示されるフローチャートと比べると、車両状態情報である電流指令値Iref3、操舵トルクTh、ラック変位速度Rv及び車速Velの読み取り(ステップS301)の後に、ステップS301A~S301Dが加わっており、オフセットofの更新(ステップS307)後の処理がステップS308及びS309からステップS308A及びS309Aに代わっている。また、本実施例では、電流指令値が下限値になったか否かをON/OFFで示すフラグ(以下、「制限フラグ」とする)が設けられており、スタート段階ではOFFとなっている。
 過熱保護制御部160は読み取った電流指令値Iref3が所定の下限値より小さいか確認し(ステップS301A)、小さい場合、その時点のオフセットofの値を上限オフセットとして記憶し(ステップS301B)、制限フラグをONにする(ステップS301C)。電流指令値Iref3が下限値より小さくない場合は、制限フラグをOFFにする(ステップS301D)。
 オフセットofを更新した(ステップS307)後は、制限フラグを確認し(ステップS308A)、制限フラグがONの場合、上限オフセットをオフセットofの値とし(ステップS309A)、OFFの場合はオフセットofの値は変更しない。
 このように、ECUやモータの過熱に直接関わる電流指令値の大きさでオフセットに制限をかけるので、効果的に過熱を防止することができる。
 オフセットの減算を、粘弾性モデルであるフィードバック要素(N/F)141に入力されるラック軸力fに対してではなく、フィードバック要素(N/F)141から出力されるN/F演算値に対して行うことも可能である。
 図28は、図24に示される実施例4での粘弾性モデル追従制御部の構成例に対して、オフセットofの減算をフィードバック要素(N/F)141から出力されるN/F演算値に対して行うようにした場合の構成例(実施例6)を示している。
 フィードバック制御部250以外の構成は図24の実施例4の構成と同じで、フィードバック制御部250においても構成要素は同じであるが、構成要素の接続が異なる。ラック軸力fは減算部145ではなく、フィードバック要素(N/F)141に入力され、フィードバック要素(N/F)141から出力されるN/F演算値は減算部142ではなく、減算部145に加算入力される。減算部145では、N/F演算値からオフセットofが減算され、減算値が減算部142に加算入力され、ラック変位xが減算され、制御要素部143に入力される。
 フィードバック制御部におけるラック軸力の流れは、実施例6と上記の他の実施例(実施例3~5)とでは同じであり、その同じ流れの中でオフセットを与えているので、実施例6でも他の実施例と同等の効果を得ることができる。
 なお、実施例3での粘弾性モデル追従制御部の構成例に対しても、オフセットofの減算をフィードバック要素(N/F)141から出力されるN/F演算値に対して行うようにすることが可能である。
 上記の実施例(実施例3~6)においてラック変位xを用いて実行している処理は、ラック変位xの代わりにモータの回転角θの変位(以下、「回転角変位」とする)θdを用いても実行可能である。上記の実施例でのラック位置変換部100において回転角θが判定用ラック位置Rxに変換されているように、ラック位置と回転角は連動しているので、ラックエンド手前の所定位置又は角度を基点としたラック変位及び回転角変位の間で代用が可能である。
 図18に対応させて、ラック変位xの代わりに回転角変位θdを用いた場合の実施例(実施例7)を図29に示す。
 実施例7では、ラック位置を求める必要がないので、ラック位置変換部100が不要となっており、ラックエンド接近判定部110がラックエンド接近判定部210に代わり、ラック変位速度演算部150の代わりにモータ回転数演算部250が設けられ、過熱保護制御部160が過熱保護制御部260に代わり、粘弾性モデル追従制御部220が粘弾性モデル追従制御部320に代わっている。回転センサ21からの回転角θはラックエンド接近判定部210に入力され、ラックエンド接近判定部210は、回転角θがラックエンドに対応する回転角とラックエンド手前の所定位置に対応する回転角θとの間にあると判定したときに抑制制御機能を働かせ、回転角θと回転角θの偏差である回転角変位θdを出力すると共に切替信号SWSを出力する。回転角変位θdは粘弾性モデル追従制御部320及びモータ回転数演算部250に入力され、切替信号SWSは粘弾性モデル追従制御部320及び過熱保護制御部260に入力される。モータ回転数演算部250は回転角変位θdよりモータ回転数ωを算出し、過熱保護制御部260に出力する。過熱保護制御部260は、ラック変位速度Rvの代わりにモータ回転数ωを使用してオフセットofを算出する。粘弾性モデル追従制御部320は、ラック変位xの代わりに回転角変位θdを使用してラック軸力ffを演算する。
 実施例7の全体の動作例は図30のようになり、図21に示される動作例と比較すると、回転角θを判定用ラック位置Rxに変換するラック位置変換の処理(ステップS11)が不要となっている。その他の処理においては、ラック変位xの代わりに回転角変位θdが算出及び使用され、ラック変位速度Rvの代わりにモータ回転数ωが算出及び使用される点が違うだけで、動作は同じである。
 ラック変位xの代わりに回転角変位θdを用いることにより、回転角を直接使用することができるので、処理量及び演算誤差の低減を図ることができる。
 なお、上記の実施例(実施例3~7)では、フィードフォワード制御部及びフィードバック制御部の両方の制御演算を実行しているが、フィードバック制御部のみの構成でも良い。
 次に、最大値制限処理を行う本発明の実施例(実施例8~13)について説明する。なお、本実施例において、ラック軸力(及びコラム軸トルク)は、ハンドルが右に切られている(以下、「右切操舵」とする)ときは正の値に、ハンドルが左に切られている(以下、「左切操舵」とする)ときは負の値になるように設定されているとする。
 まず、本発明の実施例8について説明する。図31は実施例8の構成例を図3に対応させて示しており、図3に示される実施形態に対して制御量制限部170が追加されており、ラックエンド接近判定部110がラックエンド接近判定部210に代わっている。
 ラックエンド接近判定部210は、ラック変位x及び切替信号SWSの他に、ハンドルの操舵方向を示す方向信号Sdを出力する。ラックエンド接近判定部210に入力される判定用ラック位置Rxに基づいてハンドルの操舵方向を判定し、右切操舵の場合は方向信号Sdを「右切」にして出力し、左切操舵の場合は方向信号Sdを「左切」にして出力する。
 制御量制限部170は、粘弾性モデル追従制御部120から出力されるラック軸力ff(制御量)の最大値及び最小値を制限する。制限するためにラック軸力ffに対する上限値及び下限値(以下、上限値及び下限値の総称を「制限値」とする)を設定するが、右切操舵の場合の制限値と左切操舵の場合の制限値をそれぞれ設定する。例えば、右切操舵の場合、上限値(以下、「右切上限値」とする)RU1は下記数33のように所定の値Fx1(例えば2Nm(ニュートンメートル))とし、下限値(以下、「右切下限値」とする)RL1は下記数34のようにシステムの最大出力fmax(正の値)の符号を反転した値から所定の値Fx2(例えば10Nm)を減算した値とする。
(数33)
RU1=Fx1
(数34)
RL1=-fmax-Fx2
左切操舵の場合は、右切操舵の場合の上限値及び下限値を入れ替えた値を上限値(以下、「左切上限値」とする)LU1及び下限値(以下、「左切下限値」とする)LL1とする。即ち、下記数35及び数36のようになる。
(数35)
LU1=fmax+Fx2
(数36)
LL1=-Fx1
 
 制御量制限部170はラックエンド接近判定部210から出力される方向信号Sdを入力する。そして、方向信号Sdが「右切」の場合、右切上限値RU1及び右切下限値RL1を用いてラック軸力ffに制限をかけ、方向信号Sdが「左切」の場合、左切上限値LU1及び左切下限値LL1を用いてラック軸力ffに制限をかける。制限されたラック軸力ffはラック軸力ffmとして変換部102に出力される。
 このような構成において、実施例8の動作例を、図32及び図33のフローチャートを参照して説明する。
 図32に全体の動作例をフローチャートで示しており、図7のフローチャートと比べると、方向信号Sdの出力(ステップS11A)が追加され、通常操舵(ステップS13)及び粘弾性モデル追従制御(ステップS20)に制御量制限部170での処理が加わるので、変更が生じている(ステップS13B、S20B)。
 ステップS11Aでは、ラックエンド接近判定部210が、入力された判定用ラック位置Rxに基づいてハンドルの操舵方向を判定し、判定結果(右切、左切)を方向信号Sdとして制御量制限部170に出力する。
 粘弾性モデル追従制御(ステップS20B)での動作例を図33のフローチャートで示す。図8のフローチャートと比べると、ステップS207Aが追加されている。ステップS207Aでは、ラックエンド接近判定部210から出力された方向信号Sdに基づいて、粘弾性モデル追従制御部120から出力されたラック軸力ffに制限がかけられる。図34にステップS207Aの詳細な動作例を示す。制御量制限部170は方向信号Sdを入力する(ステップS207B)。そして、方向信号Sdが「右切」の場合(ステップS207C)、ラック軸力ffが右切上限値RU1以上ならば(ステップS207D)、ラック軸力ffの値を右切上限値RU1とし(ステップS207E)、ラック軸力ffが右切下限値RL1以下ならば(ステップS207F)、ラック軸力ffの値を右切下限値RL1とし(ステップS207G)、それ以外ならばラック軸力ffの値は変更しない。方向信号Sdが「左切」の場合(ステップS207C)、ラック軸力ffが左切上限値LU1以上ならば(ステップS207H)、ラック軸力ffの値を左切上限値LU1とし(ステップS207I)、ラック軸力ffが左切下限値LL1以下ならば(ステップS207J)、ラック軸力ffの値を左切下限値LL1とし(ステップS207K)、それ以外ならばラック軸力ffの値は変更しない。制限をかけられたラック軸力ffはラック軸力ffmとして出力され(ステップS207L)、ラック軸力ffmは変換部102で電流指令値Iref2に変換され(ステップS208A)、加算部103で電流指令値Iref1に加算される。
 通常操舵(ステップS13B)でも、粘弾性モデル追従制御の場合と同様に、粘弾性モデル追従制御部120から出力されたラック軸力ffに制限がかけられる。しかし、この場合のラック軸力ffの値はゼロであるから、制限されることなく、ラック軸力ffがそのままラック軸力ffmとして出力される。
 なお、左切上限値及び左切下限値は右切上限値及び右切下限値を入れ替えた値としているが、違う所定の値を使用する等して、入れ替えた値にしなくても良い。また、右切操舵の場合と左切操舵の場合で同じ制限値を使用しても良く、その場合は、方向信号Sdは不要となるので、ラックエンド接近判定部210でのハンドルの操舵方向の判定及び制御量制限部170での方向信号Sdによる動作の切替えも不要となる。
 本発明の実施例9について説明する。
 実施例8ではラック軸力ffに対する制限値は固定の値であるが、実施例9では、電流指令値Iref1から変換されたラック軸力fに基づいて設定される。ラック軸力fに基づいて設定することにより、より適切な制限値を設定することができる。
 図35に実施例9の構成例を示す。図31に示される実施例8の構成例と比べると、制御量制限部170が制御量制限部270に代わっている。制御量制限部270には、ラック軸力ff及び方向信号Sdの他に、変換部101から出力されるラック軸力fが入力されており、方向信号Sd及びラック軸力fに基づいてラック軸力ffの最大値及び最小値を制限する。具体的には、例えば右切上限値RU2は下記数37のようにラック軸力fに所定の値Fx3(例えば2Nm)を加算した値とし、右切下限値RL2は下記数38のようにラック軸力fの符号を反転した値から所定の値Fx4(例えば10Nm)を減算した値とする。
(数37)
RU2=f+Fx3
(数38)
RL2=-f-Fx4
左切上限値LU2及び左切下限値LL2は、右切上限値RU2及び右切下限値RL2を入れ替えた、下記数39及び数40のような値とする。
(数39)
LU2=-f+Fx4
(数40)
LL2=f-Fx3
例えば、ラック軸力fが操舵角に対して図37の破線で示されるように変化する場合、実施例8での制限値は図36に示されるようにラック軸力fによらず一定であるが、実施例9での制限値は図37の実線で示されるように変化する。
 このような構成において、実施例9の動作例を図38のフローチャートを参照して説明する。
 図38は制御量制限部270の動作例を示すフローチャートであり、図34に示される実施例8の動作例と比べると、粘弾性モデル追従制御部120から出力されたラック軸力ffを制限値と比較する前に、変換部101から出力されたラック軸力fに基づいて各制限値が設定されている。即ち、ラック軸力ffを右切上限値RU2と比較する前に右切上限値RU2が数37により設定され(ステップS207d)、ラック軸力ffを右切下限値RL2と比較する前に右切下限値RL2が数38により設定され(ステップS207f)、ラック軸力ffを左切上限値LU2と比較する前に左切上限値LU2が数39により設定され(ステップS207h)、ラック軸力ffを左切下限値LL2と比較する前に左切下限値LL2が数40により設定される(ステップS207j)。その他の動作は実施例8の動作と同じである。
 なお、制限値算出で使用する所定の値Fx3及びFx4として、実施例8で使用する所定の値Fx1及びFx2を使用しても良い。また、実施例8の場合と同様に、左切上限値及び左切下限値は右切上限値及び右切下限値を入れ替えた値ではなく、違う所定の値を使用する等して、入れ替えた値にしなくても良く、右切操舵の場合と左切操舵の場合で同じ制限値を使用しても良い。
 本発明の実施例10について説明する。
 実施例10では、実施例9と同様に、制限値をラック軸力fに基づいて設定するが、より制御量を制限してあるトルク以上では、ハンドルとエンド方向に操舵できるように、右切下限値及び左切上限値の算出において所定の値の加減算を実施例9とは逆にする。しかし、右切上限値及び左切下限値と逆転しないように、右切下限値はゼロを超えず、左切上限値はゼロ未満にならないようにする。
 実施例10の構成例は、図35に示される実施例9の構成例と基本的に同じであるが、制御量制限部での動作が異なる。即ち、制御量制限部では、例えば右切上限値RU3は下記数41のようにラック軸力fに所定の値Fx5(例えば2Nm)を加算した値とし、右切下限値RL3は下記数42のようにラック軸力fの符号を反転した値に所定の値Fx6(例えば5Nm)を加算した値とするが、右切下限値RL3がゼロを超えた場合、右切下限値RL3はゼロにする。
(数41)
RU3=f+Fx5
(数42)
RL3=-f+Fx6
左切上限値LU3及び左切下限値LL3は、右切上限値RU3及び右切下限値RL3を入れ替えた、下記数43及び数44のような値とするが、左切上限値LU3がゼロ未満の場合、左切上限値LU3はゼロにする。
(数43)
LU3=-f-Fx6
(数44)
LL3=f-Fx5
例えば、ラック軸力fが操舵角に対して図39の破線で示されるように変化する場合、実施例10での制限値は実線で示されるように変化する。
 実施例10の動作は、上述のように制御量制限部での動作が実施例9の動作例と異なるだけで、他は同じである。
 なお、制限値算出で使用する所定の値Fx5及びFx6として、実施例8及び/又は実施例9で使用する所定の値を使用しても良い。また、左切上限値及び左切下限値は右切上限値及び右切下限値を入れ替えた値ではなく、違う所定の値を使用する等して、入れ替えた値にしなくても良い。
 本発明の実施例11について説明する。
 実施例11では、実施例8と実施例9とでの制限値の設定方法を組み合わせて、制限値を設定する。例えば、右切上限値及び左切下限値は実施例8のようにして設定し、右切下限値及び左切上限値は実施例9のようにして設定する。即ち、右切上限値RU4、右切下限値RL4、左切上限値LU4及び左切下限値LL4は、下記数45~48にように設定される。
(数45)
RU4=Fx1
(数46)
RL4=-f-Fx4
(数47)
LU4=-f+Fx4
(数48)
LL4=-Fx1
例えば、ラック軸力fが操舵角に対して図40の破線で示されるように変化する場合、実施例11での制限値は実線で示されるように変化する。
 実施例11の構成例及び動作例は、制御量制限部での動作が上述のように異なるのみで、他は実施例9の構成例及び動作例と同じである。
 なお、制限値の設定方法の組み合わせとして、上述とは逆に、右切上限値及び左切下限値は実施例9のようにして設定し、右切下限値及び左切上限値は実施例8のようにして設定しても良い。また、実施例8と実施例10とでの制限値の設定方法を組み合わせても良い。
 本発明の実施例12について説明する。
 実施例9~11ではラック軸力fに基づいて制限値を設定しているが、実施例12では、さらに操舵速度により制限値を変更する。これにより、操舵速度が速いときは仮想ラックエンドになるように強く制御し、遅いときは制御量の制限を強くして安全性を高める等、より柔軟な対応を取ることが可能となる。
 図41に実施例12の構成例を示す。図35に示される実施例9の構成例と比べると、制御量制限部270が制御量制限部370に代わっており、制御量制限部370には、ラック軸力ff、方向信号Sd及びラック軸力fの他に、操舵速度ωsが入力されている。
 制御量制限部370は、操舵速度が速いときは、仮想ラックエンドになるように強く制御するために実施例9での設定方法で制限値を設定し、操舵速度が遅いときは、制御量の制限を強くした実施例10での設定方法で制限値を設定する。また、設定方法の移行が徐々に行われるように、実施例9及び実施例10での設定方法で設定された各制限値にゲインを乗算し、それらを加算した値を制限値とする。
 制御量制限部370の構成例を図42に示す。制御量制限部370は、高操舵時制限値演算部371、低操舵時制限値演算部372、高操舵時ゲイン部373、低操舵時ゲイン部374、制限部375及び加算部376、377で構成されている。
 高操舵時制限値演算部371は、方向信号Sd及びラック軸力fを用いて、実施例9での設定方法により上限値UPH及び下限値LWHを算出する。即ち、方向信号Sdが「右切」の場合は、数37で算出される右切上限値RU2(=f+Fx3)を上限値UPHとし、数38で算出される右切下限値RL2(=-f-Fx4)を下限値LWHとする。方向信号Sdが「左切」の場合は、数39で算出される左切上限値LU2(=-f+Fx4)を上限値UPHとし、数40で算出される左切下限値LL2(=f-Fx3)を下限値LWHとする。
 低操舵時制限値演算部372は、方向信号Sd及びラック軸力fを用いて、実施例10での設定方法により上限値UPH及び下限値LWHを算出する。即ち、方向信号Sdが「右切」の場合は、数41で算出される右切上限値RU3(=f+Fx5)を上限値UPLとし、数42で算出される右切下限値RL3(=-f+Fx6)を下限値LWLとするが、下限値LWLがゼロを超えた場合、下限値LWLはゼロにする。方向信号Sdが「左切」の場合は、数43で算出される左切上限値LU3(=-f-Fx6)を上限値UPLとし、数44で算出される左切下限値LL3(=f-Fx5)を下限値LWLとするが、上限値UPLがゼロ未満の場合、上限値UPLはゼロにする。
 高操舵時ゲイン部373は、操舵速度ωsに対して、例えば図43に示されるような特性を有する高操舵時ゲインGHを上限値UPH及び下限値LWHにそれぞれ乗算し、上限値UPHg及び下限値LWHgを算出する。図43に示される高操舵時ゲインGHの特性は、所定の操舵速度ωs1までは0%で、所定の操舵速度ωs1からωs2(ωs2>ωs1)の間では操舵速度ωsに比例して大きくなり、所定の操舵速度ωs2を超えると100%となるような特性である。
 低操舵時ゲイン部374は、操舵速度ωsに対して、例えば図44に示されるような特性を有する低操舵時ゲインGLを上限値UPL及び下限値LWLにそれぞれ乗算し、上限値UPLg及び下限値LWLgを算出する。図44に示される低操舵時ゲインGLの特性は、図43に示される高操舵時ゲインGHの特性の逆の特性となっている。
 加算部376は、上限値UPHgとUPLgを加算し、上限値UPを算出する。加算部377は、下限値LWHgとLWLgを加算し、下限値LWを算出する。
 制限部375は、上限値UP及び下限値LWを用いて、ラック軸力ffに制限をかける。
 このような構成において、実施例12の動作例を図45のフローチャートを参照して説明する。
 図45は制御量制限部370の動作例を示すフローチャートであり、実施例12の動作は、制御量制限部370の動作が異なるだけで、他の動作は実施例8~11の動作と同じである。
 ラックエンド接近判定部210から出力された方向信号Sd及び変換部101から出力されたラック軸力fは、高操舵時制限値演算部371及び低操舵時制限値演算部372に入力される(ステップS401)。
 高操舵時制限値演算部371は、方向信号Sdが「右切」の場合(ステップS402)、右切上限値RU2を上限値UPHとし、右切下限値RL2を下限値LWHとして出力する(ステップS403)。方向信号Sdが「左切」の場合(ステップS402)、左切上限値LU2を上限値UPHとし、左切下限値LL2を下限値LWHとして出力する(ステップS404)。
 低操舵時制限値演算部372は、方向信号Sdが「右切」の場合(ステップS405)、右切上限値RU3を上限値UPLとし、右切下限値RL3を下限値LWLとして出力する(ステップS406)。方向信号Sdが「左切」の場合(ステップS405)、左切上限値LU3を上限値UPLとし、左切下限値LL3を下限値LWLとして出力する(ステップS407)。なお、高操舵時制限値演算部371での動作と低操舵時制限値演算部372での動作の順番は逆でも並行して実行しても良い。
 高操舵時ゲイン部373は、上限値UPH、下限値LWH及び操舵速度ωsを入力し、図43に示される特性を用いて操舵速度ωsに対する高操舵時ゲインGHを求め、上限値UPH及び下限値LWHにそれぞれ乗算し、上限値UPHg(=UPH×GH)及び下限値LWHg(=LWH×GH)を出力する(ステップS408)。
 低操舵時ゲイン部374は、上限値UPL、下限値LWL及び操舵速度ωsを入力し、図44に示される特性を用いて操舵速度ωsに対する低操舵時ゲインGLを求め、上限値UPL及び下限値LWLにそれぞれ乗算し、上限値UPLg(=UPL×GL)及び下限値LWLg(=LWL×GL)を出力する(ステップS409)。なお、高操舵時ゲイン部373での動作と低操舵時ゲイン部374での動作の順番は逆でも並行して実行しても良い。
 上限値UPHg及びUPLgは加算部376に入力され、加算結果が上限値UPとして出力される(ステップS410)。下限値LWHg及びLWLgは加算部377に入力され、加算結果が下限値LWとして出力される(ステップS411)。
 上限値UP及び下限値LWは、粘弾性モデル追従制御部から出力されたラック軸力ffと共に、制限部375に入力される。制限部375は、ラック軸力ffが上限値UP以上ならば(ステップS412)、ラック軸力ffの値を上限値UPとし(ステップS413)、ラック軸力ffが下限値LW以下ならば(ステップS414)、ラック軸力ffの値を下限値LWとし(ステップS415)、それ以外ならばラック軸力ffの値を変更しない。制限をかけられたラック軸力ffはラック軸力ffmとして出力される(ステップS416)。
 なお、高操舵時ゲインGH及び低操舵時ゲインGLの操舵速度ωs1とωs2の間の特性は、図43及び図44に示されるような直線的な特性に限られず、高操舵時ゲインGHと低操舵時ゲインGLの和が100%となるならば、曲線的な特性でも良い。また、高操舵時制限値演算部371及び/又は低操舵時制限値演算部372において実施例8での設定方法で制限値を設定しても良い。この場合、操舵速度が速いときは仮想ラックエンドになるように強く制御し、遅いときは制御量の制限を強くして安全性を高めるように、上限値及び下限値を調整する。
 本発明の実施例13について説明する。
 実施例12では操舵速度により制限値を変更しているが、実施例13では車速により制限値を変更する。例えば、停車を含む極低速走行時は仮想ラックエンドになるように強く制御し、低速走行を超えるようになるにつれて、制限値を徐々に変化させていく。
 図46に実施例13の構成例を示す。図41に示される実施例12の構成例に比べると、制御量制限部370が制御量制限部470に代わっており、制御量制限部470には、操舵速度ωsの代わりに車速Velが入力されている。
 制御量制限部470は、車速が低速のときは、仮想ラックエンドになるように強く制御するために実施例9での設定方法で制限値を設定し、車速が高速になると実施例10での設定方法で制限値を設定する。そして、実施例12と同様に、設定方法の移行が徐々に行われるように、実施例9及び実施例10での設定方法で設定された各制限値にゲインを乗算し、それらを加算した値を制限値とする。
 制御量制限部470の構成例を図47に示す。制御量制限部470は、高速時制限値演算部471、低速時制限値演算部472、高速時ゲイン部473、低速時ゲイン部474、制限部375及び加算部376、377で構成されている。制限部375及び加算部376、377は、実施例12と同様の構成で同様の動作をするので、説明は省略する。
 高速時制限値演算部471は、実施例12での低操舵時制限値演算部372と同様に、方向信号Sd及びラック軸力fを用いて、実施例10での設定方法により上限値UpH及び下限値LwHを算出する。
 低速時制限値演算部472は、実施例12での高操舵時制限値演算部371と同様に、方向信号Sd及びラック軸力fを用いて、実施例9での設定方法により上限値UpL及び下限値LwLを算出する。
 高速時ゲイン部473は、車速Velに対して、例えば図48に示されるような特性を有する高速時ゲインgHを上限値UpH及び下限値LwHにそれぞれ乗算し、上限値UpHg及び下限値LwHgを算出する。図48に示される高速時ゲインgHの特性は、所定の車速Vel1までは0%で、所定の車速Vel1からVel2(Vel2>Vel1)の間では車速Velに比例して大きくなり、所定の車速Vel2を超えると100%となるような特性である。
 低速時ゲイン部474は、車速Velに対して、例えば図49に示されるような特性を有する低速時ゲインgLを上限値UpL及び下限値LwLにそれぞれ乗算し、上限値UpLg及び下限値LwLgを算出する。図49に示される低速時ゲインgLの特性は、図48に示される高速時ゲインgHの特性の逆の特性となっている。
 このような構成において、実施例13の動作例を図50のフローチャートを参照して説明する。
 図50は制御量制限部470の動作例を示すフローチャートであり、実施例13の動作は、制御量制限部470の動作が異なるだけで、他の動作は実施例12の動作と同じである。
 方向信号Sd及びラック軸力fは、高速時制限値演算部471及び低速時制限値演算部472に入力される(ステップS401A)。
 高速時制限値演算部471は、方向信号Sdが「右切」の場合(ステップS402A)、右切上限値RU3を上限値UpHとし、右切下限値RL3を下限値LwHとして出力する(ステップS403A)。方向信号Sdが「左切」の場合(ステップS402A)、左切上限値LU3を上限値UpHとし、左切下限値LL3を下限値LwHとして出力する(ステップS404A)。
 低速時制限値演算部472は、方向信号Sdが「右切」の場合(ステップS405A)、右切上限値RU2を上限値UpLとし、右切下限値RL2を下限値LwLとして出力する(ステップS406A)。方向信号Sdが「左切」の場合(ステップS405A)、左切上限値LU2を上限値UpLとし、左切下限値LL2を下限値LwLとして出力する(ステップS407A)。なお、高速時制限値演算部471での動作と低速時制限値演算部472での動作の順番は逆でも並行して実行しても良い。
 高速時ゲイン部473は、上限値UpH、下限値LwH及び車速Velを入力し、図48に示される特性を用いて車速Velに対する高速時ゲインgHを求め、上限値UpH及び下限値LwHにそれぞれ乗算し、上限値UpHg(=UpH×gH)及び下限値LwHg(=LwH×gH)を出力する(ステップS408A)。
 低速時ゲイン部474は、上限値UpL、下限値LwL及び車速Velを入力し、図49に示される特性を用いて車速Velに対する低速時ゲインgLを求め、上限値UpL及び下限値LwLにそれぞれ乗算し、上限値UpLg(=UpL×gL)及び下限値LwLg(=LwL×gL)を出力する(ステップS409A)。なお、高速時ゲイン部473での動作と低速時ゲイン部474での動作の順番は逆でも並行して実行しても良い。
 その後は、実施例12での動作と同様に、上限値UpHg、UpLg及び下限値LwHg、LwLgから加算部376、357を介して上限値Up及び下限値Lwを算出し(ステップS410、S411)、上限値Up、下限値Lw及びラック軸力ffから制限部375を介してラック軸力ffを出力する(ステップS412~S416)。
 なお、高速時ゲインgH及び低速時ゲインgLの車速Vel1とVel2の間の特性は、図48及び図49に示されるような直線的な特性に限られず、高速時ゲインgHと低速時ゲインgLの和が100%となるならば、曲線的な特性でも良い。また、高速時制限値演算部471及び/又は低速時制限値演算部472において実施例8での設定方法で制限値を設定しても良い。
1        ハンドル
2        コラム軸(ステアリングシャフト、ハンドル軸)
10       トルクセンサ
12       車速センサ
13       バッテリ
14       舵角センサ
20       モータ
21       回転角センサ
30       コントロールユニット(ECU)
31       トルク制御部
35       電流制御部
36       PWM制御部
100      ラック位置変換部
110、210  ラックエンド接近判定部
120、220、320  粘弾性モデル追従制御部
121、122  切替部
124      パラメータ設定部
130      フィードフォワード制御部
140、240  フィードバック制御部
150      ラック変位速度演算部
160、260  過熱保護制御部
170、270、370、470  制御量制限部
250      モータ回転数演算部
371      高操舵時制限値演算部
372      低操舵時制限値演算部
373      高操舵時ゲイン部
374      低操舵時ゲイン部
375      制限部
471      高速時制限値演算部
472      低速時制限値演算部
473      高速時ゲイン部
474      低速時ゲイン部
 

Claims (30)

  1.  少なくとも操舵トルクに基づいて電流指令値1を演算し、前記電流指令値1に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置において、
     ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、
     過熱防止のために前記粘弾性モデルへの入力又は出力にオフセットを与え、ラックエンド端当てを抑制するようにしたことを特徴とする電動パワーステアリング装置。
  2.  前記モデルフォローイング制御の構成がフィードバック制御部である請求項1に記載の電動パワーステアリング装置。
  3.  前記モデルフォローイング制御の構成がフィードバック制御部及びフィードフォワード制御部である請求項1に記載の電動パワーステアリング装置。
  4.  前記規範モデルのパラメータをラック変位に基づいて可変する請求項1に記載の電動パワーステアリング装置。
  5.  前記電流指令値1をラック軸力若しくはコラム軸トルク1に変換する第1の変換部と、
     前記モータの回転角から判定用ラック位置に変換するラック位置変換部と、
     前記判定用ラック位置に基づいてラックエンドに接近したことを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、
     前記モデルフォローイング制御の構成で、前記ラック軸力若しくはコラム軸トルク1、前記ラック変位及び前記切替信号に基づいて、粘弾性モデルを規範モデルとしたラック軸力若しくはコラム軸トルク2を生成する粘弾性モデル追従制御部と、
     前記ラック軸力若しくはコラム軸トルク2を電流指令値2に変換する第2の変換部と、
     前記ラック軸力若しくはコラム軸トルク1又は前記粘弾性モデル追従制御部の粘弾性モデルの出力から減算する前記オフセットを車両状態情報に基づいて演算する過熱保護制御部とを具備し、
     前記電流指令値2を前記電流指令値1に加算した電流指令値3に基づいて前記アシスト制御を行う請求項1に記載の電動パワーステアリング装置。
  6.  前記粘弾性モデル追従制御部が、
     前記ラック軸力若しくはコラム軸トルク1に基づいてフィードフォワード制御してラック軸力若しくはコラム軸トルク3を出力するフィードフォワード制御部と、
     前記ラック変位及び前記ラック軸力若しくはコラム軸トルク1に基づいてフィードバック制御してラック軸力若しくはコラム軸トルク4を出力するフィードバック制御部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク3の出力をON/OFFする第1の切替部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク4の出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記ラック軸力若しくはコラム軸トルク2を出力する加算部とで構成されている請求項5に記載の電動パワーステアリング装置。
  7.  前記粘弾性モデル追従制御部が、
     前記ラック変位に基づいてフィードフォワード制御してラック軸力若しくはコラム軸トルク3を出力するフィードフォワード制御部と、
     前記ラック変位及び前記ラック軸力若しくはコラム軸トルク1に基づいてフィードバック制御してラック軸力若しくはコラム軸トルク4を出力するフィードバック制御部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク3の出力をON/OFFする第1の切替部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク4の出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記ラック軸力若しくはコラム軸トルク2を出力する加算部とで構成されている請求項5に記載の電動パワーステアリング装置。
  8.  前記ラック変位によって、前記フィードバック制御部及びフィードフォワード制御部のパラメータを変更する請求項6又は7に記載の電動パワーステアリング装置。
  9.  前記過熱保護制御部が、
     ラックエンド手前の所定角度の範囲内において前記車両状態情報により保舵状態が継続していると判定した場合、前記オフセットを演算する請求項5に記載の電動パワーステアリング装置。
  10.  前記車両状態情報が少なくとも前記電流指令値3、前記操舵トルク及びモータ回転数若しくはラック変位速度からなり、
     少なくとも前記電流指令値3が所定の電流指令値より大きく、前記操舵トルクが所定の操舵トルク値より大きく、且つ前記モータ回転数若しくはラック変位速度が所定の値より小さい状態が継続した場合、前記オフセットを演算する請求項9に記載の電動パワーステアリング装置。
  11.  前記オフセットの値が演算開始時点から徐々に大きくなるように更新される請求項9又は10に記載の電動パワーステアリング装置。
  12.  前記オフセットの値が所定の上限値を超えた場合、前記所定の上限値を前記オフセットの値とする請求項11に記載の電動パワーステアリング装置。
  13.  前記電流指令値3が所定の下限値未満となった時点の前記オフセットの値を上限オフセットとして記憶し、前記電流指令値3が前記所定の下限値未満の間は前記上限オフセットを前記オフセットの値とする請求項11に記載の電動パワーステアリング装置。
  14.  前記操舵トルクが前記所定の操舵トルク値以下となった場合、或いは前記モータ回転数若しくはラック変位速度が前記所定の値以上となった場合、前記オフセットの更新を中断する請求項11乃至13のいずれかに記載の電動パワーステアリング装置。
  15.  前記ラックエンド手前の所定角度の範囲外となった場合、前記オフセットの値をゼロにリセットする請求項9乃至14のいずれかに記載の電動パワーステアリング装置。
  16.  少なくとも操舵トルクに基づいて電流指令値1を演算し、前記電流指令値1に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置において、
     ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、
     前記モデルフォローイング制御での制御量の範囲を制限し、ラックエンド端当てを抑制するようにしたことを特徴とする電動パワーステアリング装置。
  17.  前記モデルフォローイング制御の構成がフィードバック制御部である請求項16に記載の電動パワーステアリング装置。
  18.  前記モデルフォローイング制御の構成がフィードフォワード制御部である請求項16に記載の電動パワーステアリング装置。
  19.  前記モデルフォローイング制御の構成がフィードバック制御部及びフィードフォワード制御部である請求項16に記載の電動パワーステアリング装置。
  20.  前記規範モデルのパラメータをラック変位に基づいて可変する請求項16に記載の電動パワーステアリング装置。
  21.  前記電流指令値1をラック軸力若しくはコラム軸トルク1に変換する第1の変換部と、
     前記モータの回転角から判定用ラック位置に変換するラック位置変換部と、
     前記判定用ラック位置に基づいてラックエンドに接近したことを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、
     前記モデルフォローイング制御の構成で、前記ラック軸力若しくはコラム軸トルク1、前記ラック変位及び前記切替信号に基づいて、粘弾性モデルを規範モデルとしたラック軸力若しくはコラム軸トルク2を生成する粘弾性モデル追従制御部と、
     前記ラック軸力若しくはコラム軸トルク2に対して上限値及び下限値を設定し、前記ラック軸力若しくはコラム軸トルク2を制限する制御量制限部と、
     前記制限されたラック軸力若しくはコラム軸トルク2を電流指令値2に変換する第2の変換部とを具備し、
     前記電流指令値2を前記電流指令値1に加算して前記アシスト制御を行う請求項16に記載の電動パワーステアリング装置。
  22.  前記粘弾性モデル追従制御部が、
     前記ラック軸力若しくはコラム軸トルク1に基づいてフィードフォワード制御してラック軸力若しくはコラム軸トルク3を出力するフィードフォワード制御部と、
     前記ラック変位及び前記ラック軸力若しくはコラム軸トルク1に基づいてフィードバック制御してラック軸力若しくはコラム軸トルク4を出力するフィードバック制御部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク3の出力をON/OFFする第1の切替部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク4の出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記ラック軸力若しくはコラム軸トルク2を出力する加算部とで構成されている請求項21に記載の電動パワーステアリング装置。
  23.  前記粘弾性モデル追従制御部が、
     前記ラック変位に基づいてフィードフォワード制御してラック軸力若しくはコラム軸トルク3を出力するフィードフォワード制御部と、
     前記ラック変位及び前記ラック軸力若しくはコラム軸トルク1に基づいてフィードバック制御してラック軸力若しくはコラム軸トルク4を出力するフィードバック制御部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク3の出力をON/OFFする第1の切替部と、
     前記切替信号により前記ラック軸力若しくはコラム軸トルク4の出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記ラック軸力若しくはコラム軸トルク2を出力する加算部とで構成されている請求項21に記載の電動パワーステアリング装置。
  24.  前記ラック変位によって、前記フィードバック制御部及びフィードフォワード制御部のパラメータを変更する請求項22又は23に記載の電動パワーステアリング装置。
  25.  前記上限値及び下限値を操舵方向に応じて設定する請求項21乃至24のいずれかに記載の電動パワーステアリング装置。
  26.  前記上限値及び下限値を前記ラック軸力若しくはコラム軸トルク1に基づいて設定する請求項21乃至25のいずれかに記載の電動パワーステアリング装置。
  27.  前記上限値及び下限値を操舵速度により変更する請求項21乃至26のいずれかに記載の電動パワーステアリング装置。
  28.  前記操舵速度による変更では、前記操舵速度の変化に対して前記上限値及び下限値が徐々に変化する請求項27に記載の電動パワーステアリング装置。
  29.  前記上限値及び下限値を車速により変更する請求項21乃至26のいずれかに記載の電動パワーステアリング装置。
  30.  前記車速による変更では、前記車速の変化に対して前記上限値及び下限値が徐々に変化する請求項29に記載の電動パワーステアリング装置。
     
PCT/JP2015/085955 2014-12-25 2015-12-24 電動パワーステアリング装置 WO2016104571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/522,418 US10173719B2 (en) 2014-12-25 2015-12-24 Electric power steering apparatus
EP15873139.8A EP3222497B1 (en) 2014-12-25 2015-12-24 Electric power steering device
CN201580071092.5A CN107207041B (zh) 2014-12-25 2015-12-24 电动助力转向装置
JP2016566424A JP6090551B2 (ja) 2014-12-25 2015-12-24 電動パワーステアリング装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014262244 2014-12-25
JP2014-262244 2014-12-25
JP2015183271 2015-09-16
JP2015-183271 2015-09-16
JP2015-228993 2015-11-24
JP2015228993 2015-11-24

Publications (1)

Publication Number Publication Date
WO2016104571A1 true WO2016104571A1 (ja) 2016-06-30

Family

ID=56150584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085955 WO2016104571A1 (ja) 2014-12-25 2015-12-24 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10173719B2 (ja)
EP (1) EP3222497B1 (ja)
JP (1) JP6090551B2 (ja)
CN (1) CN107207041B (ja)
WO (1) WO2016104571A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477986B1 (ja) * 2017-11-22 2019-03-06 日本精工株式会社 電動パワーステアリング装置の制御装置
US10946891B2 (en) 2017-04-12 2021-03-16 Nsk Ltd. Electric power steering apparatus
CN112590917A (zh) * 2020-12-15 2021-04-02 东风汽车集团有限公司 一种转向助力电流确定方法、装置、设备和介质
JP7063428B1 (ja) * 2021-03-12 2022-05-09 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム
WO2022190452A1 (ja) * 2021-03-12 2022-09-15 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017220929B4 (de) * 2017-11-23 2020-02-27 Robert Bosch Gmbh Verfahren zum Betreiben eines Lenksystems und Lenksystem
JP7131345B2 (ja) * 2017-12-14 2022-09-06 トヨタ自動車株式会社 転舵システム
DE102018119268B4 (de) * 2018-08-08 2020-11-05 Thyssenkrupp Ag Zahnstangenkraft optimiertes Lenkgefühl einer Steer-by-Wire-Kraftfahrzeuglenkung
JP2020077260A (ja) * 2018-11-08 2020-05-21 朝日電装株式会社 車両用制御システム
JP7294814B2 (ja) * 2019-01-10 2023-06-20 株式会社ジェイテクト 転舵制御装置
JP7271965B2 (ja) * 2019-01-23 2023-05-12 株式会社デンソー 電動車両
EP3753808B1 (en) * 2019-06-17 2023-08-09 Volvo Car Corporation Dynamic end-stops for electric power steering
WO2021106437A1 (ja) * 2019-11-26 2021-06-03 日本精工株式会社 転舵制御装置
CN115515840A (zh) 2021-03-26 2022-12-23 日本精工株式会社 转向控制装置以及转向装置
US11753068B2 (en) 2021-04-02 2023-09-12 Nsk Ltd. Turning control device and turning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149971A (ja) * 2006-12-20 2008-07-03 Nsk Ltd 電動パワーステアリング装置
WO2014195625A2 (fr) * 2013-06-04 2014-12-11 Jtekt Europe Utilisation d'un moteur d'assistance de direction pour simuler une butée de fin de course de ladite direction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317361B2 (ja) 1992-06-23 2002-08-26 富士電機株式会社 メモリのバッテリバックアップ制御方式
US6073721A (en) * 1998-06-01 2000-06-13 Ford Global Technologies, Inc. Method for limiting hydraulic assist in a power assist steering system
US6408235B1 (en) * 1999-09-17 2002-06-18 Delphi Technologies, Inc. End-of-travel impact management system
DE10118739A1 (de) 2001-04-17 2002-11-14 Trw Fahrwerksyst Gmbh & Co Verfahren zum Steuern eines Servolenksystems
JP4432709B2 (ja) * 2004-10-01 2010-03-17 トヨタ自動車株式会社 電動パワーステアリング装置
US8082078B2 (en) * 2007-05-07 2011-12-20 Nexteer (Beijing) Technology Co., Ltd. Methods, systems, and computer program products for steering travel limit determination for electric power steering
JP2008302900A (ja) * 2007-06-11 2008-12-18 Nagoya Institute Of Technology 電動パワーステアリング装置の制御装置
US8880295B2 (en) * 2011-03-11 2014-11-04 Steering Solutions Ip Holding Corporation Torque based end of travel soft stop
JP5942726B2 (ja) * 2012-09-18 2016-06-29 株式会社ジェイテクト 電動パワーステアリング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149971A (ja) * 2006-12-20 2008-07-03 Nsk Ltd 電動パワーステアリング装置
WO2014195625A2 (fr) * 2013-06-04 2014-12-11 Jtekt Europe Utilisation d'un moteur d'assistance de direction pour simuler une butée de fin de course de ladite direction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222497A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946891B2 (en) 2017-04-12 2021-03-16 Nsk Ltd. Electric power steering apparatus
JP6477986B1 (ja) * 2017-11-22 2019-03-06 日本精工株式会社 電動パワーステアリング装置の制御装置
WO2019102543A1 (ja) * 2017-11-22 2019-05-31 日本精工株式会社 電動パワーステアリング装置の制御装置
CN110072760A (zh) * 2017-11-22 2019-07-30 日本精工株式会社 电动助力转向装置的控制装置
CN112590917A (zh) * 2020-12-15 2021-04-02 东风汽车集团有限公司 一种转向助力电流确定方法、装置、设备和介质
JP7063428B1 (ja) * 2021-03-12 2022-05-09 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム
WO2022190452A1 (ja) * 2021-03-12 2022-09-15 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム

Also Published As

Publication number Publication date
CN107207041B (zh) 2019-07-05
JP6090551B2 (ja) 2017-03-15
US20170327145A1 (en) 2017-11-16
EP3222497A1 (en) 2017-09-27
EP3222497A4 (en) 2018-08-08
JPWO2016104571A1 (ja) 2017-04-27
CN107207041A (zh) 2017-09-26
EP3222497B1 (en) 2019-09-11
US10173719B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
JP6090551B2 (ja) 電動パワーステアリング装置
JP6103163B2 (ja) 電動パワーステアリング装置
JP6004141B1 (ja) 電動パワーステアリング装置
JP6103164B2 (ja) 電動パワーステアリング装置
CN110573407B (zh) 电动助力转向装置
JP6296213B2 (ja) 電動パワーステアリング装置の制御装置
JP5999291B1 (ja) 電動パワーステアリング装置
JP6477986B1 (ja) 電動パワーステアリング装置の制御装置
JP2017210216A (ja) 電動パワーステアリング装置の制御装置
JP2019188861A (ja) ステアリング制御装置
JP2017171059A (ja) 電動パワーステアリング装置
JP2017165266A (ja) 電動パワーステアリング装置
JP4561383B2 (ja) 車両の操舵装置
WO2015181948A1 (ja) 操舵制御装置
JP2017171062A (ja) 電動パワーステアリング装置
JP2017165307A (ja) 電動パワーステアリング装置
JP2017165306A (ja) 電動パワーステアリング装置
JP2017171057A (ja) 電動パワーステアリング装置
JP2017171060A (ja) 電動パワーステアリング装置
JP2017171058A (ja) 電動パワーステアリング装置
JP2017165235A (ja) 電動パワーステアリング装置
JP2017165268A (ja) 電動パワーステアリング装置
JP2017165239A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873139

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016566424

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015873139

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015873139

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15522418

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE