WO2019102543A1 - 電動パワーステアリング装置の制御装置 - Google Patents

電動パワーステアリング装置の制御装置 Download PDF

Info

Publication number
WO2019102543A1
WO2019102543A1 PCT/JP2017/042014 JP2017042014W WO2019102543A1 WO 2019102543 A1 WO2019102543 A1 WO 2019102543A1 JP 2017042014 W JP2017042014 W JP 2017042014W WO 2019102543 A1 WO2019102543 A1 WO 2019102543A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
unit
control
displacement
force
Prior art date
Application number
PCT/JP2017/042014
Other languages
English (en)
French (fr)
Inventor
徹 坂口
徹也 北爪
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201780057868.7A priority Critical patent/CN110072760B/zh
Priority to PCT/JP2017/042014 priority patent/WO2019102543A1/ja
Priority to JP2018544277A priority patent/JP6477986B1/ja
Priority to EP17905901.9A priority patent/EP3514040A4/en
Priority to US16/095,028 priority patent/US20200346687A1/en
Publication of WO2019102543A1 publication Critical patent/WO2019102543A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0469End-of-stroke control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Definitions

  • the present invention relates to a control device for an electric power steering apparatus that calculates a current command value based on at least a steering torque, drives a motor by the current command value, and applies an assist force to a steering system of a vehicle. Based on the elastic model as a reference model, the assist torque is reduced by squeezing the current command value near the rack end, the force at the time of end contact is attenuated to reduce the impact energy, and the driver feels unpleasantly
  • the present invention relates to a control device of an electric power steering device which suppresses the steering wheel) and improves the steering feeling.
  • An electric power steering system that applies an assist force to the steering system of a vehicle by the rotational force of a motor assists the steering shaft or rack shaft with a transmission mechanism such as a gear or a belt via a reduction gear by the drive force of the motor. It is designed to apply power.
  • EPS electric power steering system
  • Such a conventional electric power steering apparatus performs feedback control of a motor current in order to generate an assist force torque accurately.
  • the feedback control is to adjust the motor applied voltage so that the difference between the current command value and the motor current detection value becomes smaller, and the adjustment of the motor applied voltage is generally performed by the duty of PWM (pulse width modulation) control. I am making adjustments.
  • the column shaft (steering shaft, handle shaft) 2 of the steering wheel 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, tie rods 6a, It passes through 6b, and is further connected to steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the steering wheel 1, and a motor 20 for assisting the steering force of the steering wheel 1 is connected to the column shaft 2 via the reduction gear 3.
  • Electric power is supplied from the battery 13 to the control unit (ECU) 30 that controls the electric power steering device, and an ignition key signal is input through the ignition key 11.
  • ECU control unit
  • the control unit 30 calculates the current command value of the assist command using the assist map based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, and the calculated current
  • the current supplied to the motor 20 is controlled by the voltage control value Vref obtained by compensating the command value.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various information of the vehicle, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can also be connected to a non-CAN 41 that transmits and receives communications other than the CAN 40, analog / digital signals, radio waves, and the like.
  • control unit 30 is mainly composed of a CPU (including an MPU and an MCU), but a typical function executed by a program inside the CPU is shown in FIG. It is configured to be
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are input to the torque control unit 31 that calculates the current command value.
  • the current command value Iref1 is input to the subtracting unit 32B and subtracted from the motor current detection value Im.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B to be fed back.
  • a rotation angle sensor 21 such as a resolver is connected to the motor 20, and the rotation angle ⁇ is detected and output.
  • Patent Document 1 includes a steering angle determination unit that determines that the steering angle of the steering system is a predetermined value before the maximum steering angle, and the steering angle is maximum steering.
  • an electric power steering apparatus provided with a correction means for reducing the assist torque by reducing the power supplied to the motor when a predetermined value before the angle.
  • patent 4115156 (patent document 2), it is determined whether the adjusting mechanism is approaching the end position, and if it is found that the adjusting mechanism is approaching the end position, the steering assistance is reduced.
  • an electric power steering system is shown in which the adjusting speed determined by the position sensor is evaluated.
  • the power is reduced because the steering angle is closer to the predetermined value than the maximum steering angle, and the steering speed and the like are not considered at all.
  • Current reduction control can not be performed.
  • the characteristic to reduce the assist torque of the motor is not shown at all, and the configuration is not specific.
  • Patent Document 2 Although the assist amount decreases toward the end, the speed at the end is adjusted by adjusting the speed of the assist amount reduction according to the speed approaching the end. I try to drop it enough.
  • Patent Document 2 only shows changing the characteristics to be reduced according to the speed, and is not based on a physical model. In addition, since feedback control is not performed, the characteristics or results may change depending on the road surface condition (load condition).
  • the present invention has been made under the circumstances as described above, and it is an object of the present invention to construct a control system based on a physical model so that the output of the controlled object (distance to the rack end) follows the reference model. It is an object of the present invention to provide a control device of an electric power steering apparatus which constitutes a model following control, prevents generation of abnormal noise at the time of end contact without giving a driver a sense of steering discomfort, and attenuates impact force. Furthermore, while being able to take a safety measure with respect to model following control, it aims at suppressing a change of control output when a safety measure acts excessively by a driver's sudden steering etc.
  • the present invention relates to a control device for an electric power steering apparatus that assists and controls a steering system by calculating a current command value based on at least a steering torque and driving a motor based on the current command value.
  • the objective is to configure the model following control that uses the visco-elastic model as a reference model within the range of a predetermined angle before the rack end, performs shift correction on the displacement information used in the model following control, and at least based on the steering speed. This is achieved by limiting the range of the control amount in the model following control using the set limit value and suppressing rack end placement.
  • the object of the present invention is that the configuration of the model following control is a feedback control unit, or that the configuration of the model following control is a feed forward control unit, or that the configuration of the model following control is The configuration is more effectively achieved by the feedback control unit and the feed forward control unit.
  • the present invention also relates to a control device of an electric power steering apparatus that assists and controls a steering system by calculating a first current command value based on at least a steering torque and driving a motor based on the first current command value.
  • the above object of the present invention is to convert the first current command value into the first rack shaft force or the first column shaft torque, and the rotation angle of the motor to the determination rack position.
  • a rack position conversion unit a rack end approach determination unit that determines that the rack end has approached based on the determination rack position, and outputs a rack displacement and a switching signal, and the rack displacement has a predetermined first target value
  • the rack displacement is corrected based on the amount of change which is the difference between the rack displacement and the first target value, and the correction rack displacement is corrected.
  • a second rack shaft with a viscoelastic model as a reference model based on the first rack shaft force or the first column shaft torque, the correction rack displacement, and the switching signal.
  • Viscoelastic model follow-up control unit that generates a force or a second column shaft torque, and an upper limit value and a lower limit value set for the second rack shaft force or the second column shaft torque based on at least a steering speed
  • a control amount limiting unit for limiting the second rack shaft force or the second column shaft torque, and the second current command for the limited second rack shaft force or the second column shaft torque.
  • a second conversion unit for converting into a value, wherein the assist control is performed by adding the second current command value to the first current command value, and the rack end end is suppressed.
  • the object of the present invention is to change the parameter of the reference model according to the correction rack displacement, or the visco-elastic model following control unit performs feedforward control based on the correction rack displacement.
  • a feedforward control unit that outputs rack axial force or a third column axial torque, and feedback control based on the correction rack displacement and the first rack axial force or the first column axial torque, and a fourth rack axial
  • a feedback control unit that outputs a force or a fourth column shaft torque, a first switching unit that turns on / off the output of the third rack shaft force or the third column shaft torque according to the switching signal, and the switching A second switching unit that turns on / off the output of the fourth rack shaft force or the fourth column shaft torque by a signal;
  • the feedforward control unit includes: an addition unit that adds the outputs of the first and second switching units and outputs the second rack shaft force or the second column shaft torque; or A first differential unit that differentiates the correction rack displacement and outputs first differential data, and providing a dead zone around zero with respect
  • the above object of the present invention is to provide a first conversion unit for converting the first current command value into a first rack shaft force or a first column shaft torque, and a rack position for determination from the rotation angle of the motor. And a rack end approach determination unit that determines that it has approached the rack end based on the rack position for determination, and outputs a rack displacement and a switching signal, and the rack displacement is a predetermined first value.
  • a shift correction unit that corrects the rack displacement based on a change amount that is a difference between the rack displacement and the first target value when approaching the rack end exceeding a target value, and outputting a correction rack displacement;
  • a second visco-elastic model based on the first rack axial force or the first column axial torque, the rack displacement, the correction rack displacement, and the switching signal.
  • a viscoelastic model following control unit that generates a rack shaft force or a second column shaft torque, and an upper limit value set for the second rack shaft force or the second column shaft torque based on at least a steering speed And a lower limit value to control the second rack shaft force or the second column shaft torque, and the second rack shaft force or the second column shaft torque that has been restricted.
  • the object of the present invention is to provide a feedforward control unit in which the viscoelastic model following control unit performs feedforward control based on the rack displacement and outputs a third rack axial force or a third column axial torque.
  • a feedback control unit that outputs a fourth rack shaft force or a fourth column shaft torque by feedback control based on the correction rack displacement and the first rack shaft force or the first column shaft torque, and the switching signal.
  • the first switching unit that turns ON / OFF the output of the third rack axial force or the third column axial torque, and the output of the fourth rack axial force or the fourth column axial torque according to the switching signal
  • the second rack shaft force or the second column shaft torque can be calculated by adding the outputs of the second switching unit for turning on / off and the first and second switching units.
  • the third rack includes feedforward control based on the first rack axial force or the first column axial torque, or the viscoelastic model following control unit includes the force adding unit.
  • a feedforward control unit that outputs an axial force or a third column axial torque, and a fourth rack axial force by feedback control based on the correction rack displacement and the first rack axial force or the first column axial torque.
  • a feedback control unit that outputs a fourth column shaft torque, a first switching unit that turns on / off the output of the third rack shaft force or the third column shaft torque according to the switching signal, and the switching signal
  • a second switching unit that turns ON / OFF the output of the fourth rack shaft force or the fourth column shaft torque by the second switching unit, and the outputs of the first and second switching units.
  • the shift correction unit may change the change amount to a predetermined limit value
  • a correction amount that is the difference between the change amount and the limit value is calculated, and the rack end approach determination unit corrects the rack displacement using the correction amount, or the control amount
  • the limiting unit gradually changes the upper limit value and the lower limit value according to the change in the steering speed, or sets the upper limit value and the lower limit value according to the steering direction, or Is more effectively achieved by setting the upper limit value and the lower limit value based on the first rack axial force or the first column axial torque.
  • the controller of the electric power steering apparatus of the present invention since the control system based on the physical model is configured, it becomes easy to make a line of sight in constant design, the output of the control object in the reference model (distance to the rack end Since the model following control is configured to follow (1), there is an advantage that the end relieving control can be robust against the load condition (disturbance) and the fluctuation of the control target.
  • the limitation based on the steering speed is provided in the range of the control amount in the model following control, it is possible to suppress the discomfort due to the excessive control amount. Furthermore, since the shift correction is performed in the model following control, it is possible to suppress an excessive reaction of the control amount limitation control to the change of the steering speed and to reduce the steering difficulty.
  • the present invention configures a control system based on a physical model near the rack end, uses a viscoelastic model (spring constant, viscous friction coefficient) as a reference model, and outputs the control target to the reference model (distance to the rack end)
  • a viscoelastic model spring constant, viscous friction coefficient
  • Model following control is composed of a viscoelastic model following control unit, and a viscoelastic model following control unit is composed of a feedforward control unit and / or a feedback control unit, and normal assist control is performed outside a predetermined angle before the rack end. Perform model following control within a predetermined angle in front of the rack end to suppress hitting the rack end.
  • the steering wheel does not advance as if the driver were to cut in the steering wheel as if it were a rack end.
  • the assist force is output so as to be balanced with the sum of the reaction force (if the friction between the tire and the road surface is extremely low, only the amount manually input by the driver).
  • the maximum value of the assist force is limited in consideration of safety.
  • the maximum value of the assist force is similarly limited.
  • the limit according to the steering speed is performed so that the flexible response can be taken.
  • the control amount is strongly restricted to improve safety.
  • limitation setting when steering speed is high hereinafter referred to as “high steering restriction setting”
  • limitation setting when steering speed is low hereinafter referred to as “low steering restriction setting”
  • both settings are switched gradually to perform restriction.
  • the steering speed is slow and the control amount is strongly restricted, if the driver steers with intention, it becomes possible to move in the rack end direction, and switching to the high steering limit setting etc. Since the limitation of the control amount may have an inappropriate effect, shift correction is applied to the displacement information used in model following control.
  • model following control control of limitation according to the steering speed of maximum value of assist force
  • assist limitation control control of limitation according to the steering speed of maximum value of assist force
  • shift correction control control of shift correction to displacement information
  • FIG. 3 shows a configuration example of an embodiment of model following control in correspondence with FIG.
  • the rack axial force f is input to the viscoelastic model following control unit 120.
  • the rack axial force f is equivalent to the column axial torque, but will be described as the rack axial force for convenience in the following description.
  • the same components as those shown in FIG. 2 are denoted by the same reference numerals and the description thereof will be omitted.
  • Kt is a torque constant [Nm / A]
  • Gr is a reduction ratio
  • Cf is a ratio stroke [m / rev. ]
  • G1 Kt ⁇ Gr ⁇ (2 ⁇ / Cf).
  • the rotation angle ⁇ from the rotation angle sensor 21 is input to the rack position conversion unit 100 and converted to the determination rack position Rx.
  • the determination rack position Rx is input to the rack end approach determination unit 110, and as shown in FIG. 4, the rack end approach determination unit 110 determines that the determination rack position Rx is within the predetermined position x 0 in front of the rack end.
  • the rack displacement x which is the displacement information is output and the switching signal SWS is output.
  • the switching signal SWS and the rack displacement x are input to the viscoelastic model following control unit 120 together with the rack axial force f, and the rack axial force ff calculated and controlled by the viscoelastic model following control unit 120 is converted by the conversion unit 102 to the current command value Iref2.
  • the current command value Iref2 is added to the current command value Iref1 by the adder 103 to become the current command value Iref3.
  • the aforementioned assist control is performed based on the current command value Iref3.
  • the predetermined position x 0 to set the rack end proximal region shown in FIG. 4 can be set at an appropriate position.
  • the rotation angle ⁇ is obtained from the rotation angle sensor 21 connected to the motor, it may be obtained from the steering angle sensor.
  • the rack axial force f is input to the feedforward control unit 130 and the feedback control unit 140, and the rack displacement x is input to the feedback control unit 140.
  • the rack axial force FF from the feedforward control unit 130 is input to the switching unit 121, and the rack axial force FB from the feedback control unit 140 is input to the switching unit 122.
  • the switching unit 121 and 122 are ON / OFF by the switching signal SWS, when it is OFF by the switching signal SWS, each output u 1 and u 2 are zero.
  • the rack shaft force FF from the switching unit 121 is output as the rack shaft force u 1
  • the rack shaft force FB from the switching unit 122 as a rack axial force u 2 It is output.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123, and the rack axial force ff of the addition value is output from the viscoelastic model follow-up control unit 120.
  • the rack axial force ff is converted by the conversion unit 102 into the current command value Iref2.
  • the rack displacement x is input to the feedforward control unit 130 and the feedback control unit 140
  • the rack axial force f is input to the feedback control unit 140.
  • the rack axial force FF from the feedforward control unit 130 is input to the switching unit 121
  • the rack axial force FB from the feedback control unit 140 is input to the switching unit 122, as in the case of FIG.
  • the switching unit 121 and 122 are ON / OFF by the switching signal SWS, when it is OFF by the switching signal SWS, each output u 1 and u 2 are zero.
  • the rack shaft force FF from the switching unit 121 is output as the rack shaft force u 1
  • the rack shaft force FB from the switching unit 122 as a rack axial force u 2 It is output.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123, and the rack axial force ff of the addition value is output from the viscoelastic model follow-up control unit 120.
  • the rack axial force ff is converted by the conversion unit 102 into a current command value Iref2.
  • the switching units 121 and 122 are turned off by the switching signal SWS. Then, when the operation starts, first, the torque control unit 31 calculates the current command value Iref1 based on the steering torque Th and the vehicle speed Vel (step S10), and the rack position conversion unit 100 calculates the rotation angle ⁇ from the rotation angle sensor 21. It is converted into the determination rack position Rx (step S11).
  • the rack end approach determination unit 110 determines whether or not the rack end approach is performed based on the determination rack position Rx (step S12). When the rack end approach is not performed, the rack axial force ff from the viscoelastic model following control unit 120 is determined. Not being output, normal steering control based on the current command value Iref1 is executed (step S13), and the process is continued until the end (step S14).
  • the viscoelastic model follow-up control unit 120 executes the viscoelastic model follow-up control (step S20). That is, as shown in FIG. 8, the switch signal SWS is output from the rack end approach determination unit 110 (step S201), and the rack displacement x is output (step S202). Further, the converting unit 101 converts the current command value Iref1 into the rack axial force f according to the equation 1 (step S203). In the embodiment of FIG. 5, the feedforward control unit 130 performs feedforward control based on the rack axial force f (step S204), and the feedback control unit 140 performs feedback control based on the rack displacement x and the rack axial force f.
  • Step S205 In the embodiment of FIG. 6, the feedforward control unit 130 performs feedforward control based on the rack displacement x (step S204), and the feedback control unit 140 performs feedback control based on the rack displacement x and the rack axial force f. The operation is performed (step S205). In any case, the order of feed forward control and feedback control may be reversed.
  • the switching signal SWS from the rack end approach determination unit 110 is input to the switching units 121 and 122, and the switching units 121 and 122 are turned on (step S206).
  • the switching unit 121 and 122 is turned ON, the output rack shaft force FF from the feedforward controller 130 is a rack axial force u 1, the output rack shaft force from the feedback control unit 140 FB is a rack axial force u 2 Be done.
  • Rack axial force u 1 and u 2 are added by the addition unit 123 (step S207), the rack shaft force ff as a result of the addition by the conversion unit 102, is converted into a current command value Iref2 according to the above Equation 2 (step S208) .
  • the viscoelastic model following control unit 120 is a control system based on the physical model in the vicinity of the rack end, and is a viscoelastic model (spring constant k 0 [N / m], within a predetermined angle before the rack end.
  • a model following control using the viscous friction coefficient ⁇ [N / (m / s)] as a reference model (input: force, output: physical model described by displacement), and prevent it from hitting the rack end There is.
  • FIG. 9 shows a schematic view in the vicinity of the rack end, and the relationship between the mass m and the forces F 0 and F 1 is Expression 3.
  • the calculation of the equation of the visco-elastic model is described, for example, in Journal of Science and Technology, Kansai University, Science and Technology Vol. 17 (2010), “Fundamentals of Elastic Membrane and Visco-Elastic Mechanics” (Okichi, Okichi).
  • Equations 4 to 6 hold.
  • Equations 4 to 6 are substituted for Equation 3 to obtain Equation 7.
  • Equation 15 the quadratic function represented by Equation 15 will be described as a reference model Gm. That is, Equation 16 is set as the reference model Gm.
  • ⁇ 1 ⁇ .
  • Block 143 (Cd) shows the control element part.
  • N and D are expressed by the following equation 18.
  • the molecule of N is the molecule of P
  • the molecule of D is the denominator of P.
  • Equation 19 is derived from Equation 16 and Equation 18.
  • the block N / F of the feedback control unit is the following equation 20.
  • the block D / F of the feedforward control unit is the following equation 21.
  • an input (a current command value corresponding to a rack axial force or a column axial torque) u to an actual plant P is expressed by the following equation 22.
  • Expression 23 If Expression 23 is rearranged, the terms of the output x are aligned on the left side, and the terms of f are aligned on the right side, Expression 24 is derived.
  • Equation 24 is expressed as a transfer function of the output x with respect to the input f
  • equation 25 is obtained.
  • P Pn / Pd in three items or later.
  • FIG. 10 the feedforward control system is as shown in FIG.
  • P N / D
  • FIG. 11 (A) is as shown in FIG. 11 (B)
  • FIG. 11 (C) is obtained.
  • f (m ⁇ s 2 + ⁇ ⁇ s + k 0) x from FIG. 11 (C)
  • Expression 29 is obtained by inverse Laplace transformation of this.
  • Expression 31 is obtained. If Expression 31 is rearranged with respect to the input f, Expression 32 is obtained.
  • FIG. 14 corresponds to the embodiment of FIG. 5, and the rack axial force f is input to the feedforward element 144 (D / F shown by equation 21) in the feedforward control unit 130 and the feedback control unit 140, and rack displacement x Are input to the feedback control unit 140.
  • FIG. 15 corresponds to the embodiment of FIG. 6, and the rack displacement x is input to the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130, and the rack axial force f is input to the feedback control unit 140. Be done.
  • the rack axial force FF from the feedforward element 144 is input to the b1 contact of the switching unit 121. Further, in FIG. 15, the outputs of the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130 are subtracted by the subtracting unit 133, and the rack axial force FF that is the subtraction result of the subtracting unit 133 is Input to b1 contact point. A fixed value “0” is input from the fixing unit 125 to the a1 contact of the switching unit 121.
  • the feedback control unit 140 includes a feedback element (N / F) 141, a subtraction unit 142, and a control element unit 143, and the rack shaft from the feedback control unit 140.
  • the force FB that is, the output of the control element unit 143 is input to the b2 contact of the switching unit 122.
  • a fixed value “0” is input from the fixing unit 126 to the a2 contact of the switching unit 122.
  • the rack axial force f is input to the feedforward element 144 in the feedforward control unit 130 and is also input to the feedback element (N / F) 141 of the feedback control unit 140.
  • the rack displacement x is subtracted and input to the subtracting unit 142 of the feedback control unit 140 and is also input to the parameter setting unit 124.
  • the parameter setting unit 124 rack displacement x, for example, characteristic spring constant k 0 and outputs the viscous friction coefficient ⁇ , such as shown in FIG. 16, the spring constant k 0 and the viscous friction coefficient ⁇ , the feed forward control unit 130 And the feedback element (N / F) 141 in the feedback control unit 140.
  • the rack displacement x is input to the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130, and is also input to the subtraction unit 142 of the feedback control unit 140. It is input to 124.
  • the rack axial force f is input to the feedback element (N / F) 141 of the feedback control unit 140.
  • the parameter setting unit 124 outputs the same spring constant k 0 and viscous friction coefficient ⁇ as described above for the rack displacement x, and the spring constant k 0 is input to the spring constant term 131 and the feedback element (N / F) 141
  • the viscous friction coefficient ⁇ is input to the viscous friction coefficient term 132 and the feedback element (N / F) 141.
  • the switching signal SWS is input to the switching units 121 and 122 in any of the embodiments, and the contacts of the switching units 121 and 122 are normally connected to the contacts a1 and a2, respectively. It can be switched to b1 and b2.
  • the switch signal SWS is output from the rack end approach determination unit 110 (step S21), and the rack displacement x is output (step S22).
  • the rack displacement x is input to a spring constant term 131, a coefficient of viscous friction term 132, a parameter setting unit 124 and a subtraction unit 142.
  • the parameter setting unit 124 determines a spring constant k 0 and a viscous friction coefficient ⁇ obtained according to the characteristics of FIG. 16 according to the rack displacement x, a spring constant term 131, a viscous friction coefficient term 132 and a feedback element (N / F) 141 (Step S23).
  • the converter 101 also converts the current command value Iref1 into the rack axial force f (step S23A), and the rack axial force f is input to the feedback element (N / F) 141 and N / F is calculated (step S24) .
  • the N / F calculation value is additionally input to the subtraction unit 142, the rack displacement x is subtracted (step S24A), and the subtraction value is Cd calculated by the control element unit 143 (step S24B).
  • the calculated rack axial force FB is output from the control element unit 143 and input to the contact b2 of the switching unit 122.
  • the viscous friction coefficient term 132 in the feedforward control unit 130 calculates “( ⁇ ) ⁇ s” based on the viscous friction coefficient ⁇ (step S 25), and sets the spring constant k 0 to the spring constant term 131
  • the subtractor subtracts the spring constant k 0 and “( ⁇ ) ⁇ s” (step S 25 B), and outputs the rack axial force FF as the calculation result.
  • the rack axial force FF is input to the contact b1 of the switching unit 121.
  • the order of operations of the feedforward control unit 130 and the feedback control unit 140 may be reversed.
  • the switching signal SWS from the rack end approach determination unit 110 is input to the switching units 121 and 122, and the contacts of the switching units 121 and 122 are switched from a1 to b1 and from a2 to b2, and the racks from the switching units 121 and 122 axial force u 1 and u 2 are added by the adding unit 123 (step S26), the rack shaft force ff as the addition result is converted into a current command value Iref2 conversion unit 102 (step S26A).
  • the current command value Iref2 is input to the adding unit 103 and added to the current command value Iref1 (step S27), steering control is executed, and the process proceeds to step S14.
  • the control element unit 143 may be any of PID (proportional integral derivative) control, PI control, and PD control. Also, the operation of the embodiment of FIG. 14 is the same except that the portion (element) to which the rack axial force f and the rack displacement x are input is different. Furthermore, although the control calculation of both the feedforward control unit 130 and the feedback control unit 140 is executed in the embodiment of FIG. 14 and the embodiment of FIG. 15, only the feedforward control unit 130 may be used. The configuration of only the unit 140 may be used.
  • the rack axial force (and column axial torque) is a positive value when the steering wheel is turned to the right (hereinafter referred to as “right-turn steering”), and the steering wheel is turned to the left It is assumed that the value is set to be a negative value (hereinafter referred to as “left turn steering”).
  • FIG. 18 shows a configuration example of an embodiment of the assist limit control corresponding to FIG. 3, and the control amount limiting unit 150 and the steering speed calculation unit 160 are compared with the embodiment of the model following control shown in FIG.
  • the rack end approach determination unit 110 is replaced by the rack end approach determination unit 210.
  • the rack end approach determination unit 210 outputs a direction signal Sd indicating the steering direction of the steering wheel, in addition to the rack displacement x and the switching signal SW.
  • the steering direction of the steering wheel is determined based on the determination rack position Rx input to the rack end approach determination unit 210, and in the case of right turn steering, the direction signal Sd is output as "right turn", and in the case of left turn steering Outputs the direction signal Sd "left-handed off".
  • the steering speed calculation unit 160 calculates the steering speed ⁇ by differentiating the rack displacement x output from the rack end approach determination unit 210.
  • the control amount limiting unit 150 converts the maximum value and the minimum value of the rack axial force ff (control amount) output from the viscoelastic model follow-up control unit 120 from the direction signal Sd and the current command value Iref1. And based on the steering speed ⁇ .
  • the upper limit value and the lower limit value which are limit values for the rack axial force ff, are set to limit, the limit value in the case of right turn steering and the limit value in the case of left turn steering are respectively set.
  • the limit value is set based on the rack axial force. Furthermore, high steering restriction setting when the steering speed is high and low steering restriction setting when the steering speed is low are prepared, and both settings are gradually switched according to the steering speed ⁇ .
  • the upper limit value (hereinafter referred to as “right turn upper limit”) RU1 is The lower limit value (hereinafter referred to as “right-turn lower limit value”) RL1 is a rack axial force f as shown in the following equation 34.
  • left turn upper limit value a value obtained by replacing the upper limit value and lower limit value in the case of right turn steering is the upper limit value (hereinafter referred to as "left turn upper limit value”) LU1 and lower limit value (hereinafter, “left turn lower limit value”Let's say) LL1. That is, the following Equations 35 and 36 are obtained.
  • the low steering limit setting for example, in the calculation of the right turn lower limit value and the left turn upper limit value, addition / subtraction of a predetermined value is reversed to the high steering time limit setting in order to further limit the control amount and enhance safety.
  • the right-turn lower limit does not exceed zero, and the left-turn upper limit does not become less than zero.
  • the right-turn upper limit RU2 is a value obtained by adding a predetermined value Fx3 (for example, 2 Nm) to the rack axial force f as in the following equation 37
  • the right-turn lower limit RL2 is as in the following equation 38: A value obtained by adding a predetermined value Fx4 (for example, 5 Nm) to a value obtained by inverting the sign is used.
  • Fx4 for example, 5 Nm
  • the left-turn upper limit LU2 and the left-turn lower limit LL2 are values obtained by replacing the right-turn upper limit RU2 and the right-turn lower limit RL2 with values like the following Equation 39 and 40, but the left-turn upper limit LU2 is less than zero In the case of, the left turn upper limit value LU2 is set to zero.
  • the gain is multiplied by each limit value set in the high steering limit setting and the low steering limit setting, Let the value which added them be a limit value.
  • the control amount limiting unit 150 includes a high steering limit value computing unit 151, a low steering limit value computing unit 152, a high steering gain unit 153, a low steering gain unit 154, a limiting unit 155, and adders 156 and 157. It is done.
  • the high steering limit value calculation unit 151 calculates the upper limit value UPH and the lower limit value LWH by the high steering limit setting using the direction signal Sd and the rack axial force f. That is, when the direction signal Sd is "right-turning", the right-turn upper limit RU1 calculated by Expression 33 is set as the upper limit UPH, and the right-turn lower limit RL1 calculated by Expression 34 is set as the lower limit LWH. When the direction signal Sd is "left-handed”, the left-handed upper limit LU1 calculated by equation 35 is set as the upper limit UPH, and the left-handed lower limit LL1 calculated as equation 36 is set as the lower limit LWH.
  • the low steering limit value calculation unit 152 calculates the upper limit value UPH and the lower limit value LWH by the low steering limit setting using the direction signal Sd and the rack axial force f. That is, when the direction signal Sd is “right-turning”, the right-turn upper limit RU2 calculated by Eq. 37 is the upper limit UPL, and the right-turn lower limit RL2 calculated by Eq. 38 is the lower limit LWL. When the lower limit LWL exceeds zero, the lower limit LWL is set to zero. When the direction signal Sd is "left-handed”, the left-handed upper limit LU2 calculated by Eq. 39 is set as the upper limit UPL, and the left-handed lower limit LL2 computed as Eq. 40 is set as the lower limit LWL. If UPL is less than zero, upper limit value UPL is zero.
  • the high steering gain portion 153 multiplies the steering speed ⁇ by the high steering gain GH having, for example, the characteristics shown in FIG. 22 by the upper limit value UPH and the lower limit value LWH, respectively, to obtain the upper limit value UPHg and the lower limit value.
  • the characteristic of the high steering gain GH shown in FIG. 22 is 0% up to a predetermined steering speed ⁇ 1, and increases in proportion to the steering speed ⁇ between predetermined steering speeds ⁇ 1 to ⁇ 2 ( ⁇ 2> ⁇ 1). The characteristic is 100% when the predetermined steering speed ⁇ 2 is exceeded.
  • the low steering gain unit 154 multiplies the steering speed ⁇ by the low steering gain GL having the characteristic as shown in FIG. 23, for example, by the upper limit value UPL and the lower limit value LWL, respectively, to obtain the upper limit value UPLg and the lower limit value. Calculate LWLg.
  • the characteristic of the low steering gain GL shown in FIG. 23 is the reverse of the characteristic of the high steering gain GH shown in FIG.
  • the adding unit 156 adds the upper limit values UPHg and UPLg to calculate the upper limit value UP.
  • the adding unit 157 adds the lower limit values LWHg and LWLg to calculate the lower limit value LW.
  • the limiting unit 155 limits the rack axial force ff using the upper limit UP and the lower limit LW.
  • step S11A An output (step S11A) of the direction signal Sd is added, and normal steering (step S13) and viscoelastic model following control (step S20). Since the processing at the control amount limiting unit 150 and the steering speed calculation unit 160 is added to the above, there is a change (steps S13A and S20A).
  • step S11A the rack end approach determination unit 210 determines the steering direction of the steering wheel based on the input determination rack position Rx, and the control amount limiting unit 150 determines the determination result (right turn, left turn) as the direction signal Sd.
  • step S20A An operation example in the viscoelastic model follow-up control (step S20A) is shown by a flowchart of FIG. Steps S207A and S207B are added as compared with the flowchart of FIG.
  • step S207A the rack displacement x output from the rack end approach determination unit 210 in step S202 is also input to the steering speed calculation unit 160 in addition to the viscoelastic model follow-up control unit 120.
  • the steering speed calculation unit 160 calculates the steering speed ⁇ from the rack displacement x, and outputs the steering speed ⁇ to the control amount limiting unit 150.
  • step S207B the control amount limiting unit 150 limits the rack axial force ff output from the viscoelastic model following control unit 120 based on the direction signal Sd, the rack axial force f, and the steering speed ⁇ .
  • the detailed operation example of step S207B by the control amount limitation part 150 is shown in FIG.
  • the direction signal Sd output from the rack end approach determination unit 210 and the rack axial force f output from the conversion unit 101 are input to the high steering limit value calculation unit 151 and the low steering limit value calculation unit 152 (step S301).
  • the high steering limit value calculation unit 151 sets the right-turn upper limit RU1 as the upper limit UPH and outputs the right-turn lower limit RL1 as the lower limit LWH (step S303). If the direction signal Sd is "left-handed” (step S302), the left-handed upper limit LU1 is set as the upper limit UPH, and the left-handed lower limit LL1 is outputted as the lower limit LWH (step S304).
  • the low steering limit value calculation unit 152 sets the right turn upper limit RU2 as the upper limit UPL and outputs the right turn lower limit RL2 as the lower limit LWL (step S306). If the direction signal Sd is "left-handed” (step S305), the left-handed upper limit LU2 is set as the upper limit UPL, and the left-handed lower limit LL2 is outputted as the lower limit LWL (step S307).
  • the order of the operation in the high steering limit value computing unit 151 and the operation in the low steering limit value computing unit 152 may be reversed or may be performed in parallel.
  • High steering gain section 153 receives upper limit value UPH, lower limit value LWH and steering speed ⁇ , and obtains high steering gain GH with respect to steering speed ⁇ using the characteristics shown in FIG. 22 to obtain upper limit value UPH and lower limit value
  • the low steering gain unit 154 receives the upper limit value UPL, the lower limit value LWL and the steering speed ⁇ , obtains the low steering gain GL with respect to the steering speed ⁇ using the characteristics shown in FIG. 23, and obtains the upper limit value UPL and the lower limit value.
  • the order of the operation in the high steering gain unit 153 and the operation in the low steering gain unit 154 may be reversed or in parallel.
  • the upper limit values UPHg and UPLg are input to the adding unit 156, and the addition result is output as the upper limit value UP (step S310).
  • Lower limit values LWHg and LWLg are input to addition section 157, and the addition result is output as lower limit value LW (step S311).
  • the upper limit UP and the lower limit LW are input to the limiting unit 155 together with the rack axial force ff output from the viscoelastic model following control unit 120. If the rack axial force ff is equal to or higher than the upper limit UP (step S312), the restriction unit 155 sets the rack axial force ff to the upper limit UP (step S313), and if the rack axial force ff is lower than the lower limit LW (step S312) In step S314, the value of the rack axial force ff is set to the lower limit LW (step S315). Otherwise, the value of the rack axial force ff is not changed. The restricted rack axial force ff is output as the rack axial force ffm (step S316).
  • the rack axial force ffm is converted into the current command value Iref2 by the converter 102 (step S208A), and is added to the current command value Iref1 by the adder 103.
  • step S13A the rack axial force ff output from the viscoelastic model follow-up control unit 120 is restricted.
  • the rack axial force ff is output as the rack axial force ffm as it is without limitation.
  • the predetermined values Fx1 and Fx2 used in the high steering restriction setting may be used as the predetermined values Fx3 and Fx4 used in the low steering restriction setting.
  • the left-turn upper limit value and the left-turn lower limit value are values obtained by replacing the right-turn upper limit value and the right-turn lower limit value, they may not be replaced values by using different predetermined values.
  • the same limit value may be used in the case of right turn steering and left turn steering, in which case the direction signal Sd becomes unnecessary, so that the steering direction of the steering wheel in the rack end approach determination unit 210 Switching of the operation by the direction signal Sd in the determination and control amount limiting unit 150 is also unnecessary.
  • the limit value is set based on the rack axial force f
  • a limit value that does not fluctuate with respect to the rack axial force f may be used.
  • the control is strongly controlled to be the virtual rack end
  • the upper limit value and the lower limit value are adjusted so as to increase the restriction of the control amount to enhance the safety.
  • the characteristics between the steering speeds ⁇ 1 and ⁇ 2 of the high steering gain GH and the low steering gain GL are not limited to the linear characteristics as shown in FIGS. 22 and 23, but the high steering gain GH and the low steering If the sum of the gains GL is 100%, a curved characteristic may be used.
  • the assist limit control when the steering speed is reduced, the high steering limit setting is gradually switched to the low steering limit setting, and the limit is strengthened. Therefore, since the assist force is generated to a certain extent, when the driver steers with his intention, the driver can move in the rack end direction. At this time, when the steering speed is increased, the limit value is switched to the high steering limit setting. Also, by moving in the rack end direction, the control amount before restriction (rack axial force ff) is set so that the control amount increases as the movement amount in the rack end direction increases to prevent end contact. Because it is being done, it is getting bigger.
  • the final output greatly changes due to the combined action of the limit value change and the control amount change, the assist force in the steering direction becomes small, and the steering speed becomes slow. This happens repeatedly and the driver is less likely to steer. In order to suppress this, shift correction is applied to the rack displacement in the present embodiment.
  • FIG. 27 shows a configuration example (first embodiment) of the embodiment of the present invention in correspondence with FIG. 18, and the same configuration is given the same reference numeral and the description is omitted.
  • the viscoelastic model follow-up control unit 120 is replaced with the viscoelastic model follow-up control unit 220 as compared with the assist limit control shown in FIG.
  • the configuration as shown in FIG. 28 is obtained. That is, in the first embodiment, the shift correction unit 250 is added, the rack displacement x is input to the shift correction unit 250, and the correction rack displacement x s output from the shift correction unit 250 is the feedforward control unit 130 and the feedback control unit It is input to 140.
  • a more detailed configuration example of the viscoelastic model follow-up control unit 220 is as shown in FIG. 29, and the correction rack displacement x s output from the shift correction unit 250 is also input to the parameter setting unit 124.
  • set rack end a position before the set rack end (hereinafter referred to as “set rack end”) x end by a predetermined interval (limit value) ⁇ x 1 (hereinafter referred to as “virtual rack end "to) the x Endv set as a target (first target value)
  • the rack displacement x is output as the corrected rack displacement x s . That is, when the rack displacement x exceeds the virtual rack end x endv , the correction rack displacement x s is fixed at the virtual rack end x endv .
  • x endr is an actual rack end, which is generally longer than the set rack end x end which is designed to be minimal in consideration of manufacturing variations and adjustment errors.
  • FIG. 31 is a flowchart showing an operation example of the viscoelastic model follow-up control in correspondence with FIG.
  • steps S22A, S26a and S26b are added, and step S26A replaces step S26B.
  • the operation example shown in FIG. 17 is an operation example for the embodiment of the model following control, and steps S26a, S26b and S26B are operations added and changed by the addition of the assist limit control, and the shift correction control
  • the operation added by the addition is only step S22A.
  • steps S26a, S26b and S26B the same operations as steps S207A, S207B and S208A in the operation example of the assist limit control shown in FIG. 25 are respectively performed.
  • the rack displacement x is set as the correction rack displacement x s (step S224).
  • the shift correction unit 250 outputs the correction rack displacement x s (step S 225), and the correction rack displacement x s is a spring constant term 131 and a viscous friction coefficient term 132 of the feedforward control unit 130, a parameter setting unit 124, and a feedback control unit It is input to the subtraction unit 142 of 140.
  • FIG. 33 the effects of the first embodiment will be described using FIGS. 33 and 34.
  • FIG. 33 is a diagram showing how the assist force (rack axial force) and the limit value change in the case of right turn steering with the horizontal axis as the determination rack position Rx and the vertical axis as the assist force.
  • the assist force based on the current command value Iref1 that is, the rack axial force f increases in proportion to the determination rack position Rx up to the virtual rack end x endv as shown in (a) of FIG.
  • the lower limit LW when steering speed ⁇ is large (i)
  • the lower limit LW when steering speed ⁇ is large is (i)
  • the lower limit LW is the right-turn lower limit RL2 calculated by equation 38, so that it is a reversal characteristic of the rack axial force f h) It changes like (g) larger than Fx4.
  • the rack axial force ff which is the rack axial force before limitation, starts to work after the determination rack position Rx exceeds the predetermined position x 0 in front of the rack end, and works as strongly as the rack end approaches (absolute value growing).
  • FIG. 34 shows the change of the value of the lower limit (in the case of right turn steering) based on the inverted rack axial force f, that is, the difference between the inverted rack axial force f and the lower limit LW with respect to the steering speed ⁇
  • FIGS. 22 and 23 show an example where ⁇ 1 is 0.
  • the lower limit value decreases from positive to negative and becomes constant ( ⁇ Fx2) at ⁇ 2 or more. That is, as the steering speed ⁇ increases, the restriction weakens.
  • the shift correction unit 250 calculates the correction rack displacement x s by subtracting the change amount ⁇ x 2 from the rack displacement x. However, the change amount ⁇ x 2 is multiplied by an arbitrary ratio to be subtracted from the rack displacement x It is good. Further, although the configuration shown in FIG. 6 is used as an example of the configuration of the viscoelastic model follow-up control unit 220, it may be based on the configuration shown in FIG. In this case, the correction rack displacement output from the shift correction unit is input only to the feedback control unit.
  • the control parameters of the feedback control unit 140 are also made variable with respect to the rack displacement. Also good.
  • the control element unit 143 in the feedback control unit 140 is configured for PD (proportional derivative) control
  • the transfer function is represented by the following equation 41, and the proportional gain kp and the differential gain kd in equation 41 are control parameters It becomes.
  • the proportional gain kp and the differential gain kd are made to have characteristics as shown in, for example, FIG. 35 with respect to the rack displacement.
  • a configuration example of the viscoelastic model follow-up control unit in this case is shown in FIG.
  • a control parameter setting unit 260 is added as compared with the configuration example shown in FIG.
  • the control parameter setting unit 260 receives the correction rack displacement x s output from the shift correction unit 250, obtains the proportional gain kp and the differential gain kd based on the characteristics shown in FIG. 36, and obtains the proportional gain kp and the differential gain kd. Is input to the control element unit 243 in the feedback control unit 240.
  • the control parameter variable it is possible to suppress the arrival at the rack end without giving the driver an uncomfortable feeling due to a change in the assist force. Also, by using the correction rack displacement as an input, it is possible to obtain the effect of shift correction.
  • the parameter is set so that the position before the set rack end x end by a predetermined interval (limit value) ⁇ x 1 becomes the virtual rack end x endv .
  • the zero point deviation of the position sensor or the rack may be ⁇ x 1 or more due to variations in the end .
  • the change amount ⁇ x 2 from the virtual rack end x endv is ⁇ x 1 or more
  • the difference (correction amount) is stored, and the approach determination is performed based on the stored difference before rack displacement calculation by the next rack end approach determination. Correct the position used.
  • an optimal virtual rack end can be achieved, a section that may be difficult to steer due to the change of the final output in the assist limit control can be reduced, and the difficulty in steering can be further suppressed.
  • FIG. 37 shows a configuration example of the second embodiment in correspondence with FIG. 27, and the same configuration is assigned the same reference numeral and the description is omitted.
  • the rack end approach determination unit 210 and the viscoelastic model follow control unit 220 respectively include the rack end approach determination unit 310 and the viscoelastic model follow control unit 320. Is replacing.
  • FIG. 38 An exemplary configuration of the viscoelastic model following control unit 320 is shown in FIG. 38, and the shift correcting unit 250 is replaced by the shift correcting unit 350 as compared with the exemplary configuration of the viscoelastic model following control unit 220 shown in FIG. .
  • the shift correction unit 350 Similar to the shift correction unit 250, the shift correction unit 350 performs shift correction on the rack displacement x, and at the same time, when the amount of change ⁇ x 2 is equal to or more than the limit value ⁇ x 1 , outputs the difference.
  • the correction signal Mx is output to the rack end approach determination unit 310 as the correction signal Mx. If ⁇ x 2 is less than ⁇ x 1 , the correction signal Mx is output as 0.
  • the rack end approach determination unit 310 stores the correction signal Mx and uses it in the next calculation of the rack displacement x. That is, before entering the correction signal Mx, as shown in FIG. 4, the predetermined position x 0 of the rack end before the start position, although a rack displacement x the displacement of the judgment rack position Rx therefrom, After entering a correction signal Mx, the start position resets the position as close to the rack end Mx than x 0, a displacement of the judgment rack position Rx therefrom and rack displacement x.
  • FIG. 39 is a diagram in which the horizontal axis represents the determination rack position Rx and the rack displacement x, and the vertical axis represents the rack axial force ff.
  • FIG. 40 shows the entire operation example, and compared with the operation example shown in FIG. 24, the operation of start position correction (step S11a) is added, and the viscoelastic model following control is changed (step S20B) .
  • the correction signal Mx stored by the rack end approach determination unit 310 zero is set in advance as an initial value when the operation is started.
  • step S20B An operation example of the viscoelastic model follow-up control (step S20B) is shown in FIG. Compared to the operation example of the viscoelastic model follow-up control in the first embodiment shown in FIG. 31, the shift correction is changed (step S22B), and steps S28 and S29 are added.
  • the rack end approach determination unit 310 confirms whether or not the correction signal Mx has been input (step S28). If it has been input, the stored correction signal is updated to the input correction signal (step S29) ), If not entered, do not update.
  • FIG. 43 shows a configuration example of the third embodiment in correspondence with FIG. 27, and the same configuration is given the same reference numeral and the description is omitted.
  • the viscoelastic model following control unit 220 is replaced with the viscoelastic model following control unit 420.
  • a configuration example of the viscoelastic model follow-up control unit 420 is shown in FIG. 44, and compared with the configuration example of the viscoelastic model follow-up control unit 220 shown in FIG.
  • the control element unit 143 in the feedback control unit 140 is replaced by the control element unit 443 in the viscous friction coefficient term 432.
  • the viscous friction coefficient term 432 includes a differentiating unit 434, a dead zone processing unit 435, and a gain unit 436.
  • the differentiating unit 434 differentiates the correction rack displacement x s to calculate differential data d x s .
  • Dead zone processing unit 435 performs the dead zone processing on the differential data dx s, and outputs the dead zone differential data ddx s. Specifically, as shown in FIG.
  • the differential data dx s is input, and the dead zone differential data ddx s is output, and the dead zone differential data ddx s is determined using the dead zone characteristics.
  • the gain unit 436 multiplies the dead zone differential data ddx s by ( ⁇ ) using the viscous friction coefficient ⁇ output from the parameter setting unit 124 to calculate the viscosity term data Vi.
  • FIG. 47 shows a configuration example in the case where the control element unit 443 is configured as PD control having a transfer function represented by Formula 41.
  • the control element unit 443 is composed of a proportional control unit 444, a differential control unit 445 and an addition unit 446, and the differential control unit 445 is composed of a differentiation unit 447, a dead zone processing unit 448 and a gain unit 449.
  • the proportional control unit 444 multiplies the proportional gain kp by the error data Er calculated by subtracting the correction rack displacement x s from the N / F operation value which is the target rack displacement output from the feedback element (N / F) 141 And calculate proportional term data Pi.
  • the differentiating unit 447 differentiates the error data Er and calculates differential data dEr.
  • the dead zone processing unit 448 performs dead zone processing on the differential data dEr by the same process as the dead zone processing unit 435, and outputs the dead zone differential data ddEr.
  • the dead zone processing unit 435 and the dead zone processing unit 438 may have the same or different widths of dead zones in the dead zone characteristic.
  • the gain unit 449 multiplies the dead zone differential data ddEr by the differential gain kd to calculate differential term data Di.
  • the adder 446 adds the proportional term data Pi and the differential term data Di to calculate the rack axial force FB.
  • the control element unit 443 may be configured as PID control, and also in this case, a dead zone processing unit is provided to the component equivalent to the differential control unit.
  • FIG. 48 is a flowchart showing an operation example of the viscoelastic model follow-up control in the third embodiment, and compared with the operation example of the viscoelastic model follow-up control in the first embodiment shown in FIG.
  • the ( ⁇ - ⁇ ) ⁇ s operation is different (steps S24b and S25a).
  • the error data Er calculated by subtracting the correction rack displacement x s from the N / F calculation value in the subtraction unit 142 in the feedback control unit 440 is input to the proportional control unit 444 and the differentiation unit 447 in the control element unit 443. Ru.
  • the proportional control unit 444 multiplies the error data Er by the proportional gain kp (step S241), calculates the proportional term data Pi, and the proportional term data Pi is input to the addition unit 446.
  • the differential unit 447 differentiates the error data Er to calculate differential data dEr (step S 242), and the differential data dEr is input to the dead zone processing unit 448.
  • the dead zone processing unit 448 performs dead zone processing on the differential data dEr using the dead zone characteristics as shown in FIG.
  • step S243 and outputs the result as the dead zone differential data ddEr.
  • the dead zone differential data ddEr is input to the gain unit 449.
  • the dead zone differential data ddEr is multiplied by the differential gain kd to calculate the differential term data Di (step S244), and the differential term data Di is added to the adding unit 446. It is input.
  • the adding unit 446 adds the proportional term data Pi and the differential term data Di (step S245), calculates the rack axial force FB, and the rack axial force FB is input to the contact b2 of the switching unit 122.
  • the viscous friction coefficient term 432 in the feedforward control unit 430 inputs the correction rack displacement x s and the viscous friction coefficient ⁇ .
  • Correction rack displacement x s are input to the differential unit 434, the differential unit 434 calculates the differential data dx s by differentiating the corrected rack displacement x s (step S246), the differential data dx s is input to the dead-zone processing unit 435 Ru.
  • the dead zone processing unit 435 performs dead zone processing on the differential data dx s using the dead zone characteristics as shown in FIG. 46 (step S247), and outputs the result as the dead zone differential data ddx s .
  • the dead zone differential data ddx s is input to the gain unit 436 together with the viscous friction coefficient ⁇ , and the gain unit 436 multiplies the dead zone differential data ddx s by ( ⁇ ) to calculate the viscosity term data Vi (step S248).
  • the viscosity term data Vi is input to the subtraction unit 133.
  • the dead zone processing unit is provided downstream of the differentiating units 434 and 447, and dead band processing is performed on differential data, but the dead zone processing unit is provided downstream of the gain units 436 and 449, Dead zone processing may be performed on the viscosity term data Vi and the differential term data Di.
  • the configuration shown in FIG. 6 is used as an example of the configuration of the viscoelastic model follow-up control unit 420, it may be based on the configuration shown in FIG. In this case, the dead zone processing unit is provided only in the feedback control unit.
  • the rack displacement is subjected to shift correction to suppress the difficulty of steering due to the variation of the assist force, but part of the function by the shift correction is used to adjust the parameter characteristics. By replacing, equivalent effects can be obtained.
  • FIG. 51 shows a configuration example of the fourth embodiment in correspondence with FIG. 27, and the same configuration is given the same reference numeral and the description is omitted.
  • the viscoelastic model follow-up control unit 220 is replaced with the viscoelastic model follow-up control unit 520 as compared with the first embodiment shown in FIG.
  • a configuration example of the viscoelastic model follow-up control unit 520 is shown in FIG. 52, and the parameter setting unit 124 is replaced by the parameter setting unit 524 as compared with the configuration example of the viscoelastic model follow-up control unit 220 shown in FIG. Furthermore, the position of the shift correction unit 250 is different, and the correction rack displacement x s output from the shift correction unit 250 is input only to the subtraction unit 142 in the feedback control unit 140, and the feedforward control unit 130 and parameter setting The rack displacement x is input to the unit 524.
  • the parameter setting unit 524 Similar to the parameter setting unit 124, the parameter setting unit 524 outputs the spring constant k 0 and the viscous friction coefficient ⁇ with respect to the rack displacement x, but the characteristics possessed by the spring constant k 0 and the viscous friction coefficient ⁇ are shown in FIG. Not the characteristic as shown in FIG. 53, for example, the characteristic as shown in FIG. In other words, the spring constant k 0 and the viscous friction coefficient ⁇ also increase in accordance with the increase of the rack displacement x with the same characteristics as the characteristics shown in FIG. 16 until the rack displacement x has a predetermined value (second target value) x a However, when the rack displacement x exceeds x a , the spring constant k 0 and the viscous friction coefficient ⁇ have constant values.
  • the operation example of the fourth embodiment differs from the operation example of the first embodiment in the viscoelastic model follow-up control, and the other operations are the same.
  • the operation example of the viscoelastic model follow-up control in the fourth embodiment is different from the operation example of the viscoelastic model follow-up control in the first embodiment shown in FIG. 31 in the parameter setting (step S23) in FIG.
  • the point using the characteristics shown in (1), the point using the rack displacement x in the ( ⁇ - ⁇ ) ⁇ s calculation (step S25), the rack constant x in the calculation of the spring constant term 131 after setting k 0 (step S25A) The only difference is in the use.
  • control parameter of the feedback control unit 140 may be made variable with respect to the rack displacement also in the fourth embodiment.
  • control element unit 143 in feedback control unit 140 is configured for PD (proportional derivative) control
  • proportional gain kp and differential gain kd which are control parameters, are as shown in FIG.
  • FIG. 54 for example.
  • the proportional gain kp and the differential gain kd increase with the increase of the rack displacement x with the same characteristics as the characteristics shown in FIG. 35 until the rack displacement x has a predetermined value (third target value) x b .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】規範モデルに制御対象の出力が追従するようなモデルフォローイング制御を構成し、操舵違和感を与えずに端当て時の異音の発生を防止し、衝撃力を減衰し、モデルフォローイング制御に対して安全方策を取れるようにし、安全方策が過度に作用した場合の制御出力の変動を抑えることができる電動パワーステアリング装置の制御装置を提供する。 【解決手段】少なくとも操舵トルクに基づいて電流指令値を演算し、電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置の制御装置において、ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、モデルフォローイング制御で使用する変位情報にシフト補正を施し、少なくとも操舵速度に基づいて設定される制限値を用いてモデルフォローイング制御での制御量の範囲を制限し、ラックエンド端当てを抑制する。

Description

電動パワーステアリング装置の制御装置
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算し、電流指令値によってモータを駆動し、車両の操舵系にアシスト力を付与するようにした電動パワーステアリング装置の制御装置に関し、特に粘弾性モデルを規範モデルとし、ラックエンド近傍で電流指令値を絞ることによりアシストトルクを減少させ、端当て時の勢いを減衰して衝撃エネルギーを低くし、運転者の不快に感じる打音(異音)を抑制し、操舵フィーリングを向上した電動パワーステアリング装置の制御装置に関する。
 車両の操舵系にモータの回転力でアシスト力を付与する電動パワーステアリング装置(EPS)は、モータの駆動力で減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸にアシスト力を付与するようになっている。かかる従来の電動パワーステアリング装置は、アシスト力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、電流指令値とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいて、アシストマップを用いてアシスト指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Velは電流指令値を演算するトルク制御部31に入力され、演算された電流指令値Iref1は減算部32Bに入力され、モータ電流検出値Imと減算される。減算部32Bでの減算結果である偏差I(=Iref1-Im)はPI制御等の電流制御部35で制御され、電流制御された電圧制御値VrefがPWM制御部36に入力されてデューティを演算され、PWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。モータ20にはレゾルバ等の回転角センサ21が連結されており、回転角θが検出されて出力される。
 このような電動パワーステアリング装置では、操舵系の最大舵角(ラックエンド)の近傍で大きなアシストトルクがモータにより付加されると、操舵系が最大舵角に至った時点で大きな衝撃が生じ、打音(異音)が発生して、運転者が不快に感じる可能性がある。
 そのため、特公平6-4417号公報(特許文献1)には、操舵系の操舵角が最大操舵角より所定値手前になったことを判定する操舵角判定手段を備えると共に、操舵角が最大操舵角より所定値手前になったときにモータへ供給する電力を減少させて、アシストトルクを減少させる補正手段を備えた電動式パワーステアリング装置が開示されている。
 また、特許第4115156号公報(特許文献2)には、調節機構が端位置に近づいているかどうかを決定し、調節機構が端位置に近づいていることがわかった場合、ステアリング補助を減少するように駆動手段を制御し、調節機構が端位置に近づく速度を決定するため、位置センサによって決定された調節速度が評価される電動パワーステアリング装置が示されている。
特公平6-4417号公報 特許第4115156号公報
 しかしながら、特許文献1に開示された電動式パワーステアリング装置では、操舵角が最大操舵角より所定値手前になったことで電力を減少させており、操舵速度等を全く考慮していないので、微細な電流低減制御ができない。また、モータのアシストトルクを減少させる特性が全く示されておらず、具体的な構成となっていない。
 また、特許文献2に開示された電動パワーステアリング装置では、アシスト量が終端に向かうに従って減少していくが、終端に近づく速度に応じてアシスト量低減の速さを調整し、終端での速度を十分に落とすようにしている。しかし、特許文献2では、速度に応じて低減する特性を変化させることのみを示しており、物理的なモデルには基づいていない。また、フィードバック制御していないため、路面状況(負荷状態)によっては特性或いは結果が変化する恐れがある。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、物理モデルに基づいた制御系を構成し、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を防止し、衝撃力を減衰する電動パワーステアリング装置の制御装置を提供することにある。さらに、モデルフォローイング制御に対して安全方策を取れるようにすると共に、運転者の急な操舵等で安全方策が過度に作用した場合の制御出力の変動を抑えることにある。
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算し、前記電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置の制御装置に関し、本発明の上記目的は、ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、前記モデルフォローイング制御で使用する変位情報にシフト補正を施し、少なくとも操舵速度に基づいて設定される制限値を用いて前記モデルフォローイング制御での制御量の範囲を制限し、ラックエンド端当てを抑制することにより達成される。
 本発明の上記目的は、前記モデルフォローイング制御の構成がフィードバック制御部であることにより、或いは、前記モデルフォローイング制御の構成がフィードフォワード制御部であることにより、或いは、前記モデルフォローイング制御の構成がフィードバック制御部及びフィードフォワード制御部であることにより、より効果的に達成される。
 また、少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置の制御装置に関し、本発明の上記目的は、前記第1の電流指令値を第1のラック軸力若しくは第1のコラム軸トルクに変換する第1の変換部と、前記モータの回転角から判定用ラック位置に変換するラック位置変換部と、前記判定用ラック位置に基づいてラックエンドに接近したことを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、前記ラック変位が所定の第1目標値を超えて前記ラックエンドに接近した場合、前記ラック変位と前記第1目標値との差である変化量に基づいて、前記ラック変位を補正し、補正ラック変位を出力するシフト補正部とを具備し、前記第1のラック軸力若しくは第1のコラム軸トルク、前記補正ラック変位及び前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2のラック軸力若しくは第2のコラム軸トルクを生成する粘弾性モデル追従制御部と、少なくとも操舵速度に基づいて前記第2のラック軸力若しくは第2のコラム軸トルクに対して設定される上限値及び下限値を用いて、前記第2のラック軸力若しくは第2のコラム軸トルクを制限する制御量制限部と、前記制限された第2のラック軸力若しくは第2のコラム軸トルクを第2の電流指令値に変換する第2の変換部とを備え、前記第2の電流指令値を前記第1の電流指令値に加算して前記アシスト制御を行い、ラックエンド端当てを抑制することにより達成される。
 本発明の上記目的は、前記補正ラック変位によって、前記規範モデルのパラメータを変更することにより、或いは、前記粘弾性モデル追従制御部が、前記補正ラック変位に基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備していることにより、或いは、前記フィードフォワード制御部が、前記補正ラック変位を微分し、第1微分データを出力する第1の微分部と、前記第1微分データ又は前記第1微分データから演算される粘性項データに対してゼロ前後に不感帯を設ける第1の不感帯処理部とを具備し、前記フィードバック制御部が、目標ラック変位と前記補正ラック変位との差である誤差データを微分し、第2微分データを出力する第2の微分部と、前記第2微分データ又は前記第2微分データから演算される微分項データに対してゼロ前後に不感帯を設ける第2の不感帯処理部とを具備していることにより、或いは、前記粘弾性モデル追従制御部が、前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備していることにより、或いは、前記フィードバック制御部が、前記補正ラック変位を微分し、微分データを出力する微分部と、前記微分データ又は前記微分データから演算される粘性項データに対してゼロ前後に不感帯を設ける不感帯処理部とを具備していることにより、或いは、前記補正ラック変位によって、前記フィードバック制御部の制御パラメータを変更することにより、より効果的に達成される。
 さらに、本発明の上記目的は、前記第1の電流指令値を第1のラック軸力若しくは第1のコラム軸トルクに変換する第1の変換部と、前記モータの回転角から判定用ラック位置に変換するラック位置変換部と、前記判定用ラック位置に基づいてラックエンドに接近したことを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、前記ラック変位が所定の第1目標値を超えて前記ラックエンドに接近した場合、前記ラック変位と前記第1目標値との差である変化量に基づいて、前記ラック変位を補正し、補正ラック変位を出力するシフト補正部とを具備し、前記第1のラック軸力若しくは第1のコラム軸トルク、前記ラック変位、前記補正ラック変位及び前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2のラック軸力若しくは第2のコラム軸トルクを生成する粘弾性モデル追従制御部と、少なくとも操舵速度に基づいて前記第2のラック軸力若しくは第2のコラム軸トルクに対して設定される上限値及び下限値を用いて、前記第2のラック軸力若しくは第2のコラム軸トルクを制限する制御量制限部と、前記制限された第2のラック軸力若しくは第2のコラム軸トルクを第2の電流指令値に変換する第2の変換部とを備え、前記規範モデルのパラメータを、前記ラック変位が所定の第2目標値以下の場合は前記ラック変位によって変更し、前記ラック変位が前記第2目標値を超えた場合は一定とし、前記第2の電流指令値を前記第1の電流指令値に加算して前記アシスト制御を行い、ラックエンド端当てを抑制することにより達成される。
 本発明の上記目的は、前記粘弾性モデル追従制御部が、前記ラック変位に基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備していることにより、或いは、前記粘弾性モデル追従制御部が、前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備していることにより、或いは、前記フィードバック制御部の制御パラメータを、前記ラック変位が所定の第3目標値以下の場合は前記ラック変位によって変更し、前記ラック変位が前記第3目標値を超えた場合は一定とすることにより、或いは、前記シフト補正部は、前記変化量が所定の限界値以上の場合、前記変化量と前記限界値との差である修正量を算出し、前記ラックエンド接近判定部は、前記修正量を用いて前記ラック変位を修正することにより、或いは、前記制御量制限部が、前記上限値及び下限値を前記操舵速度の変化に合わせて徐々に変更することにより、或いは、前記上限値及び下限値を操舵方向に応じて設定することにより、或いは、前記上限値及び下限値を前記第1のラック軸力若しくは第1のコラム軸トルクに基づいて設定することにより、より効果的に達成される。
 本発明の電動パワーステアリング装置の制御装置によれば、物理モデルに基づいた制御系を構成しているので、定数設計に見通しが立て易くなり、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成しているので、負荷状態(外乱)や制御対象の変動にロバスト(頑健)な端当て抑制制御が可能となる利点がある。
 また、モデルフォローイング制御での制御量の範囲に操舵速度に基づく制限を設けているので、制御量過多による違和感を抑えることができる。さらに、モデルフォローイング制御においてシフト補正を実施しているので、操舵速度の変動に対する制御量制限の制御の過度な反応を抑え、操舵のしにくさを軽減することができる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 モデルフォローイング制御の実施形態の構成例を示すブロック図である。 ラック位置変換部の特性例を示す図である。 粘弾性モデル追従制御部の構成例(モデルフォローイング制御の実施形態)を示すブロック図である。 粘弾性モデル追従制御部の他の構成例(モデルフォローイング制御の実施形態)を示すブロック図である。 モデルフォローイング制御の実施形態の動作例(全体)を示すフローチャートである。 粘弾性モデル追従制御の動作例(モデルフォローイング制御の実施形態)を示すフローチャートである。 粘弾性モデルの模式図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細な構成例(モデルフォローイング制御の実施形態)を示すブロック図である。 粘弾性モデル追従制御部の詳細な他の構成例(モデルフォローイング制御の実施形態)を示すブロック図である。 ラック変位によって規範モデルのパラメータを変更する例を示す図である。 粘弾性モデル追従制御の動作例(モデルフォローイング制御の実施形態)を示すフローチャートである。 アシスト制限制御の実施形態の構成例を示すブロック図である。 高操舵時制限設定での制限値の変化例を示す図である。 低操舵時制限設定での制限値の変化例を示す図である。 制御量制限部の構成例を示すブロック図である。 操舵速度に対する高操舵時ゲインの特性例を示す図である。 操舵速度に対する低操舵時ゲインの特性例を示す図である。 アシスト制限制御の実施形態の動作例(全体)を示すフローチャートである。 粘弾性モデル追従制御の動作例(アシスト制限制御の実施形態)を示すフローチャートである。 制御量制限部の動作例を示すフローチャートである。 本発明の構成例(第1実施形態)を示すブロック図である。 粘弾性モデル追従制御部の構成例(第1実施形態)を示すブロック図である。 粘弾性モデル追従制御部の詳細な構成例(第1実施形態)を示すブロック図である。 シフト補正部での目標設定を説明するための図である。 粘弾性モデル追従制御の動作例(第1実施形態)を示すフローチャートである。 シフト補正の動作例(第1実施形態)を示すフローチャートである。 本発明の効果(第1実施形態)を説明するための図である。 本発明の効果(第1実施形態)を説明するための図である。 ラック変位によって制御パラメータを変更する例を示す図である。 粘弾性モデル追従制御部の詳細な構成例(制御パラメータを変更する場合)を示すブロック図である。 本発明の構成例(第2実施形態)を示すブロック図である。 粘弾性モデル追従制御部の詳細な構成例(第2実施形態)を示すブロック図である。 ラック変位の開始位置変更を説明するための図である。 本発明の動作例(第2実施形態)(全体)を示すフローチャートである。 粘弾性モデル追従制御の動作例(第2実施形態)を示すフローチャートである。 シフト補正の動作例(第2実施形態)を示すフローチャートである。 本発明の構成例(第3実施形態)を示すブロック図である。 粘弾性モデル追従制御部の詳細な構成例(第3実施形態)を示すブロック図である。 粘性摩擦係数項の構成例(第3実施形態)を示すブロック図である。 不感帯特性の例を示す特性図である。 制御要素部の構成例(第3実施形態)を示すブロック図である。 粘弾性モデル追従制御の動作例(第3実施形態)を示すフローチャートである。 Cd演算及び(μ-η)・s演算の動作例(第3実施形態)を示すフローチャートである。 本発明の効果(第3実施形態)を説明するための図である。 本発明の構成例(第4実施形態)を示すブロック図である。 粘弾性モデル追従制御部の詳細な構成例(第4実施形態)を示すブロック図である。 ラック変位によって規範モデルのパラメータを変更する例(第4実施形態)を示す図である。 ラック変位によって制御パラメータを変更する例(第4実施形態)を示す図である。
 本発明は、ラックエンド近傍の物理モデルに基づいた制御系を構成し、粘弾性モデル(バネ定数、粘性摩擦係数)を規範モデルとし、その規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を防止し、衝撃力を減衰する電動パワーステアリング装置の制御装置である。
 モデルフォローイング制御は粘弾性モデル追従制御部で構成し、粘弾性モデル追従制御部をフィードフォワード制御部若しくはフィードバック制御部或いはその両者で構成し、ラックエンド手前の所定角度外では通常のアシスト制御を行い、ラックエンド手前の所定角度内でモデルフォローイング制御を行い、ラックエンドに当たることを抑制する。
 また、仮想ラックエンドがあるように、即ち、運転者がハンドルを切り込もうとしてもラックエンドであるかのようにハンドルが進まないようにするために、運転者の手入力とタイヤ側からの反力との和に釣り合うようにアシスト力を出力する(タイヤと路面の摩擦が極低い場合は、運転者の手入力分だけとなる)。しかし、この場合、運転者の操舵方向と逆方向にアシストすることになるために、安全性を考慮して、アシスト力の最大値を制限する。また、運転者の操舵方向と同じ方向へのアシストにおいても、同様に、アシスト力の最大値を制限する。
 アシスト力の最大値の制限では、柔軟な対応が取れるように、操舵速度に応じた制限を行う。例えば、操舵速度が速いときは仮想ラックエンドになるように強く制御し、遅いときは制御量の制限を強くして安全性を高めるようにする。具体的には、操舵速度が速いときの制限設定(以下、「高操舵時制限設定」とする)と操舵速度が遅いときの制限設定(以下、「低操舵時制限設定」とする)を用意し、操舵速度に応じて両設定を徐々に切り替えて制限を行う。また、操舵速度が遅く制御量の制限が強いときに、運転者が意図を持って操舵するとラックエンド方向に移動可能となり、さらに高操舵時制限設定に切り替わってしまう等、操舵速度の変動に対して制御量の制限が不適切な影響を与える可能性があるので、モデルフォローイング制御で使用する変位情報にシフト補正をかける。
 以下に、本発明の実施形態を、図面を参照して説明する。
 上述のように、本発明は、モデルフォローイング制御、アシスト力の最大値の操舵速度に応じた制限の制御(以下、「アシスト制限制御」とする)及び変位情報へのシフト補正の制御(以下、「シフト補正制御」とする)を行うが、説明をわかりやすくするために、先ずはモデルフォローイング制御のみを行う実施形態(以下、「モデルフォローイング制御の実施形態」とする)について、次にそれにアシスト制限制御を加えた実施形態(以下、「アシスト制限制御の実施形態」とする)について説明し、それらの説明を踏まえて、シフト補正制御も加えた本発明の実施形態について説明する。
 先ずは、モデルフォローイング制御の実施形態について説明する
 図3はモデルフォローイング制御の実施形態の構成例を図2に対応させて示しており、電流指令値Iref1は変換部101でラック軸力fに変換され、ラック軸力fは粘弾性モデル追従制御部120に入力される。ラック軸力fはコラム軸トルクと等価であるが、以下の説明では便宜的にラック軸力として説明する。なお、図2に示される構成と同一構成には同一符号を付して説明は省略する。
 電流指令値Iref1からラック軸力fへの変換は、下記数1に従って行われる。
Figure JPOXMLDOC01-appb-M000001
ここで、Ktをトルク定数[Nm/A]、Grを減速比、Cfを比ストローク[m/rev.]として、G1=Kt×Gr×(2π/Cf)である。
 回転角センサ21からの回転角θはラック位置変換部100に入力され、判定用ラック位置Rxに変換される。判定用ラック位置Rxはラックエンド接近判定部110に入力され、ラックエンド接近判定部110は図4に示すように、判定用ラック位置Rxがラックエンド手前の所定位置x以内にあると判定したときに端当て抑制制御機能を働かせ、変位情報であるラック変位xを出力すると共に切替信号SWSを出力する。切替信号SWS及びラック変位xは、ラック軸力fと共に粘弾性モデル追従制御部120へ入力され、粘弾性モデル追従制御部120で制御演算されたラック軸力ffは変換部102で電流指令値Iref2に変換され、電流指令値Iref2は加算部103で電流指令値Iref1と加算されて電流指令値Iref3となる。電流指令値Iref3に基づいて、上述したアシスト制御が行われる。
 なお、図4に示すラックエンド近接領域を設定する所定位置xは、適宜な位置に設定可能である。また、回転角θをモータに連結された回転角センサ21から得ているが、舵角センサから取得するようにしても良い。
 変換部102でのラック軸力ffから電流指令値Iref2への変換は、下記数2に従って行われる。
Figure JPOXMLDOC01-appb-M000002
 
 粘弾性モデル追従制御部120の詳細を、図5又は図6に示す。
 図5では、ラック軸力fはフィードフォワード制御部130及びフィードバック制御部140に入力され、ラック変位xはフィードバック制御部140に入力される。フィードフォワード制御部130からのラック軸力FFは切替部121に入力され、フィードバック制御部140からのラック軸力FBは切替部122に入力される。切替部121及び122は切替信号SWSによってON/OFFされ、切替信号SWSによってOFFされているときは、各出力u及びuはゼロである。切替信号SWSによって切替部121及び122がONされたとき、切替部121からのラック軸力FFがラック軸力uとして出力され、切替部122からのラック軸力FBがラック軸力uとして出力される。切替部121及び122からのラック軸力u及びuが加算部123で加算され、加算値のラック軸力ffが粘弾性モデル追従制御部120から出力される。ラック軸力ffは、変換部102で電流指令値Iref2に変換される。
 また、図6では、ラック変位xはフィードフォワード制御部130及びフィードバック制御部140に入力され、ラック軸力fはフィードバック制御部140に入力される。以下は図5の場合と同様に、フィードフォワード制御部130からのラック軸力FFは切替部121に入力され、フィードバック制御部140からのラック軸力FBは切替部122入力される。切替部121及び122は切替信号SWSによってON/OFFされ、切替信号SWSによってOFFされているときは、各出力u及びuはゼロである。切替信号SWSによって切替部121及び122がONされたとき、切替部121からのラック軸力FFがラック軸力uとして出力され、切替部122からのラック軸力FBがラック軸力uとして出力される。切替部121及び122からのラック軸力u及びuが加算部123で加算され、加算値のラック軸力ffが粘弾性モデル追従制御部120から出力される。ラック軸力ffは変換部102で電流指令値Iref2に変換される。
 このような構成において、先ずモデルフォローイング制御の実施形態の動作例全体を図7のフローチャートを参照して、次いで粘弾性モデル追従制御の動作例を図8のフローチャートを参照して説明する。
 スタート段階においては、切替部121及び122は切替信号SWSによってOFFされている。そして、動作がスタートすると先ず、トルク制御部31は操舵トルクTh及び車速Velに基づいて電流指令値Iref1を演算し(ステップS10)、ラック位置変換部100は回転角センサ21からの回転角θを判定用ラック位置Rxに変換する(ステップS11)。ラックエンド接近判定部110は判定用ラック位置Rxに基づいてラックエンド接近か否かを判定し(ステップS12)、ラックエンド接近でない場合には、粘弾性モデル追従制御部120からラック軸力ffは出力されず、電流指令値Iref1に基づく通常の操舵制御が実行され(ステップS13)、終了となるまで継続される(ステップS14)。
 一方、ラックエンド接近判定部110でラックエンド接近が判定された場合には、粘弾性モデル追従制御部120による粘弾性モデル追従制御が実行される(ステップS20)。即ち、図8に示すように、ラックエンド接近判定部110から切替信号SWSが出力されると共に(ステップS201)、ラック変位xが出力される(ステップS202)。また、変換部101は、前記数1に従って電流指令値Iref1をラック軸力fに変換する(ステップS203)。図5の実施形態では、フィードフォワード制御部130はラック軸力fに基づいてフィードフォワード制御を行い(ステップS204)、フィードバック制御部140はラック変位x及びラック軸力fに基づいてフィードバック制御を行う(ステップS205)。また、図6の実施形態では、フィードフォワード制御部130はラック変位xに基づいてフィードフォワード制御を行い(ステップS204)、フィードバック制御部140はラック変位x及びラック軸力fに基づいてフィードバック制御を行う(ステップS205)。なお、いずれの場合も、フィードフォワード制御及びフィードバック制御の順番は、逆であっても良い。
 ラックエンド接近判定部110からの切替信号SWSは切替部121及び122に入力され、切替部121及び122がONされる(ステップS206)。切替部121及び122がONされると、フィードフォワード制御部130からのラック軸力FFがラック軸力uとして出力され、フィードバック制御部140からのラック軸力FBがラック軸力uとして出力される。ラック軸力u及びuは加算部123で加算され(ステップS207)、加算結果としてのラック軸力ffが変換部102で、上記数2に従って電流指令値Iref2に変換される(ステップS208)。
 ここで、粘弾性モデル追従制御部120は、ラックエンド近辺の物理モデルに基づいた制御系となっており、ラックエンド手前の所定角度以内で粘弾性モデル(バネ定数k[N/m]、粘性摩擦係数μ[N/(m/s)])を規範モデル(入力:力、出力:変位で記述された物理モデル)としたモデルフォローイング制御を構成し、ラックエンドに当たることを防止している。
 図9はラックエンド近傍の模式図を示しており、質量mと力F,Fの関係は数3である。粘弾性モデルの方程式の算出は、例えば関西大学理工学会誌「理工学と技術」Vol.17(2010)の「弾性膜と粘弾性の力学の基礎」(大場謙吉)に示されている。
Figure JPOXMLDOC01-appb-M000003
そして、ラック変位x、xに対して、k、kをバネ定数とすると、数4~数6が成立する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
従って、上記数3に上記数4~数6を代入して数7となる。
Figure JPOXMLDOC01-appb-M000007
上記数7を微分すると、下記数8となり、μ/kを両辺に乗算すると数9となる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
そして、数7と数9を加算すると、数10となる。
Figure JPOXMLDOC01-appb-M000010
数10に上記数4及び数6を代入すると、下記数11となる。
Figure JPOXMLDOC01-appb-M000011
ここで、μ/k=τ,k=E,μ(1/k+1/k)=τδとすると、上記数11は数12となり、ラプラス変換すると数13が成立する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
上記数13をX(s)/F(s)で整理すると、下記数14となる。
Figure JPOXMLDOC01-appb-M000014
数14は入力力fから出力変位xまでの特性を示す3次の物理モデル(伝達関数)となり、バネ定数k=∞のバネとするとτ→0であり、τδ=μ・1/kであるので、2次関数の下記数15が導かれる。
Figure JPOXMLDOC01-appb-M000015
 
 本発明では、数15で表される2次関数を規範モデルGmとして説明する。即ち、数16を規範モデルGmとしている。ここで、μ=μとしている。
Figure JPOXMLDOC01-appb-M000016
 
 次に、電動パワーステアリング装置の実プラント146を下記数17で表わされるPとし、本発明の規範モデル追従型制御を2自由度制御系で設計すると、Pn及びPdを実際のモデルとして図10の構成となる。ブロック143(Cd)は制御要素部を示している。(例えば朝倉書店発行の前田肇、杉江俊治著「アドバンスト制御のためのシステム制御理論」参照)
Figure JPOXMLDOC01-appb-M000017
実プラントPを安定な有理関数の比で表わすために、N及びDを下記数18で表わす。Nの分子はPの分子、Dの分子はPの分母となる。ただし、αは(s+α)=0の極が任意に選択できる。
Figure JPOXMLDOC01-appb-M000018
 
 図10の構成を規範モデルGmに適用すると、x/f=Gmとなるためには、1/Fを下記数19のように設定する必要がある。なお、数19は、数16及び数18より導かれる。
Figure JPOXMLDOC01-appb-M000019
フィードバック制御部のブロックN/Fは下記数20である。
Figure JPOXMLDOC01-appb-M000020
フィードフォワード制御部のブロックD/Fは下記数21である。
Figure JPOXMLDOC01-appb-M000021
 
 2自由度制御系の一例を示す図10において、実プラントPへの入力(ラック軸力若しくはコラム軸トルクに対応する電流指令値)uは、下記数22で表される。
Figure JPOXMLDOC01-appb-M000022
また、実プラントPの出力(ラック変位)xは下記数23である。
Figure JPOXMLDOC01-appb-M000023
数23を整理し、出力xの項を左辺に、fの項を右辺に揃えると、数24が導かれる。
Figure JPOXMLDOC01-appb-M000024
数24を入力fに対する出力xの伝達関数として表わすと、数25となる。ここで、3項目以降ではP=Pn/Pdとして表現している。
Figure JPOXMLDOC01-appb-M000025
 
 実プラントPを正確に表現できたとすれば、Pn=N、Pd=Dとすることができ、入力fに対する出力xの特性は、Pn/F(=N/F)として表わされるので、数26が成立する。
Figure JPOXMLDOC01-appb-M000026
入力fに対して出力xの特性(規範モデル(伝達関数))を、下記数27のようにすると考えるとき、
Figure JPOXMLDOC01-appb-M000027
1/Fを下記数28のようにすることで達成できる。
Figure JPOXMLDOC01-appb-M000028
 
 図10において、フィードフォワード制御系をブロック144→実プラントPの経路で考えると、図11となる。ここで、P=N/Dとすると、図11(A)は図11(B)となり、数20より図11(C)が得られる。図11(C)より、f=(m・s+μ・s+k0)xとなるので、これを逆ラプラス変換すると、下記数29が得られる。
Figure JPOXMLDOC01-appb-M000029
 
 一方、図12に示すようなフィードフォワード制御系の伝達関数ブロックを考えると、下記数30が入力f及び出力xにおいて成立する。
Figure JPOXMLDOC01-appb-M000030
数30を整理すると下記31となり、数31を入力fについて整理すると、数32が得られる。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
数32を逆ラプラス変換すると上記数29となり、結果的に図13に示すように2つのフィードフォワード制御部A及びBは等価である。
 上記前提を踏まえ、以下に粘弾性モデル追従制御部の具体的な構成例を図14及び図15に示して説明する。図14は図5の実施形態に対応し、ラック軸力fがフィードフォワード制御部130内のフィードフォワード要素144(数21で示されるD/F)及びフィードバック制御部140に入力され、ラック変位xがフィードバック制御部140に入力される。また、図15は図6の実施形態に対応し、ラック変位xがフィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132に入力され、ラック軸力fがフィードバック制御部140に入力される。
 図14ではフィードフォワード要素144からのラック軸力FFは切替部121のb1接点に入力される。また、図15では、フィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132の出力を減算部133で減算し、減算部133の減算結果であるラック軸力FFが切替部121のb1接点に入力される。切替部121のa1接点には、固定部125から固定値「0」が入力されている。
 図14の実施形態及び図15の実施形態のいずれにおいても、フィードバック制御部140はフィードバック要素(N/F)141、減算部142、制御要素部143で構成され、フィードバック制御部140からのラック軸力FB、つまり制御要素部143の出力は切替部122のb2接点に入力される。切替部122のa2接点には、固定部126から固定値「0」が入力されている。
 図14の実施形態では、ラック軸力fはフィードフォワード制御部130内のフィードフォワード要素144に入力されると共に、フィードバック制御部140のフィードバック要素(N/F)141に入力される。ラック変位xはフィードバック制御部140の減算部142に減算入力されると共に、パラメータ設定部124に入力される。パラメータ設定部124はラック変位xに対して、例えば図16に示すような特性のバネ定数k及び粘性摩擦係数μを出力し、バネ定数k及び粘性摩擦係数μは、フィードフォワード制御部130内のフィードフォワード要素144及びフィードバック制御部140内のフィードバック要素(N/F)141に入力される。
 図15の実施形態では、ラック変位xはフィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132に入力されると共に、フィードバック制御部140の減算部142に入力され、更にパラメータ設定部124に入力される。ラック軸力fはフィードバック制御部140のフィードバック要素(N/F)141に入力される。パラメータ設定部124はラック変位xに対して、上述と同様なバネ定数k及び粘性摩擦係数μを出力し、バネ定数kはバネ定数項131及びフィードバック要素(N/F)141に入力され、粘性摩擦係数μは粘性摩擦係数項132及びフィードバック要素(N/F)141に入力される。
 また、切替信号SWSは、いずれの実施形態においても切替部121及び122に入力され、切替部121及び122の接点は通常時はそれぞれ接点a1及びa2に接続されており、切替信号SWSによってそれぞれ接点b1及びb2に切替えられるようになっている。
 このような構成において、図15の実施形態の動作例を図17のフローチャートを参照して説明する。
 ラックエンド接近判定部110から切替信号SWSが出力されると共に(ステップS21)、ラック変位xが出力される(ステップS22)。ラック変位xはバネ定数項131、粘性摩擦係数項132、パラメータ設定部124及び減算部142に入力される。パラメータ設定部124は、ラック変位xに応じて図16の特性に従って求められたバネ定数k及び粘性摩擦係数μを、バネ定数項131、粘性摩擦係数項132及びフィードバック要素(N/F)141に設定する(ステップS23)。また、変換部101は電流指令値Iref1をラック軸力fに変換し(ステップS23A)、ラック軸力fはフィードバック要素(N/F)141に入力され、N/F演算される(ステップS24)。N/F演算値は減算部142に加算入力され、ラック変位xが減算され(ステップS24A)、その減算値が制御要素部143でCd演算される(ステップS24B)。制御要素部143から、演算されたラック軸力FBが出力されて切替部122の接点b2に入力される。
 フィードフォワード制御部130内の粘性摩擦係数項132は、粘性摩擦係数μに基づいて“(μ-η)・s”の演算を行い(ステップS25)、バネ定数項131にバネ定数kを設定し(ステップS25A)、減算部でバネ定数k及び“(μ-η)・s”の減算を行い(ステップS25B)、演算結果としてラック軸力FFを出力する。ラック軸力FFは切替部121の接点b1に入力される。なお、フィードフォワード制御部130及びフィードバック制御部140の演算の順番は、逆であっても良い。
 ラックエンド接近判定部110からの切替信号SWSは切替部121及び122に入力され、切替部121及び122の各接点がa1からb1へ、a2からb2へ切替えられ、切替部121及び122からのラック軸力u及びuが加算部123で加算され(ステップS26)、加算結果としてのラック軸力ffが変換部102で電流指令値Iref2に変換される(ステップS26A)。電流指令値Iref2は加算部103に入力され、電流指令値Iref1に加算され(ステップS27)、操舵制御が実行され、ステップS14へとつながる。
 なお、制御要素部143(Cd)は任意のPID(比例積分微分)制御、PI制御、PD制御の構成のいずれでも良い。また、図14の実施形態の動作も、ラック軸力f及びラック変位xが入力する部分(要素)が異なるだけで、同様である。さらに、図14の実施形態及び図15の実施形態では、フィードフォワード制御部130及びフィードバック制御部140の両方の制御演算を実行しているが、フィードフォワード制御部130のみの構成でも良く、フィードバック制御部140のみの構成でも良い。
 次に、アシスト制限制御の実施形態について説明する。なお、以下では、ラック軸力(及びコラム軸トルク)は、ハンドルが右に切られている(以下、「右切操舵」とする)ときは正の値に、ハンドルが左に切られている(以下、「左切操舵」とする)ときは負の値になるように設定されているとする。
 図18はアシスト制限制御の実施形態の構成例を図3に対応させて示しており、図3に示されるモデルフォローイング制御の実施形態に対して制御量制限部150及び操舵速度演算部160が追加されており、ラックエンド接近判定部110がラックエンド接近判定部210に代わっている。
 ラックエンド接近判定部210は、ラック変位x及び切替信号SWの他に、ハンドルの操舵方向を示す方向信号Sdを出力する。ラックエンド接近判定部210に入力される判定用ラック位置Rxに基づいてハンドルの操舵方向を判定し、右切操舵の場合は方向信号Sdを「右切」にして出力し、左切操舵の場合は方向信号Sdを「左切」にして出力する。
 操舵速度演算部160は、ラックエンド接近判定部210から出力されるラック変位xを微分することにより、操舵速度ωを算出する。
 制御量制限部150は、粘弾性モデル追従制御部120から出力されるラック軸力ff(制御量)の最大値及び最小値を、方向信号Sd、電流指令値Iref1から変換されるラック軸力f及び操舵速度ωに基づいて制限する。制限するためにラック軸力ffに対する制限値である上限値及び下限値を設定するが、右切操舵の場合の制限値と左切操舵の場合の制限値をそれぞれ設定する。また、より適切な制限値を設定すべく、制限値はラック軸力に基づいて設定される。さらに、操舵速度が高いときの高操舵時制限設定及び操舵速度が低いときの低操舵時制限設定を用意し、操舵速度ωに応じて徐々に両設定を切り替える。具体的には、高操舵時制限設定では、仮想ラックエンドになるように強く制御するために、例えば、右切操舵の場合、上限値(以下、「右切上限値」とする)RU1は下記数33のようにラック軸力fに所定の値Fx1(例えば2Nm)を加算した値とし、下限値(以下、「右切下限値」とする)RL1は下記数34のようにラック軸力fの符号を反転した値から所定の値Fx2(例えば10Nm)を減算した値とする。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
左切操舵の場合は、右切操舵の場合の上限値及び下限値を入れ替えた値を上限値(以下、「左切上限値」とする)LU1及び下限値(以下、「左切下限値」とする)LL1とする。即ち、下記数35及び数36のようになる。
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
例えば、ラック軸力fが操舵角に対して図19の破線で示されるように変化する場合、制限値は図19の実線で示されるように変化する。
 低操舵時制限設定では、より制御量を制限して安全性を高めるべく、例えば、右切下限値及び左切上限値の算出において所定の値の加減算を高操舵時制限設定とは逆にする。しかし、逆方向のアシスト力を加えないようにするために、右切下限値はゼロを超えず、左切上限値はゼロ未満にならないようにする。即ち、右切上限値RU2は下記数37のようにラック軸力fに所定の値Fx3(例えば2Nm)を加算した値とし、右切下限値RL2は下記数38のようにラック軸力fの符号を反転した値に所定の値Fx4(例えば5Nm)を加算した値とするが、右切下限値RL2がゼロを超えた場合、右切下限値RL2はゼロにする。
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
左切上限値LU2及び左切下限値LL2は、右切上限値RU2及び右切下限値RL2を入れ替えた、下記数39及び数40のような値とするが、左切上限値LU2がゼロ未満の場合、左切上限値LU2はゼロにする。
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
例えば、ラック軸力fが操舵角に対して図20の破線で示されるように変化する場合、制限値は実線で示されるように変化する。
 高操舵時制限設定及び低操舵時制限設定の切り替えを操舵速度ωに応じて徐々に行うために、高操舵時制限設定及び低操舵時制限設定で設定された各制限値にゲインを乗算し、それらを加算した値を制限値とする。
 制御量制限部150の構成例を図21に示す。制御量制限部150は、高操舵時制限値演算部151、低操舵時制限値演算部152、高操舵時ゲイン部153、低操舵時ゲイン部154、制限部155及び加算部156、157で構成されている。
 高操舵時制限値演算部151は、方向信号Sd及びラック軸力fを用いて、高操舵時制限設定により上限値UPH及び下限値LWHを算出する。即ち、方向信号Sdが「右切」の場合は、数33で算出される右切上限値RU1を上限値UPHとし、数34で算出される右切下限値RL1を下限値LWHとする。方向信号Sdが「左切」の場合は、数35で算出される左切上限値LU1を上限値UPHとし、数36で算出される左切下限値LL1を下限値LWHとする。
 低操舵時制限値演算部152は、方向信号Sd及びラック軸力fを用いて、低操舵時制限設定により上限値UPH及び下限値LWHを算出する。即ち、方向信号Sdが「右切」の場合は、数37で算出される右切上限値RU2を上限値UPLとし、数38で算出される右切下限値RL2を下限値LWLとするが、下限値LWLがゼロを超えた場合、下限値LWLはゼロにする。方向信号Sdが「左切」の場合は、数39で算出される左切上限値LU2を上限値UPLとし、数40で算出される左切下限値LL2を下限値LWLとするが、上限値UPLがゼロ未満の場合、上限値UPLはゼロにする。
 高操舵時ゲイン部153は、操舵速度ωに対して、例えば図22に示されるような特性を有する高操舵時ゲインGHを上限値UPH及び下限値LWHにそれぞれ乗算し、上限値UPHg及び下限値LWHgを算出する。図22に示される高操舵時ゲインGHの特性は、所定の操舵速度ω1までは0%で、所定の操舵速度ω1からω2(ω2>ω1)の間では操舵速度ωに比例して大きくなり、所定の操舵速度ω2を超えると100%となるような特性である。
 低操舵時ゲイン部154は、操舵速度ωに対して、例えば図23に示されるような特性を有する低操舵時ゲインGLを上限値UPL及び下限値LWLにそれぞれ乗算し、上限値UPLg及び下限値LWLgを算出する。図23に示される低操舵時ゲインGLの特性は、図22に示される高操舵時ゲインGHの特性の逆の特性となっている。
 加算部156は、上限値UPHgとUPLgを加算し、上限値UPを算出する。加算部157は、下限値LWHgとLWLgを加算し、下限値LWを算出する。
 制限部155は、上限値UP及び下限値LWを用いて、ラック軸力ffに制限をかける。
 このような構成において、アシスト制限制御の実施形態の動作例を、図24~図26のフローチャートを参照して説明する。
 図24に全体の動作例をフローチャートで示しており、図7のフローチャートと比べると、方向信号Sdの出力(ステップS11A)が追加され、通常操舵(ステップS13)及び粘弾性モデル追従制御(ステップS20)に制御量制限部150及び操舵速度演算部160での処理が加わるので、変更が生じている(ステップS13A、S20A)。
 ステップS11Aでは、ラックエンド接近判定部210が、入力された判定用ラック位置Rxに基づいてハンドルの操舵方向を判定し、判定結果(右切、左切)を方向信号Sdとして制御量制限部150に出力する。
 粘弾性モデル追従制御(ステップS20A)での動作例を図25のフローチャートで示す。図8のフローチャートと比べると、ステップS207A及びS207Bが追加されている。
 ステップS207Aでは、ステップS202にてラックエンド接近判定部210から出力されたラック変位xが、粘弾性モデル追従制御部120の他に操舵速度演算部160にも入力される。操舵速度演算部160は、ラック変位xより操舵速度ωを算出し、制御量制限部150に出力する。
 ステップS207Bでは、制御量制限部150が、方向信号Sd、ラック軸力f及び操舵速度ωに基づいて、粘弾性モデル追従制御部120から出力されたラック軸力ffに制限をかける。図26に制御量制限部150によるステップS207Bの詳細な動作例を示す。
 ラックエンド接近判定部210から出力された方向信号Sd及び変換部101から出力されたラック軸力fは、高操舵時制限値演算部151及び低操舵時制限値演算部152に入力される(ステップS301)。
 高操舵時制限値演算部151は、方向信号Sdが「右切」の場合(ステップS302)、右切上限値RU1を上限値UPHとし、右切下限値RL1を下限値LWHとして出力する(ステップS303)。方向信号Sdが「左切」の場合(ステップS302)、左切上限値LU1を上限値UPHとし、左切下限値LL1を下限値LWHとして出力する(ステップS304)。
 低操舵時制限値演算部152は、方向信号Sdが「右切」の場合(ステップS305)、右切上限値RU2を上限値UPLとし、右切下限値RL2を下限値LWLとして出力する(ステップS306)。方向信号Sdが「左切」の場合(ステップS305)、左切上限値LU2を上限値UPLとし、左切下限値LL2を下限値LWLとして出力する(ステップS307)。なお、高操舵時制限値演算部151での動作と低操舵時制限値演算部152での動作の順番は逆でも並行して実行しても良い。
 高操舵時ゲイン部153は、上限値UPH、下限値LWH及び操舵速度ωを入力し、図22に示される特性を用いて操舵速度ωに対する高操舵時ゲインGHを求め、上限値UPH及び下限値LWHにそれぞれ乗算し、上限値UPHg(=UPH×GH)及び下限値LWHg(=LWH×GH)を出力する(ステップS308)。
 低操舵時ゲイン部154は、上限値UPL、下限値LWL及び操舵速度ωを入力し、図23に示される特性を用いて操舵速度ωに対する低操舵時ゲインGLを求め、上限値UPL及び下限値LWLにそれぞれ乗算し、上限値UPLg(=UPL×GL)及び下限値LWLg(=LWL×GL)を出力する(ステップS309)。なお、高操舵時ゲイン部153での動作と低操舵時ゲイン部154での動作の順番は逆でも並行して実行しても良い。
 上限値UPHg及びUPLgは加算部156に入力され、加算結果が上限値UPとして出力される(ステップS310)。下限値LWHg及びLWLgは加算部157に入力され、加算結果が下限値LWとして出力される(ステップS311)。
 上限値UP及び下限値LWは、粘弾性モデル追従制御部120から出力されたラック軸力ffと共に、制限部155に入力される。制限部155は、ラック軸力ffが上限値UP以上ならば(ステップS312)、ラック軸力ffの値を上限値UPとし(ステップS313)、ラック軸力ffが下限値LW以下ならば(ステップS314)、ラック軸力ffの値を下限値LWとし(ステップS315)、それ以外ならばラック軸力ffの値を変更しない。制限をかけられたラック軸力ffはラック軸力ffmとして出力される(ステップS316)。
 ラック軸力ffmは変換部102で電流指令値Iref2に変換され(ステップS208A)、加算部103で電流指令値Iref1に加算される。
 通常操舵(ステップS13A)でも、粘弾性モデル追従制御の場合と同様に、粘弾性モデル追従制御部120から出力されたラック軸力ffに制限がかけられる。しかし、この場合のラック軸力ffの値はゼロであるから、制限されることなく、ラック軸力ffがそのままラック軸力ffmとして出力される。
 なお、低操舵時制限設定で使用する所定の値Fx3及びFx4として、高操舵時制限設定で使用する所定の値Fx1及びFx2を使用しても良い。また、左切上限値及び左切下限値は右切上限値及び右切下限値を入れ替えた値としているが、違う所定の値を使用する等して、入れ替えた値にしなくても良い。さらに、右切操舵の場合と左切操舵の場合で同じ制限値を使用しても良く、その場合は、方向信号Sdは不要となるので、ラックエンド接近判定部210でのハンドルの操舵方向の判定及び制御量制限部150での方向信号Sdによる動作の切替えも不要となる。また、ラック軸力fに基づいて制限値を設定しているが、ラック軸力fに対して変動しない制限値を用いても良い。この場合、操舵速度が速いときは仮想ラックエンドになるように強く制御し、遅いときは制御量の制限を強くして安全性を高めるように、上限値及び下限値を調整する。高操舵時ゲインGH及び低操舵時ゲインGLの操舵速度ω1とω2の間の特性は、図22及び図23に示されるような直線的な特性に限られず、高操舵時ゲインGHと低操舵時ゲインGLの和が100%となるならば、曲線的な特性でも良い。
 上述のモデルフォローイング制御及びアシスト制限制御を行うアシスト制限制御の実施形態にシフト補正制御を加えた本発明の実施形態について説明する。
 アシスト制限制御の実施形態では、操舵速度が遅くなると高操舵時制限設定から低操舵時制限設定に徐々に切り替わり、制限が強められる。よって、アシスト力がある程度発生するので、運転者が意思を持って操舵するとラックエンド方向に移動可能となる。このとき、操舵速度が速くなると、制限値は高操舵時制限設定の方に切り替わっていく。また、ラックエンド方向に移動したことにより、制限前の制御量(ラック軸力ff)は、端当て防止のためにラックエンド方向への移動量が大きいほど制御量が大きくなるようにパラメータが設定されているので、大きくなっている。このように、制限値変化及び制御量変化の複合作用で最終出力が大きく変化し、操舵方向へのアシスト力が小さくなり、操舵速度が遅くなる。これが繰り返し起こり、運転者は操舵しにくくなる。これを抑制するために、本実施形態ではラック変位にシフト補正をかける。
 図27は本発明の実施形態の構成例(第1実施形態)を図18に対応させて示しており、同一構成には同一符号を付して説明は省略する。
 第1実施形態では、図18に示されるアシスト制限制御の実施形態と比べると、粘弾性モデル追従制御部120が粘弾性モデル追従制御部220に代わっている。
 粘弾性モデル追従制御部220の構成例としては、例えば図6に示される構成を基とした場合、図28に示されるような構成となる。即ち、第1実施形態ではシフト補正部250が追加され、ラック変位xはシフト補正部250に入力され、シフト補正部250から出力される補正ラック変位xがフィードフォワード制御部130及びフィードバック制御部140に入力される。粘弾性モデル追従制御部220のさらに詳細な構成例は図29に示されるような構成となり、シフト補正部250から出力される補正ラック変位xはパラメータ設定部124にも入力される。
 シフト補正部250は、ラック変位xに対してシフト補正をかける。具体的には、図30に示されるように、設定されたラックエンド(以下、「設定ラックエンド」とする)xendから所定の間隔(限界値)Δxだけ手前の位置(以下、「仮想ラックエンド」とする)xendvを目標(第1目標値)として設定し、ラック変位xが仮想ラックエンドxendvを越えてラックエンドに接近した場合、仮想ラックエンドxendvからの変化量Δx(=x-xendv)を算出し、ラック変位xから変化量Δxを差し引いて、補正ラック変位xとして出力する。ラック変位xが仮想ラックエンドxendvを越えていない場合は、ラック変位xを補正ラック変位xとして出力する。つまり、ラック変位xが仮想ラックエンドxendvを越えた場合、補正ラック変位xは仮想ラックエンドxendvで固定となる。なお、図30において、xendrは実際のラックエンドであり、製造バラツキや調整誤差を考慮して設計的に最小である設定ラックエンドxendより、通常長い値である。
 このような構成において、第1実施形態の動作例を、図31及び図32のフローチャートを参照して説明する。
 第1実施形態の動作では、アシスト制限制御の実施形態の動作と比べると、粘弾性モデル追従制御の動作にシフト補正部250の動作が加わることとなる。図31は、粘弾性モデル追従制御の動作例を図17に対応させて示したフローチャートである。第1実施形態の動作例では、図17に示される動作例と比べると、ステップS22A、S26a及びS26bが加わり、ステップS26AがステップS26Bに代わっている。ただ、図17に示される動作例はモデルフォローイング制御の実施形態に対する動作例であり、ステップS26a、S26b及びS26Bはアシスト制限制御の追加により追加及び変更となった動作であり、シフト補正制御の追加により追加された動作はステップS22Aだけである。なお、ステップS26a、S26b及びS26Bでは、図25に示されるアシスト制限制御の実施形態の動作例でのステップS207A、S207B及びS208Aと同様の動作がそれぞれ行われる。
 ステップS22Aでのシフト補正の具体的な動作例を図32に示す。ラックエンド接近判定部210から出力されたラック変位xを入力したシフト補正部250は、ラック変位xが仮想ラックエンドxendvを越えているか(ラック変位xが第1目標値を超えているか)確認する(ステップS221)。ラック変位xが仮想ラックエンドxendvを越えている場合、仮想ラックエンドxendvからの変化量Δxを算出し(ステップS222)、変化量Δxを用いてラック変位xを補正し、補正ラック変位x(=x-Δx)を算出する(ステップS223)。ラック変位xが仮想ラックエンドxendvを越えていない場合、ラック変位xを補正ラック変位xとする(ステップS224)。シフト補正部250は補正ラック変位xを出力(ステップS225)し、補正ラック変位xはフィードフォワード制御部130のバネ定数項131及び粘性摩擦係数項132、パラメータ設定部124、並びにフィードバック制御部140の減算部142に入力される。
 ここで、第1実施形態の効果について、図33及び図34を用いて説明する。
 図33は、横軸を判定用ラック位置Rx、縦軸をアシスト力として、右切操舵の場合のアシスト力(ラック軸力)及び制限値の変化の様子を示す図である。
 電流指令値Iref1に基づいたアシスト力、即ちラック軸力fが、図33での(a)のように、仮想ラックエンドxendvまでは判定用ラック位置Rxに比例して大きくなり、仮想ラックエンドxendv以降は一定となるように変化する場合、操舵速度ω=dx/dtが0のときの下限値LWは(g)のように、操舵速度ωが大きいときの下限値LWは(i)のように変化する。つまり、操舵速度ωが0のときは低操舵時制限設定が100%適用され、下限値LWは数38で算出される右切下限値RL2となるので、ラック軸力fの反転特性である(h)よりFx4だけ大きい(g)のように変化する。操舵速度ωが大きいときは高操舵時制限設定が100%適用され、下限値LWは数34で算出される右切下限値RL1となるので、ラック軸力fの反転特性である(h)よりFx2だけ小さい(i)のように変化する。また、制限前のラック軸力であるラック軸力ffは、判定用ラック位置Rxがラックエンド手前の所定位置xを越えてから働き始め、ラックエンドに近付く程、強力に働く(絶対値が大きくなる)。この際、操舵速度ω=dx/dtが0のときは弾性項だけの力が働き、操舵速度ωが大きくなるにつれ、粘性項の力も加わってくるので、それぞれ(e)及び(f)のように変化する。よって、操舵速度ωが非常に小さい場合(dx/dt≒0)、電流指令値Iref3に基づいたアシスト力(以下、「総合アシスト力」とする)は、判定用ラック位置Rxがxを越えてから(e)で示されるラック軸力ffがラック軸力fに加わるので下がっていき、仮想ラックエンドxendvを越えてからはラック軸力fが一定となるので、(c)で示されるように、下がり方がやや急になるが、(g)の制限特性は制限が強いので、ラック軸力ffが下限値以下となるx以降でラック軸力ffに制限がかけられても、一定の総合アシスト力が働き続けることになる。
 このような状況において、運転者が意思を持って操舵すると、ラックエンド方向に移動が可能であり、操舵速度ωが大きくなることにより、制限値は高操舵時制限設定に切り替わっていく。図34は、反転したラック軸力fを基準としたときの下限値(右切操舵の場合)の値、即ち反転したラック軸力fと下限値LWの差の操舵速度ωに対する変化の様子を、図22及び図23でのω1を0とした場合の例として示したものである。図34からわかるように、操舵速度ωが0から大きくなるにつれ、下限値は正から負に減少していき、ω2以上で一定(-Fx2)となる。つまり、操舵速度ωが大きくなるにつれ、制限が弱くなる。一方、操舵速度ωが大きくなるにつれ、ラック軸力ffの変化は、図33での(e)から(f)の方になっていく。つまり、ラック軸力ffは、ラックエンドに近付くにつれ強くなり、操舵速度ωが大きくなるにつれ強くなる。よって、ラックエンド方向への移動において操舵速度ωを大きくすると、ラック軸力ffは強くなるが、制限は弱くなるので、操舵方向への総合アシスト力が小さくなってしまい、操舵しにくくなってしまう。
 これに対して、本実施形態のようにラック変位xにシフト補正をかけると、ラック変位xが仮想ラックエンドxendvを越えた後、補正ラック変位xは仮想ラックエンドxendvで固定となる。よって、操舵速度ω=dx/dtを大きくしても、補正ラック変位xにおいて時間変化はなく、補正ラック変位xに基づいて演算されたラック軸力ffも変化しないので、総合アシスト力は、図33の(d)で示すように一定となり、操舵しにくさを抑制することができる。
 上述のように、ラック変位にシフト補正をかけることにより、ラックエンド方向への移動において運転者が意思を持って操舵した場合に発生する可能性がある操舵のしにくさを抑制することができる。さらに、運転者がラックエンド方向に操舵した後、力を緩めた場合、シフト補正をかけていないと、戻される力が強すぎて操舵しづらいことがあるが、シフト補正を行い、制御量が大きくなることを抑制することにより、操舵しづらさを軽減することができる。
 なお、シフト補正部250はラック変位xから変化量Δxを差し引いて補正ラック変位xを算出しているが、変化量Δxに任意の割合を乗算してラック変位xから差し引いて算出しても良い。また、粘弾性モデル追従制御部220の構成例として図6に示される構成を基としているが、図5に示される構成を基としても良い。この場合、シフト補正部から出力される補正ラック変位はフィードバック制御部のみに入力されることになる。
 また、第1実施形態では、規範モデルのパラメータであるバネ定数k及び粘性摩擦係数μのみをラック変位に対して可変としているが、フィードバック制御部140の制御パラメータもラック変位に対して可変としても良い。例えば、フィードバック制御部140内の制御要素部143をPD(比例微分)制御の構成とした場合、伝達関数は下記数41で表わされ、数41中の比例ゲインkp及び微分ゲインkdが制御パラメータとなる。
Figure JPOXMLDOC01-appb-M000041
そして、比例ゲインkp及び微分ゲインkdが、ラック変位に対して、例えば図35に示すような特性をもつようにする。この場合の粘弾性モデル追従制御部の構成例を図36に示す。図36に示される粘弾性モデル追従制御部では、図29に示される構成例と比べると、制御パラメータ設定部260が追加されている。制御パラメータ設定部260は、シフト補正部250から出力される補正ラック変位xを入力し、図36に示される特性に基づいて比例ゲインkp及び微分ゲインkdを求め、比例ゲインkp及び微分ゲインkdはフィードバック制御部240内の制御要素部243に入力される。制御パラメータを可変とすることにより、運転者にアシスト力変化による反力違和感を与えず、ラックエンドへの到達を抑制することができる。また、補正ラック変位を入力とすることにより、シフト補正の効果も得ることができる。
 本発明の第2実施形態について説明する。
 第1実施形態では、設定ラックエンドxendから所定の間隔(限界値)Δxだけ手前の位置が仮想ラックエンドxendvになるようにパラメータを設定しているが、位置センサの零点ずれやラックエンドのばらつき等で仮想ラックエンドxendvと設定ラックエンドxendの差がΔx以上となることがある。また、運転者が意思を持って操舵したときに、ラックエンド方向に移動が可能となっているので、設定ラックエンドxendを越える可能性がある。そこで、仮想ラックエンドxendvからの変化量ΔxがΔx以上の場合、その差(修正量)を記憶し、次回のラックエンド接近判定によるラック変位算出前に、記憶した差で接近判定に用いる位置を修正する。これにより、最適な仮想ラックエンドを達成でき、アシスト制限制御での最終出力の変動により操舵しにくくなる可能性がある区間を小さくでき、さらに操舵しにくさを抑制することができる。
 図37は第2実施形態の構成例を図27に対応させて示しており、同一構成には同一符号を付して説明は省略する。第2実施形態では、図27に示される第1実施形態と比べると、ラックエンド接近判定部210及び粘弾性モデル追従制御部220が、それぞれラックエンド接近判定部310及び粘弾性モデル追従制御部320に代わっている。
 粘弾性モデル追従制御部320の構成例を図38に示しており、図29に示される粘弾性モデル追従制御部220の構成例と比べると、シフト補正部250がシフト補正部350に代わっている。シフト補正部350は、シフト補正部250と同様にラック変位xに対してシフト補正をかけるが、それと同時に、変化量Δxが限界値Δx以上の場合、その差を出力する。即ち、シフト補正の際に算出する仮想ラックエンドxendvからのラック変位xの変化量Δx(=x-xendv)が限界値Δx以上の場合、その差(Δx-Δx)を修正信号Mxとしてラックエンド接近判定部310に出力する。ΔxがΔx未満の場合は修正信号Mxを0として出力する。
 ラックエンド接近判定部310は、修正信号Mxを入力したら、それを記憶し、次回のラック変位xの算出で使用する。即ち、修正信号Mxを入力する前は、図4に示されるように、ラックエンド手前の所定位置xを開始位置として、そこからの判定用ラック位置Rxの変位をラック変位xとしているが、修正信号Mxを入力したら、開始位置をxよりMxだけラックエンドに近い位置に設定し直し、そこからの判定用ラック位置Rxの変位をラック変位xとする。例えば、図39は横軸を判定用ラック位置Rx及びラック変位x、縦軸をラック軸力ffとした図であり、ラック軸力ffは、通常、(x)で示されるように、所定位置xを開始位置(ラック変位x=0)として発生し、ラック変位xがラックエンドに近づくにつれ、強く(絶対値が大きく)なる。しかし、ラックエンドのばらつき等でずれが生じ、仮想ラックエンドxendvにおける通常時のラック軸力ffで、設定ラックエンドxendを越えてΔxまでずれた位置に移動した場合、ΔxとΔxの差(=Mx)だけラックエンドに近い位置x’を新しい開始位置としてラック変位xを求めるようにし、ラック軸力ffは、(z)で示されるように、x’から発生することになる。これにより、最適な範囲で仮想ラックエンドが達成でき、また通常操作範囲を大きくすることができる。
 このような構成において、第2実施形態の動作例を、図40~図42のフローチャートを参照して説明する。
 図40は全体の動作例を示しており、図24に示される動作例と比べると、開始位置修正の動作(ステップS11a)が加わり、粘弾性モデル追従制御に変更が生じている(ステップS20B)。なお、ラックエンド接近判定部310が記憶する修正信号Mxには、動作開始の際に予め初期値としてゼロが設定されている。
 ステップS11aでは、判定用ラック位置Rxを入力したラックエンド接近判定部310は、修正信号Mxで開始位置xを修正し、新しい開始位置x’(=x+Mx)を基準としてラック変位xを求める。
 粘弾性モデル追従制御(ステップS20B)での動作例を図41に示す。図31に示される第1実施形態での粘弾性モデル追従制御の動作例と比べると、シフト補正に変更が生じ(ステップS22B)、ステップS28及びS29が追加されている。
 シフト補正(ステップS22B)での動作例を図42に示す。図32に示される第1実施形態でのシフト補正の動作例と比べると、ステップS222A、S222B及びS222Cが追加されている。即ち、シフト補正部350は、変化量Δxを算出した(ステップS222)後、変化量Δxが限界値Δx以上か否かを調べる(ステップS222A)。変化量Δxが限界値Δx以上の場合、その差を修正信号Mxとしてラックエンド接近判定部310に出力し(ステップS222B)、そうではない場合、修正信号Mx=0を出力する(ステップS222C)。
 ステップS28及びS29では、ラックエンド接近判定部310が修正信号Mxを入力したか確認し(ステップS28)、入力していた場合、記憶している修正信号を入力した修正信号に更新し(ステップS29)、入力していない場合、更新しない。
 本発明の第3実施形態について説明する。
 第1実施形態では、ラック変位に対してシフト補正をかけることにより、シフト補正がかかり始める仮想ラックエンドxendv以降は操舵速度に対するアシスト力の変動は生じない。しかし、シフト補正がかかり始めた時点は速度変動として検知されるので、アシスト力の変動が生じ得る。そこで、フィードフォワード制御部及びフィードバック制御部において操舵速度、即ちラック変位の微分に関係する要素に対して不感帯処理を施し、微小速度でのアシスト力変動を抑制する。
 図43は第3実施形態の構成例を図27に対応させて示しており、同一構成には同一符号を付して説明は省略する。第3実施形態では、図27に示される第1実施形態と比べると、粘弾性モデル追従制御部220が粘弾性モデル追従制御部420に代わっている。
 粘弾性モデル追従制御部420の構成例を図44に示しており、図29に示される粘弾性モデル追従制御部220の構成例と比べると、フィードフォワード制御部130内の粘性摩擦係数項132が粘性摩擦係数項432に、フィードバック制御部140内の制御要素部143が制御要素部443にそれぞれ代わっている。
 図45に粘性摩擦係数項432の構成例を示す。粘性摩擦係数項432は、微分部434、不感帯処理部435及びゲイン部436で構成される。微分部434は補正ラック変位xを微分し、微分データdxを算出する。不感帯処理部435は微分データdxに対して不感帯処理を施し、不感帯微分データddxを出力する。具体的には、図46に示すように、入力と同じデータを出力とする破線で示す特性に対して、入力のゼロ前後に出力がゼロとなる不感帯を設けた実線で示す特性(以下、「不感帯特性」とする)を用意し、微分データdxを入力、不感帯微分データddxを出力とした不感帯特性を用いて不感帯微分データddxを求める。ゲイン部436は、パラメータ設定部124から出力される粘性摩擦係数μを用いて、不感帯微分データddxに(μ-η)を乗算し、粘性項データViを算出する。
 図47に、制御要素部443を数41で表わされる伝達関数を有するPD制御の構成とした場合の構成例を示す。制御要素部443は比例制御部444、微分制御部445及び加算部446で構成され、さらに微分制御部445は微分部447、不感帯処理部448及びゲイン部449で構成される。比例制御部444は、フィードバック要素(N/F)141から出力される目標ラック変位であるN/F演算値から補正ラック変位xを減算して算出される誤差データErに比例ゲインkpを乗算し、比例項データPiを算出する。微分部447は誤差データErを微分し、微分データdErを算出する。不感帯処理部448は、不感帯処理部435と同様の処理により、微分データdErに対して不感帯処理を施し、不感帯微分データddErを出力する。なお、不感帯処理部435と不感帯処理部438とでは、不感帯特性での不感帯の幅は同じでも異なっていても良い。ゲイン部449は不感帯微分データddErに微分ゲインkdを乗算し、微分項データDiを算出する。加算部446は比例項データPiと微分項データDiを加算し、ラック軸力FBを算出する。なお、制御要素部443はPID制御の構成でも良く、その場合も微分制御部に相当する構成要素に不感帯処理部を設ける。
 このような構成において、第3実施形態の動作例を、図48及び図49のフローチャートを参照して説明する。
 第3実施形態の動作例は、第1実施形態の動作例と比べると、粘弾性モデル追従制御に違いがあり、他の動作は同じである。図48は、第3実施形態での粘弾性モデル追従制御の動作例を示すフローチャートであり、図31に示される第1実施形態での粘弾性モデル追従制御の動作例と比べると、Cd演算及び(μ-η)・s演算が異なっている(ステップS24b、S25a)。
 Cd演算及び(μ-η)・s演算の動作例を図49に示す。
 フィードバック制御部440内の減算部142にてN/F演算値から補正ラック変位xを減算して算出された誤差データErは制御要素部443内の比例制御部444及び微分部447に入力される。比例制御部444は誤差データErに比例ゲインkpを乗算し(ステップS241)、比例項データPiを算出し、比例項データPiは加算部446に入力される。微分部447は誤差データErを微分して微分データdErを算出し(ステップS242)、微分データdErは不感帯処理部448に入力される。不感帯処理部448は、図46に示されるような不感帯特性を用いて、微分データdErに対して不感帯処理を施し(ステップS243)、不感帯微分データddErとして出力する。不感帯微分データddErはゲイン部449に入力され、ゲイン部449は、不感帯微分データddErに微分ゲインkdを乗算し、微分項データDiを算出し(ステップS244)、微分項データDiは加算部446に入力される。加算部446は比例項データPiと微分項データDiを加算して(ステップS245)、ラック軸力FBを算出し、ラック軸力FBは切替部122の接点b2に入力される。
 フィードフォワード制御部430内の粘性摩擦係数項432は補正ラック変位x及び粘性摩擦係数μを入力する。補正ラック変位xは微分部434に入力され、微分部434は補正ラック変位xを微分して微分データdxを算出し(ステップS246)、微分データdxは不感帯処理部435に入力される。不感帯処理部435は、図46に示されるような不感帯特性を用いて、微分データdxに対して不感帯処理を施し(ステップS247)、不感帯微分データddxとして出力する。不感帯微分データddxは、粘性摩擦係数μと共にゲイン部436に入力され、ゲイン部436は不感帯微分データddxに(μ-η)を乗算し、粘性項データViを算出する(ステップS248)。粘性項データViは減算部133に入力される。
 ここで、第3実施形態の効果について、図50を用いて説明する。
 図50は図33の下部の丸で括られた箇所を拡大し、操舵速度ω=dx/dtが小さい場合のラック軸力等の変化の様子を追加したものである。dx/dtが小さい場合、下限値LWは、(k)のように、(g)で示されるdx/dt=0のときの下限値LWより少し小さい値で変化する。また、ラック軸力ffも、(j)のように、(e)で示されるdx/dt=0のときのラック軸力ffより小さい値で変化する。
 シフト補正も不感帯処理も行っていない場合、非常にゆっくり操舵している状況で、仮想ラックエンドxendvにおいて操舵速度ωを多少速めると、ラック軸力ffが(e)から(j)の方へ移行し、ラック軸力ffmはまだ制限がかかっていないので、(l)に示されるようにラック軸力ffmの下降が急になる。その後、非常にゆっくりした操舵速度と多少速めた操舵速度の間で操舵を行うと、ラック軸力ffmは、(l)に示されるように、(e)と(j)の間を振動するように変化し、制限がかかり始めると、(g)と(k)の間を振動するように変化する。
 このような状況において、シフト補正をかけると、ラック軸力ffmは仮想ラックエンドxendv以降ほぼ一定となるが、シフト補正がかかり始めた時点は速度変動として検知されるので、(l)で見られるような振動が残ることがある。そこで、微分データに不感帯処理を施し、dx/dtが小さい領域ではラック軸力ffが変化しないようにすると、振動を抑えることができ、ラック軸力ffmは(m)のように一定となる。
 なお、第3実施形態では、不感帯処理部は微分部434及び447の後段に設けられ、微分データに対して不感帯処理を施しているが、不感帯処理部をゲイン部436及び449の後段に設け、粘性項データVi及び微分項データDiに対して不感帯処理を施すようにしても良い。また、粘弾性モデル追従制御部420の構成例として図6に示される構成を基としているが、図5に示される構成を基としても良い。この場合、不感帯処理部はフィードバック制御部のみに設けられることになる。
 本発明の第4実施形態について説明する。
 第1実施形態では、ラック変位に対してシフト補正をかけることにより、アシスト力の変動による操舵のしにくさを抑制しているが、シフト補正による機能の一部を、パラメータの特性の調整に置き換えることにより、同等の効果を得ることができる。
 図51は第4実施形態の構成例を図27に対応させて示しており、同一構成には同一符号を付して説明は省略する。第4実施形態では、図27に示される第1実施形態と比べると、粘弾性モデル追従制御部220が粘弾性モデル追従制御部520に代わっている。
 粘弾性モデル追従制御部520の構成例を図52に示しており、図29に示される粘弾性モデル追従制御部220の構成例と比べると、パラメータ設定部124がパラメータ設定部524に代わっており、さらに、シフト補正部250の位置が異なっており、シフト補正部250から出力される補正ラック変位xはフィードバック制御部140内の減算部142のみに入力され、フィードフォワード制御部130及びパラメータ設定部524にはラック変位xが入力される。
 パラメータ設定部524は、パラメータ設定部124と同様に、ラック変位xに対するバネ定数k及び粘性摩擦係数μを出力するが、バネ定数k及び粘性摩擦係数μが有する特性は、図16に示されるような特性ではなく、例えば図53に示されるような特性である。即ち、ラック変位xが所定の値(第2目標値)xまでは図16に示される特性と同様の特性でラック変位xの増加に合わせてバネ定数k及び粘性摩擦係数μも増加するが、ラック変位xがxを超えると、バネ定数k及び粘性摩擦係数μは一定の値となる。これにより、例えば第2目標値xを仮想ラックエンドxendvと一致させれば、フィードフォワード制御部130での演算では、仮想ラックエンドxendv以降で一定となる補正ラック変位xを使用するのと同じ効果が得られる。
 第4実施形態の動作例は、第1実施形態の動作例と比べると、粘弾性モデル追従制御に違いがあり、他の動作は同じである。そして、第4実施形態での粘弾性モデル追従制御の動作例は、図31に示される第1実施形態での粘弾性モデル追従制御の動作例と比べて、パラメータ設定(ステップS23)では図53に示される特性を使用する点、(μ-η)・s演算(ステップS25)ではラック変位xを使用する点、k設定(ステップS25A)後のバネ定数項131の演算ではラック変位xを使用する点が異なるのみである。
 なお、第1実施形態の場合と同様に、第4実施形態に対しても、フィードバック制御部140の制御パラメータをラック変位に対して可変としても良い。この場合、フィードバック制御部140内の制御要素部143をPD(比例微分)制御の構成とすると、制御パラメータである比例ゲインkp及び微分ゲインkdは、ラック変位に対して、図35に示されるような特性ではなく、例えば図54に示されるような特性をもつようにする。即ち、ラック変位xが所定の値(第3目標値)xまでは図35に示される特性と同様の特性でラック変位xの増加に合わせて比例ゲインkp及び微分ゲインkdも増加するが、ラック変位xがxを超えると、比例ゲインkp及び微分ゲインkdは一定の値となる。また、制御パラメータを設定する制御パラメータ設定部に入力されるのは、補正ラック変位xではなく、ラック変位xとなる。これにより、例えば第3目標値xを仮想ラックエンドxendvと一致させれば、制御要素部143での演算では補正ラック変位xを使用するのと同じ効果が得られる。
1        ハンドル
2        コラム軸(ステアリングシャフト、ハンドル軸)
10       トルクセンサ
12       車速センサ
13       バッテリ
14       舵角センサ
20       モータ
21       回転角センサ
30       コントロールユニット(ECU)
31       トルク制御部
35       電流制御部
36       PWM制御部
100      ラック位置変換部
101、102  変換部
110、210、310  ラックエンド接近判定部
120、220、320、420、520  粘弾性モデル追従制御部
121、122  切替部
124、524  パラメータ設定部
130、430  フィードフォワード制御部
140、240、440  フィードバック制御部
150      制御量制限部
151      高操舵時制限値演算部
152      低操舵時制限値演算部
153      高操舵時ゲイン部
154      低操舵時ゲイン部
155      制限部
160      操舵速度演算部
250、350  シフト補正部
260      制御パラメータ設定部
434、447  微分部
435、448  不感帯処理部
444      比例制御部
445      微分制御部

Claims (19)

  1.  少なくとも操舵トルクに基づいて電流指令値を演算し、前記電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置の制御装置において、
     ラックエンド手前の所定角度の範囲内で粘弾性モデルを規範モデルとしたモデルフォローイング制御の構成とし、
     前記モデルフォローイング制御で使用する変位情報にシフト補正を施し、
     少なくとも操舵速度に基づいて設定される制限値を用いて前記モデルフォローイング制御での制御量の範囲を制限し、ラックエンド端当てを抑制するようにしたことを特徴とする電動パワーステアリング装置の制御装置。
  2.  前記モデルフォローイング制御の構成がフィードバック制御部である請求項1に記載の電動パワーステアリング装置の制御装置。
  3.  前記モデルフォローイング制御の構成がフィードフォワード制御部である請求項1に記載の電動パワーステアリング装置の制御装置。
  4.  前記モデルフォローイング制御の構成がフィードバック制御部及びフィードフォワード制御部である請求項1に記載の電動パワーステアリング装置の制御装置。
  5.  少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置の制御装置において、
     前記第1の電流指令値を第1のラック軸力若しくは第1のコラム軸トルクに変換する第1の変換部と、
     前記モータの回転角から判定用ラック位置に変換するラック位置変換部と、
     前記判定用ラック位置に基づいてラックエンドに接近したことを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、
     前記ラック変位が所定の第1目標値を超えて前記ラックエンドに接近した場合、前記ラック変位と前記第1目標値との差である変化量に基づいて、前記ラック変位を補正し、補正ラック変位を出力するシフト補正部を具備し、前記第1のラック軸力若しくは第1のコラム軸トルク、前記補正ラック変位及び前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2のラック軸力若しくは第2のコラム軸トルクを生成する粘弾性モデル追従制御部と、
     少なくとも操舵速度に基づいて前記第2のラック軸力若しくは第2のコラム軸トルクに対して設定される上限値及び下限値を用いて、前記第2のラック軸力若しくは第2のコラム軸トルクを制限する制御量制限部と、
     前記制限された第2のラック軸力若しくは第2のコラム軸トルクを第2の電流指令値に変換する第2の変換部とを備え、
     前記第2の電流指令値を前記第1の電流指令値に加算して前記アシスト制御を行い、ラックエンド端当てを抑制するようにしたことを特徴とする電動パワーステアリング装置の制御装置。
  6.  前記補正ラック変位によって、前記規範モデルのパラメータを変更する請求項5に記載の電動パワーステアリング装置の制御装置。
  7.  前記粘弾性モデル追従制御部が、
     前記補正ラック変位に基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、
     前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、
     前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、
     前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備している請求項5又は6に記載の電動パワーステアリング装置の制御装置。
  8.  前記フィードフォワード制御部が、
     前記補正ラック変位を微分し、第1微分データを出力する第1の微分部と、
     前記第1微分データ又は前記第1微分データから演算される粘性項データに対してゼロ前後に不感帯を設ける第1の不感帯処理部とを具備し、
     前記フィードバック制御部が、
     目標ラック変位と前記補正ラック変位との差である誤差データを微分し、第2微分データを出力する第2の微分部と、
     前記第2微分データ又は前記第2微分データから演算される微分項データに対してゼロ前後に不感帯を設ける第2の不感帯処理部とを具備している請求項7に記載の電動パワーステアリング装置の制御装置。
  9.  前記粘弾性モデル追従制御部が、
     前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、
     前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、
     前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、
     前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備している請求項5又は6に記載の電動パワーステアリング装置の制御装置。
  10.  前記フィードバック制御部が、
     前記補正ラック変位を微分し、微分データを出力する微分部と、
     前記微分データ又は前記微分データから演算される粘性項データに対してゼロ前後に不感帯を設ける不感帯処理部とを具備している請求項9に記載の電動パワーステアリング装置の制御装置。
  11.  前記補正ラック変位によって、前記フィードバック制御部の制御パラメータを変更する請求項7乃至10のいずれかに記載の電動パワーステアリング装置の制御装置。
  12.  少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置の制御装置において、
     前記第1の電流指令値を第1のラック軸力若しくは第1のコラム軸トルクに変換する第1の変換部と、
     前記モータの回転角から判定用ラック位置に変換するラック位置変換部と、
     前記判定用ラック位置に基づいてラックエンドに接近したことを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、
     前記ラック変位が所定の第1目標値を超えて前記ラックエンドに接近した場合、前記ラック変位と前記第1目標値との差である変化量に基づいて、前記ラック変位を補正し、補正ラック変位を出力するシフト補正部とを具備し、前記第1のラック軸力若しくは第1のコラム軸トルク、前記ラック変位、前記補正ラック変位及び前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2のラック軸力若しくは第2のコラム軸トルクを生成する粘弾性モデル追従制御部と、
     少なくとも操舵速度に基づいて前記第2のラック軸力若しくは第2のコラム軸トルクに対して設定される上限値及び下限値を用いて、前記第2のラック軸力若しくは第2のコラム軸トルクを制限する制御量制限部と、
     前記制限された第2のラック軸力若しくは第2のコラム軸トルクを第2の電流指令値に変換する第2の変換部とを備え、
     前記規範モデルのパラメータを、前記ラック変位が所定の第2目標値以下の場合は前記ラック変位によって変更し、前記ラック変位が前記第2目標値を超えた場合は一定とし、
     前記第2の電流指令値を前記第1の電流指令値に加算して前記アシスト制御を行い、ラックエンド端当てを抑制するようにしたことを特徴とする電動パワーステアリング装置の制御装置。
  13.  前記粘弾性モデル追従制御部が、
     前記ラック変位に基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、
     前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、
     前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、
     前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備している請求項12に記載の電動パワーステアリング装置の制御装置。
  14.  前記粘弾性モデル追従制御部が、
     前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードフォワード制御して第3のラック軸力若しくは第3のコラム軸トルクを出力するフィードフォワード制御部と、
     前記補正ラック変位及び前記第1のラック軸力若しくは第1のコラム軸トルクに基づいてフィードバック制御して第4のラック軸力若しくは第4のコラム軸トルクを出力するフィードバック制御部と、
     前記切替信号により前記第3のラック軸力若しくは第3のコラム軸トルクの出力をON/OFFする第1の切替部と、
     前記切替信号により前記第4のラック軸力若しくは第4のコラム軸トルクの出力をON/OFFする第2の切替部と、
     前記第1及び第2の切替部の出力を加算して前記第2のラック軸力若しくは第2のコラム軸トルクを出力する加算部とを具備している請求項12に記載の電動パワーステアリング装置の制御装置。
  15.  前記フィードバック制御部の制御パラメータを、前記ラック変位が所定の第3目標値以下の場合は前記ラック変位によって変更し、前記ラック変位が前記第3目標値を超えた場合は一定とする請求項13又は14に記載の電動パワーステアリング装置の制御装置。
  16.  前記シフト補正部は、前記変化量が所定の限界値以上の場合、前記変化量と前記限界値との差である修正量を算出し、
     前記ラックエンド接近判定部は、前記修正量を用いて前記ラック変位を修正する請求項5乃至15のいずれかに記載の電動パワーステアリング装置の制御装置。
  17.  前記制御量制限部が、
     前記上限値及び下限値を前記操舵速度の変化に合わせて徐々に変更する請求項5乃至16のいずれかに記載の電動パワーステアリング装置の制御装置。
  18.  前記上限値及び下限値を操舵方向に応じて設定する請求項5乃至17のいずれかに記載の電動パワーステアリング装置の制御装置。
  19.  前記上限値及び下限値を前記第1のラック軸力若しくは第1のコラム軸トルクに基づいて設定する請求項5乃至18のいずれかに記載の電動パワーステアリング装置の制御装置。
PCT/JP2017/042014 2017-11-22 2017-11-22 電動パワーステアリング装置の制御装置 WO2019102543A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780057868.7A CN110072760B (zh) 2017-11-22 2017-11-22 电动助力转向装置的控制装置
PCT/JP2017/042014 WO2019102543A1 (ja) 2017-11-22 2017-11-22 電動パワーステアリング装置の制御装置
JP2018544277A JP6477986B1 (ja) 2017-11-22 2017-11-22 電動パワーステアリング装置の制御装置
EP17905901.9A EP3514040A4 (en) 2017-11-22 2017-11-22 CONTROL DEVICE FOR ELECTRIC POWER STEERING STEERING DEVICE
US16/095,028 US20200346687A1 (en) 2017-11-22 2017-11-22 Control unit for electric power steering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042014 WO2019102543A1 (ja) 2017-11-22 2017-11-22 電動パワーステアリング装置の制御装置

Publications (1)

Publication Number Publication Date
WO2019102543A1 true WO2019102543A1 (ja) 2019-05-31

Family

ID=65655717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042014 WO2019102543A1 (ja) 2017-11-22 2017-11-22 電動パワーステアリング装置の制御装置

Country Status (5)

Country Link
US (1) US20200346687A1 (ja)
EP (1) EP3514040A4 (ja)
JP (1) JP6477986B1 (ja)
CN (1) CN110072760B (ja)
WO (1) WO2019102543A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129003B2 (ja) * 2018-09-21 2022-09-01 株式会社ジェイテクト モータ制御装置
JP7234737B2 (ja) * 2019-03-28 2023-03-08 株式会社デンソー 検出ユニット
JP7376290B2 (ja) * 2019-09-10 2023-11-08 株式会社ジェイテクト 操舵制御装置
CN113104099A (zh) * 2021-05-24 2021-07-13 奇瑞新能源汽车股份有限公司 电动助力转向系统的控制方法、装置、系统及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064417B2 (ja) 1985-02-12 1994-01-19 本田技研工業株式会社 電動式パワーステアリング装置
JP2003529480A (ja) * 1999-09-17 2003-10-07 デルファイ・テクノロジーズ・インコーポレーテッド 移動終端衝撃管理システム
JP4115156B2 (ja) 2001-04-17 2008-07-09 ティーアールダブリュー・ファールヴェルクズュステーメ・ゲーエムベーハー・ウント・コンパニー・カーゲー パワーステアリングシステムの制御方法
JP2008284889A (ja) * 2007-05-15 2008-11-27 Nsk Ltd 電動パワーステアリング装置の制御装置
WO2016104571A1 (ja) * 2014-12-25 2016-06-30 日本精工株式会社 電動パワーステアリング装置
JP2017165306A (ja) * 2016-03-17 2017-09-21 日本精工株式会社 電動パワーステアリング装置
JP2017171062A (ja) * 2016-03-23 2017-09-28 日本精工株式会社 電動パワーステアリング装置
JP2017210216A (ja) * 2016-05-27 2017-11-30 日本精工株式会社 電動パワーステアリング装置の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100564133C (zh) * 2006-02-09 2009-12-02 株式会社电装 用于电动转向系统的控制装置
CN101377657B (zh) * 2007-08-31 2012-03-07 同济大学 具有鲁棒稳定性能的电动助力转向系统
CN102232031B (zh) * 2009-01-22 2013-09-18 丰田自动车株式会社 电动动力转向装置
CN105644617B (zh) * 2014-11-10 2018-02-23 联创汽车电子有限公司 齿条末端保护方法
US10118636B2 (en) * 2014-12-25 2018-11-06 Nsk Ltd. Electric power steering apparatus
WO2017159843A1 (ja) * 2016-03-18 2017-09-21 日本精工株式会社 電動パワーステアリング装置の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064417B2 (ja) 1985-02-12 1994-01-19 本田技研工業株式会社 電動式パワーステアリング装置
JP2003529480A (ja) * 1999-09-17 2003-10-07 デルファイ・テクノロジーズ・インコーポレーテッド 移動終端衝撃管理システム
JP4115156B2 (ja) 2001-04-17 2008-07-09 ティーアールダブリュー・ファールヴェルクズュステーメ・ゲーエムベーハー・ウント・コンパニー・カーゲー パワーステアリングシステムの制御方法
JP2008284889A (ja) * 2007-05-15 2008-11-27 Nsk Ltd 電動パワーステアリング装置の制御装置
WO2016104571A1 (ja) * 2014-12-25 2016-06-30 日本精工株式会社 電動パワーステアリング装置
JP2017165306A (ja) * 2016-03-17 2017-09-21 日本精工株式会社 電動パワーステアリング装置
JP2017171062A (ja) * 2016-03-23 2017-09-28 日本精工株式会社 電動パワーステアリング装置
JP2017210216A (ja) * 2016-05-27 2017-11-30 日本精工株式会社 電動パワーステアリング装置の制御装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAJIME MAEDA; TOSHIHARU SUGIE: "System Control Theory for Advanced Control", ASAKURA SHOTEN
KENKICHI OHBA: "Engineering Sciences & Technology", KANSAI UNIVERSITY, article "Elementary Mechanics for Elastic Membrane and Viscoelasticity"
OFFICIAL JOURNAL OF A SCIENTIFIC SOCIETY, vol. 17, 2010
See also references of EP3514040A4 *

Also Published As

Publication number Publication date
JP6477986B1 (ja) 2019-03-06
EP3514040A4 (en) 2020-04-08
EP3514040A1 (en) 2019-07-24
JPWO2019102543A1 (ja) 2019-11-21
CN110072760B (zh) 2021-05-11
US20200346687A1 (en) 2020-11-05
CN110072760A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6103163B2 (ja) 電動パワーステアリング装置
CN110573407B (zh) 电动助力转向装置
WO2019102543A1 (ja) 電動パワーステアリング装置の制御装置
US10059368B2 (en) Electric power steering apparatus
EP3196099B1 (en) Electric power steering device
US10173719B2 (en) Electric power steering apparatus
CN110248860B (zh) 电动助力转向装置
WO2018142650A1 (ja) 電動パワーステアリング装置
JP2017210216A (ja) 電動パワーステアリング装置の制御装置
CN111406011A (zh) 电动助力转向装置
JP6702513B2 (ja) 車両用操向装置
WO2020145036A1 (ja) 車両用操向装置
JP2017171059A (ja) 電動パワーステアリング装置
JP2017165266A (ja) 電動パワーステアリング装置
JP2017165307A (ja) 電動パワーステアリング装置
JP2017165306A (ja) 電動パワーステアリング装置
JP2017171062A (ja) 電動パワーステアリング装置
JP2020075547A (ja) 電動パワーステアリング装置
JP2020075605A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544277

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017905901

Country of ref document: EP

Effective date: 20190213

NENP Non-entry into the national phase

Ref country code: DE