WO2016104440A1 - 転がり軸受用保持器および転がり軸受 - Google Patents

転がり軸受用保持器および転がり軸受 Download PDF

Info

Publication number
WO2016104440A1
WO2016104440A1 PCT/JP2015/085701 JP2015085701W WO2016104440A1 WO 2016104440 A1 WO2016104440 A1 WO 2016104440A1 JP 2015085701 W JP2015085701 W JP 2015085701W WO 2016104440 A1 WO2016104440 A1 WO 2016104440A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
resin
rolling bearing
polyamide
resin composition
Prior art date
Application number
PCT/JP2015/085701
Other languages
English (en)
French (fr)
Inventor
工 林
篤史 徳田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56150459&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016104440(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112015005820.6T priority Critical patent/DE112015005820T5/de
Priority to US15/540,019 priority patent/US10518445B2/en
Priority to CN201580070619.2A priority patent/CN107107410B/zh
Publication of WO2016104440A1 publication Critical patent/WO2016104440A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/04Bearings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages

Definitions

  • the present invention relates to a rolling bearing cage for rolling bearings used in automobiles, motors, machine tools and the like, and more particularly to a resin rolling bearing cage formed by molding a predetermined resin composition.
  • Conventional ball bearings are generally press-molded as a cage that holds a plurality of rolling elements arranged in a circumferential direction between a raceway surface of an outer ring and a raceway surface of an inner ring so as to roll freely. Iron ones are used. However, when the rotational speed of the bearing is increased, the friction caused by the sliding contact between the rolling element and the cage is increased in the iron cage, and the temperature rise of the bearing is increased. . Therefore, it is considered effective to use a cage made by injection molding a synthetic resin that is superior to iron in terms of self-lubricating properties, low friction characteristics, light weight, etc.
  • Polyamide 6 resin, polyamide 66 resin, polyamide 46 resin, and the like are used, and those containing glass fibers and strengthened as necessary are used (see Patent Document 1).
  • a cage using polyamide 9T resin has also been proposed for the purpose of improving dimensional stability, heat resistance, and chemical resistance (see Patent Documents 2 and 3).
  • JP 2000-227120 A JP 2001-317554 A JP 2006-207684 A
  • the cage When a rolling bearing incorporating a resin cage is rotated at a high speed, the cage may be deformed as a result of the centrifugal force generated by the high speed rotation acting on the cage. When the cage is deformed, friction between the cage and the balls held by the cage increases, which causes heat generation of the bearing. Further, when the cage is deformed, contact with the outer ring of the bearing also occurs, and the frictional heat due to this contact may melt the resin and the rolling bearing may not rotate (seize). Therefore, the resin cage incorporated in the rolling bearing used at such high speed rotation is required not to be deformed due to mechanical and / or thermal stress.
  • Polyamide 66 resin and polyamide 46 resin which are general cage materials described in Patent Document 1, have glass transition temperatures of about 50 ° C. and about 80 ° C., respectively.
  • the dm ⁇ n value product of the pitch circle diameter dm of the rolling element and the raceway rotation speed n
  • the polyamide 66 resin and the polyamide 46 resin have a high water absorption rate and the cage dimensions change accordingly, it is necessary to control the dimensions in a moisture-absorbed state. Furthermore, the strength and elastic modulus of the cage after moisture absorption are greatly reduced as compared to before moisture absorption.
  • the polyamide 9T resin described in Patent Documents 2 and 3 has a glass transition temperature of 125 ° C., which is higher than the glass transition temperatures of the above-mentioned polyamide 66 resin and polyamide 46 resin.
  • the cage temperature may be higher than the glass transition temperature, and problems such as deformation may occur. There is.
  • polyamide 9T resin is an aromatic polyamide
  • the water absorption is lower than that of an aliphatic polyamide such as polyamide 66 resin or polyamide 46 resin.
  • a resin cage produced by injection molding always has a weld portion formed in a region where the resin composition merges at the time of molding.
  • Polyamide 9T resin has a high elastic modulus and low toughness. As a result, stress concentration occurs in the weld portion during use, and cracks are likely to occur in the weld portion, which may reduce the strength of the cage.
  • Patent Document 2 proposes a cage using a polyamide 9T resin, but does not suggest its seizure resistance performance.
  • Patent Document 3 describes that the dm ⁇ n value is about 60 ⁇ 10 4 for the temperature rise, but does not suggest the strength of the cage including the weld portion.
  • the present invention has been made to cope with such a problem, and is for a rolling bearing that does not cause seizure or breakage even under high temperature and high speed conditions such that the dm ⁇ n value is 80 ⁇ 10 4 or more. It is an object to provide a cage and a rolling bearing using the cage.
  • the rolling bearing cage of the present invention is a rolling bearing cage formed by injection molding of a resin composition
  • the resin composition comprises a polyamide resin composed of a dicarboxylic acid component and a diamine component as a base resin, A composition obtained by blending a fibrous reinforcing material therein, the dicarboxylic acid component as a main component terephthalic acid, the diamine component as a main component 1,10-decanediamine, as the fibrous reinforcing material,
  • the glass composition contains 15 to 50% by mass of glass fiber or 10 to 35% by mass of carbon fiber with respect to the whole resin composition.
  • the polyamide resin has a melting point of 310 ° C. or higher.
  • the remainder other than the fibrous reinforcing material is the polyamide resin.
  • the polyamide resin contains carbon 14 which is a radioisotope.
  • the rolling bearing of the present invention is a rolling bearing comprising an inner ring and an outer ring, a plurality of rolling elements interposed between the inner and outer rings, and a cage that holds the rolling elements, and the cage is the present invention. It is characterized by being a rolling bearing retainer.
  • the rolling bearing is a bearing used at high speed rotation with a dm ⁇ n value of 80 ⁇ 10 4 or more.
  • the cage for a rolling bearing according to the present invention comprises 15 to 50% by mass of glass fiber or carbon in a predetermined polyamide resin in which the dicarboxylic acid component is terephthalic acid and the diamine component is 1,10-decanediamine. Since a resin composition containing 10 to 35% by mass of fibers is injection-molded, the rigidity (elastic modulus) is high, and deformation can be reduced even under conditions of high temperature and high speed rotation. For this reason, even if it is used at a high speed rotation with a dm ⁇ n value of 80 ⁇ 10 4 or more, the amount of heat generation can be reduced, and seizure and damage can be prevented.
  • the dicarboxylic acid component is terephthalic acid and the diamine component is a polyamide resin whose main component is 1,10-decanediamine
  • the base resin is used, so that the crystallization speed is very fast and the cycle time during molding is shortened. Can improve productivity.
  • the above-mentioned polyamide resin as the base resin has a melting point of 310 ° C. or higher, compared with the polyamide 66 resin (melting point 267 ° C.) and the polyamide 46 resin (melting point 295 ° C.) most frequently used as a cage material, Has very high heat resistance. Moreover, even if it compares with polyamide 9T resin (melting
  • the water absorption rate is about the same as that of the polyamide 9T resin, which is very small as compared with the polyamide 66 resin and the polyamide 46 resin, and the dimensional change and physical property deterioration due to water absorption can be suppressed as much as possible.
  • a part of the components constituting the polyamide resin (for example, 1,10-decanediamine) is synthesized from plants, and since the polyamide resin contains carbon 14 which is a radioisotope, it is compared with a synthetic resin derived from petroleum. Thus, the substantial carbon dioxide emission during combustion can be reduced.
  • the rolling bearing of the present invention comprises an inner ring and an outer ring, a plurality of rolling elements interposed between the inner and outer rings, and the retainer of the present invention that holds the rolling elements, and therefore has a dm ⁇ n value of 80. Even when used at a high-speed rotation of ⁇ 10 4 or more, the bearing does not cause defects due to seizure or breakage of the cage.
  • the rolling bearing cage of the present invention is a resin cage formed by injection molding of a resin composition.
  • the resin composition used as the resin material is obtained by blending a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) with a predetermined polyamide resin as a base resin.
  • the polyamide resin used in the present invention comprises a dicarboxylic acid component and a diamine component, and is obtained by polycondensation of dicarboxylic acid and diamine constituting each component.
  • the dicarboxylic acid component constituting the polyamide resin has terephthalic acid as a main component. By using terephthalic acid as the main component, the polyamide resin has excellent high-temperature rigidity.
  • the diamine component constituting the polyamide resin is mainly composed of 1,10-decanediamine. 1,10-decanediamine is a linear aliphatic diamine. Since both terephthalic acid and 1,10-decanediamine have high chemical structure symmetry, a highly crystalline polyamide resin can be obtained by using them as the main components.
  • linear 1,10-decanediamine having 10 carbon atoms is used as a main component for the diamine component constituting the polyamide resin. Since the number of carbon atoms in the monomer unit of the diamine component as the main component is 10 and an even number, a more stable crystal structure is obtained and crystallinity is improved (even-odd effect) as compared with the case of an odd number. Further, when the diamine component as a main component has 8 or less carbon atoms, the melting point of the polyamide resin may exceed the decomposition temperature. When the diamine component has 12 or more carbon atoms, the polyamide resin has a low melting point, and the cage may be deformed when used under high temperature and high speed conditions. Note that the diamine having 9 or 11 carbon atoms may have insufficient crystallinity due to the even-odd effect of the polyamide resin.
  • the polyamide resin may be obtained by replacing a part of terephthalic acid, which is a dicarboxylic acid component, and 1,10-decanediamine, which is a diamine component, with another copolymer component.
  • terephthalic acid which is a dicarboxylic acid component
  • 1,10-decanediamine which is a diamine component
  • the total amount of terephthalic acid and 1,10-decanediamine as the main components is the total number of moles (100 mol%) of the raw material monomers.
  • Dicarboxylic acid components other than terephthalic acid used as other copolymerization components include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecane
  • Examples include aliphatic dicarboxylic acids such as diacids, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and naphthalenedicarboxylic acid.
  • diamine components other than 1,10-decanediamine used as other copolymerization components include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, and 1,5-pentanediamine. 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,11-undecanediamine, aliphatic diamine such as 1,12-dodecanediamine, cyclohexanediamine, etc. Aromatic diamines such as alicyclic diamine and xylylenediamine.
  • the polyamide resin may be copolymerized with lactams such as caprolactam.
  • the weight average molecular weight of the polyamide resin is preferably 15000 to 50000, more preferably 26000 to 50000. When the weight average molecular weight of the polyamide resin is less than 15000, the rigidity of the resin is lowered, and the cage may be deformed during high-speed rotation. On the other hand, when the weight average molecular weight of the polyamide resin exceeds 50,000, crystallization is slowed down and fluidity during injection molding is lowered.
  • the relative viscosity of the polyamide resin is not particularly limited, but in order to facilitate the molding of the cage, the relative viscosity measured at a concentration of 1 g / dL and 25 ° C. with 96 mass% sulfuric acid as the solvent is 2 0.0 or more is preferable.
  • the polyamide resin preferably has a melting point of 310 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably about 320 to 340 ° C. in consideration of moldability and the like.
  • the melting point range is preferably 310 to 340 ° C, more preferably 310 to 330 ° C, and particularly preferably 310 to 320 ° C.
  • the polyamide resin preferably has a glass transition temperature of 130 ° C. or higher. More preferably, it is 150 degreeC or more. Since the glass transition temperature is higher than other polyamide resins (polyamide 66 resin (49 ° C.), polyamide 46 resin (78 ° C.), and polyamide 9T resin (125 ° C.)) that are generally used as cage materials, dm ⁇ Even when the n value is 80 ⁇ 10 4 or more and used at a high temperature and high speed, deformation of the cage can be suppressed, and heat generation due to sliding friction between the rolling element and the cage can be reduced.
  • polyamide 66 resin 49 ° C.
  • polyamide 46 resin 78 ° C.
  • polyamide 9T resin 125 ° C.
  • Glass fiber or carbon fiber is used as the fibrous reinforcing material to be blended with the polyamide resin as the base resin.
  • the glass fiber is obtained by spinning from inorganic glass containing SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Fe 2 O 3 or the like as a main component.
  • alkali-free glass (E glass), alkali-containing glass (C glass, A glass) or the like can be used.
  • alkali-free glass is preferable.
  • the alkali-free glass is a borosilicate glass that contains almost no alkali component in the composition.
  • the alkali component is hardly contained, there is almost no influence on the polyamide resin, and the properties of the resin composition do not change.
  • the glass fiber include Asahi Fiber Glass Co., Ltd .: 03JAFT692, MF03MB120, MF06MB120, and the like.
  • Carbon fiber can be used regardless of the type of raw material such as polyacrylonitrile (PAN), pitch, rayon, and lignin-poval mixture.
  • PAN polyacrylonitrile
  • pitch-based carbon fibers include: Kureha Co., Ltd .: Kureka M-101S, M-107S, M-101F, M-201S, M-207S, M-2007S, C-103S, C -106S, C-203S and the like.
  • PAN-based carbon fiber for example, manufactured by Toho Tenax Co., Ltd .: Besfight HTA-CMF0160-0H, HTA-CMF0040-0H, HTA-C6, HTA-C6-S, or Toray Industries, Inc .: Trading Card MLD-30, MLD-300, T008, T010 and the like.
  • the blending amount is 15 to 50% by mass with respect to the entire resin composition.
  • the blending amount is 10 to 35% by mass with respect to the entire resin composition.
  • additives other than the above-mentioned fibrous reinforcing material may be blended as necessary as long as the cage function and the injection moldability are not impaired.
  • additives for example, a solid lubricant, an inorganic filler, an antioxidant, an antistatic agent, a release material, and the like can be blended.
  • Each material constituting the resin composition is mixed with a Henschel mixer, a ball mixer, a ribbon blender, or the like, if necessary, and then melt-kneaded with a melt extruder such as a twin-screw kneading extruder to form pellets for molding. Can be obtained.
  • the filling material may be fed by side feed when melt-kneading with a twin screw extruder or the like.
  • a cage is molded by injection molding using the molding pellets. At the time of injection molding, the resin temperature is set to be equal to or higher than the melting point of the above polyamide resin, and the mold temperature is maintained below the glass transition temperature of the polyamide resin.
  • the resin composition used as the resin material of the rolling bearing cage of the present invention is obtained by blending a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) with a predetermined polyamide resin. It has a high glass transition temperature, excellent heat resistance, oil resistance, chemical resistance, dimensional stability, toughness and high mechanical properties. For this reason, the rolling bearing cage of the present invention can be used for long periods of time in harsh environmental conditions such as high-speed rotation areas (high-temperature atmosphere, contact with oil or chemicals, high-speed rotation conditions, high-load conditions, humid environments, etc.). The cage can withstand use.
  • the rolling bearing cage of the present invention is excellent in dimensional stability and can be provided at a low cost as a cage for applications requiring accuracy.
  • plant-derived materials may be used as the dicarboxylic acid component or the diamine component.
  • 1,10-decanediamine using castor oil as a starting material can be used.
  • a biomass-derived raw material such as a plant
  • the substantial discharge amount of carbon dioxide accompanying incineration disposal of a resin cage can be reduced as compared with a case where no biomass-derived raw material is used.
  • whether or not it is a plant plastic using a biomass-derived raw material can be determined by measuring the concentration of 14 C, which is a radioisotope, with respect to the carbon constituting the resin.
  • FIG. 1 is an axial sectional view of an angular ball bearing which is an example of a rolling bearing of the present invention
  • FIG. 2 is a perspective view and a partially enlarged view of a cage (a machined die) in the rolling bearing of FIG.
  • the angular ball bearing 1 includes an inner ring 2, an outer ring 3, a plurality of rolling elements 4 interposed between the inner ring 2 and the outer ring 3, and the rolling elements 4 held at regular intervals in the circumferential direction.
  • the cage 5 is provided.
  • the cage 5 is the above-described rolling bearing cage of the present invention.
  • the inner ring 2 and the outer ring 3 and the rolling element 4 are in contact with each other at a predetermined angle ⁇ (contact angle) with respect to the radial center line, so that a radial load and an axial load in one direction can be applied. If necessary, a lubricant such as grease is sealed around the rolling elements 4 for lubrication.
  • the cage 5 is an injection-molded body of a resin composition based on the above-described polyamide resin having a high glass transition temperature and excellent rigidity. Deformation of the cage can be suppressed. Moreover, since the above-mentioned polyamide resin is also excellent in self-lubricating properties and low friction properties, the amount of heat generated by friction between the rolling elements 4 and the cage 5 can be reduced, temperature rise is suppressed, and seizure does not occur. . For this reason, the bearing can be operated for a long time even under high temperature and high speed rotation conditions.
  • the cage 5 is provided with a plurality of pockets 6 for holding balls as rolling elements at a constant interval in an annular cage body 5a.
  • the planar shape of the pocket 6 is a flat circular shape, but may be a perfect circle.
  • the flat circular shape means a pocket that approximates the radius of the ball on both sides with a gap that matches the amount of pocket gap (difference between pocket inner diameter and ball diameter) required for a perfect circle shape.
  • the cage 5 is a machined-type cage, and is obtained by molding a shaped material by injection molding using the above resin composition and then machining a pocket portion by cutting. Since the cage 5 is an injection-molded body, as shown in FIG. 2B, a weld portion 7 is formed in a region where the resin composition is merged during molding. The weld portion 7 is a portion that easily breaks due to stress concentration in the cage ring.
  • a molded body obtained by injection molding a resin composition comprising the above-described polyamide resin as a base resin and a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) blended therein.
  • the weld portion 7 is excellent in tensile strength and can be prevented from cracking at the time of use at high speed rotation. Specifically, as shown in the examples described later, the tensile strength is higher than when only the base resin is changed to another polyamide resin.
  • FIG. 1 and FIG. 2 an angular ball bearing has been described as an example of the rolling bearing of the present invention.
  • the bearing type to which the present invention can be applied is not limited to this, and other ball bearings, tapered roller bearings, and self-aligning rollers. It can also be applied to bearings and needle roller bearings.
  • FIG. 3 is a partially enlarged perspective view of a crown type cage obtained by injection molding of the above resin composition.
  • the cage 8 forms a pair of opposed claws 10 on the upper surface of the annular cage body 9 at a constant pitch in the circumferential direction, and the opposed claws 10 approach each other.
  • a pocket 11 for holding a ball as a rolling element is formed between the holding claws 10.
  • a flat portion 12 serving as a rising reference surface of the holding claws 10 is formed.
  • the holding claw 10 has a bent end portion 10a.
  • the bent tip 10a of the holding claw 10 is forcibly removed when it is taken out from the mold. This is because the diameter of the pocket opening is smaller than the inner diameter of the pocket 11, so that the inner diameter mold for forming the pocket is released by elastically expanding the diameter of the pocket opening to the inner diameter of the pocket. .
  • the cage of the present invention since the above-mentioned resin composition is used as a cage material, it prevents cracking and whitening of the tip of the holding claw when forcibly removing the above while maintaining high rigidity during use. obtain.
  • the blending amount is 20 to 35% by mass with respect to the entire resin composition when glass fiber is used, and resin when carbon fiber is used. By setting the content to 15 to 30% by mass with respect to the entire composition, this can be easily prevented.
  • Resin material Polyamide resin A Resin using terephthalic acid and 1,10-decanediamine as main raw materials (XecoT XN500 manufactured by Unitika)
  • Polyamide 66 resin Amilan CM3001 manufactured by Toray Industries, Inc.
  • Polyamide 46 resin Stanyl TW300 manufactured by DSM Polyamide 9T resin: Genesta N1000 manufactured by Kuraray
  • Fibrous reinforcing material Glass fiber: 03JAFT692 manufactured by Asahi Fiber Glass Co., Ltd. (average fiber diameter 10 ⁇ m, average fiber length 3 mm)
  • the cage tensile test a high strength is required for the breaking strength of the cage (the tensile strength of the weld portion) from the use conditions where the dm ⁇ n value is 80 ⁇ 10 4 or more.
  • the cage made of the example of the present invention showed a good strength of 2000 N or more.
  • all of Comparative Examples 1 to 6 were 2000 N or less.
  • the rolling bearing cage of the present invention does not cause seizure or breakage even under high temperature and high speed conditions, and can be used as a cage for various rolling bearings used in automobiles, motors, machine tools, and the like.
  • it is suitable as a bearing retainer used at high speed rotation such that the dm ⁇ n value is 80 ⁇ 10 4 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 dm・n値が80×10以上となるような、高温、高速条件下においても焼付きや破損を生じない転がり軸受用保持器、および該保持器を用いた転がり軸受を提供する。転がり軸受1は、内輪2および外輪3と、この内・外輪間に介在する複数の転動体4と、転動体4を保持する保持器5とを備え、保持器5は樹脂組成物を射出成形してなり、上記樹脂組成物はジカルボン酸成分とジアミン成分とからなるポリアミド樹脂に繊維状補強材を配合してなり、上記ジカルボン酸成分がテレフタル酸を主成分とし、上記ジアミン成分が1,10-デカンジアミンを主成分とし、上記繊維状補強材として該樹脂組成物全体に対してガラス繊維を15~50質量%または炭素繊維を10~35質量%含む。

Description

転がり軸受用保持器および転がり軸受
 本発明は、自動車、モータ、工作機械などで用いられる転がり軸受の転がり軸受用保持器に関し、特に、所定の樹脂組成物を成形してなる樹脂製の転がり軸受用保持器に関する。
 従来の玉軸受には、外輪の軌道面と内輪の軌道面との間に円周方向に配置された複数個の転動体を転動自在に保持する保持器として、一般的にプレス成形された鉄製のものが使用されている。しかし、軸受の回転速度が速くなった場合、鉄製の保持器では転動体と該保持器の滑り接触による摩擦が大きくなり、軸受の昇温が大きくなり、その結果、焼き付きに至るおそれがあった。そこで、保持器の材料を自己潤滑性、低摩擦特性、軽量などの点で鉄製に比較して優れている合成樹脂を射出成形した保持器を用いることが有効と考えられ、一般的には、ポリアミド6樹脂、ポリアミド66樹脂、ポリアミド46樹脂などが用いられ、必要に応じてこれらにガラス繊維を含有させ強化したものを用いている(特許文献1参照)。また、より寸法安定性、耐熱性、耐薬品性を向上させる目的でポリアミド9T樹脂を使用した保持器も提案されている(特許文献2、3参照)。
特開2000-227120号公報 特開2001-317554号公報 特開2006-207684号公報
 樹脂製の保持器を組み込んだ転がり軸受を高速回転させる場合、高速回転によって発生する遠心力が保持器に作用する結果、保持器が変形するおそれがある。保持器が変形すると保持器とこの保持器に保持されている玉との摩擦が大きくなり、軸受の発熱を引き起こす原因となる。また、保持器が変形すると軸受外輪との接触も起こり、この接触による摩擦熱によって樹脂が溶融して転がり軸受が回転しなくなる(焼き付く)場合がある。よって、このように高速回転で使用される転がり軸受に組み込まれる樹脂製の保持器は、機械および/または熱的応力により、変形しないことが要求される。
 しかしながら、合成樹脂はガラス転移温度を境にして、機械的特性が大きく変化し、高温では、強度や弾性率が低下する。特許文献1に記載される一般的な保持器材質であるポリアミド66樹脂やポリアミド46樹脂は、そのガラス転移温度がそれぞれ約50℃、約80℃であり、それをこえる温度では、上述のように、遠心力による変形の発生、保持器と転動体との滑り摩擦による発熱の増大、軸受温度の更なる上昇を経て、保持器と外輪が接触し、焼き付きや保持器破損に至る可能性がある。このため、例えば、dm・n値(転動体のピッチ円径dmと軌道輪回転数nとの積)が60×10以上(更には80×10以上)となる高速回転で使用した場合、焼き付きによる損傷や保持器破損を防ぐことが困難であった。また、ポリアミド66樹脂やポリアミド46樹脂は、吸水率が高く、それに伴って保持器寸法が変化するため、吸湿させた状態で寸法管理して使用する必要がある。さらに、保持器の吸湿後の強度および弾性率は吸湿前に比較して大きく低下する。
 一方、特許文献2、3に記載されるようなポリアミド9T樹脂は、そのガラス転移温度が125℃であり、上述のポリアミド66樹脂やポリアミド46樹脂のガラス転移温度と比較して高い。しかし、ポリアミド9T樹脂においても、高速回転条件下での温度上昇に対して、何らかの要因で潤滑状態が悪くなった場合、保持器温度がそのガラス転移温度以上となり、変形などの問題が発生するおそれがある。
 また、ポリアミド9T樹脂は、芳香族ポリアミドであることから、ポリアミド66樹脂やポリアミド46樹脂のような脂肪族ポリアミドと比較して吸水性は低くなる。しかし、射出成形で製造される樹脂製の保持器には、成形時に樹脂組成物が合流する領域に形成されるウエルド部が必ず存在するところ、ポリアミド9T樹脂は、弾性率が高く、靱性が低くなることから、使用時に該ウエルド部への応力集中が発生し、ウエルド部での割れが発生しやすくなり、保持器としての強度が低下するおそれがある。
 これらの点に関して、特許文献2には、ポリアミド9T樹脂を使用した保持器の提案こそなされているが、その耐焼付き性能については示唆されていない。また、特許文献3では、温度上昇についてdm・n値が60×10程度の記載はあるが、ウエルド部を含めた、その保持器としての強度については示唆されていない。
 本発明はこのような問題に対処するためになされたものであり、dm・n値が80×10以上となるような、高温、高速条件下においても焼付きや破損を生じない転がり軸受用保持器、および該保持器を用いた転がり軸受を提供することを目的とする。
 本発明の転がり軸受用保持器は、樹脂組成物を射出成形してなる転がり軸受用保持器であって、上記樹脂組成物は、ジカルボン酸成分とジアミン成分とからなるポリアミド樹脂をベース樹脂とし、これに繊維状補強材を配合してなる組成物であり、上記ジカルボン酸成分がテレフタル酸を主成分とし、上記ジアミン成分が1,10-デカンジアミンを主成分とし、上記繊維状補強材として、上記樹脂組成物全体に対して、ガラス繊維を15~50質量%、または、炭素繊維を10~35質量%含むことを特徴とする。
 上記ポリアミド樹脂は、融点が310℃以上であることを特徴とする。また、上記樹脂組成物において、上記繊維状補強材以外の残部が上記ポリアミド樹脂である。また、上記ポリアミド樹脂が、放射性同位元素である炭素14を含むことを特徴とする。
 本発明の転がり軸受は、内輪および外輪と、この内・外輪間に介在する複数の転動体と、この転動体を保持する保持器とを備える転がり軸受であって、上記保持器が、本発明の転がり軸受用保持器であることを特徴とする。特に、上記転がり軸受が、dm・n値が80×10以上の高速回転で使用される軸受であることを特徴とする。
 本発明の転がり軸受用保持器は、ジカルボン酸成分がテレフタル酸を、ジアミン成分が1,10-デカンジアミンを、それぞれ主成分とする所定のポリアミド樹脂に、ガラス繊維を15~50質量%または炭素繊維を10~35質量%配合してなる樹脂組成物を射出成形してなるので、剛性(弾性率)が高く、高温高速回転となる条件下でも変形を小さくできる。このため、dm・n値が80×10以上となる高速回転で使用されても、発熱量を小さくでき、焼付きや破損を防止できる。また、ジカルボン酸成分がテレフタル酸をジアミン成分が1,10-デカンジアミンをそれぞれ主成分とするポリアミド樹脂をベース樹脂とするので、非常に結晶化速度が速く、成形時のサイクルタイムを短くすることができ、生産性を向上できる。
 ベース樹脂とする上記ポリアミド樹脂は、融点が310℃以上であるので、保持器材料として最も多く用いられているポリアミド66樹脂(融点267℃)、ポリアミド46樹脂(融点295℃)と比較して、非常に高い耐熱性を備える。また、ポリアミド9T樹脂(融点306℃)と比較しても、同等以上の耐熱性を備える。このため、高温高速回転となる条件下でも変形を小さくできる。
 また、耐油性、耐薬品性において、上記他のポリアミド樹脂よりも優れており、従来よりも厳しい使用条件、例えば高温、油中などでも使用可能となる。さらに、吸水率も、ポリアミド9T樹脂と同等程度であり、ポリアミド66樹脂やポリアミド46樹脂と比較して非常に少なく、吸水による寸法変化、物性低下を極力抑制できる。
 ポリアミド樹脂を構成する成分の一部(例えば1,10-デカンジアミン)が植物より合成されるものであり、該ポリアミド樹脂に放射性同位元素である炭素14を含むので、石油由来の合成樹脂に比べて燃焼時の実質的な二酸化炭素排出量を低減できる。
 本発明の転がり軸受は、内輪および外輪と、この内・外輪間に介在する複数の転動体と、この転動体を保持する上記本発明の保持器を備えてなるので、dm・n値が80×10以上の高速回転で使用される場合においても焼付きや保持器破損による不具合を発生させない軸受となる。
アンギュラ玉軸受の軸方向断面図である。 もみ抜き型の樹脂製保持器の斜視図等である。 冠型の樹脂製保持器の部分拡大斜視図である。 保持器引張試験の概要を示す図である。
 本発明の転がり軸受用保持器は、樹脂組成物を射出成形してなる樹脂製の保持器である。樹脂材料とする樹脂組成物は、所定のポリアミド樹脂をベース樹脂とし、これに所定量の繊維状補強材(ガラス繊維または炭素繊維)を配合してなる。
 本発明で用いるポリアミド樹脂は、ジカルボン酸成分とジアミン成分とからなり、各成分を構成するジカルボン酸とジアミンとを重縮合して得られる。上記ポリアミド樹脂を構成するジカルボン酸成分は、テレフタル酸を主成分とする。テレフタル酸を主成分とすることで、ポリアミド樹脂の高温剛性などに優れる。また、上記ポリアミド樹脂を構成するジアミン成分は、1,10-デカンジアミンを主成分とする。1,10-デカンジアミンは直鎖状の脂肪族ジアミンである。テレフタル酸および1,10-デカンジアミンは、いずれも化学構造の対称性が高いため、これらを主成分とすることで、高い結晶性のポリアミド樹脂が得られる。
 本発明では、上記ポリアミド樹脂を構成するジアミン成分について、上述のとおり、炭素数が10である直鎖状の1,10-デカンジアミンを主成分として用いている。主成分とするジアミン成分のモノマー単位の炭素数が10であり、偶数であるので、奇数である場合と比較して、より安定な結晶構造をとり、結晶性が向上する(偶奇効果)。また、主成分とするジアミン成分の炭素数が8以下の場合には、上記ポリアミド樹脂の融点が分解温度を上回るおそれがある。ジアミン成分の炭素数が12以上の場合には、上記ポリアミド樹脂の融点が低くなり、高温、高速条件下で使用する場合に保持器が変形する等のおそれがある。なお、炭素数9、11のジアミンでは、ポリアミド樹脂の上記偶奇効果により、結晶性が不足するおそれがある。
 上記ポリアミド樹脂は、ジカルボン酸成分であるテレフタル酸およびジアミン成分である1,10-デカンジアミンの一部を、他の共重合成分で置き換えたものとしてもよい。ただし、他の共重合成分が多くなると、融点および結晶性が低下することから、主成分となるテレフタル酸および1,10-デカンジアミンの総量は、原料モノマーの総モル数(100モル%)に対して、95モル%以上とすることが好ましい。また、実質的にテレフタル酸および1,10-デカンジアミンのみから構成し、他の共重合成分を実質的に含まないことが特に好ましい。
 他の共重合成分として用いる、テレフタル酸以外のジカルボン酸成分としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸が挙げられる。また、他の共重合成分として用いる、1,10-デカンジアミン以外のジアミン成分としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミンなどの脂肪族ジアミン、シクロヘキサンジアミンなどの脂環族ジアミン、キシリレンジアミンなどの芳香族ジアミンが挙げられる。また、上記ポリアミド樹脂には、カプロラクタムなどのラクタム類を共重合させてもよい。
 上記ポリアミド樹脂の重量平均分子量は、好ましくは15000~50000であり、より好ましくは26000~50000である。上記ポリアミド樹脂の重量平均分子量が15000未満であると、該樹脂の剛性が低下し、高速回転時に保持器が変形するおそれがある。一方、上記ポリアミド樹脂の重量平均分子量が50000をこえると、結晶化が遅くなり射出成形時の流動性が低下する。また、上記ポリアミド樹脂の相対粘度は、特に限定されないが、保持器の成形を容易にするためには、96質量%硫酸を溶媒とし、濃度1g/dL、25℃で測定される相対粘度を2.0以上とすることが好ましい。
 上記ポリアミド樹脂は、その融点が310℃以上であることが好ましい。また、上限は特に限定されないが、成形加工性などを考慮して320~340℃程度とすることが好ましい。融点範囲としては、310~340℃が好ましく、310~330℃がより好ましく、310~320℃が特に好ましい。保持器材料として一般に使用される他のポリアミド樹脂(ポリアミド66樹脂(同267℃)、ポリアミド46樹脂(同295℃)、ポリアミド9T樹脂(同306℃))よりも融点が高く、耐熱性に優れるので、dm・n値が80×10以上となるような、高温、高速回転で使用されても、保持器の変形、焼付き、破損などを防止できる。なお、融点は、示差走査熱量計(DSC)を用いて、不活性ガス雰囲気下で、上記ポリアミド樹脂を溶融状態から20℃/分の降温速度で25℃まで降温した後、20℃/分の昇温速度で昇温した場合に現れる吸熱ピークの温度(Tm)として測定できる。
 上記ポリアミド樹脂は、そのガラス転移温度が130℃以上であることが好ましい。より好ましくは150℃以上である。保持器材料として一般に使用される他のポリアミド樹脂(ポリアミド66樹脂(同49℃)、ポリアミド46樹脂(同78℃)、ポリアミド9T樹脂(同125℃)よりもガラス転移温度が高いので、dm・n値が80×10以上となるような、高温、高速回転で使用されても、保持器の変形を抑制でき、転動体と保持器の滑り摩擦による発熱を小さくできる。なお、ガラス転移温度は、示差走査熱量計(DSC)を用いて、不活性ガス雰囲気下で、上記ポリアミド樹脂を急冷した後、20℃/分の昇温速度で昇温した場合に現れる階段状の吸熱ピークの中点の温度(Tg)として測定できる(JIS K7121)。
 ベース樹脂とする上記ポリアミド樹脂に配合する繊維状補強材としては、ガラス繊維または炭素繊維を用いる。ガラス繊維は、SiO、B、Al、CaO、MgO、NaO、KO、Feなどを主成分とする無機ガラスから紡糸して得られる。一般に、無アルカリガラス(Eガラス)、含アルカリガラス(Cガラス、Aガラス)などを使用できる。上記ポリアミド樹脂への影響を考慮すれば無アルカリガラスが好ましい。無アルカリガラスは、組成物中にアルカリ成分をほとんど含んでいないホウケイ酸ガラスである。アルカリ成分がほとんど入っていないので、ポリアミド樹脂への影響がほとんどなく樹脂組成物の特性が変化しない。ガラス繊維としては、例えば、旭ファイバーグラス社製:03JAFT692、MF03MB120、MF06MB120などが挙げられる。
 炭素繊維は、ポリアクリロニトリル系(PAN系)、ピッチ系、レーヨン系、リグニン-ポバール系混合物など原料の種類によらないで使用できる。ピッチ系炭素繊維としては、例えば、クレハ社製:クレカ M-101S、同M-107S、同M-101F、同M-201S、同M-207S、同M-2007S、同C-103S、同C-106S、同C-203Sなどが挙げられる。また、PAN系炭素繊維としては、例えば、東邦テナックス社製:ベスファイト HTA-CMF0160-0H、同HTA-CMF0040-0H、同HTA-C6、同HTA-C6-S、または、東レ社製:トレカ MLD-30、同MLD-300、同T008、同T010などが挙げられる。
 繊維状補強材としてガラス繊維を用いる場合、その配合量は、樹脂組成物全体に対して15~50質量%とする。繊維状補強材として炭素繊維を用いる場合、その配合量は、樹脂組成物全体に対して10~35質量%とする。ガラス繊維または炭素繊維を上記範囲とすることで、保持器の剛性を高め、高温、高速回転となる条件下でも保持器の変形を小さくし、発熱量を小さくできる。さらに、保持器の形状を射出成形時に無理抜きする形状とする場合や、ウエルド部の十分な強度(引張強度)を確保することを考慮すれば、ガラス繊維を用いる場合は樹脂組成物全体に対して20~35質量%が好ましく、炭素繊維を用いる場合は樹脂組成物全体に対して15~30質量%が好ましい。
 本発明における樹脂組成物には、保持器機能や射出成形性を損なわない範囲であれば、必要に応じて、上記繊維状補強材以外の添加剤を配合してもよい。他の添加剤として、例えば、固体潤滑剤、無機充填材、酸化防止剤、帯電防止剤、離型材などを配合できる。
 上記樹脂組成物を構成する各材料を、必要に応じて、ヘンシェルミキサー、ボールミキサー、リボンブレンダーなどにて混合した後、二軸混練押出し機などの溶融押出し機にて溶融混練し、成形用ペレットを得ることができる。なお、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。この成形用ペレットを用いて射出成形により保持器を成形する。射出成形時は、樹脂温度を上述のポリアミド樹脂の融点以上とし、金型温度を該ポリアミド樹脂のガラス転移温度未満に保持して行なう。
 本発明の転がり軸受用保持器の樹脂材料とする樹脂組成物は、上述のとおり、所定のポリアミド樹脂に所定量の繊維状補強材(ガラス繊維または炭素繊維)を配合してなるので、融点およびガラス転移温度が高く、優れた耐熱性、耐油性、耐薬品性、寸法安定性、靱性を示すとともに高い機械的性質を有する。このため、本発明の転がり軸受用保持器は、高速回転域などの過酷な環境条件(高温雰囲気、油や薬品と接触する条件、高速回転条件、高負荷条件、多湿環境など)で長時間の使用に耐え得る保持器となる。
 また、上記樹脂組成物は、吸水性が小さいため、吸水・吸湿による膨潤、膨張に伴う寸法変化や物性低下を抑制できる。本発明の転がり軸受用保持器は、寸法安定性に優れ、精度の要求される用途の保持器として安価に提供できる。
 本発明で用いるポリアミド樹脂において、ジカルボン酸成分またはジアミン成分として、植物由来の原料を用いてもよい。例えば、ひまし油を出発原料とした1,10-デカンジアミンを使用できる。植物のようなバイオマス由来原料を採用することで、樹脂製保持器の焼却処分に伴う二酸化炭素の実質的な排出量を、バイオマス由来原料を用いない場合よりも低減できる。ここで、バイオマス由来原料を用いた植物性プラスチックであるかどうかは、樹脂を構成している炭素について、放射性同位元素である14Cの濃度を測定することで判別できる。14Cの半減期は5730年であることから、1千万年以上の歳月を経て生成されるとされる化石資源由来の炭素には 14Cが全く含まれない。このことから樹脂中に 14Cが含まれていれば、少なくともバイオマス由来の原料を用いていると判断できる。
 本発明の転がり軸受用保持器および転がり軸受を図1および図2に基づいて説明する。図1は、本発明の転がり軸受の一例であるアンギュラ玉軸受の軸方向断面図であり、図2は図1の転がり軸受における保持器(もみ抜き型)の斜視図および一部拡大図である。図1に示すように、アンギュラ玉軸受1は、内輪2、外輪3と、内輪2と外輪3との間に介在する複数の転動体4と、この転動体4を周方向に一定間隔で保持する保持器5とを備えている。保持器5が、上述の本発明の転がり軸受用保持器である。内輪2および外輪3と、転動体4とは径方向中心線に対して所定の角度θ(接触角)を有して接触しており、ラジアル荷重と一方向のアキシアル荷重を負荷できる。必要に応じて、転動体4の周囲にグリースなどの潤滑剤が封入されて潤滑がなされる。
 図1のようなアンギュラ玉軸受1は、高速回転用途などで使用されるものである。本発明ではその保持器5として、ガラス転移温度が高く、剛性に優れた上述のポリアミド樹脂をベース樹脂とする樹脂組成物の射出成形体を用いているため、高温、高速回転条件下においても該保持器の変形を抑制できる。また、上述のポリアミド樹脂は、自己潤滑性および低摩擦特性にも優れているため、転動体4と保持器5との摩擦による発熱量を小さくでき、温度上昇が抑えられ、焼付きが発生しない。このため、該軸受は、高温、高速回転条件下でも長時間の運転が可能となる。
 図2(a)に示すように、保持器5は、円環状の保持器本体5aに転動体であるボールを保持するポケット6が周方向に一定間隔で複数設けられている。ポケット6の平面形状は、平円形状であるが、真円でもよい。ここで、平円形状とは、真円形状で必要とされるポケット隙間(ポケット内径とボール直径との差)量と一致させる隙間を間にして、その両側にボールの半径にほぼ近似するポケット面の半径で構成させた平円とする形状をいう。このような形状により、回転軸周方向のポケット隙間量を大きくして、ボールの進み遅れを吸収することにより、保持器にかかる負荷を低減できる。
 保持器5は、もみ抜き型の保持器であり、上述の樹脂組成物を用いて射出成形で素形材を成形した後、切削加工にてポケット部分を加工する等して得られる。保持器5は射出成形体であるため、図2(b)に示すように、成形時に樹脂組成物が合流する領域にウエルド部7が形成される。ウエルド部7は、保持器円環において応力集中により破断しやすい箇所である。本発明の保持器では、上述のポリアミド樹脂をベース樹脂とし、これに所定量の繊維状補強材(ガラス繊維または炭素繊維)を配合してなる樹脂組成物を射出成形して得られた成形体であるので、上記ウエルド部7での引張強度に優れ、高速回転での使用に際しても該ウエルド部での割れを防止できる。具体的には、後述の実施例に示すように、ベース樹脂のみを他のポリアミド樹脂に変更した場合と比較して、引張強度が高くなっている。
 図1および図2では、本発明の転がり軸受としてアンギュラ玉軸受を例に説明したが、本発明を適用できる軸受形式はこれに限定されず、他の玉軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受などにも適用できる。
 本発明の転がり軸受用保持器の他の例として、冠型の転がり軸受用保持器を図3に基づいて説明する。図3は、上述の樹脂組成物を射出成形して得られた冠型保持器の部分拡大斜視図である。図3に示すように、保持器8は、環状の保持器本体9の上面に周方向に一定ピッチをおいて対向一対の保持爪10を形成し、その対向する各保持爪10を相互に接近する方向にわん曲させるとともに、その保持爪10間に転動体としてのボールを保持するポケット11を形成したものである。また、隣接するポケット11における相互に隣接する保持爪10の背面相互間に、保持爪10の立ち上がり基準面となる平坦部12が形成される。保持爪10は、わん曲している先端部10aを有する。
 図3に示す冠型保持器を射出成形する場合、保持爪10のわん曲している先端部10aは、金型から取り出すときに無理抜きされる。これは、ポケット開口部の直径がポケット11の内径よりも小さいため、ポケットを成形する内径金型が、ポケット開口部の直径をポケットの内径まで弾性的に押し広げて離型されるためである。本発明の保持器では、保持器材料として上述の樹脂組成物を用いるので、使用時の高い剛性を維持しながら、成形時の上記無理抜きの際における保持爪先端部の亀裂や白化を防止し得る。特に、上述のとおり、樹脂組成物に含まれる繊維状補強材について、その配合量を、ガラス繊維を用いる場合は樹脂組成物全体に対して20~35質量%とし、炭素繊維を用いる場合は樹脂組成物全体に対して15~30質量%とすることで、これを防止しやすくなる。
 以下に実施例を挙げて本発明をさらに説明するが、本発明はこれにより何ら制限されるものではない。
 実施例および比較例に用いる原材料を一括して以下に示す。
(1)樹脂材料
 ポリアミド樹脂A:テレフタル酸と1,10-デカンジアミンを主原料に使用した樹脂(ユニチカ社製XecoT XN500)
 ポリアミド66樹脂:東レ社製アミランCM3001
 ポリアミド46樹脂:DSM社製スタニールTW300
 ポリアミド9T樹脂:クラレ社製ジェネスタN1000
(2)繊維状補強材
 ガラス繊維:旭ファイバーグラス社製03JAFT692(平均繊維径10μm、平均繊維長3mm)
 炭素繊維:東邦テナックス社製HTA-C6(平均繊維径7μm、平均繊維長6mm)
実施例1~6、比較例1~6
 これらの原材料を表1に示す割合で配合した樹脂組成物を用いて、実施例と比較例のアンギュラ玉軸受用保持器を作製し、各種の試験を実施した。組成物の製造には二軸押出機を用いた。ガラス繊維、炭素繊維は折損を防止するために定量サイドフィーダーを用いて供給し、押し出して造粒した。得られた成形用ペレットを用い、インラインスクリュー式射出成形機にて成形し、所望の保持器形状(外径93mm、内径88mm、幅13mm)とした。なお、保持器の形状は図2に示すもみ抜き型保持器とした。成形後、80℃、95%相対湿度の雰囲気にて調湿処理を実施し、吸水させたものについて各試験を実施した。得られた保持器の調湿前後の重量から以下に示す算出式により吸水率を測定した。結果を表1に示す。
[吸水率の算出式]
 
 吸水率(重量%)=(調湿後の重量-調湿前の重量)×100/調湿前の重量
 
[保持器引張試験]
 本発明の保持器における破壊強さ(ウエルド部の引張強度)を確認するため、作製した保持器を用いて保持器引張試験を実施した。保持器引張試験は、図4に示す円環状の引張治具13に試験用の保持器14を、そのウエルド部が水平位置になるようにセットし、島津製作所社製の引張試験機(オートグラフAG50KNX)を用いて10mm/minの引張速度で行なった。結果を表1に示す。
[軸受温度試験]
 アンギュラ玉軸受を使用してdm・n値80×10まで順次回転数を上げていく軸受試験を実施した。実施例および比較例の保持器を組み込み、潤滑剤としてのグリースを封入し、両側に非接触型シールを設けて密封したアンギュラ玉軸受を用いて比較試験を行なった。試験では外輪温度を測定し、その上昇温度が、精度や耐久性を鑑み、30℃までを基準とし、30℃未満を合格、30℃以上温度が上昇したものを不合格とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 保持器引張試験に関して、dm・n値が80×10以上の使用条件から、保持器の破壊強さ(ウエルド部の引張強度)は高強度が要求される。表1に示すように、本発明の実施例からなる保持器は、2000N以上と良好な強度を示した。これに対して、比較例1~6は、いずれも2000N以下であった。
 軸受温度試験に関して、表1に示すように、比較例1~4ではdm・n値が70×10をこえた辺りから外輪温度が急上昇し、30℃以上となった。これに対して、本発明に係る実施例では、dm・n値が80×10となっても外輪温度の急上昇は見られず、30℃以下を保っていた。
 本発明の転がり軸受用保持器は、高温、高速条件下においても焼付きや破損を生じないので、自動車、モータ、工作機械などで用いられる種々の転がり軸受の保持器として利用できる。特に、dm・n値が80×10以上となるような高速回転で使用される軸受の保持器として好適である。
  1 アンギュラ玉軸受(転がり軸受)
  2 内輪
  3 外輪
  4 転動体
  5 保持器
  6 ポケット
  7 ウエルド部
  8 保持器
  9 保持器本体
  10 保持爪
  11 ポケット
  12 平坦部
  13 引張治具
  14 試験用保持器

Claims (6)

  1.  樹脂組成物を射出成形してなる転がり軸受用保持器であって、
     前記樹脂組成物は、ジカルボン酸成分とジアミン成分とからなるポリアミド樹脂をベース樹脂とし、これに繊維状補強材を配合してなる組成物であり、
     前記ジカルボン酸成分がテレフタル酸を主成分とし、前記ジアミン成分が1,10-デカンジアミンを主成分とし、
     前記繊維状補強材として、前記樹脂組成物全体に対して、ガラス繊維を15~50質量%、または、炭素繊維を10~35質量%含むことを特徴とする転がり軸受用保持器。
  2.  前記ポリアミド樹脂は、融点が310℃以上であることを特徴とする請求項1記載の転がり軸受用保持器。
  3.  前記樹脂組成物において、前記繊維状補強材以外の残部が前記ポリアミド樹脂であることを特徴とする請求項1記載の転がり軸受用保持器。
  4.  前記ポリアミド樹脂が、放射性同位元素である炭素14を含むことを特徴とする請求項1記載の転がり軸受用保持器。
  5.  内輪および外輪と、この内・外輪間に介在する複数の転動体と、この転動体を保持する保持器とを備える転がり軸受であって、
     前記保持器が、請求項1記載の転がり軸受用保持器であることを特徴とする転がり軸受。
  6.  前記転がり軸受が、dm・n値が80×10以上の高速回転で使用される軸受であることを特徴とする請求項5記載の転がり軸受。
PCT/JP2015/085701 2014-12-24 2015-12-21 転がり軸受用保持器および転がり軸受 WO2016104440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015005820.6T DE112015005820T5 (de) 2014-12-24 2015-12-21 Käfig für Wälzlager, und Wälzlager
US15/540,019 US10518445B2 (en) 2014-12-24 2015-12-21 Cage for rolling bearing, and rolling bearing
CN201580070619.2A CN107107410B (zh) 2014-12-24 2015-12-21 滚动轴承用保持器和滚动轴承

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-261212 2014-12-24
JP2014261212A JP6577184B2 (ja) 2014-12-24 2014-12-24 転がり軸受

Publications (1)

Publication Number Publication Date
WO2016104440A1 true WO2016104440A1 (ja) 2016-06-30

Family

ID=56150459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085701 WO2016104440A1 (ja) 2014-12-24 2015-12-21 転がり軸受用保持器および転がり軸受

Country Status (5)

Country Link
US (1) US10518445B2 (ja)
JP (1) JP6577184B2 (ja)
CN (1) CN107107410B (ja)
DE (1) DE112015005820T5 (ja)
WO (1) WO2016104440A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639121B2 (ja) * 2015-07-01 2020-02-05 旭化成株式会社 ポリアミド組成物、成形品、及びled用反射板
JP2019052706A (ja) * 2017-09-15 2019-04-04 Ntn株式会社 円すいころ軸受用保持器および円すいころ軸受
JP2019060448A (ja) * 2017-09-27 2019-04-18 Ntn株式会社 転がり軸受および転がり軸受の潤滑構造
JP2019070424A (ja) * 2017-10-11 2019-05-09 Ntn株式会社 転がり軸受
JP2019074097A (ja) * 2017-10-12 2019-05-16 Ntn株式会社 円筒ころ軸受用保持器および円筒ころ軸受
JP2019074098A (ja) * 2017-10-12 2019-05-16 Ntn株式会社 転がり軸受
JP2019151712A (ja) * 2018-03-01 2019-09-12 三菱ケミカル株式会社 炭素繊維含有樹脂ペレット、炭素繊維含有樹脂ペレットの製造方法
JP7240122B2 (ja) * 2018-09-28 2023-03-15 Ntn株式会社 転がり軸受用保持器、および転がり軸受

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327024A (ja) * 1991-04-26 1992-11-16 Mitsui Petrochem Ind Ltd 転がり軸受用保持器
JPH08232945A (ja) * 1995-02-24 1996-09-10 Mitsui Petrochem Ind Ltd ローラーおよびその製造方法
JP2000291666A (ja) * 1999-04-08 2000-10-20 Skf France ころがり軸受用保持器の製造方法、保持器、ころがり軸受
JP2011153699A (ja) * 2010-01-28 2011-08-11 Ntn Corp 転がり軸受用部材および転がり軸受
JP2012211622A (ja) * 2011-03-31 2012-11-01 Nsk Ltd 転がり軸受保持器
JP2013064420A (ja) * 2011-09-15 2013-04-11 Unitika Ltd 摺動部材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871752B2 (ja) * 1989-10-27 1999-03-17 三井化学株式会社 転がり軸受用保持器
JP2000045049A (ja) * 1998-07-28 2000-02-15 Nippon Seiko Kk 転がり軸受
JP2000227120A (ja) 1999-02-05 2000-08-15 Nsk Ltd 転がり軸受
JP2001317554A (ja) 2000-05-11 2001-11-16 Nsk Ltd 転がり軸受用保持器
GB0229804D0 (en) 2002-12-20 2003-01-29 Syngenta Participations Ag Avermection b1 and avermectin b1 monosaccharide derivatives having an alkoxymethyl substituent in the 4"- or 4'-position
JP2006207684A (ja) 2005-01-27 2006-08-10 Nachi Fujikoshi Corp 転がり軸受
US8672556B2 (en) 2010-01-28 2014-03-18 Ntn Corporation Member for rolling bearing and rolling bearing
CN102762880A (zh) * 2010-02-17 2012-10-31 Ntn株式会社 滚动轴承的润滑结构和滚动轴承
US8845934B2 (en) * 2011-09-12 2014-09-30 Sabic Global Technologies B.V. Compatibilized biopolyamide-poly(arylene ether) thermoplastic resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327024A (ja) * 1991-04-26 1992-11-16 Mitsui Petrochem Ind Ltd 転がり軸受用保持器
JPH08232945A (ja) * 1995-02-24 1996-09-10 Mitsui Petrochem Ind Ltd ローラーおよびその製造方法
JP2000291666A (ja) * 1999-04-08 2000-10-20 Skf France ころがり軸受用保持器の製造方法、保持器、ころがり軸受
JP2011153699A (ja) * 2010-01-28 2011-08-11 Ntn Corp 転がり軸受用部材および転がり軸受
JP2012211622A (ja) * 2011-03-31 2012-11-01 Nsk Ltd 転がり軸受保持器
JP2013064420A (ja) * 2011-09-15 2013-04-11 Unitika Ltd 摺動部材

Also Published As

Publication number Publication date
CN107107410A (zh) 2017-08-29
CN107107410B (zh) 2020-07-07
JP2016121735A (ja) 2016-07-07
DE112015005820T5 (de) 2017-09-07
JP6577184B2 (ja) 2019-09-18
US10518445B2 (en) 2019-12-31
US20170348881A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6577184B2 (ja) 転がり軸受
US7537392B2 (en) Rolling bearing
JP5411010B2 (ja) 転がり軸受用部材および転がり軸受
JP2019074098A (ja) 転がり軸受
JP6697235B2 (ja) 転がり軸受
JP2021152394A (ja) 転がり軸受
JP7240122B2 (ja) 転がり軸受用保持器、および転がり軸受
JP2019052706A (ja) 円すいころ軸受用保持器および円すいころ軸受
JP2019074097A (ja) 円筒ころ軸受用保持器および円筒ころ軸受
JP2019060448A (ja) 転がり軸受および転がり軸受の潤滑構造
JP6517055B2 (ja) スラストワッシャ
JP6517054B2 (ja) スラストワッシャ
WO2023182252A1 (ja) 転がり軸受用保持器および転がり軸受
JP2002130295A (ja) 転がり軸受用プラスチック保持器の製造方法及び該保持器を備えた転がり軸受
JP2018169021A (ja) 樹脂プーリ付き軸受
JP2020041597A (ja) 多列組合せ軸受装置
WO2018181152A1 (ja) 樹脂プーリ付き軸受
JP7022673B2 (ja) 樹脂製プーリ
JP2001317554A (ja) 転がり軸受用保持器
JP2012013094A (ja) 転がり軸受用保持器およびそれを用いた転がり軸受
JP2007024187A (ja) 転がり軸受用プラスチック保持器
JP2023084413A (ja) 滑り軸受用樹脂組成物及び滑り軸受
WO2016152741A1 (ja) スラストワッシャ
JP2018169024A (ja) 樹脂プーリ付き軸受
JPH11336765A (ja) 転がり軸受用プラスチック保持器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15540019

Country of ref document: US

Ref document number: 112015005820

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873008

Country of ref document: EP

Kind code of ref document: A1