WO2016104398A1 - 誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌 - Google Patents

誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌 Download PDF

Info

Publication number
WO2016104398A1
WO2016104398A1 PCT/JP2015/085626 JP2015085626W WO2016104398A1 WO 2016104398 A1 WO2016104398 A1 WO 2016104398A1 JP 2015085626 W JP2015085626 W JP 2015085626W WO 2016104398 A1 WO2016104398 A1 WO 2016104398A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
capacitor
film
inverter
metal element
Prior art date
Application number
PCT/JP2015/085626
Other languages
English (en)
French (fr)
Inventor
航 加藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2016546550A priority Critical patent/JP6085069B2/ja
Priority to CN201580069275.3A priority patent/CN107108923B/zh
Priority to US15/535,636 priority patent/US10867750B2/en
Priority to EP15872966.5A priority patent/EP3239218B1/en
Publication of WO2016104398A1 publication Critical patent/WO2016104398A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a dielectric film, a film capacitor and a connected capacitor using the dielectric film, an inverter, and an electric vehicle.
  • the film capacitor has, for example, a metal film formed by vapor deposition as an electrode on the surface of a dielectric film obtained by filming a polypropylene resin.
  • the film capacitor can prevent ignition and electric shock when the electric circuit is short-circuited.
  • power supply circuits such as LED (Light-Emitting-Diode) illumination.
  • film capacitors are still larger in size than other electronic components such as ceramic capacitors on a substrate on which various electronic components are mounted, which hinders the reduction of the height of the substrate and the improvement of the mounting density. ing. Therefore, downsizing of film capacitors is being studied. In addition, the use environment of electronic components is getting higher due to downsizing of electronic devices and higher capacity of capacitors. These electronic components are required to have heat resistance capable of obtaining stable electrical characteristics over a long period of time even in a high temperature environment.
  • Patent Document 2 proposes that a composite dielectric material in which ceramic particles are dispersed in an organic resin having an epoxy group is applied to the dielectric film in order to increase the withstand voltage.
  • Patent Document 3 proposes an organic-inorganic hybrid polymer material in which a metal alkoxide is introduced into a polyarylate-based material.
  • the dielectric film disclosed in Patent Document 2 does not have sufficient heat resistance, and the electric field strength increases on the organic resin side of the interface between the organic resin and the ceramic particles. There was a problem that would decrease.
  • the material disclosed in Patent Document 3 is excellent in heat resistance but has a withstand voltage (dielectric breakdown field) of about 330 V / ⁇ m at the maximum, and the withstand voltage is insufficient for thinning the dielectric film. There was a problem that there was.
  • the present invention has been made to solve the above-described problems, and provides a dielectric film capable of increasing a dielectric breakdown electric field, a film capacitor and a connected capacitor using the dielectric film, an inverter, and an electric vehicle. With the goal.
  • the dielectric film of the present invention contains an organic resin and a plurality of microparticles containing a metal element, and the average diameter of the microparticles is 0.5 to 50 nm.
  • the film capacitor of the present invention has a main body formed by winding or laminating a metallized film having a metal film on the dielectric film, and an external electrode provided on the main body.
  • a plurality of the above film capacitors are connected by a bus bar.
  • the inverter according to the present invention is an inverter including a bridge circuit constituted by a switching element and a capacitor connected to the bridge circuit, and the capacitor is the film capacitor or the connected capacitor.
  • An electric vehicle is an electric vehicle including a power source, an inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor. It is an inverter.
  • the present invention it is possible to provide a dielectric film capable of increasing a dielectric breakdown electric field, a film capacitor and a connected capacitor using the dielectric film, an inverter, and an electric vehicle.
  • the dielectric film of this embodiment includes an organic resin and a plurality of fine particles containing a metal element, and the average value of the diameters of the fine particles is 0.5 to 50 nm.
  • the dielectric film of the present embodiment contains a metal element, and the content thereof is 0.05 to 5.0% by mass, more preferably 0.1 to 4.0% by mass, particularly 0.2 to It is preferably 3.0% by mass.
  • the metal element is contained in fine particles existing between the molecules of the organic resin.
  • the microparticles containing a metal element are a plurality of metal elements gathered close to a microscopic area, and when a cross section of the dielectric film is observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the metal elements that appear white appear as aggregates close to each other within a range of, for example, several nanometers in diameter.
  • the fine particles containing a metal element are particles in which a plurality of metal elements are aggregated in a minute region.
  • the microparticles containing a metal element are those in which a plurality of metal elements form minute clusters.
  • the dielectric film of the present embodiment includes fine particles that are clusters in which a plurality of metallic elements that appear white in the TEM photograph are gathered close to a region having a diameter of 0.5 to 50 nm. Are dispersed in an organic resin.
  • fine particles containing a metal element are referred to as metal element-containing fine particles.
  • the presence of fine particles containing a metal element can be confirmed by observing the cross section of the dielectric film with a transmission electron microscope (TEM) as described above.
  • TEM transmission electron microscope
  • the dielectric film having such a structure can be suitably used as a thin dielectric film having an average thickness of 5 ⁇ m or less, particularly 1 to 5 ⁇ m, for example.
  • fillers of inorganic compound particles containing a metal element are dispersed in the organic resin, so that the charge moving through the organic resin is trapped by the inorganic compound particles, and the effect of suppressing local electric field concentration can be obtained. It has been known. Normally, fillers of inorganic compound particles having an average particle diameter of about several tens to several hundreds of nanometers are mixed and dispersed in an organic resin. In such a structure, it is the inorganic compound particles that contribute to charge trapping. It is considered to be a metal element contained.
  • fine particles containing a metal element trap electric charges moving in the organic resin and suppress local electric field concentration.
  • the metal element-containing fine particles may be an inorganic compound containing a metal element, but it is preferable that the metal element is contained in an organic compound containing a metal element or a mixture of an inorganic compound and an organic compound.
  • the metal element-containing microparticles are a compound containing a metal element in an organic compound containing a metal element or a mixture of an inorganic compound and an organic compound, so that the metal element is dispersed in an organic resin as a finer group. This can increase the effect of suppressing local electric field concentration.
  • the average value of the diameter of the metal element-containing fine particles is preferably 0.5 to 50 nm, more preferably 0.5 to 10 nm, and particularly preferably 1 to 3 nm.
  • the average value of the diameter of the metal element-containing fine particles can be confirmed by analyzing a profile obtained by, for example, small angle X-ray scattering measurement.
  • the expression of the local electric field concentration suppressing effect by such metal element-containing microparticles is considered to be due to the presence of a plurality of metal elements in the vicinity of a minute region in the metal element-containing microparticles.
  • a metal element into the main skeleton of an organic resin, that is, by simply crosslinking the main skeleton of the organic resin with a metal alkoxide, a plurality of metal elements are close to a minute region in the dielectric film. Therefore, it is difficult to obtain an effect of improving insulation.
  • the dielectric breakdown electric field can be further improved and the high temperature load life can be improved.
  • the volume fraction occupied by such microparticles containing metal elements is 0.4 to 40% by volume, more preferably 2 to 20% by volume, particularly 5 to It is preferable that it is 18 volume%.
  • the volume fraction occupied by such fine particles containing metal elements (metal element-containing fine particles) in the dielectric film can be confirmed by analyzing the profile obtained by, for example, small angle X-ray scattering measurement.
  • Examples of the metal element contained in the dielectric film include Si, Ti, Zr, Fe, Cu, Sn, Al, Ge, Ta, and W.
  • at least one selected from the metal element group consisting of Si, Ti, Zr and Al is preferable. This is because when metal alkoxides of these metal element groups are used, metal element-containing fine particles are easily formed in the organic resin.
  • the metal element contained in the dielectric film may be not only one but also two or more.
  • the kind and content of the metal element contained in the dielectric film can be confirmed by, for example, high frequency inductively coupled plasma (ICP) emission spectroscopic analysis.
  • ICP inductively coupled plasma
  • the organic resin it is preferable to use a resin material having excellent heat resistance such as polycarbonate (PC), polyarylate (PAR), polyphenylene ether (PPE), cyclic olefin (COP), and polyetherimide (PEI).
  • a resin material having excellent heat resistance By using a resin material having excellent heat resistance, a dielectric film having excellent heat resistance is obtained.
  • the resin material group which consists of a polycarbonate, a polyarylate, a polyphenylene ether, a cyclic olefin type
  • the organic resin of the dielectric film of the present embodiment is preferably composed mainly of a resin material having polyester as a main skeleton and an alkoxy group.
  • a main component is a component which occupies 50 mass% or more by mass ratio with respect to the whole dielectric film.
  • Examples of the resin material having polyester as the main skeleton include polycarbonate, polyarylate, and polymers thereof.
  • Polycarbonate and polyarylate are excellent in heat resistance, mechanical properties, and electrical properties (insulating properties and dielectric properties), and can be suitably used as organic resin materials for dielectric films.
  • polycarbonate and polyarylate have a chemical structure having a relatively high polarity, and an alkoxy group is a functional group having a low polarity. Therefore, the dielectric breakdown electric field of polycarbonate or polyarylate can be improved by introducing an alkoxy group, which is a functional group having low polarity, into the main skeleton in the polycarbonate or polyarylate molecule.
  • the dielectric breakdown electric field is similarly improved by bonding an alkoxy group to the main skeleton (polyester) for resin materials other than polycarbonate and polyarylate. be able to.
  • a metal alkoxide of the metal element group as described above is used, an alkoxy group is easily added to the main skeleton of the resin material.
  • the main skeleton of the resin material having polyester as the main skeleton and the alkoxy group are bonded by an ester bond.
  • the functional group of the polymer and the metal alkoxide are usually crosslinked by hydrolysis and polycondensation, and an organic resin having a metal alkoxide group in the main skeleton in the molecule is obtained.
  • the main skeleton of the resin material is bonded with an alkoxy group in which the metal alkoxide is decomposed, and the main skeleton of the resin material does not contain a metal element. Therefore, the excellent heat resistance, mechanical characteristics, and electrical characteristics of the resin material are maintained.
  • the main skeleton of the resin material and the alkoxy group are bonded by an ester bond.
  • the content of the alkoxy group in the organic resin is 0.05 to 11%, more preferably 0.5 to 5.0%, and particularly 1.0 to 3.5% in terms of a molar ratio based on the total ester bond of the organic resin. % Is preferred.
  • the bonding state between the organic resin and the alkoxy group, and the content of the alkoxy group in the organic resin should be confirmed by nuclear magnetic resonance spectroscopy (NMR).
  • NMR nuclear magnetic resonance spectroscopy
  • 1 H-NMR (proton NMR) measurement, 13 C-NMR measurement, two-dimensional correlation NMR HMQC (Heteronuclear Multiple Quantum Coherence) measurement, and HMBC (Heteronuclear Multiple Bond Connectivity) measurement are confirmed. can do.
  • the dielectric film of the present embodiment can be obtained as follows, for example.
  • a resin material of an organic resin is dissolved in an organic solvent to prepare a resin solution.
  • a metal alkoxide is dissolved in an organic solvent to prepare a metal alkoxide solution.
  • the metal alkoxide solution is mixed with the prepared resin solution and stirred for 24 hours or more.
  • an inert atmosphere such as dry nitrogen
  • the hydrolysis of the metal alkoxide is suppressed and the metal alkoxides are condensed.
  • microparticles containing a metal element are formed, and a dielectric film solution containing a resin material and microparticles containing a metal element is obtained.
  • the metal alkoxide decomposes the ester bond of the polymer, and the alkoxy group of the metal alkoxide is decomposed at the portion where the ester bond is decomposed.
  • the metal alkoxide decomposes the ester bond of the polymer, and the alkoxy group of the metal alkoxide is decomposed at the portion where the ester bond is decomposed.
  • a dielectric film may be formed on a polyethylene terephthalate (PET) substrate, for example.
  • PET polyethylene terephthalate
  • the film forming method a kind of molding method selected from a doctor blade method, a die coater method, a knife coater method and the like can be used.
  • Examples of the resin material described above include, for example, a polymer having a repeating unit represented by the general formula (1) for polycarbonate and a general formula (2) or (3) for polyarylate.
  • X is at least selected from an aliphatic divalent group, a cycloaliphatic divalent group, and a divalent group represented by general formula (4).
  • Y represents a substituted or unsubstituted arylene group.
  • R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, aryl group, or halogen atom.
  • A represents a single bond, a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms.
  • X in the above general formulas (1), (2), and (3) include divalent groups represented by general formulas (5a) to (5n), for example.
  • a polymer of norbornene-based monomer as represented by the general formula (6) may be used.
  • the norbornene-based monomer is a kind of cyclic olefin monomer
  • the cyclic olefin monomer is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring structure.
  • Examples of the cyclic olefin monomer include a norbornene monomer and a monocyclic olefin.
  • the norbornene-based monomer forms a cyclic olefin-based organic resin by ring-opening polymerization, vinyl copolymerization, vinyl polymerization, radical polymerization, or the like as shown in the reaction formulas (7) to (10).
  • R3, R4, and R5 are arbitrary functional groups.
  • the cyclic olefin-based resin material is usually a polymer of a single type of norbornene-based monomer, but may be a polymer of a plurality of different types of norbornene-based monomers.
  • norbornene monomers include norbornenes, dicyclopentadiene, tetracyclododecenes and the like. These may contain a hydrocarbon group such as an alkyl group, an alkenyl group, an alkylidene group, and an aryl group, and a polar group such as a carboxyl group and an acid anhydride group as a substituent, but they are nonpolar, that is, carbon atoms. And a norbornene-based monomer composed only of hydrogen atoms.
  • Non-polar norbornene-based monomers include non-polar dicyclopentadiene, non-polar tetracyclododecenes, non-polar norbornene, and non-polar cyclic olefins having five or more rings.
  • the norbornene-based monomer may further have a double bond in addition to the double bond of the norbornene ring.
  • a cyclic olefin-based resin material specifically, ARTON (registered trademark) manufactured by JSR Corporation, which is a norbornene-based ring-opening polymer (hereinafter sometimes simply referred to as a ring-opening polymer), Japan, ZEONEX (registered trademark), ZEONOR (registered trademark) manufactured by ZEON Co., Ltd., and APEL (registered trademark) manufactured by Mitsui Chemicals, Inc., which is a norbornene-based vinyl copolymer (hereinafter sometimes simply referred to as a vinyl copolymer). ), APO (registered trademark), and TOPAS® (registered trademark) manufactured by Polyplastics Co., Ltd. are commercially available.
  • ARTON registered trademark
  • JSR Corporation which is a norbornene-based ring-opening polymer
  • Japan ZEONEX (registered trademark), ZEONOR (registered trademark) manufactured by ZEON Co., Ltd.
  • APEL
  • ring-opening polymers of monomers having norbornene rings Hydrogenated products of ring-opening polymers of monomers having norbornene rings, addition polymers of monomers having norbornene rings and ⁇ -olefins, addition polymers of cyclic olefins, and hydrogenated products of addition polymers of cyclic olefins
  • cyclic diene addition polymers, hydrogenated products of cyclic diene addition polymers, and the like can also be used.
  • a ring-opening polymer that is, a ring-opening polymer of a monomer having a norbornene ring is particularly preferable from the viewpoint of film moldability and chemical resistance.
  • resin materials such as polycarbonate, polyarylate, polyphenylene ether, cyclic olefin, and polyetherimide may be used alone or in combination of two or more. Further, it may be a multi-component copolymer.
  • B is an alkoxy group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms
  • M is Si, Ti, Zr, Fe, Cu, Sn, Al, Ge, Ta, W or the like.
  • Metal element, p represents an integer of 2-6.
  • tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraalkoxytitaniums such as tetra n-propoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetra Examples thereof include tetraalkoxyzirconium such as n-propoxyzirconium, tetraisopropoxyzirconium and tetrabutoxyzirconium, and metal alkoxides such as dimethoxycopper, tributoxyaluminum, tetraethoxygermanium, pentan-propoxytantalum and hexaethoxytungsten.
  • R6 is hydrogen or an alkyl group or phenyl group having 1 to 12 carbon atoms, preferably 1 to 5 carbon atoms
  • B is an alkoxy group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms
  • M is Si
  • Metal elements such as Ti, Zr, Fe, Cu, Sn, Al, Ge, Ta, W
  • R7 is an alkylene group or alkylidene group having 1 to 4, preferably 2 to 4 carbon atoms
  • Z is an isocyanate group, an epoxy group
  • General functional groups such as carboxyl group, acid halide group, acid anhydride group, amino group, thiol group, vinyl group, methacryl group, halogen group
  • k is an integer of 0 to 5
  • l is an integer of 1 to 5
  • M represents 0 or 1
  • n represents an integer of
  • the same organic solvent is preferably used for the organic solvent that dissolves the resin material of the organic resin and the organic solvent that dissolves the metal alkoxide.
  • the organic solvent include methanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monopropyl ether, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, cyclohexane, toluene, An organic solvent containing chloroform, tetrahydrofuran, or a mixture of two or more selected from these is used.
  • the concentration of the resin material (resin concentration) in the resin solution is, for example, preferably 10 to 40% by mass, more preferably 20 to 30% by mass.
  • concentration of metal alkoxide (metal alkoxide concentration) in the metal alkoxide solution is, for example, 1 It is preferable to set it to ⁇ 50 mass%, more preferably 2 to 30 mass%.
  • the ratio of the metal alkoxide to 100 parts by mass of the resin material is, for example, preferably 0.05 to 10 parts by mass, more preferably 0.1 to 6.0 parts by mass. .
  • the size of the metal element-containing fine particles can be adjusted by the metal alkoxide concentration of the metal alkoxide solution. Larger metal element-containing fine particles tend to be formed as the metal alkoxide concentration is higher. Further, the size of the metal element-containing fine particles is also affected by the reactivity of the metal alkoxide. The reactivity of metal alkoxides varies depending on the type. For example, zirconium (IV) butoxide containing zirconium (Zr-n-but) has relatively low reactivity and forms small metal element-containing microparticles, whereas it contains titanium. Titanium (IV) butoxide (Ti-n-but) is relatively reactive and tends to form large metal element-containing microparticles.
  • the mixing (stirring) conditions of the resin solution and the metal alkoxide solution may be, for example, a temperature of 10 to 30 ° C. and a rotation speed of 100 to 500 rpm using a stirrer or a mix rotor.
  • the stirring time may be 24 to 96 hours.
  • Metal element-containing fine particles of various sizes can also be obtained by appropriately adjusting the temperature and stirring conditions.
  • FIG. 2A is a cross-sectional view schematically showing a structure having a metal film on the surface of the dielectric film
  • FIG. 2B is an external perspective view showing the film capacitor of the first embodiment.
  • the film capacitor A of the first embodiment shown in FIG. 2B has a configuration in which an external electrode 5 is provided on a main body 4 in which a metallized film 3 having a metal film 2 is laminated on one side of a dielectric film 1. Is a basic configuration, and a lead wire 6 is installed as necessary.
  • FIG. 2B shows a state where a part of the exterior member 7 is removed, and a portion where the exterior member 7 is removed is indicated by a broken line.
  • the dielectric film 1 of the present embodiment is not limited to the laminated type shown in FIGS. 2A and 2B, but can also be applied to a wound type film capacitor B.
  • FIG. 3 is an exploded perspective view schematically showing the configuration of the second embodiment of the film capacitor.
  • the main body 4 is configured by the wound metallized films 3 a and 3 b, and metallicon electrodes are provided on the opposing end surfaces of the main body 4 as external electrodes 5 a and 5 b.
  • the metallized film 3a has a metal film 2a on the surface of the dielectric film 1a
  • the metallized film 3b has a metal film 2b on the surface of the dielectric film 1b.
  • the metal films 2a and 2b are portions where the dielectric films 1a and 1b are exposed without forming the metal films 2a and 2b on one end side in the width direction of the dielectric films 1a and 1b (hereinafter referred to as metal film non-formation). Part 8a and 8b) may remain continuously in the longitudinal direction.
  • the metallized films 3a and 3b are arranged so that the metal film non-formed parts 8a and 8b are located at different ends in the width direction of the dielectric films 1a and 1b, and the metal film non-formed parts 8a and 8b They are overlapped in a state of being shifted so that different end portions protrude in the width direction.
  • a metallized film 3a composed of a dielectric film 1a and a metal film 2a and a metallized film 3b composed of a dielectric film 1b and a metal film 2b are shown in FIG. It is piled up and wound.
  • FIG. 3 in order to make the configuration of the film capacitor B easier to see, the thicknesses of the dielectric films 1a and 1b and the metal films 2a and 2b are described so as to increase from the back to the front of FIG. These thicknesses are constant.
  • FIG. 4 is a perspective view schematically showing the configuration of an embodiment of a coupled capacitor.
  • the connection type capacitor C of this embodiment has a configuration in which a plurality of film capacitors B are connected in parallel by a pair of bus bars 21 and 23.
  • the bus bars 21 and 23 are constituted by terminal portions 21a and 23a and lead terminal portions 21b and 23b.
  • the terminal portions 21a and 23a are for external connection, and the lead terminal portions 21b and 23b are connected to the external electrodes 5a and 5b of the film capacitor B, respectively.
  • the thickness can be made thinner than the conventional dielectric film formed of polypropylene, polyethylene terephthalate, or the like.
  • the size of the film capacitor B and the connected capacitor C can be reduced and the capacity can be increased.
  • the heat resistance of the film capacitor B and the connected capacitor C is assured. Therefore, a capacitor product with a small decrease in capacitance and insulation resistance can be obtained even when used in a high temperature range (for example, an atmosphere having a temperature of 80 ° C. or higher).
  • the connected capacitor C can obtain the same effect even if it has a structure in which the flat surfaces of the film capacitor B are stacked. .
  • FIG. 5 is a schematic configuration diagram for explaining a configuration of an embodiment of an inverter.
  • FIG. 5 shows an example of an inverter D that generates alternating current from direct current after rectification.
  • the inverter D of the present embodiment includes a bridge circuit 31 composed of switching elements (for example, IGBT (Insulated gate bipolar transistor)) and an input terminal of the bridge circuit 31 for voltage stabilization. It is the structure provided with the capacity
  • the film capacitor B or the connected capacitor C is applied as the capacitor 33.
  • the inverter D is connected to a booster circuit 35 that boosts the voltage of the DC power supply.
  • the bridge circuit 31 is connected to a motor generator (motor M) serving as a drive source.
  • the film capacitor B or the coupled capacitor C of the present embodiment described above is applied to the capacitor portion 33 of the inverter D, the volume of the capacitor portion 33 occupying the inverter D can be reduced. An inverter D having a large capacity portion 33 can be obtained. In addition, an inverter D with small fluctuation of the modulated wave can be obtained even in a high temperature range.
  • FIG. 6 is a schematic configuration diagram showing an embodiment of an electric vehicle.
  • FIG. 6 shows an example of a hybrid vehicle (HEV) as the electric vehicle E.
  • HEV hybrid vehicle
  • reference numeral 41 denotes a driving motor
  • 43 denotes an engine
  • 45 denotes a transmission
  • 47 denotes an inverter
  • 49 denotes a power source (battery)
  • 51a and 51b denote front wheels and rear wheels.
  • This electric vehicle E mainly has a function of transmitting the output of the motor 41 or the engine 43 as a drive source, or both to the pair of left and right front wheels 51a via the transmission 45, and the power source 49 is connected to the motor via the inverter 47. 41.
  • the electric vehicle E shown in FIG. 6 is provided with a vehicle ECU 53 that performs overall control of the entire electric vehicle E.
  • the vehicle ECU 53 receives a drive signal corresponding to the operation of the driver or the like from the electric vehicle E such as an ignition key 55, an accelerator pedal (not shown), and a brake.
  • the vehicle ECU 53 outputs an instruction signal to the engine ECU 57, the power source 49, and the inverter 47 as a load based on the drive signal.
  • the engine ECU 57 controls the rotational speed of the engine 43 in response to the instruction signal and drives the electric vehicle E.
  • the film capacitor B or the coupled capacitor C of the present embodiment is applied as the capacitor 33 and the downsized inverter D is mounted on an electric vehicle E as shown in FIG. 6, for example, it is formed of polypropylene or polyethylene terephthalate.
  • the weight of the vehicle can be reduced compared to a conventional large-sized inverter using a film capacitor using a dielectric film or a connected capacitor.
  • the vehicle can be reduced in weight as described above, and the fuel consumption can be improved.
  • the proportion of the automobile control device in the engine room can be reduced. By reducing the proportion of the control device, it is possible to incorporate a function for enhancing the impact resistance in the engine room, and to further improve the safety of the vehicle.
  • the inverter D of this embodiment can be applied not only to the hybrid vehicle (HEV) described above but also to various power conversion application products such as an electric vehicle (EV), an electric bicycle, a generator, and a solar battery.
  • EV electric vehicle
  • a generator electric bicycle
  • a solar battery a power conversion application product
  • Example 1 As a resin material, a PPE Powder (manufactured by Asahi Kasei) of Zylon (registered trademark) which is a polyphenylene ether is used, and titanium (IV) isopropoxide (Ti-i-Pr) and titanium (IV) butoxide (Ti--) are used as metal alkoxides. n-but) was used.
  • Zylon registered trademark
  • Zylon was dissolved in chloroform to obtain a resin solution having a resin concentration of 25% by mass.
  • Each metal alkoxide was dissolved in chloroform to obtain each metal alkoxide solution having a metal alkoxide concentration of 5 mass%.
  • a metal alkoxide solution was added to the prepared resin solution to obtain a mixed solution.
  • Table 1 shows the ratio (parts by mass) of the metal alkoxide to 100 parts by mass of Zylon (registered trademark).
  • the obtained mixed solution was stirred for 24 hours at 300 rpm using a stirrer to obtain a dielectric film solution. All the solution preparation steps were performed in a dry nitrogen atmosphere at room temperature.
  • This dielectric film solution is applied onto a polyethylene terephthalate (PET) substrate using a coater, dried at 180 ° C. for 1 hour to remove the solvent, and a dielectric film (sample Nos. 1 to 4) is produced. did. Sample No. The dielectric film 1 was prepared using a resin solution not containing a metal alkoxide. All the dielectric films had a thickness of 3.5 ⁇ m and a relative dielectric constant of about 2.6.
  • Example 2 ZEONOR (registered trademark) (manufactured by ZEON), which is a cyclic olefin-based norbornene-based ring-opening polymer, is used as a resin material, and zirconium (IV) butoxide (Zr-n-but) and titanium (IV) are used as metal alkoxides. Butoxide (Ti-n-but) was used.
  • ZEONOR registered trademark
  • ZEONOR was dissolved in cyclohexane to obtain a resin solution having a resin concentration of 25% by mass.
  • Each metal alkoxide was dissolved in cyclohexane to obtain each metal alkoxide solution having a metal alkoxide concentration of 5% by mass.
  • a metal alkoxide solution was added to the prepared resin solution to obtain a mixed solution. At this time, it adjusted so that a metal alkoxide might be 1 mass part with respect to 100 mass parts ZEONOR (trademark).
  • the mixed solution was stirred for 24 hours at 300 rpm using a stirrer to obtain a dielectric film solution. All the solution preparation steps were performed in a dry nitrogen atmosphere at room temperature.
  • This dielectric film solution is applied onto a polyethylene terephthalate (PET) substrate using a coater, dried at 180 ° C. for 1 hour to remove the solvent, and a dielectric film (Sample Nos. 5 to 7) is produced. did.
  • Sample No. The dielectric film No. 5 was prepared using a resin solution containing no metal alkoxide. All the dielectric films had a thickness of 3.5 ⁇ m and a relative dielectric constant of about 2.3.
  • Siloxane-modified polyetherimide (STM1700, manufactured by SABIC) was used as the resin material, and zirconium (IV) butoxide (Zr-n-but) and titanium (IV) butoxide (Ti-n-but) were used as the metal alkoxide.
  • STM1700 was dissolved in chloroform to obtain a resin solution having a resin concentration of 25% by mass.
  • Each metal alkoxide was dissolved in chloroform to obtain each metal alkoxide solution having a metal alkoxide concentration of 5 mass%.
  • a metal alkoxide solution was added to the prepared resin solution to obtain a mixed solution.
  • This dielectric film solution is applied onto a polyethylene terephthalate (PET) substrate using a coater, dried at 180 ° C. for 1 hour to remove the solvent, and a dielectric film (Sample Nos. 8 to 10) is produced. did. Sample No. The dielectric film No. 8 was produced using a resin solution containing no metal alkoxide. All the dielectric films had a thickness of 3.5 ⁇ m and a relative dielectric constant of about 3.0.
  • Example 4 As a resin material, a polyarylate resin having a main skeleton of polyester described in Production Example 1 of JP2013-76042A was used. Zirconium (IV) butoxide (Zr-n-but), acetoalkoxyaluminum diisopropylate (Al-M), and titanium (IV) butoxide (Ti-n-but) were used as metal alkoxides.
  • Zirconium (IV) butoxide (Zr-n-but), acetoalkoxyaluminum diisopropylate (Al-M), and titanium (IV) butoxide (Ti-n-but) were used as metal alkoxides.
  • the produced polyarylate resin was vacuum heated at 120 ° C. for 3 hours to remove moisture adsorbed on the polyarylate resin.
  • the obtained polyarylate resin was dissolved in toluene to obtain a resin solution having a resin concentration of 25% by mass.
  • each metal alkoxide was dissolved in toluene to obtain each metal alkoxide solution having a metal alkoxide concentration of 5% by mass and a 50% by mass Zr-n-but solution.
  • Each metal alkoxide solution was added to the prepared resin solution to prepare a mixed solution.
  • the addition amount of the metal alkoxide solution was adjusted so that the ratio (parts by mass) of the metal alkoxide to 100 parts by mass of polyarylate was the ratio shown in Table 2.
  • the obtained mixed solution was stirred for 24 hours at 300 rpm using a stirrer to obtain a dielectric film solution. All the solution preparation steps were performed in a dry nitrogen atmosphere at room temperature.
  • This dielectric film solution was coated on a polyethylene terephthalate (PET) substrate using a coater, dried at 180 ° C. for 1 hour to remove the solvent, and a dielectric film (Sample Nos. 11 to 24).
  • Sample No. The dielectric film No. 11 was prepared using a resin solution containing no metal alkoxide.
  • No. 18 was prepared using a 50 mass% Zr-n-but solution. The thickness of each dielectric film was 3.5 ⁇ m. All of the obtained dielectric films had a relative dielectric constant of about 3.2.
  • the produced dielectric film was subjected to 1 H-NMR (proton NMR) measurement.
  • 1 H-NMR proto NMR
  • a peak was observed in addition to the peak based on polyarylate, and this peak was determined by HMQC measurement and HMBC measurement of the two-dimensional correlation NMR method, and the carbon atom adjacent to the oxygen atom of each alkoxy group. It was found that this was due to hydrogen bonded to the hydrogen atom, that is, the alkoxy group was directly ester-bonded to the main skeleton of the organic resin without a metal element. A peak due to unreacted metal alkoxide could not be confirmed. Further, from the obtained 1 H-NMR spectrum, the ratio of alkoxy groups to all ester bonds contained in the dielectric film was calculated and listed in Table 2.
  • the type and content of the metal element contained in the dielectric film were confirmed by ICP emission spectroscopic analysis.
  • the metal element contained in the dielectric film was the same as the metal element constituting the metal alkoxide added to the organic resin.
  • TEM transmission electron microscope
  • JEM-ARM200F, HAADF image, acceleration voltage: 200 kV transmission electron microscope
  • Tables 1 and 2 show the content of the metal element, the average value of the diameter of the metal element-containing particles, and the volume fraction.
  • the dielectric breakdown electric field of the dielectric film was measured as follows.
  • the PET film was peeled off from the dielectric film, and an Al electrode layer having an average thickness of 75 nm was formed on both surfaces of the dielectric film by a vacuum deposition method to produce a metallized film.
  • the dielectric breakdown electric field was measured about the obtained metallized film.
  • the breakdown electric field was obtained from the voltage value at the moment when the leakage current value exceeded 1.0 mA by applying a DC voltage between the metal films of the metallized film at a boosting rate of 10 V per second.
  • Tables 1 and 2 show the breakdown electric field of the metallized film.
  • Sample No. 2-4, 6, 7, 9, 10, 12-24 contain metal element-containing microparticles in the organic resin, and the average diameter of the metal-containing microparticles is in the range of 0.5-50 nm.
  • the dielectric breakdown electric field was high and excellent insulation was exhibited.
  • Sample No. In Nos. 12 to 24, the alkoxy group has an ester bond directly to the main skeleton of the organic resin without a metal element, and the improvement rate of the dielectric breakdown electric field is higher than that in which the main skeleton is not directly bonded to the alkoxy group. it was high.
  • sample no. Using the dielectric film solutions 3, 6, 9, and 14, a dielectric film having a thickness of 1.5 ⁇ m was prepared, and a dielectric breakdown electric field was measured. 480 V / ⁇ m (sample No. 3), 620 V / ⁇ m (sample No. 6), 470 V / ⁇ m (sample No. 9), 430 V / ⁇ m (sample No. 14), and a thin film having a thickness of 1.5 ⁇ m, respectively.
  • the layer film also maintained a high breakdown electric field of about 90% in the case of a thickness of 3.5 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inverter Devices (AREA)

Abstract

 【課題】 耐熱性に優れ絶縁破壊電界を高めることのできる誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌を提供する。 【解決手段】 有機樹脂と、金属元素を含有する複数の微小粒子とを含み、該微小粒子の直径の平均値が0.5~50nmである誘電体フィルム1を用いたフィルムコンデンサA、Bとすることにより、耐熱性に優れ絶縁破壊電界の高いフィルムコンデンサが得られる。このようなフィルムコンデンサA、B、およびそれをバスバーにより連結した連結型コンデンサCはインバータDや電動車両Eに好適に用いられる。

Description

誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
 本発明は、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌に関する。
 フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムの表面に、蒸着によって形成された金属膜を電極として有している。このような構成により、誘電体フィルムの絶縁欠陥部で短絡が生じた場合にも、短絡のエネルギーで欠陥部周辺の金属膜が蒸発、飛散して絶縁化し、フィルムコンデンサの絶縁破壊を防止できるという利点を有している(例えば、特許文献1を参照)。
 このため、フィルムコンデンサは電気回路が短絡した際の発火や感電を防止することができる。このような点が注目され、近年、LED(Light Emitting Diode)照明等の電源回路への適用を始め、用途が拡大しつつある。
 ところが、フィルムコンデンサは、各種の電子部品が実装された基板上において、セラミックコンデンサなど他の電子部品に比べて依然としてサイズが大きいことから、当該基板の低背化や実装密度の向上の妨げになっている。そのため、フィルムコンデンサの小型化が検討されている。また、電子機器の小型化、コンデンサの高容量化などにより、電子部品の使用環境が高温化している。これらの電子部品には、高温の環境下でも長時間にわたり安定な電気的特性が得られる耐熱性が要求されている。
 フィルムコンデンサの小型化を図る手段としては、誘電体フィルムの薄層化や、誘電体フィルムの積層数や巻回数の低減が挙げられる。誘電体フィルムを薄層化するためには、誘電体フィルムの耐電圧を向上させる必要がある。例えば、特許文献2では、耐電圧を高めるため、誘電体フィルムに、エポキシ基を有する有機樹脂にセラミック粒子を分散させた複合誘電体材料を適用することが提案されている。
 また、耐熱性に優れる材料として、例えば特許文献3では、ポリアリレート系材料に金属アルコキシドを導入した有機-無機ハイブリッド高分子材料が提案されている。
特開平9-129475号公報 特開2006-225484号公報 特開平11-255883号公報
 しかしながら、特許文献2に開示された誘電体フィルムでは、耐熱性が充分でなく、また、有機樹脂とセラミック粒子との界面の有機樹脂側において電界強度が高くなり、誘電体フィルム全体として、耐電圧が低下してしまうという課題があった。また、特許文献3に開示された材料は、耐熱性に優れるが耐電圧(絶縁破壊電界)が最大で330V/μm程度であり、誘電体フィルムの薄層化には耐電圧性が不充分であるという課題があった。
 本発明は、上記の課題を解決するためになされたもので、絶縁破壊電界を高めることのできる誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌を提供することを目的とする。
 本発明の誘電体フィルムは、有機樹脂と、金属元素を含有する複数の微小粒子とを含み、該微小粒子の直径の平均値が0.5~50nmである。
 本発明のフィルムコンデンサは、上記の誘電体フィルム上に金属膜を備えた金属化フィルムが巻回または積層されてなる本体部と、該本体部に設けられた外部電極とを有する。
 本発明の連結型コンデンサは、上記のフィルムコンデンサが、バスバーにより複数個接続されている。
 本発明のインバータは、スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備えているインバータであって、前記容量部が上記のフィルムコンデンサまたは連結型コンデンサである。
 本発明の電動車輌は、電源と、該電源に接続されたインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備えている電動車両であって、前記インバータが上記のインバータである。
 本発明によれば、絶縁破壊電界を高めることのできる誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌を提供できる。
本実施形態にかかる誘電体フィルムの透過型電子顕微鏡(TEM)写真である。 (a)は、誘電体フィルムの表面に金属膜を有する構造を模式的に示す断面図であり、(b)は、第1実施形態のフィルムコンデンサを示す外観斜視図である。 フィルムコンデンサの第2実施形態の構成を模式的に示した展開斜視図である。 連結型コンデンサの一実施形態の構成を模式的に示した斜視図である。 インバータの一実施形態の構成を説明するための概略構成図である。 電動車輌の一実施形態を示す概略構成図である。
 本実施形態の誘電体フィルムは、有機樹脂と、金属元素を含有する複数の微小粒子とを含み、該微小粒子の直径の平均値が0.5~50nmである。
 本実施形態の誘電体フィルムは、金属元素を含んでおり、その含有量は、0.05~5.0質量%、より好ましくは0.1~4.0質量%、特には0.2~3.0質量%であることが好ましい。金属元素は、有機樹脂の分子間に存在する微小粒子に含有されている。
 本実施形態において、金属元素を含有する微小粒子とは、複数の金属元素が微小な領域に近接して集合したものであり、誘電体フィルムの断面を透過型電子顕微鏡(TEM)で観察したとき、白く見える金属元素が、図1のように例えば直径数nmの範囲内に近接した集合体として見えるものである。換言すれば、金属元素を含有する微小粒子とは、複数の金属元素が微小な領域に集合し、粒子状をなしているものである。また、金属元素を含有する微小粒子とは、複数の金属元素が微小なクラスタを形成したものであるともいえる。
 このように、本実施形態の誘電体フィルムは、そのTEM写真において、白く見える複数の金属元素が直径0.5~50nmの領域に近接して集合したクラスタである微小粒子を含み、その微小粒子が複数、有機樹脂中に分散したものである。以下、このような金属元素を含有する微小粒子を、金属元素含有微小粒子と称する。
 金属元素を含有する微小粒子の存在は、上述のように誘電体フィルムの断面を透過型電子顕微鏡(TEM)で観察することにより確認できる。このような構成を有する誘電体フィルムは、たとえば平均厚みが5μm以下、特には、1~5μmの薄層の誘電体フィルムとして好適に用いることができる。
 従来より、有機樹脂中に金属元素を含む無機化合物粒子のフィラーが分散することで、有機樹脂中を移動する電荷が無機化合物粒子にトラップされ、局所的な電界集中を抑制する効果が得られることが知られている。通常は、平均粒径が数十~数百nm程度の無機化合物粒子のフィラーを有機樹脂に混合し、分散させており、このような構造において、電荷のトラップに寄与するのは無機化合物粒子に含まれる金属元素であると考えられる。
 本実施形態では、金属元素を含む微小粒子(金属元素含有微小粒子)が有機樹脂中を移動する電荷をトラップし、局所的な電界集中を抑制すると考えられる。金属元素含有微小粒子は、金属元素を含む無機化合物であってもよいが、金属元素を含む有機化合物や、無機化合物と有機化合物との混合物に金属元素が含まれたものであることが好ましい。金属元素含有微小粒子が、金属元素を含む有機化合物や、無機化合物と有機化合物との混合物に金属元素が含まれたものであることにより、金属元素をより微小な集団として有機樹脂中に分散させることができ、局所的な電界集中を抑制する効果を高めることができる。金属元素含有微小粒子の直径の平均値は、0.5~50nm、より好ましくは0.5~10nm、特には1~3nmであることが好ましい。金属元素含有微小粒子の直径の平均値は、例えば小角X線散乱測定により得られたプロファイルを解析することにより確認できる。
 このような金属元素含有微小粒子による局所的な電界集中抑制効果の発現は、金属元素含有微小粒子が、複数の金属元素が微小な領域に近接して存在することに起因すると考えられる。例えば、有機樹脂の主骨格に金属元素が導入されているだけ、すなわち有機樹脂の主骨格が金属アルコキシドにより架橋されているだけでは、誘電体フィルム中で、複数の金属元素が微小な領域に近接する状態にはなり得ず、絶縁性の向上効果が得られにくい。本実施形態のように、誘電体フィルム中に、複数の金属元素が微小な領域に近接する金属元素含有微小粒子が存在し、それが誘電体フィルム中に分散していることで、誘電体フィルムの絶縁破壊電界がさらに向上するとともに高温負荷寿命を向上することができる。
 誘電体フィルム中において、このような金属元素を含む微小粒子(金属元素含有微小粒子)が占める体積分率は、0.4~40体積%、より好ましくは2~20体積%、特には5~18体積%であることが好ましい。誘電体フィルム中において、このような金属元素を含む微小な粒子(金属元素含有微粒子)が占める体積分率は、例えば小角X線散乱測定により得られたプロファイルを解析することにより確認できる。
 誘電体フィルム中に含まれる金属元素としては、たとえばSi、Ti、Zr、Fe、Cu、Sn、Al、Ge、Ta、W等が挙げられる。特に、Si、Ti、ZrおよびAlからなる金属元素群から選択される少なくとも1種であることが好ましい。これらの金属元素群の金属アルコキシドを用いると、有機樹脂中で金属元素含有微小粒子が形成されやすいためである。
 誘電体フィルム中に含まれる金属元素は、1種だけでなく2種以上であってもよい。誘電体フィルム中に含まれる金属元素の種類および含有量は、たとえば高周波誘導結合プラズマ(ICP)発光分光分析により確認できる。
 有機樹脂としては、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリフェニレンエーテル(PPE)、環状オレフィン(COP)系、ポリエーテルイミド(PEI)系等の耐熱性に優れた樹脂材料を用いることが好ましい。これら耐熱性に優れた樹脂材料を用いることで、耐熱性に優れた誘電体フィルムとなる。なお、ポリカーボネート、ポリアリレート、ポリフェニレンエーテル、環状オレフィン系、ポリエーテルイミド系からなる樹脂材料群は、有機溶剤に可溶で金属アルコキシドとの混合が容易な点からも好適に使用できる。
 本実施形態の誘電体フィルムの有機樹脂は、ポリエステルを主骨格とし、アルコキシ基を有する樹脂材料を主成分とすることが好ましい。ここで、主成分とは、誘電体フィルム全体に対して質量比で50質量%以上を占める成分である。
 ポリエステルを主骨格とする樹脂材料としては、例えばポリカーボネート、ポリアリレート、およびこれらの重合体が挙げられる。ポリカーボネートおよびポリアリレートは、耐熱性、機械的特性、電気的特性(絶縁性、誘電特性)に優れ、誘電体フィルムの有機樹脂材料として好適に用いることができる。
 このような樹脂材料の主骨格(ポリエステル)に、アルコキシ基が結合していることにより、樹脂材料の絶縁破壊電界をさらに向上させることができる。
 一般的に、電気絶縁性は物質の極性と相関があり、極性が低いほど電気絶縁性(絶縁破壊電界)が高く、極性が高いほど電気絶縁性(絶縁破壊電界)が低い傾向がある。ポリカーボネートやポリアリレートは、比較的極性の高い化学構造を有しており、アルコキシ基は極性の低い官能基である。したがって、ポリカーボネートやポリアリレートの分子中、特に主骨格に、極性の低い官能基であるアルコキシ基を導入することで、ポリカーボネートやポリアリレートの絶縁破壊電界を向上させることができる。
 なお、ポリエステルを主骨格とする樹脂材料であれば、ポリカーボネートおよびポリアリレート以外の樹脂材料についても、主骨格(ポリエステル)に、アルコキシ基が結合していることにより、同様に絶縁破壊電界を向上することができる。また、上述のような金属元素群の金属アルコキシドを用いると、樹脂材料の主骨格にアルコキシ基を付加しやすい。
 ポリエステルを主骨格とする樹脂材料の主骨格と、アルコキシ基とは、エステル結合により結合していることが好ましい。重合体と金属アルコキシドとを反応させると、通常は重合体の官能基と金属アルコキシドとが加水分解および重縮合することにより架橋され、分子内の主骨格に金属アルコキシド基を有する有機樹脂となる。
 一方、本実施形態では、樹脂材料の主骨格には、金属アルコキシドが分解したアルコキシ基が結合しており、樹脂材料の主骨格には金属元素を含まない。したがって、樹脂材料の優れた耐熱性、機械的特性、電気的特性が維持される。この場合、樹脂材料の主骨格とアルコキシ基とはエステル結合により結合することになる。
 有機樹脂中におけるアルコキシ基の含有量は、有機樹脂が有する全エステル結合に対するモル比率で0.05~11%、より好ましくは0.5~5.0%、特には1.0~3.5%であることが好ましい。アルコキシ基の含有量をこのような範囲とすることで、有機樹脂の耐熱性や機械特性を維持したまま、有機樹脂自体の絶縁破壊電界を向上できる。
 有機樹脂とアルコキシ基との結合状態、および有機樹脂中におけるアルコキシ基の含有量(有機樹脂が有する全エステル結合に対する、アルコキシ基のモル比率)は、核磁気共鳴分光法(NMR)により確認することができる。具体的には、H-NMR(プロトンNMR)測定、13C―NMR測定、及び二次元相関NMRのHMQC(Heteronuclear Multiple Quantum Coherence)測定、HMBC(Heteronuclear Multiple Bond Connectivity)測定を行うことにより、確認することができる。
 本実施形態の誘電体フィルムは、例えば以下のようにして得ることができる。有機樹脂の樹脂材料を有機溶剤に溶解し、樹脂溶液を作製する。同様に金属アルコキシドを有機溶剤に溶解し、金属アルコキシド溶液を作製する。不活性雰囲気中において、作製した樹脂溶液に、金属アルコキシド溶液を混合し、24時間以上撹拌する。これらの工程を不活性雰囲気中(乾燥窒素など)で行うことにより、金属アルコキシドの加水分解を抑制し、金属アルコキシド同士を縮合反応させる。この反応により、金属元素を含有する微小粒子が形成され、樹脂材料と、金属元素を含有する微小粒子とを含む誘電体フィルム用溶液が得られる。
 ここで、ポリエステルを主骨格とするポリカーボネート、ポリアリレートなどの重合体を樹脂材料として用いた場合、金属アルコキシドが重合体のエステル結合を分解し、そのエステル結合が分解した部分に金属アルコキシドのアルコキシ基が付加反応により結合する。
 この誘電体フィルム用溶液を用いて、例えばポリエチレンテレフタレート(PET)製基材の上に誘電体フィルムを成膜すればよい。成膜法としては、ドクターブレード法、ダイコータ法およびナイフコータ法等から選ばれる一種の成形法を用いることができる。
 上述の樹脂材料として、たとえば、ポリカーボネートであれば一般式(1)、ポリアリレートであれば一般式(2)または(3)で表される繰り返し単位を有するポリマーが、一例として挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)、(2)、または(3)中、Xは、脂肪族の2価基、環状脂肪族の2価基、一般式(4)で表される2価基から選ばれる少なくとも1種を示す。一般式(3)中、Yは、置換もしくは無置換のアリレン基を示す。
 一般式(4)中、R1、R2は、それぞれ独立して置換もしくは無置換のアルキル基、アリール基、またはハロゲン原子を示す。Aは、単結合、炭素原子数1~12の直鎖状、分岐状、または環状のアルキレン基を示す。
 上記一般式(1)、(2)、(3)中のXの具体例としては、たとえば一般式(5a)~(5n)で表される2価基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 環状オレフィン系の樹脂材料であれば、たとえば一般式(6)に示すようなノルボルネン系モノマーの重合体などが挙げられる。ノルボルネン系モノマーは、環状オレフィンモノマーの一種であり、環状オレフィンモノマーとは、炭素原子で形成される環構造を有するとともに、当該環構造中に炭素-炭素二重結合を有する化合物である。環状オレフィンモノマーとしては、ノルボルネン系モノマーのほか、単環環状オレフィンなどが挙げられる。ノルボルネン系モノマーは、反応式(7)~(10)にそれぞれ示すような開環重合、ビニル共重合、ビニル重合、またはラジカル重合などにより、環状オレフィン系の有機樹脂を形成する。
Figure JPOXMLDOC01-appb-C000003
 式(6)~(10)中、R3、R4、およびR5は、任意の官能基である。また、環状オレフィン系の樹脂材料は、通常、単一の種類のノルボルネン系モノマーの重合体であるが、複数の異なる種類のノルボルネン系モノマーの重合体であってもよい。
 ノルボルネン系モノマーの具体例としては、ノルボルネン類、ジシクロペンタジエン類、テトラシクロドデセン類などが挙げられる。これらは、アルキル基、アルケニル基、アルキリデン基、アリール基などの炭化水素基や、カルボキシル基、酸無水物基などの極性基を置換基として含有する場合もあるが、非極性の、すなわち炭素原子と水素原子のみで構成されるノルボルネン系モノマーであることが好ましい。
 非極性のノルボルネン系モノマーには、非極性のジシクロペンタジエン類、非極性のテトラシクロドデセン類、非極性のノルボルネン類、五環体以上の非極性の環状オレフィン類などがある。
 ノルボルネン系モノマーは、ノルボルネン環の二重結合以外に、さらに二重結合を有していてもよい。
 このような環状オレフィン系の樹脂材料としては、具体的には、ノルボルネン系開環重合体(以下、単に開環重合体という場合もある)であるJSR株式会社製のARTON(登録商標)、日本ゼオン株式会社製のZEONEX(登録商標)、ZEONOR(登録商標)や、ノルボルネン系のビニル共重合体(以下、単にビニル共重合体という場合もある)である三井化学株式会社製のAPEL(登録商標)、APO(登録商標)、ポリプラスチック株式会社製のTOPAS (登録商標)などが市販されている。また、ノルボルネン環を有するモノマーの開環重合体の水素添加物、ノルボルネン環を有するモノマーとα-オレフィン類との付加重合体、環状オレフィンの付加重合体、環状オレフィンの付加重合体の水素添加物、環状ジエンの付加重合体及び環状ジエンの付加重合体の水素添加物などを用いることもできる。これらのなかでも、特に開環重合体、すなわちノルボルネン環を有するモノマーの開環重合体が、フィルム成形性、耐薬品性などの観点から好ましい。
 これら、ポリカーボネート、ポリアリレート、ポリフェニレンエーテル、環状オレフィン系、ポリエーテルイミド系等の樹脂材料は、1種だけでもよいし2種以上を併用してもよい。また、複数成分の共重合体でもよい。
 金属アルコキシドとしては、例えば一般式(11)で表される化合物が挙げられる。
M    (11)
ここで、一般式(11)中、Bは炭素数1~8、好ましくは1~4のアルコキシ基、MはSi、Ti、Zr、Fe、Cu、Sn、Al、Ge、Ta、W等の金属元素、pは2~6の整数を示す。
 具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類、テトラn-プロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタン等のテトラアルコキシチタン類、テトラn-プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラブトキシジルコニウム等のテトラアルコキシジルコニウム類、およびジメトキシ銅、トリブトキシアルミニウム、テトラエトキシゲルマニウム、ペンタn-プロポキシタンタル、ヘキサエトキシタングステン等の金属アルコキシド類が挙げられる。
 金属アルコキシドの他の例としては、例えば一般式(12)で表される化合物が挙げられる。
R6M(R7Z)    (12)
一般式(12)中、R6は水素か炭素数1~12、好ましくは1~5のアルキル基またはフェニル基、Bは炭素数1~8、好ましくは1~4のアルコキシ基、MはSi、Ti、Zr、Fe、Cu、Sn、Al、Ge、Ta、W等の金属元素、R7は炭素数1~4、好ましくは2~4のアルキレン基またはアルキリデン基、Zはイソシアネート基、エポキシ基、カルボキシル基、酸ハロゲン化物基、酸無水物基、アミノ基、 チオール基、ビニル基、メタクリル基、ハロゲン基等の一般的な官能基、kは0~5の整数、lは1~5の整数、mは0または1、nは0~5の整数を示す。
 有機樹脂の樹脂材料を溶解する有機溶剤と、金属アルコキシドを溶解する有機溶剤は、同じ有機溶剤を用いることが好ましい。有機溶剤としては、例えば、メタノール、イソプロパノール、n-ブタノール、エチレングリコール、エチレングリコールモノプロピルエーテル、メチルエチルケトン、メチルイソブチルケトン、キシレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、シクロヘキサン、トルエン、クロロホルム、テトラヒドロフラン又は、これらから選択された2種以上の混合物を含んだ有機溶剤を用いる。
 樹脂溶液における樹脂材料の濃度(樹脂濃度)は、例えば10~40質量%、さらには20~30質量%とするのが好ましく、金属アルコキシド溶液における金属アルコキシドの濃度(金属アルコキシド濃度)は、例えば1~50質量%、さらには2~30質量%とするのが好ましい。また、樹脂溶液と金属アルコキシド溶液を混合する際、樹脂材料100質量部に対する金属アルコキシドの比率は、例えば0.05~10質量部、さらには0.1~6.0質量部とするのが好ましい。
 金属元素含有微小粒子の大きさは、金属アルコキシド溶液の金属アルコキシド濃度により調整できる。金属アルコキシド濃度が高いほど大きい金属元素含有微小粒子が形成される傾向がある。また、金属元素含有微小粒子の大きさは、金属アルコキシドの反応性にも影響される。金属アルコキシドは、種類により反応性が異なり、例えばジルコニウム含むジルコニウム(IV)ブトキシド(Zr-n-but)は比較的反応性が低く、小さい金属元素含有微小粒子を形成するのに対し、チタニウムを含むチタニウム(IV)ブトキシド(Ti-n-but)は比較的反応性が高く、大きい金属元素含有微小粒子を形成する傾向がある。
 樹脂溶液と金属アルコキシド溶液との混合(撹拌)条件は、例えば温度10~30℃、スターラーやミックスローターなどを用いて回転数100~500rpmとすればよい。撹拌時間は、24~96時間とすればよい。温度や撹拌条件を適宜調整することでも、種々の大きさの金属元素含有微小粒子を得ることができる。これらの工程、すなわち樹脂溶液や金属アルコキシド溶液の作製、混合・撹拌工程は、全て乾燥窒素の雰囲気中で行う。
 図2(a)は、誘電体フィルムの表面に金属膜を有する構造を模式的に示す断面図であり、(b)は、第1実施形態のフィルムコンデンサを示す外観斜視図である。図2(b)に示す第1実施形態のフィルムコンデンサAは、誘電体フィルム1の片面に金属膜2を備えた金属化フィルム3を積層した本体部4に、外部電極5が設けられた構成を、基本的な構成とするものであり、必要に応じてリード線6が設置される。
 この場合、本体部4、外部電極5およびリード線6の一部は、必要に応じて絶縁性および耐環境性の点から、外装部材7に覆われていてもよい。図2(b)においては、外装部材7の一部を取り除いた状態を示しており、外装部材7の取り除かれた部分を破線で示している。
 本実施形態の誘電体フィルム1は、図2(a)(b)に示した積層型に限らず、巻回型のフィルムコンデンサBにも適用することができる。
 図3は、フィルムコンデンサの第2実施形態の構成を模式的に示した展開斜視図である。本実施形態のフィルムコンデンサBでは、巻回された金属化フィルム3a、3bにより本体部4が構成され、本体部4の対向する端面に外部電極5a、5bとしてメタリコン電極が設けられている。
 金属化フィルム3aは、誘電体フィルム1aの表面に金属膜2aを有するものであり、金属化フィルム3bは、誘電体フィルム1bの表面に金属膜2bを有するものである。図3では、金属膜2a、2bは誘電体フィルム1a、1bの幅方向の一端側に、金属膜2a、2bが形成されず誘電体フィルム1a、1bが露出する部分(以下、金属膜非形成部8a、8bという場合がある)が長手方向に連続して残るように形成されている。
 金属化フィルム3aと3bとは、誘電体フィルム1a、1bの幅方向において、金属膜非形成部8aと8bとが互いに異なる端部に位置するように配置され、金属膜非形成部8a、8bとは異なる端部が幅方向に突出するようにずれた状態で重ねあわされている。
 すなわち、フィルムコンデンサBは、誘電体フィルム1aと金属膜2aとによって構成される金属化フィルム3aと、誘電体フィルム1bと金属膜2bとによって構成される金属化フィルム3bとが、図3に示すように重ねられ巻回されている。なお、図3では、フィルムコンデンサBの構成を見易くするため、誘電体フィルム1a、1b、金属膜2a、2bの厚みを、図3の奥から手前に向けて厚くなるように記載したが、実際にはこれらの厚みは一定である。
 図4は、連結型コンデンサの一実施形態の構成を模式的に示した斜視図である。図4においては構成を分かりやすくするために、ケースおよびモールド用の樹脂を省略して記載している。本実施形態の連結型コンデンサCは、複数個のフィルムコンデンサBが一対のバスバー21、23により並列接続された構成となっている。バスバー21、23は、端子部21a、23aと、引出端子部21b、23bと、により構成されている。端子部21a、23aは外部接続用であり、引出端子部21b、23bは、フィルムコンデンサBの外部電極5a、5bにそれぞれ接続される。
 フィルムコンデンサBまたは連結型コンデンサCを構成する誘電体フィルムとして、本実施形態の誘電体フィルム1を適用すると、ポリプロピレンやポリエチレンテレフタレートなどによって形成されていた従来の誘電体フィルムよりも厚みを薄くできるため、フィルムコンデンサBおよび連結型コンデンサCのサイズの小型化とともに高容量化を図ることができる。
 また、誘電体フィルム1の主成分である有機樹脂として、ポリアリレート、ポリフェニレンエーテル、環状オレフィン系、ポリエーテルイミド系等の有機材料を適用した場合には、フィルムコンデンサBおよび連結型コンデンサCの耐熱性が高いため、高温域(例えば、温度が80℃以上の雰囲気)での使用においても静電容量および絶縁抵抗の低下の小さいコンデンサ製品を得ることができる。なお、連結型コンデンサCは、図4に示したような平面的な配置の他に、フィルムコンデンサBの平坦な面同士が重なるように積み上げた構造であっても同様の効果を得ることができる。
 図5は、インバータの一実施形態の構成を説明するための概略構成図である。図5には、整流後の直流から交流を作り出すインバータDの例を示している。本実施形態のインバータDは、図5に示すように、スイッチング素子(例えば、IGBT(Insulated gate Bipolar Transistor))により構成されるブリッジ回路31と、電圧安定化のためにブリッジ回路31の入力端子間に配置された容量部33とを備えた構成となっている。ここで、容量部33として、上記のフィルムコンデンサBまたは連結型コンデンサCが適用される。
 なお、このインバータDは、直流電源の電圧を昇圧する昇圧回路35に接続されることになる。一方、ブリッジ回路31は駆動源となるモータジェネレータ(モータM)に接続されることになる。
 インバータDの容量部33に上記した本実施形態のフィルムコンデンサBまたは連結型コンデンサCを適用すると、インバータDに占める容量部33の体積を小さくすることができるため、より小型化かつ静電容量の大きい容量部33を有するインバータDを得ることができる。また、高温域においても変調波の変動の小さいインバータDを得ることができる。
 図6は、電動車輌の一実施形態を示す概略構成図である。図6には、電動車輌Eとしてハイブリッド自動車(HEV)の例を示している。
 図6における符号41は駆動用のモータ、43はエンジン、45はトランスミッション、47はインバータ、49は電源(電池)、51a、51bは前輪および後輪である。
 この電動車輌Eは、駆動源としてモータ41またはエンジン43、もしくは両方の出力がトランスミッション45を介して左右一対の前輪51aに伝達される機能を主として備えており、電源49はインバータ47を介してモータ41に接続されている。
 また、図6に示した電動車輌Eには、電動車輌E全体の統括的な制御を行う車輌ECU53が設けられている。車輌ECU53には、イグニッションキー55や図示しないアクセルペダル、ブレーキ等の電動車輌Eからの運転者等の操作に応じた駆動信号が入力される。この車輌ECU53は、その駆動信号に基づいて指示信号をエンジンECU57、電源49、および負荷としてのインバータ47に出力する。エンジンECU57は、指示信号に応答してエンジン43の回転数を制御し、電動車輌Eを駆動する。
 本実施形態のフィルムコンデンサBまたは連結型コンデンサCを容量部33として適用し、小型化されたインバータDを、例えば、図6に示すような電動車輌Eに搭載すると、ポリプロピレンやポリエチレンテレフタレートなどによって形成されていた従来の誘電体フィルムを適用したフィルムコンデンサや連結型コンデンサを用いた大型のインバータに比較して、車輌の重量を軽くできる。本実施形態では、このように車輌を軽量化することができ、燃費を向上させることが可能になる。また、エンジンルーム内における自動車の制御装置の占める割合を小さくできる。制御装置の占める割合を小さくすることで、エンジンルーム内に耐衝撃性を高めるための機能を内装させることが可能となり、車輌の安全性をさらに向上させることが可能になる。
 なお、本実施形態のインバータDは、上記のハイブリッド自動車(HEV)のみならず、電気自動車(EV)や電動自転車、発電機、太陽電池など種々の電力変換応用製品に適用できる。
 以下、本発明の誘電体フィルムについて、実施例に基づき詳細に説明する。
 (実施例1)
 樹脂材料として、ポリフェニレンエーテルであるザイロン(登録商標)のPPE Powder(旭化成製)を用い、金属アルコキシドとして、チタニウム(IV)イソプロポキシド(Ti-i-Pr)およびチタニウム(IV)ブトキシド(Ti-n-but)を用いた。ザイロン(登録商標)をクロロホルムに溶解させ、樹脂濃度25質量%の樹脂溶液を得た。金属アルコキシドをそれぞれクロロホルムに溶解させ、金属アルコキシド濃度5質量%の各金属アルコキシド溶液を得た。作製した樹脂溶液に、金属アルコキシド溶液を添加し、混合溶液とした。100質量部のザイロン(登録商標)に対する金属アルコキシドの比率(質量部)を表1に示す。得られた混合溶液を、スターラーを用いて300rpmで24時間撹拌し、誘電体フィルム用溶液を得た。なお、溶液作製工程はすべて室温の乾燥窒素の雰囲気中で行った。
 この誘電体フィルム用溶液を、コータを用いてポリエチレンテレフタレート(PET)基材上に塗布し、180℃で1時間乾燥して溶剤を除去し、誘電体フィルム(試料No.1~4)を作製した。なお、試料No.1の誘電体フィルムは金属アルコキシドを含まない樹脂溶液を用いて作製した。誘電体フィルムはいずれも、厚さが3.5μm、比誘電率が約2.6であった。
 (実施例2)
 樹脂材料として、環状オレフィン系のノルボルネン系開環重合体であるZEONOR(登録商標)(日本ゼオン製)を用い、金属アルコキシドとして、ジルコニウム(IV)ブトキシド(Zr-n-but)およびチタニウム(IV)ブトキシド(Ti-n-but)を用いた。ZEONOR(登録商標)をシクロヘキサンに溶解させ、樹脂濃度25質量%の樹脂溶液を得た。金属アルコキシドをそれぞれシクロヘキサンに溶解させ、金属アルコキシド濃度5質量%の各金属アルコキシド溶液を得た。作製した樹脂溶液に、金属アルコキシド溶液を添加し、混合溶液とした。このとき、100質量部のZEONOR(登録商標)に対して、金属アルコキシドが1質量部になるように調整した。混合溶液を、スターラーを用いて300rpmで24時間撹拌し、誘電体フィルム用溶液を得た。なお、溶液作製工程はすべて室温の乾燥窒素の雰囲気中で行った。
 この誘電体フィルム用溶液を、コータを用いてポリエチレンテレフタレート(PET)基材上に塗布し、180℃で1時間乾燥して溶剤を除去し、誘電体フィルム(試料No.5~7)を作製した。なお、試料No.5の誘電体フィルムは金属アルコキシドを含まない樹脂溶液を用いて作製した。誘電体フィルムはいずれも、厚さが3.5μm、比誘電率が約2.3であった。
 (実施例3)
 樹脂材料として、シロキサン変性ポリエーテルイミド(STM1700、SABIC製)を用い、金属アルコキシドとして、ジルコニウム(IV)ブトキシド(Zr-n-but)およびチタニウム(IV)ブトキシド(Ti-n-but)を用いた。STM1700をクロロホルムに溶解させ、樹脂濃度25質量%の樹脂溶液を得た。金属アルコキシドをそれぞれクロロホルムに溶解させ、金属アルコキシド濃度5質量%の各金属アルコキシド溶液を得た。作製した樹脂溶液に、金属アルコキシド溶液を添加し、混合溶液とした。このとき、100質量部のSTM1700に対して、金属アルコキシドが1質量部になるように調整した。混合溶液を、スターラーを用いて300rpmで24時間撹拌し、誘電体フィルム用溶液を得た。なお、溶液作製工程はすべて室温の乾燥窒素の雰囲気中で行った。
 この誘電体フィルム用溶液を、コータを用いてポリエチレンテレフタレート(PET)基材上に塗布し、180℃で1時間乾燥して溶剤を除去し、誘電体フィルム(試料No.8~10)を作製した。なお、試料No.8の誘電体フィルムは金属アルコキシドを含まない樹脂溶液を用いて作製した。誘電体フィルムはいずれも、厚さが3.5μm、比誘電率が約3.0であった。
 (実施例4)
 樹脂材料として、特開2013-76042号公報の製造例1に記載された、ポリエステルを主骨格とするポリアリレート樹脂を用いた。金属アルコキシドとして、ジルコニウム(IV)ブトキシド(Zr-n-but)、アセトアルコキシアルミニウムジイソプロピレート(Al-M)、およびチタニウム(IV)ブトキシド(Ti-n-but)を用いた。
 作製したポリアリレート樹脂を、120℃で3時間真空加熱し、ポリアリレート樹脂に吸着した水分を除去した。得られたポリアリレート樹脂を、トルエンに溶解させ、樹脂濃度25質量%の樹脂溶液を得た。また、金属アルコキシドをそれぞれトルエンに溶解させ、金属アルコキシド濃度5質量%の各金属アルコキシド溶液および50質量%のZr-n-but溶液を得た。作製した樹脂溶液に、各金属アルコキシド溶液を添加し、混合溶液とした。金属アルコキシド溶液の添加量は、100質量部のポリアリレートに対する金属アルコキシドの比率(質量部)が表2に示す比率となるように調整した。得られた混合溶液を、スターラーを用いて300rpmで24時間撹拌し、誘電体フィルム用溶液を得た。なお、溶液作製工程はすべて室温の乾燥窒素の雰囲気中で行った。
 この誘電体フィルム用溶液を、コータを用いてポリエチレンテレフタレート(PET)製の基材上に塗布し、180℃で1時間乾燥して溶剤を除去し、誘電体フィルム(試料No.11~24)を作製した。なお、試料No.11の誘電体フィルムは金属アルコキシドを含まない樹脂溶液を用いて作製し、試料No.18は50質量%のZr-n-but溶液を用いて作製した。誘電体フィルムの厚さはいずれも3.5μmであった。得られた誘電体フィルムの比誘電率は、いずれも約3.2であった。
 作製した誘電体フィルムについて、H-NMR(プロトンNMR)測定を行った。得られたH-NMRスペクトルには、ポリアリレートに基くピーク以外にピークが観測され、このピークは二次元相関NMR法のHMQC測定及びHMBC測定により、各アルコキシ基の酸素原子に隣接する炭素原子に結合した水素によるものであること、すなわちアルコキシ基が金属元素を介さずに直接有機樹脂の主骨格にエステル結合していることがわかった。未反応の金属アルコキシドによるピークは確認できなかった。また、得られたH-NMRスペクトルから、誘電体フィルムに含まれる全エステル結合に対するアルコキシ基の比率を算出し、表2に記載した。
 (特性評価)
 誘電体フィルムに含まれる金属元素の種類および含有量は、ICP発光分光分析により確認した。誘電体フィルムに含まれる金属元素は、有機樹脂に添加した金属アルコキシドを構成する金属元素と同じであった。誘電体フィルムの断面を透過型電子顕微鏡(TEM)(JEM―ARM200F、HAADF像、加速電圧:200kV)で倍率300万倍にて観察することにより、試料No.2~4、6、7、9、10、12~24において誘電体フィルム中に金属元素を含む微小粒子(金属元素含有微小粒子)が存在することを確認した。金属元素含有微小粒子の直径の平均値、および体積分率は、小角X線散乱測定により得られたプロファイルを解析することにより確認した。金属元素の含有量、金属元素含有粒子の直径の平均値、および体積分率を表1、表2に示す。
 誘電体フィルムの絶縁破壊電界は、以下のように測定した。誘電体フィルムからPETフィルムを剥がし、誘電体フィルムの両面に真空蒸着法により平均厚みが75nmのAlの電極層を形成して金属化フィルムを作製した。
 得られた金属化フィルムについて絶縁破壊電界を測定した。絶縁破壊電界は、金属化フィルムの金属膜間に、毎秒10Vの昇圧速度で直流電圧を印加し、漏れ電流値が1.0mAを越えた瞬間の電圧値から求めた。金属化フィルムの絶縁破壊電界を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 試料No.2~4、6、7、9、10、12~24は、有機樹脂中に金属元素含有微小粒子を含み、金属含有微小粒子の直径の平均が0.5~50nmの範囲内であることから、絶縁破壊電界が高く、優れた絶縁性を示すものであった。また、試料No.12~24は、アルコキシ基が金属元素を介さずに直接有機樹脂の主骨格にエステル結合しており、主骨格がアルコキシ基と直接結合していないものと比べて、絶縁破壊電界の向上率が高かった。
 さらに、試料No.3、6、9、14の誘電体フィルム用溶液を用い、厚さ1.5μmの誘電体フィルムを作製し、絶縁破壊電界を測定した。それぞれ、480V/μm(試料No.3)、620V/μm(試料No.6)、470V/μm(試料No.9)、430V/μm(試料No.14)と、厚さ1.5μmの薄層フィルムとしても、厚さ3.5μmの場合の90%程度の高い絶縁破壊電界を維持していた。
A、B・・・・・・・フィルムコンデンサ
C・・・・・・・・・連結型コンデンサ
D、47・・・・・・インバータ
E・・・・・・・・・電動車輌
1、1a、1b・・・誘電体フィルム
2、2a、2b・・・金属膜
3、3a、3b・・・金属化フィルム
4・・・・・・・・・本体部
5、5a、5b・・・外部電極
6・・・・・・・・・リード線
7・・・・・・・・・外装部材
8a、8b・・・・・金属膜非形成部
21、23・・・・・バスバー
31・・・・・・・・ブリッジ回路
33・・・・・・・・容量部
35・・・・・・・・昇圧回路
41・・・・・・・・モータ
43・・・・・・・・エンジン
45・・・・・・・・トランスミッション
47・・・・・・・・インバータ
49・・・・・・・・電源
51a・・・・・・・前輪
51b・・・・・・・後輪
53・・・・・・・・車輌ECU
55・・・・・・・・イグニッションキー
57・・・・・・・・エンジンECU

Claims (14)

  1.  有機樹脂と、金属元素を含有する複数の微小粒子とを含み、該微小粒子の直径の平均値が0.5~50nmであることを特徴とする誘電体フィルム。
  2.  前記金属元素の含有量が、0.05~5質量%であることを特徴とする請求項1に記載の誘電体フィルム。
  3.  前記微小粒子の体積分率が、0.4~40体積%であることを特徴とする請求項1または2に記載の誘電体フィルム。
  4.  前記金属元素が、Si、Ti、ZrおよびAlからなる金属元素群から選択される少なくとも1種であることを特徴とする請求項1乃至3のいずれかに記載の誘電体フィルム。
  5.  前記有機樹脂が、ポリフェニレンエーテル、環状オレフィン系およびポリエーテルイミド系の樹脂材料群から選択される少なくとも1種を含むことを特徴とする請求項1乃至4のいずれかに記載の誘電体フィルム。
  6.  前記有機樹脂が、ポリエステルを主骨格とする樹脂材料を含むとともに、該樹脂材料が、アルコキシ基を有することを特徴とする請求項1乃至5のいずれかに記載の誘電体フィルム。
  7.  前記アルコキシ基と、前記ポリエステルを主骨格とする樹脂材料の前記主骨格とが、エステル結合により結合していることを特徴とする請求項6に記載の誘電体フィルム。
  8.  前記有機樹脂が有する全エステル結合に対する、前記アルコキシ基のモル比率が、0.05~11%であることを特徴とする請求項6または7に記載の誘電体フィルム。
  9.  前記ポリエステルを主骨格とする樹脂材料が、ポリアリレートであることを特徴とする請求項6乃至8のいずれかに記載の誘電体フィルム。
  10.  請求項1乃至9のいずれかに記載の誘電体フィルム上に金属膜を備えた金属化フィルムが巻回または積層されてなる本体部と、該本体部に設けられた外部電極とを有することを特徴とするフィルムコンデンサ。
  11.  請求項10記載のフィルムコンデンサが、バスバーにより複数個接続されていることを特徴とする連結型コンデンサ。
  12.  スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備えているインバータであって、前記容量部が請求項10に記載のフィルムコンデンサであることを特徴とするインバータ。
  13.  スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備えているインバータであって、前記容量部が請求項11に記載の連結型コンデンサであることを特徴とするインバータ。
  14.  電源と、該電源に接続されたインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備えている電動車両であって、前記インバータが請求項12または請求項13に記載のインバータであることを特徴とする電動車輌。
     
PCT/JP2015/085626 2014-12-24 2015-12-21 誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌 WO2016104398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016546550A JP6085069B2 (ja) 2014-12-24 2015-12-21 誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
CN201580069275.3A CN107108923B (zh) 2014-12-24 2015-12-21 介电膜、以及使用了其的薄膜电容器和连结型电容器、以及逆变器、电动车辆
US15/535,636 US10867750B2 (en) 2014-12-24 2015-12-21 Dielectric film, film capacitor and combination type capacitor using same, inverter, and electric vehicle
EP15872966.5A EP3239218B1 (en) 2014-12-24 2015-12-21 Dielectric film, film capacitor and combination type capacitor using same, inverter and electric vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-260672 2014-12-24
JP2014260672 2014-12-24
JP2015-013414 2015-01-27
JP2015013414 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016104398A1 true WO2016104398A1 (ja) 2016-06-30

Family

ID=56150417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085626 WO2016104398A1 (ja) 2014-12-24 2015-12-21 誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌

Country Status (5)

Country Link
US (1) US10867750B2 (ja)
EP (1) EP3239218B1 (ja)
JP (1) JP6085069B2 (ja)
CN (1) CN107108923B (ja)
WO (1) WO2016104398A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199886A1 (ja) * 2015-06-11 2016-12-15 京セラ株式会社 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
JP2018003017A (ja) * 2016-06-27 2018-01-11 京セラ株式会社 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
US10796815B2 (en) 2016-06-29 2020-10-06 Kyocera Corporation Insulating material and wiring member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846570B (zh) * 2019-12-25 2024-08-23 京瓷株式会社 薄膜电容器用电介质薄膜、使用该电介质薄膜的薄膜电容器、连结型电容器、逆变器及电动车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641217A (en) * 1987-06-23 1989-01-05 Diafoil Co Ltd Capacitor
JPH11255883A (ja) * 1998-03-09 1999-09-21 Orient Chem Ind Ltd 有機−無機ハイブリッド高分子材料およびその製造方法
JP2000500161A (ja) * 1995-06-28 2000-01-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ素重合体のナノ複合体
JP2004111400A (ja) * 2003-10-07 2004-04-08 Hitachi Ltd 薄膜誘電体とそれを用いた多層配線板とその製造方法
JP2005056935A (ja) * 2003-08-07 2005-03-03 Hitachi Ltd 有機・無機酸化物混合体薄膜、それを用いた受動素子内蔵電子基板及び有機・無機酸化物混合体薄膜の製造方法
WO2013058237A1 (ja) * 2011-10-17 2013-04-25 東海ゴム工業株式会社 誘電膜およびそれを用いたトランスデューサ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626827C2 (de) * 1976-06-15 1986-07-31 Bayer Ag, 5090 Leverkusen Stabilisierung von Polyethylenterephthalaten
JPS60104155A (ja) * 1983-11-12 1985-06-08 Toyobo Co Ltd 樹脂組成物
US5264247A (en) 1990-09-14 1993-11-23 Valmet Paper Machinery Inc. Process for the manufacture of a coating bar for a bar coater
US5595601A (en) 1990-09-14 1997-01-21 Valmet Corporation Coating bar for a bar coater
EP0671990A1 (en) * 1992-12-09 1995-09-20 Hoechst Aktiengesellschaft Biaxially oriented copolyester film for capacitor dielectric use or thermal transfer ribbon use
US5726247A (en) 1996-06-14 1998-03-10 E. I. Du Pont De Nemours And Company Fluoropolymer nanocomposites
JP2847355B2 (ja) 1995-10-30 1999-01-20 岡谷電機産業株式会社 金属化フィルムコンデンサ及びその製造方法
US6103854A (en) 1997-11-21 2000-08-15 Orient Chemical Industries, Ltd. Organic-inorganic hybrid polymer material and process for preparing the same
JP4338244B2 (ja) * 1998-11-05 2009-10-07 ユニチカ株式会社 被膜形成用樹脂の製造方法
JP2001172482A (ja) * 1999-10-08 2001-06-26 Toray Ind Inc コンデンサー用ポリエステルフィルム、コンデンサー用金属化フィルムおよびフィルムコンデンサー
US7046439B2 (en) * 2003-05-22 2006-05-16 Eastman Kodak Company Optical element with nanoparticles
US7109274B2 (en) * 2004-06-28 2006-09-19 General Electric Company Polyarylate compositions
JP2006225484A (ja) 2005-02-16 2006-08-31 Murata Mfg Co Ltd 複合誘電体材料及び電子部品
US20070116976A1 (en) * 2005-11-23 2007-05-24 Qi Tan Nanoparticle enhanced thermoplastic dielectrics, methods of manufacture thereof, and articles comprising the same
JP2007254620A (ja) * 2006-03-24 2007-10-04 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
KR100955571B1 (ko) * 2007-01-05 2010-04-30 주식회사 엘지화학 트리아진 구조의 아미노 수지가 혼합된 폴리아릴레이트수지를 포함하는 광학필름용 수지 조성물 및 이를 이용하여제조된 광학필름
JP2008201926A (ja) * 2007-02-21 2008-09-04 Toray Ind Inc 二軸配向ポリアリーレンスルフィドフィルムおよびその製造方法
JP5590481B2 (ja) * 2008-01-17 2014-09-17 独立行政法人産業技術総合研究所 複合化高分子材料、およびこれを含む光学材料
JP5716033B2 (ja) 2009-11-06 2015-05-13 スリーエム イノベイティブ プロパティズ カンパニー 非ハロゲン化硬化剤を有する誘電体材料
JP5695389B2 (ja) * 2010-10-15 2015-04-01 Jx日鉱日石エネルギー株式会社 液晶ポリエステル樹脂組成物及びカメラモジュール部品
WO2015016268A1 (ja) * 2013-07-30 2015-02-05 京セラ株式会社 誘電体フィルム、フィルムコンデンサ、および電気装置
US10147542B2 (en) * 2014-03-03 2018-12-04 Kyocera Corporation Film capacitor and connection type capacitor, inverter, and electric-powered vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641217A (en) * 1987-06-23 1989-01-05 Diafoil Co Ltd Capacitor
JP2000500161A (ja) * 1995-06-28 2000-01-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ素重合体のナノ複合体
JPH11255883A (ja) * 1998-03-09 1999-09-21 Orient Chem Ind Ltd 有機−無機ハイブリッド高分子材料およびその製造方法
JP2005056935A (ja) * 2003-08-07 2005-03-03 Hitachi Ltd 有機・無機酸化物混合体薄膜、それを用いた受動素子内蔵電子基板及び有機・無機酸化物混合体薄膜の製造方法
JP2004111400A (ja) * 2003-10-07 2004-04-08 Hitachi Ltd 薄膜誘電体とそれを用いた多層配線板とその製造方法
WO2013058237A1 (ja) * 2011-10-17 2013-04-25 東海ゴム工業株式会社 誘電膜およびそれを用いたトランスデューサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239218A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199886A1 (ja) * 2015-06-11 2016-12-15 京セラ株式会社 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
JPWO2016199886A1 (ja) * 2015-06-11 2018-02-08 京セラ株式会社 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
US10457807B2 (en) 2015-06-11 2019-10-29 Kyocera Corporation Composite resin material, dielectric film, and film capacitor and combination type capacitor employing same, inverter, and electric vehicle
JP2018003017A (ja) * 2016-06-27 2018-01-11 京セラ株式会社 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
US10796815B2 (en) 2016-06-29 2020-10-06 Kyocera Corporation Insulating material and wiring member

Also Published As

Publication number Publication date
JPWO2016104398A1 (ja) 2017-04-27
US20170352480A1 (en) 2017-12-07
CN107108923B (zh) 2020-11-20
EP3239218B1 (en) 2021-11-24
US10867750B2 (en) 2020-12-15
CN107108923A (zh) 2017-08-29
JP6085069B2 (ja) 2017-02-22
EP3239218A4 (en) 2018-09-05
EP3239218A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6085069B2 (ja) 誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
CN107849266B (zh) 复合树脂材料、介电膜、使用其的膜电容器和连结型电容器、以及逆变器、电动车辆
CN106030737B (zh) 薄膜电容器和连结型电容器、以及逆变器、电动车辆
JP2016115431A (ja) 誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
JP2020113777A (ja) 誘電体フィルム、およびこれを用いたフィルムコンデンサ、連結型コンデンサ、ならびにインバータ、電動車輌
JP6904809B2 (ja) 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
CN109313959B (zh) 绝缘材料和布线部件
JP7344316B2 (ja) フィルムコンデンサ用誘電体フィルム、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
WO2021131654A1 (ja) 絶縁性樹脂
JP6514054B2 (ja) 金属化フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
JP2015229772A (ja) 熱伝導性ペーストの製造と製造方法
CN114058046B (zh) P(VDF-CTFE)/PAMAM(Gx)@BaTiO3的制备方法
US20230015795A1 (en) High Capacity, Long Cycle Life Battery Anode Materials, Compositions and Methods
CN118772638A (zh) 一种TIFSIX-2-Cu-i/PDMS复合膜及其制备方法和应用
JP2012214527A (ja) 電気絶縁用二軸配向ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016546550

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15535636

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015872966

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE