WO2016104078A1 - 構造部材 - Google Patents

構造部材 Download PDF

Info

Publication number
WO2016104078A1
WO2016104078A1 PCT/JP2015/083816 JP2015083816W WO2016104078A1 WO 2016104078 A1 WO2016104078 A1 WO 2016104078A1 JP 2015083816 W JP2015083816 W JP 2015083816W WO 2016104078 A1 WO2016104078 A1 WO 2016104078A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove bottom
structural member
flange
pad
width
Prior art date
Application number
PCT/JP2015/083816
Other languages
English (en)
French (fr)
Inventor
研一郎 大塚
嘉明 中澤
隆一 西村
伊藤 泰弘
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to ES15872647T priority Critical patent/ES2824509T3/es
Priority to JP2016566071A priority patent/JP6488487B2/ja
Priority to US15/535,755 priority patent/US10407101B2/en
Priority to CA2969555A priority patent/CA2969555C/en
Priority to BR112017012652A priority patent/BR112017012652A2/pt
Priority to KR1020177020210A priority patent/KR101947938B1/ko
Priority to EP15872647.1A priority patent/EP3219589B1/en
Priority to MX2017007719A priority patent/MX2017007719A/es
Priority to CN201580070474.6A priority patent/CN107107968B/zh
Priority to RU2017121804A priority patent/RU2672005C1/ru
Publication of WO2016104078A1 publication Critical patent/WO2016104078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/157Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body for side impacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/007Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of special steel or specially treated steel, e.g. stainless steel or locally surface hardened steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/02Side panels
    • B62D25/025Side sills thereof

Definitions

  • the present invention relates to a structural member.
  • the body portion of a structure such as a train, an automobile, and a ship is reinforced by combining a plurality of structural members.
  • the floor of an automobile body (hereinafter simply referred to as “floor”) not only primarily bears the torsional rigidity and bending rigidity of the vehicle body when the vehicle is running, but also transmits an impact load in the event of a vehicle collision. Bear.
  • the floor also greatly affects the weight of the car body.
  • the floor is required to have a tradeoff between high rigidity and light weight.
  • the floor is a flat panel that is welded and joined to each other, a vehicle width member that has a substantially groove-shaped cross section that is fixedly disposed on the flat panel toward the vehicle width direction, and a flat plate shape that extends in the vehicle longitudinal direction.
  • a vehicle length member having a substantially groove-shaped cross section fixedly disposed on the panel.
  • the flat panel examples include a dash panel, a front floor panel, a rear floor panel, and the like.
  • the vehicle width member is a structural member that is fixedly arranged in the vehicle width direction of these flat panels by welding or the like to increase the rigidity and strength of the floor.
  • Examples of the vehicle width member include a floor cross member and a seat cross member.
  • the vehicle length member is a structural member that is fixedly arranged in the longitudinal direction of the vehicle body by welding or the like to increase the rigidity and strength of the floor. Examples of the vehicle length member include a side sill and a side member.
  • structural members such as a vehicle width member and a vehicle length member are usually joined to other members via outward flanges formed at the ends thereof.
  • a floor cross member which is an example of a vehicle width member, is joined to other members such as a tunnel portion and a side sill of a front floor panel via outward flanges formed at both ends thereof.
  • FIG. 27 and 28 show a floor cross member 1 which is a representative example of a member joined to another member via outward flanges 4 formed at both ends in the longitudinal direction.
  • 27 is a perspective view of the floor cross member 1
  • FIG. 28 is a view taken in the direction of arrow A in FIG.
  • the front floor panel 2 is reinforced by, for example, a tunnel portion (not shown), a side sill 3 and a floor cross member 1 which are joined to the upper surface (inner side surface) of the front floor panel 2.
  • the tunnel portion is a structural member that bulges indoors along the approximate center of the front floor panel 2 in the width direction.
  • the side sill 3 is spot welded to the upper surface of the front floor panel 2 at both sides of the front floor panel 2 in the vehicle width direction. Both ends of the floor cross member 1 are spot-welded to the tunnel portion and the side sill 3 via outward flanges 4 formed at both ends in the longitudinal direction.
  • Patent Documents 1 and 2 describe a vehicle body having a substantially groove-shaped cross-sectional shape that is a structural member disposed along the vehicle width direction of an automobile and includes a groove bottom portion, a ridge line portion, and a vertical wall portion.
  • a structural member is disclosed.
  • the structural member described in Patent Document 1 has a shape in which the height of the vertical wall portion becomes higher toward the end portion in correspondence with the shape of the member joined to the opening side of the cross section of the groove type.
  • the structural member described in Patent Document 2 has a shape in which the width of the groove bottom portion becomes larger toward the end portion.
  • a floor cross member as a structural member is an important structural member that plays a role of improving the rigidity of an automobile body and absorbing an impact load at the time of a side collision. Therefore, in recent years, from the viewpoint of weight reduction and improvement in collision safety, a thinner and stronger high-tensile steel plate, for example, a high-tensile steel plate (high-strength steel plate or high tension) having a tensile strength of 390 MPa or more is a floor cross member. It is used as a material.
  • the floor cross member is also strongly required to further improve the load transmission characteristics when an impact load is applied. For this reason, it is necessary not only to simply increase the material strength, but also to improve the load transmission characteristics when an impact load is applied by devising the shape of the floor cross member.
  • Patent Documents 1 and 2 have shapes in which the vertical wall portion or the groove bottom portion becomes larger toward the end portion, but these shapes are aspects that improve load transmission characteristics. It is not adopted from. In addition to structural members for automobile bodies, it is also desired to improve the load transmission characteristics when an impact load is applied by devising the shape of structural members provided in other structural bodies.
  • the present invention has been made in view of the above problems, and the object of the present invention is to reduce the weight of a long structural member having a substantially groove-shaped cross-sectional shape, It is an object of the present invention to provide a structural member having excellent load transmission characteristics when an impact load is applied.
  • a groove bottom, two ridge lines that are continuous at both ends in the width direction of the groove bottom, and a ridge line are formed in a long direction extending in a predetermined direction. Furthermore, in a metal structural member having two continuous vertical wall portions, at an end portion in a predetermined direction, there is an outward flange formed continuously over at least the groove bottom portion, the ridge line portion, and the vertical wall portion, A structural member is provided wherein the width of the groove bottom decreases with distance from the end having the outward flange.
  • the value S (mm ⁇ 1 ) indicating the degree of reduction in the width of the groove bottom defined by the following formula (1) may be a value within the range of 0.0002 to 0.0018.
  • S (mm ⁇ 1 ) ⁇ (Wa ⁇ Wb) / Wa ⁇ / L (1)
  • Wa width of the groove bottom portion at the root portion of the end portion having the outward continuous flange
  • Wb width of the groove bottom portion at an arbitrary distance L from the root portion in a range in which the width of the groove bottom portion is reduced
  • the width of the groove bottom may be reduced in the range of 100 mm or more from the end having the outward continuous flange.
  • the structural member for an automobile body may be joined to another member by resistance spot welding, laser penetration welding, fillet arc welding, adhesion using an adhesive, or joint using a combination of these via an outward continuous flange. .
  • the structural member may be made of a high-tensile steel plate having a tensile strength of 390 MPa or more.
  • the structural member may be a structural member for a vehicle.
  • the structural member may be a floor cross member, a side sill, a front side member, or a floor tunnel brace.
  • the structural member since the structural member has the outward continuous flange at the end portion in the predetermined direction, the stress concentration at the end portion of the ridge line portion is suppressed at the initial stage of the axial collapse, and the stress is transferred to other portions. Can be dispersed into parts. Therefore, the distortion of the edge part of a ridgeline part becomes small, and a load transmission characteristic is improved. Further, in the structural member, the width of the groove bottom portion decreases as the distance from the end portion having the outward continuous flange decreases, so that the buckling pitch after the middle stage of the axial crushing is reduced. Therefore, good load transmission characteristics are maintained even after the middle stage of crushing, and the amount of impact energy absorbed can be increased.
  • the width of the groove bottom portion decreases as the distance from the end portion having the outward continuous flange decreases, thereby reducing the weight of the structural member.
  • FIG. 1 It is sectional drawing which shows a mode that a shaping
  • FIG. 1 is an explanatory view showing an example of a structural member (hereinafter, also referred to as “first member”) 10 according to the present embodiment.
  • FIG. 1 is a perspective view of a joint structure 100 configured by joining a first member 10 and a second member 18.
  • a structural member to which the present invention can be applied for example, a vehicle chassis represented by an automobile, a train, a motorcycle, or the like, or a reinforcing member of a ship hull or other structure is exemplified. These reinforcing members may absorb impact energy by being crushed when an impact load is applied, and may relieve an impact on an occupant or the like.
  • the structural member (1st member) 10 is demonstrated taking the structural member for motor vehicle bodies as an example.
  • the first member 10 can be used for, for example, a floor cross member, a side sill, a front side member, or a floor tunnel brace.
  • the tensile strength measured by a tensile test based on JIS Z 2241 is 390 MPa or more.
  • the high-tensile steel plate may be used as a forming material. The tensile strength of the high-tensile steel plate may be 590 MPa or more, and may be 780 MPa or more.
  • the structural member refers to the first member 10 itself, and the composite structure in which the second member 18 is joined to the first member 10 is referred to as a joined structure 100.
  • the first member 10 is a floor cross member
  • the floor panel corresponds to the second member 18.
  • the joined structure 100 which joined the 1st member 10 to the closing member and the 2nd member 18 which has a substantially groove type cross section similar to the 1st member. is configured as a side sill.
  • first member 10 when used as a front side member, generally, a cylindrical joint structure including the first member 10 and the second member 18 is used as the front side member, similarly to the side sill. Composed.
  • the hood ridge panel corresponds to the second member 18, and the first member 10 itself joined to the hood ridge panel may be called a floor side member.
  • the first member 10 is a long member formed so as to extend in a predetermined direction indicated by an arrow X in FIG. 1 (hereinafter, also referred to as “axial direction”).
  • the first member 10 includes a groove bottom part 11, ridge line parts 12a and 12b, vertical wall parts 13a and 13b, curved surface parts 14a and 14b, and flange parts 15a and 15b.
  • the two ridge line portions 12 a and 12 b are continuously formed at both ends in the width direction of the groove bottom portion 11.
  • the two vertical wall portions 13a and 13b are respectively formed continuously with the two ridge line portions 12a and 12b.
  • the two curved surface portions 14a and 14b are continuously formed on the two vertical wall portions 13a and 13b, respectively.
  • the two flange portions 15a and 15b are respectively formed continuously with the two curved surface portions 14a and 14b.
  • the two flange portions 15a and 15b are joined to a second member 18 such as a closing plate or a molded panel (for example, a floor panel) constituting an automobile body.
  • a closed cross-sectional shape is formed by the first member 10 and the second member 18.
  • the curved surface portions 14a and 14b continuing to the vertical wall portions 13a and 13b and the flange portions 15a and 15b continuing to the curved surface portions 14a and 14b may be omitted.
  • the ridge portions 12 a and 12 b are portions that bear a load when an impact load is applied to the first member 10 in the axial direction. Therefore, it is necessary to efficiently transmit the load applied to the end portion of the first member 10 to the ridge line portions 12a and 12b. Further, in order to efficiently absorb the impact energy by the first member 10, it is necessary to stabilize the impact energy absorption amount. For this purpose, it is desirable that the buckling pitch of the first member 10 due to the axial collapse is small.
  • the joining method of the first member 10 and the second member 18 via the flange portions 15a and 15b is not particularly limited as long as the strength can be ensured. Practically, a method of joining a plurality of locations by spot welding along the longitudinal direction of the joined structure 100 is common. However, for example, depending on the flange width or the like, a joining method by laser welding may be used, or another joining method may be used.
  • the 1st member 10 concerning this embodiment has the outward continuous flange 16 in the edge part of a longitudinal direction.
  • the outward continuous flange 16 is formed at a longitudinal end portion of the first member 10 via a rising curved surface portion 17 having a curvature radius r (mm).
  • r curvature radius
  • the first member 10 shown in FIG. 1 at the end portion in the longitudinal direction, it extends continuously outward in the circumferential direction from the groove bottom portion 11 to the ridge line portions 12a and 12b and further to the vertical wall portions 13a and 13b.
  • a continuous flange 16 is formed.
  • a flange obtained by bending the end portion of the first member 10 having a substantially groove-shaped cross section toward the outside of the groove is referred to as an “outward flange”, and at least the ridge line portion 12a, An outward flange that continues over 12b is referred to as an “outward continuous flange”.
  • the outward continuous flange 16 is used for joining the first member 10 to another member (not shown).
  • the first member 10 is joined to another member made of a press-formed body made of a steel plate by spot welding or the like via an outward continuous flange 16 at an end portion in the axial direction.
  • the first member 10 is joined to another member by resistance spot welding, laser penetration welding, arc fillet welding, or a combination thereof.
  • the bonding between the first member 10 and another member may be bonding with an adhesive, or the welding and bonding may be used in combination.
  • the first member 10 Since the first member 10 has the outward continuous flange 16 at the end of the first member 10 at the initial stage of axial crushing (for example, a crushing stroke of 5 mm or less) with respect to the first member 10. Stress concentration on the ridge lines 12a and 12b is suppressed. Therefore, the distortion generated at the ends of the ridge portions 12a and 12b is reduced, and the load transmission characteristic in the axial direction of the first member 10 when an impact load is applied is enhanced.
  • the outward continuous flange 16 may be formed at least from the groove bottom portion 11 to the ridge line portions 12a and 12b in the end portion of the first member 10 in the longitudinal direction. Alternatively, the outward continuous flange 16 may be formed from the groove bottom portion 11 to the vertical wall portions 13 a and 13 b at the longitudinal end portion of the first member 10. Further, the outward continuous flange 16 may be divided at a position corresponding to the groove bottom portion 11 at the longitudinal end portion of the first member 10.
  • the outward continuous flange 16 does not have to be formed over the entire position corresponding to the groove bottom part 11 and the vertical wall parts 13a and 13b, and at least the groove bottom part 11 and the vertical wall continuous from the ridge line parts 12a and 12b. What is necessary is just to be formed in the position corresponded to the parts 13a and 13b. With the outward continuous flange 16, the load applied to the ridge line portions 12a and 12b is easily dispersed, and the stress concentration on the ridge line portions 12a and 12b can be suppressed.
  • flange width of the outward continuous flange 16 according to the method for manufacturing a structural member described later, even if the flange width is 25 mm or more, a high-strength steel plate is used to reduce wrinkles and suppress cracks.
  • An orientation continuous flange 16 may be formed.
  • the flange width may be 13 mm or more.
  • the outward continuous flange 16 is a flange not having a notch at a position corresponding to the ridge line portions 12a and 12b. Therefore, even if the flange width of the outward continuous flange 16 is 13 mm or less, the rigidity and collision safety characteristics of the first member 10 can be maintained. Further, from the viewpoint of maintaining the collision safety characteristics, the rising angle of the flange, which is an angle formed by the outward continuous flange 16 and the groove bottom part 11 or the vertical wall parts 13a and 13b, may be 60 ° or more. Note that “providing a notch in the flange” means that the notch is provided over the entire width direction of the flange and the flange becomes discontinuous. The width of the flange is used in the same meaning as the height of the flange. Therefore, when the flange width is partially reduced and a part of the flange is left, it is understood that the flange is not provided with a notch.
  • the width of the outward continuous flange 16 may not be uniform over the entire circumference.
  • the flange width in the region corresponding to the ridge line portions 12a and 12b in the outward continuous flange 16 may be smaller than that in other regions.
  • the outward continuous flange 16 at the ends of the ridge portions 12a and 12b is liable to generate cracks at the flange ends and wrinkles at the flange bases during press molding. Therefore, in the region corresponding to the ridge line portions 12a and 12b, the molding becomes easier as the flange width is narrower.
  • the manufacturing method of the structural member described later can suppress the wrinkles and cracks even when the flange width in the region corresponding to the ridge line portions 12a and 12b is relatively large.
  • the first member 10 has a tip-expanded portion T having a shape that the width W of the groove bottom portion 11 is reduced along the axial direction with distance from the end portion having the outward continuous flange 16.
  • the first member 10 includes the widened portion T, the first member 10 is accompanied by the collapse of the first member 10 after the middle stage of the axial collapse with respect to the first member 10 (for example, more than 5 mm of the collapse stroke).
  • the buckling pitch is reduced, the number of buckling is increased, and the impact energy absorption amount can be stabilized.
  • the first member 10 when the first member 10 includes the flared portion T, the first section 10 having the outward continuous flange 16 has the same cross-sectional length (hereinafter also referred to as “cross-sectional circumferential length”).
  • the member 10 can be reduced in weight.
  • the first member 10 since the first member 10 includes the widened portion T, when the vehicle body is subjected to bending or twisting, the end portion having the outward continuous flange 16 that becomes a joint portion with other components. Stress concentration can be relaxed. Thereby, the bending and twisting rigidity of the vehicle body can be improved.
  • the value S (mm ⁇ 1 ) indicating the degree of reduction of the width W of the groove bottom portion 11 defined by the following formula (1) is within the range of 0.0002 to 0.0018. Further, it may be within the range of 0.0004 to 0.0015.
  • the value S indicating the degree of reduction is defined as an average value of the values S indicating the degree of reduction obtained by a plurality of distances L.
  • the average value of the values S indicating the degree of reduction is, for example, that the distance L is increased at intervals of 10 mm within the range in which the forward expansion portion T is provided, and the value S calculated by the above formula (1) at each distance L is It can be an average value.
  • the range in which the pre-expanded portion T is provided in the direction along the axial direction of the first member 10 can be set according to the amount of axial deformation of the first member 10 when an impact load is applied.
  • the range in which the pre-expanded portion T is provided includes the groove bottom portion 11 and the rising curved surface portion 17. It can be set as the range of 100 mm or more from the boundary part.
  • the range in which the flared portion T is provided is too long, the sectional circumferential length of the first member 10 at a position away from the end portion where the outward continuous flange 16 is provided becomes short, and can withstand an impact load. There is a risk of not. Therefore, for example, when the first member 10 is a floor cross member, the range in which the pre-expanded portion T is provided may be 300 mm or less.
  • Manufacturing method of structural member The configuration of the first member 10 as the automobile body structural member according to the present embodiment has been described above.
  • the manufacturing method and manufacturing apparatus of the first member 10 are not particularly limited. However, when manufacturing the 1st member 10 using a metal plate, especially a high-tensile steel plate, it forms continuously in the edge part of the ridgeline parts 12a and 12b in the outward continuous flange 16 from the restrictions on shaping
  • the defects in these moldings are that the higher the material strength of the molding material is, and the higher the stretch flange ratio at the time of molding of the flange at the position corresponding to the ridgeline part is (the bending angle of the ridgeline part 1a in FIG. 28). This is likely to occur as the ⁇ becomes steeper. Also. These molding problems are more likely to occur as the height of the first member 10 (height h in FIG. 28) is higher. In particular, in the case of the first member 10 having the flared portion T, the wrinkles described above are more likely to occur.
  • the first step is performed using a first press molding apparatus.
  • the first step at least a part of a portion of the molding material to be molded at the groove bottom portion is pressed by the first pad.
  • molded by a groove bottom part is stood up in the direction opposite to the press direction of a 1st pad.
  • the molding material is pressed against the first punch by the first pad, and at least a part of the portion to be molded at the groove bottom is restrained by the first pad and the first punch.
  • the end in the longitudinal direction of the portion formed in the ridge line portion of the molding material by the second pad different from the first pad At least a part of the part is pressed.
  • molded by a ridgeline part is started in the direction opposite to the press direction of a 2nd pad.
  • the second step is performed using a second press molding apparatus different from the first press molding apparatus.
  • the first pad that restrains the portion molded at the groove bottom portion and the second pad that restrains the portion molded at the ridge line portion are used, so the first die and the first punch are used.
  • the structural member is molded by press-molding the intermediate molded body with the second punch and the second die.
  • the second press molding device may be any device that can press-mold a portion that cannot be molded by the first press molding device.
  • the second press molding apparatus is capable of press molding a region that is not constrained by the first pad or the second pad among the portions molded in the groove bottom portion, the ridge line portion, and the vertical wall portion. That's fine.
  • the second press molding apparatus may press the part of the outward continuous flange that cannot be molded by the first press molding apparatus.
  • Such a second press molding apparatus can be constituted by a known press molding apparatus provided with a die and a punch.
  • FIG. 2 and 3 are schematic configuration diagrams illustrating an example of the first press molding apparatus 30.
  • FIG. 2 is a cross-sectional view schematically showing a portion of the first press molding apparatus 30 for molding the end region of the intermediate molded body
  • FIG. 3 schematically shows the first press molding apparatus 30. It is a perspective view shown.
  • FIG. 3 shows a half portion obtained by dividing the first punch 31 and the first pad 34-1 along the center line along the longitudinal direction of the intermediate molded body to be molded.
  • the first press molding apparatus 30 includes a first punch 31, a first die 32, and a first pad 34-1 and a second pad 34-2 facing the first punch 31. Yes.
  • the first press molding apparatus 30 basically includes the first die 32 in a state where the molding material is restrained by the first pad 34-1 and the second pad 34-2 and the first punch 31. By being brought close to the first punch 31, the apparatus is configured as a device for press-molding a molding material.
  • the first punch 31 has a punch surface on the side facing the first die 32, the first pad 34-1 and the second pad 34-2.
  • the first punch 31 includes an upper surface 31a, a shoulder portion 31b for forming a ridge line portion of the intermediate formed body, and a flange forming portion 31c.
  • the first pad 34-1 has a constraining surface 34-1a and a flange forming portion 34-1b.
  • the constraining surface 34-1a of the first pad 34-1 is disposed to face the upper surface 31a of the punch 31, and presses the molding material against the upper surface 31a of the punch 31 to constrain the molding material.
  • the portion of the molding material that is restrained by the restraining surface 34-1a and the upper surface 31a is the portion that is molded at the groove bottom.
  • the part of the molding material to be constrained may be all or part of the part molded at the groove bottom. However, at least the vicinity of the end on the side where the outward continuous flange is formed is constrained in the portion formed in the groove bottom.
  • the flange forming portion 34-1b of the first pad 34-1 presses the molding material against the flange forming portion 31c of the punch 31. Thereby, the flange part formed in the edge part of the groove bottom part in a shaping
  • the second pad 34-2 has a constraining surface 34-2a and a flange forming portion 34-2b.
  • the second pad 34-2 is disposed so as not to interfere with the first pad 34-1 during press molding.
  • the restraining surface 34-2a of the second pad 34-2 is disposed so as to face the shoulder 31b of the punch 31, and restrains the molding material by pressing the molding material against the shoulder 31b of the punch 31.
  • the portion of the molding material restrained by the restraining surface 34-2a and the shoulder portion 31b is at least a part of the end region of the portion to be molded into the ridge line portion.
  • the flange molding part 34-2b of the second pad 34-2 presses the molding material against the flange molding part 31c of the punch 31. Thereby, the flange part formed in the edge part of the ridgeline part in a shaping
  • the second pad 34-2 restrains the portion formed in the ridge line portion in the region near the outward continuous flange in a state where the portion formed in the groove bottom portion is restrained by the first pad 34-1. To do. Therefore, the shape of the ridge line portion in the region in the vicinity of the outward continuous flange is formed by projecting the material of the portion substantially pressed by the second pad 34-2. Accordingly, the movement of the material around the portion where the second pad 34-2 contacts is suppressed, and the expansion and shrinkage deformation of the surrounding material causing wrinkles and cracks are suppressed.
  • the second pad 34-2 is intended to suppress the movement of the peripheral material by forming the ridge line portion by projecting the material in the region in the vicinity of the outward continuous flange. Therefore, the second pad 34-2 is formed on the ridge line portion starting from the connection portion between the portion formed on the ridge line portion and the portion formed on the groove bottom portion in the vicinity of the portion formed on the outward continuous flange. The entire region of the part to be molded may be constrained.
  • the portion of the molding material constrained by the constraining surface 34-2a of the second pad 34-2 includes a connection portion between the portion molded at the groove bottom and the portion molded at the ridge line portion.
  • a portion having a length of at least 1/3 of the circumferential length of the cross section starting from the connection portion may be pressed by the second pad 34-2.
  • the second pad 34-2 presses the portion the steel plate material of the portion pressed by the restraining surface 34-2a of the second pad 34-2 is projected while suppressing the movement of the surrounding steel plate material.
  • a part of the ridge lines 12a and 12b can be formed.
  • the second pad 34-2 holds a part of the vertical wall portion, for example, a portion having a length of 20 mm or less of the vertical wall portion continuous to the ridge line portion. May be.
  • the first die 32 is brought close to the first punch 31 in a state where the molding material is restrained by the first pad 34-1 and the second pad 34-2, and press-molds the molding material.
  • the first die 32 is disposed so as not to interfere with the first pad 34-1 and the second pad 34-2 during press molding.
  • the first pad 34-1, the second pad 34-2 and the first die 32 may be arranged with a minimum gap in the pressing direction.
  • the first pad 34-1, the second pad 34-2, and the first die 32 are configured to press the molding material in this order. That is, the second pad 34-2 restricts the region of the end portion of the portion formed at the ridge line portion after at least a part of the portion formed at the groove bottom portion is constrained by the first pad 34-1. To do. Further, the first die 32 press-molds the molding material in a state where the molding material is restrained by the first pad 34-1 and the second pad 34-2.
  • such a configuration can be realized by suspending the first pad 34-1 and the second pad 34-2 on the die 32 via a coil spring.
  • the restraining surface 34-1a of the first pad 34-1, the restraining surface 34-2a of the second pad 34-2, and the pressing surface of the first die 32 are in the first state. It arrange
  • first pad 34-1, the second pad 34-2, and the first die 32 are configured to be individually movable toward the first punch 31. Also good. In this case, the order of contact with the molding material is controlled by controlling the movement of the first pad 34-1, the second pad 34-2, and the first die 32.
  • the molding material cannot be pressed against the first punch 31 even by the first die 32.
  • the vertical wall portion and the flange portion overlapping the second pad 34-2 cannot be press-molded by the first die 32.
  • Such a region is press-molded in a second process performed using the second press-molding apparatus. Since the second press molding apparatus can be constituted by a known press molding apparatus, description thereof is omitted here.
  • First step) 4 to 10 are explanatory views showing a first process performed using the first press molding apparatus 30 already described.
  • 4 and 5 are a cross-sectional view and a perspective view schematically showing how the molding material 33 is restrained by the first pad 34-1.
  • 6 and 7 are a sectional view and a perspective view schematically showing how the molding material 33 is restrained by the second pad 34-2.
  • FIG. 10 is a cross-sectional view schematically showing how the molding material 33 is press-molded by the first die 32.
  • FIGS. 4 to 10 show the state of the first step when manufacturing the first member 10 having the expanded shape.
  • 4, 6, and 10 show how the region of the end portion in the longitudinal direction in which the outward continuous flange 16 is formed is formed in the molding material 33 in the first step.
  • 5 and 7 show a half portion obtained by dividing the first punch 31, the first pad 34-1 and the molding material 33 by the center line along the longitudinal direction of the intermediate molded body to be molded. Yes.
  • the first press molding apparatus 30 in which the first pad 34-1 and the second pad 34-2 are suspended on the first die 32 is used.
  • the first pad 34-1 is formed into a molding material.
  • the part formed in the groove bottom part 11 in 33 is restrained.
  • at least a part of the portion of the molding material 33 to be molded in the groove bottom portion 11 is restrained by the restraining surface 34-1a of the first pad 34-1.
  • the end of the molding material 33 in the longitudinal direction is raised in the direction opposite to the pressing direction, and the flange molding part 34-1b of the first pad 34-1 and the flange molding part 31c of the first punch 31 are formed. It is restrained by.
  • the second pad 34-2 becomes the ridge line portion 12 a in the molding material 33.
  • 12b is constrained.
  • the part of the molding material 33 restrained at this time is a part in the vicinity of the end of the part to be molded into the ridge line parts 12a and 12b. That is, as shown in FIG. 7, the end of the portion of the molding material 33 that is molded into the ridge line portions 12a and 12b is restrained by the restraining surface 34-2a of the second pad 34-2.
  • the portion continuously formed from the portions formed on the ridge line portions 12a and 12b is further raised in the direction opposite to the pressing direction, and the flange forming portion 34- of the second pad 34-2 is raised. 2b and the flange forming portion 31c of the first punch 31 are restrained.
  • FIG. 8 shows the pressing range of the portion formed on the ridge line portion by the second pad 34-2 and the plate thickness reduction rate at the edge of the flange portion continuous with the ridge line portions 12a and 12b in the outward continuous flange 16 to be formed.
  • the pressing range is a pressing means that means the central angle of the portion restrained by the second pad 34-2 with the connection portion between the portion formed at the ridge line portion and the portion formed at the groove bottom portion being 0 °. It is indicated by the angle.
  • a pressing angle of 0 ° means a state in which a portion formed on the ridge line portion is not restrained.
  • the maximum value of the plate thickness reduction rate at the edge of the flange is about 36%, and there is a possibility that stretch flange cracking occurs. Is high.
  • the pressing angle is 23 ° or more, that is, if the ridge line portion at least 1/3 of the circumferential length of the cross section starting from the connection portion is constrained, the maximum value of the plate thickness reduction rate at the flange edge is less than 25%. Can be suppressed. Therefore, it turns out that the crack of the edge of a flange is suppressed.
  • FIG. 9 shows the pressing range of the portion formed on the ridge line portion by the second pad 34-2 and the minimum thickness reduction rate in the vicinity of the root of the flange near the ends of the formed ridge line portions 12a and 12b. It is a characteristic view which shows the relationship with a value. Also in FIG. 9, the pressing range is indicated by the pressing angle as in FIG. 8. As shown in FIG. 9, when the portion formed on the ridge line portion is not restrained, the minimum value of the plate thickness reduction rate near the base of the flange is about ⁇ 65%, and wrinkles are clearly generated. I understand.
  • the pressing angle is 23 ° or more, that is, if the ridge line portion of at least one third of the circumferential length of the cross section starting from the connection portion is constrained, the minimum value of the plate thickness reduction rate near the root of the flange is ⁇ 35. % Or more. Therefore, it can be seen that wrinkles near the base of the flange are suppressed.
  • the molding material 33 is formed by the first pad 34-1 and the second pad 34-2.
  • the first press forming is performed.
  • the molding material 33 is press-molded along the pressing direction except for a portion (33A in FIG. 10) located below the second pad 34-2, and an intermediate molded body is molded.
  • the first-stage press molding using the first punch 31 and the first die 32 is a bending molding in which the molding material 33 is pressed and bent by the first die 32 and pressed against the first punch 31. Good.
  • the first die 32 and the blank holder sandwich the portion formed on the vertical wall portion of the molding material 33 and the first die 32 and the blank holder are used as the first die. It may be deep-drawing that is moved toward the punch 31 for forming.
  • the second pad 34-2 restrains the vicinity of the end portion of the portion formed into the ridge line portions 12a and 12b (near the meeting portion between the ridge line portions 12a and 12b and the outward continuous flange 16). Therefore, the generation of wrinkles in the region is suppressed. Further, since the region is constrained by the second pad 34-2, the stretch flange rate of the flange formed continuously at the end portions of the ridge portions 12a and 12b is reduced, and the outward continuous flange 16 Cracking can be suppressed.
  • the curved surface portions 14a and 14b and part of the flange portions 15a and 15b in the first member 10 illustrated in FIG. The punch 31 and the first die 32 are press-molded.
  • FIG. 11 and FIG. 12 show the press molding using the pad 134 in which the first pad and the second pad are not divided and the portion formed at the groove bottom portion and the portion formed at the ridge line portion are constrained at the same time. It is explanatory drawing which shows a mode.
  • the structural member to be manufactured is a structural member having the pre-expanded portion T illustrated in FIG.
  • FIG. 11 is a view corresponding to FIG.
  • FIG. 7 is a perspective view showing a state in which the portion formed at the groove bottom portion and the portion formed at the ridge line portion of the forming material 133 are restrained by the punch 131 and the pad 134. is there.
  • FIG. 12 is the figure which looked at the shaping
  • the pad 134 is molded from the portion molded at the groove bottom portion to the ridge line portion until both the portion molded at the groove bottom portion and the portion molded at the ridge line portion are restrained.
  • the steel plate material of the part formed in the outward continuous flange moves over the part.
  • a portion formed by bending with a die and formed into a vertical wall portion is perpendicular to a portion 112 formed into a ridge line portion as shown in FIG. That is, it is bent toward the direction away from the portion 116 formed into the outward continuous flange. Therefore, the steel plate material of the part formed in the outward continuous flange becomes easier to move toward the part formed in the ridge line part. Therefore, excessive wrinkles and thickening are more likely to occur in the portion formed in the ridge line portion.
  • the pad 134 when using the pad 134 that simultaneously restrains the part formed at the groove bottom and the part formed at the ridge line, the pad 134 is formed at the end or ridge line of the part formed at the groove bottom. Wrinkles are likely to occur at the end of the part.
  • the ridge line is formed by the second pad 34-2.
  • the end of the part molded into the part is pressed and restrained. Therefore, the movement of the steel plate material to the portion formed at the groove bottom portion is suppressed while the end of the portion formed at the ridge line portion is pressed by the second pad 34-2.
  • the ridge line is pressed.
  • molded by a part is shape
  • the molding material 33 is restrained by the first pad 34-1 and the second pad 34-2, the molding material is formed by the first punch 31 and the first die 32 as shown in FIG. 33 is press-molded. Therefore, it is suppressed that a steel plate material moves excessively with respect to the part shape
  • the second stage press molding is performed in the second process.
  • the portions formed on the vertical wall portions 13a and 13b overlapping the second pad 34-2 are:
  • the final shape as the first member 10 cannot be formed.
  • all or part of the portions of the first member 10 formed on the curved surface portions 14a and 14b and the flange portions 15a and 15b may not be formed into a final shape in the first step.
  • the first part 34-1 and the part formed on the ridgeline parts 12a and 12b may be partially In the process, the final shape may not be formed.
  • the cross-sectional circumference starting from the connection part between the part formed on the ridge line parts 12a and 12b and the part formed on the groove bottom part 11 When 1/3 of the length is formed by the second pad 34-2, it is necessary to form the remaining 2/3 of the circumferential length of the cross section.
  • the second press molding apparatus is used to perform the second stage press molding on the intermediate molded body by the second punch and the second die, and the first shape as the final shape is obtained.
  • the member 10 is formed.
  • the second step can be performed by publicly known press molding using a second punch and a second die having a pressing surface corresponding to the shape of the portion to be molded into the final shape. Further, if the first member 10 as the final shape cannot be formed in the second step, another forming step may be added.
  • the second step may be a stamping press molding using only a die and a punch performed without using a pad, or a normal press molding performed using a pad.
  • the first member 10 has the forward expansion portion T and the outward continuous flange 16 at the end thereof, whereby the load transmission characteristic at the time of crushing in the axial direction.
  • the impact energy absorption amount can be improved.
  • the first member 10 since the first member 10 has the outward continuous flange 16 at the end portion, stress concentration at the end portions of the ridge portions 12a and 12b is suppressed at the initial stage of the axial collapse, and the stress is reduced. Can be distributed to other parts. Therefore, the distortion of the end portions of the ridge line portions 12a and 12b is reduced, and the load transmission characteristics are improved.
  • the first member 10 since the first member 10 has the widened portion T, the buckling pitch can be reduced after the middle stage of the axial collapse. Therefore, combined with the improved load transmission characteristics, the amount of shock energy absorption can be increased.
  • the width of the groove bottom portion 11 decreases as the distance from the end portion having the outward continuous flange 16 decreases, and the cross-sectional circumferential length of the first member 10 decreases. Become. Therefore, according to this embodiment, the first member 10 can be reduced in weight.
  • the first member 10 as the automobile body structural member according to the present embodiment will be described as a press-formed body 10.
  • FIG. 13 is an explanatory diagram showing an analysis model of the structural member used for the analysis.
  • FIG. 13 shows the analysis model 50 according to Comparative Example 1, the analysis model 60 according to Comparative Example 2, and the analysis model 70 according to Example 1 from above.
  • the flange portions 15a in which the press molded bodies 10, 51, 61 having a substantially groove-shaped cross section are continuous with the vertical wall portions 13a, 13b via the curved surface portions 14a, 14b. It is joined to the flat plate-like second member 18 via 15b.
  • the analysis model 50 according to the comparative example 1 has the outward continuous flange 23 without a notch at the end in the axial direction.
  • the analysis model 50 has a shape in which the width of the groove bottom is constant.
  • the widths Wa and Wb of the groove bottom are 100 mm.
  • the height of the press-formed body 51 is 100 mm.
  • the length Lx from the boundary portion between the rising curved surface portion 17 and the groove bottom portion to the end portion having no outward flange is 300 mm.
  • the value S indicating the degree of reduction in the width of the groove bottom defined by the above formula (1) is zero.
  • the press-molded body 51 of the analysis model 50 is formed by press molding using a pad (pad 134 in FIG. 11) that simultaneously restrains a portion molded at the groove bottom portion and a portion molded at the ridge line portion. .
  • the analysis model 60 according to the comparative example 2 has the discontinuous outward flange 24 having notches reaching the end portions of the ridge portions 12a and 12b at the end portions in the axial direction.
  • the analysis model 60 has a shape in which the width of the groove bottom portion decreases as the distance from the end portion having the outward flange 24 increases.
  • the minimum value (width Wb) of the width of the groove bottom is 100 mm, and the maximum value (width Wa) is 130 mm.
  • the height of the press-formed body 61 is 100 mm.
  • the length Lx from the boundary portion between the rising curved surface portion 17 and the groove bottom portion to the end portion having no outward flange 24 is 300 mm.
  • the value S indicating the degree of reduction in the width of the groove bottom defined by the above formula (1) is 0.00077.
  • the press-molded body 61 of the analysis model 60 is molded by press molding using a pad that constrains only the part molded at the groove bottom.
  • the analysis model 70 according to the first example has the outward continuous flange 16 without a notch at the end in the axial direction.
  • the analysis model 70 has a shape in which the width of the groove bottom portion increases toward the end portion having the outward flange 24.
  • the minimum value (width Wb) of the width of the groove bottom is 100 mm, and the maximum value (width Wa) is 130 mm.
  • the height of the press-molded body 10 is 100 mm.
  • the length Lx from the boundary portion between the rising curved surface portion 17 and the groove bottom portion to the end portion having no outward continuous flange 16 is 300 mm.
  • the value S indicating the degree of reduction in the width of the groove bottom defined by the above formula (1) is 0.00077.
  • the press-molded body 10 of the analysis model 70 is molded by press molding using the first pad 34-1 and the second pad 34-2 shown in FIGS.
  • the rigid wall 29 is moved in the axial direction from the end portion where the outward continuous flanges 16 and 23 or the outward flange 24 are formed at a collision speed of 20 km / h.
  • An axial displacement was given to the analysis models 50, 60, and 70 by colliding.
  • the axial load (kN) generated at the time of collision and the amount of shock energy absorbed (kJ) were calculated.
  • FIG. 14 is a graph showing an analysis result regarding the axial load of each of the analysis models 50, 60, and 70.
  • the vertical axis of the graph in FIG. 14 represents the axial load and the boundary portion between the rising curved surface portion 17 and the groove bottom portion.
  • the value was divided by the cross-sectional circumference (axial load / perimeter: kN / mm).
  • the circumferential length in this case means the length of the thickness center of the cross section of each of the press-formed bodies 10, 51, 61 not including the second member 18.
  • the analysis models 50 and 70 of Example 1 and Comparative Example 1 having the outward continuous flanges 16 and 23 having no notch in the initial region St1 of the axial crushing with the crushing stroke of 5 mm or less are notched.
  • the axial load (kN / mm) is increased as compared with the analysis model 60 of Comparative Example 2 having a certain outward flange 24.
  • the analysis models 60 and 70 of the first example and the comparative example 2 having the widened portion are compared with the analysis model 50 of the comparative example 1 where the width of the groove bottom is constant.
  • the axial load (kN / mm) is generally increased.
  • a high axial load is realized from the initial stage to the late stage of the axial crushing.
  • the analysis model 70 according to the example 1 maintains a high axial load even in the later stage of the axial crushing with the crushing stroke exceeding 15 mm.
  • FIG. 15 and 16 are graphs showing the analysis results regarding the absorption amount (EA) of the impact energy of each of the analysis models 50, 60, and 70.
  • FIG. FIG. 15 shows an analysis result when the crushing stroke St is 10 mm
  • FIG. 16 shows an analysis result when the crushing stroke St is 20 mm.
  • the analysis models 50 and 70 having the outward continuous flanges 16 and 23 without notches at the axial ends are compared with the analysis model 60 having the outward flange 24 with the notches. It can be seen that the impact energy absorption increases when the crushing stroke St is 10 mm. Further, as shown in FIG. 16, the analysis models 60 and 70 having the widened portion increase the amount of impact energy absorbed when the crushing stroke St is 20 mm, compared to the analysis model 50 in which the width of the groove bottom is constant. I understand that.
  • the load transfer characteristic of the analysis model 70 according to Example 1 is higher than that of the analysis model 50 according to Comparative Example 1 and the analysis model 60 according to Comparative Example 2 at both the initial and late stages of the collision. It can be seen that the shock energy absorption characteristics are excellent.
  • Example 2 and Comparative Example 4 the width Wb of the groove bottom is 55 mm, and the value S indicating the degree of reduction is 0.00192.
  • Example 3 and Comparative Example 5 the width Wb of the groove bottom is 60 mm, and the value S indicating the degree of reduction is 0.00179.
  • Example 4 and Comparative Example 6 the width Wb of the groove bottom is 65 mm, and the value S indicating the degree of reduction is 0.00166.
  • Example 5 and Comparative Example 7 the width Wb of the groove bottom is 70 mm, and the value S indicating the degree of reduction is 0.00154.
  • Example 6 and Comparative Example 8 the width Wb of the groove bottom is 85 mm, and the value S indicating the degree of reduction is 0.00115.
  • Example 7 and Comparative Example 9 the width Wb of the groove bottom is 100 mm, and the value S indicating the degree of reduction is 0.00077.
  • Example 8 and Comparative Example 10 the width Wb of the groove bottom is 115 mm, and the value S indicating the degree of reduction is 0.00038.
  • Example 9 and Comparative Example 11 the width Wb of the groove bottom is 120 mm, and the value S indicating the degree of reduction is 0.00025.
  • Example 10 and Comparative Example 12 the width Wb of the groove bottom is 125 mm, and the value S indicating the degree of reduction is 0.00013.
  • Comparative Example 3 and Comparative Example 13 the width Wb of the groove bottom is 130 mm, and the value S indicating the degree of reduction is 0.
  • the flange portion corresponding to the groove bottom portion has four locations
  • the flange portion corresponding to the vertical wall portion has two locations, and spots.
  • the impact energy absorption amount of the analysis model 70 including the outward continuous flange 16 is an analysis model including the outward flange 24 having a notch. It exceeds 60 impact energy absorption. This result is because, in the press-formed body 61 having the outward flange 24 having the notch, stress is concentrated on the end portion of the ridge line portion, and the distortion of the end portion of the press-formed body 61 is increased.
  • the impact energy absorption amount of the analysis model 70 including the outward continuous flange 16 is within the range of the value S indicating the degree of reduction from 0.0002 to 0.0018. However, it exceeds the impact energy absorption amount of the analysis model 60 including the outward flange 24 having the notch. This result is due to the fact that stress is properly dispersed by the outward continuous flange 16 in addition to the ridge line portion, and buckling occurs at a small buckling pitch in order from the end portion side by the forward expansion portion.
  • the value S indicating the degree of reduction is in the range of 0.00025 to 0.0015
  • the impact energy absorption amount of the analysis model 70 including the outward continuous flange 16 tends to increase stably.
  • FIG. 20 shows the state of buckling when the crushing stroke St is 20 mm for each of the analysis models 60 and 70 of Example 6 and Comparative Examples 3 and 8.
  • the analysis model 70 of Example 6 having the press-molded body 10 having the outward continuous flange 16 at the end portion and the forward expansion portion T has a buckling occurrence position at the end portion. Close to the side and the buckling pitch is small.
  • the press-formed body 10 has the outward continuous flange 16 at the end and the value S indicating the degree of reduction of the pre-expanded portion is within the range of 0.0002 to 0.0018. It was found that the load transfer characteristic at the time of impact load is improved and the impact energy absorption amount is increased from the initial stage to the middle stage of the crushing stroke. Further, it can be easily understood that the press molded body 10 has the widened portion T, so that the cross-sectional peripheral length of the press molded body 10 is shortened and the weight can be reduced.
  • the value S indicating the degree of reduction of the pre-expanded portion is preferably in the range of 0.0005 to 0.0018.
  • FIG. 21 shows analysis models 80 and 85 having a press-formed body in which only the vertical wall portion is reduced, and analysis models 90 and 95 having press-formed bodies in which the groove bottom portion and the vertical wall portion are reduced, respectively.
  • the analysis models 80 and 90 include an outward continuous flange without a notch at a position corresponding to the ridge line portion
  • the analysis models 85 and 95 include an outward flange having a notch at a position corresponding to the ridge line portion.
  • analysis models 80, 85, 90, and 95 all have the same configuration as the analysis models 50, 60, and 70 except that the groove bottom portion or the vertical wall portion is reduced. Further, the evaluation method of the impact energy absorption amount is the same as the evaluation method in the evaluation of (2). However, in order to suppress the collapse of the press-formed body, the evaluation was performed by restraining the press-formed body so that no displacement other than the axial displacement caused by the rigid wall 29 (see FIG. 13) occurred.
  • the 22 and 23 show the relationship between the value S indicating the degree of reduction of each analysis model 80, 85, 90, and 95 and the amount of impact energy absorbed when the crushing stroke St is 5 mm and 20 mm, respectively.
  • the value S indicating the degree of reduction when only the vertical wall part is reduced with the width of the groove bottom being constant indicates the degree of reduction of the height of each vertical wall part.
  • the value S indicating the degree of reduction when the groove bottom part and the vertical wall part are reduced respectively indicates the reduction degree of the height of the vertical wall part and the width of the groove bottom part.
  • the circumferential length of the cross section at the end opposite to the end having the outward continuous flange corresponds to the difference in the width of the groove bottom. It will be different.
  • the impact energy absorption amount of the analysis models 80 and 90 having the outward continuous flange is analyzed with the outward flange having a notch regardless of the degree of reduction. It was larger than the impact energy absorption amount of the models 85 and 95. Further, in the analysis models 80 and 90 having the outward continuous flange, the impact energy absorption amount was not significantly changed due to the difference in the reduction degree. Further, even when the analysis models 80 and 90 are compared with the same degree of reduction, there is no significant difference in the amount of shock energy absorbed between the analysis models 80 and 90.
  • the impact energy absorption amount of the analysis models 80 and 90 having the outward continuous flange includes the outward flange having a notch regardless of the degree of reduction. It was smaller than the impact energy absorption amount of the analysis models 85 and 95. Further, in the analysis models 80 and 90 having the outward continuous flange, the impact energy absorption amount is smaller as the degree of reduction is larger. Further, the analysis model 90 in which both the groove bottom portion and the vertical wall portion are reduced as compared with the impact energy absorption amount of the analysis model 80 in which only the vertical wall portion is reduced except in the range where the value S indicating the reduction degree is around 0.00115. The amount of shock energy absorbed was large.
  • FIG. 24 shows the state of buckling when the crush stroke St of each of the analysis models 80 and 90 is 20 mm. As shown in FIG. 24, it can be seen that the buckling pitch generated in both of the analysis models 80 and 90 is large.
  • the used forming material 33 is a steel plate having a thickness of 1.4 mm and a tensile strength measured by a tensile test in accordance with JIS Z 2241 and a 980 MPa class. Further, in the press-formed body, the height of the substantially groove-shaped cross section is 100 mm, the maximum width (width Wa) of the groove bottom at the end having the outward flange is 148 mm, and the minimum width (width) of the groove bottom. Wb) was 76 mm, a value S0.0027 indicating the degree of reduction in the width W of the groove bottom, and the width of the outward continuous flange was 14 mm. Moreover, the curvature radius of the shoulder part of the used punch was 12 mm.
  • FIG. 25 and 26 are explanatory views showing the analysis results of the plate thickness reduction rate of the press-formed bodies of Reference Examples 1 to 3.
  • FIG. 25 is a diagram showing the analysis position A of the plate thickness reduction rate, and shows one press-formed body 10 divided by a center line along the axial direction (x direction).
  • FIG. 26 shows the analysis results of the press-formed bodies of Reference Examples 1 to 3.
  • LS-DYNA which is general-purpose analysis software, was used.
  • the press-formed body according to Reference Example 2 using the pad that holds only the groove bottom part has a sheet thickness reduction rate of 24 at the position I in the flange continuously formed at the end of the ridge line part among the outward facing flanges. 8%. With such a plate thickness reduction rate, there is a concern about the occurrence of molding defects (cracks). Moreover, the press-molded body according to Reference Example 2 using the pad that simultaneously presses the groove bottom and the ridge line portion has a plate thickness at the position H1 in the flange continuously formed at the end portion of the ridge line portion among the outward continuous flanges. The rate of decrease was 11.2%.
  • the thickness reduction rate at the position H2 at the rising curved surface portion between the end portion of the ridge line portion and the outward continuous flange is ⁇ 15.5%.
  • wrinkles and thickening exceeding the range.
  • the press-molded body according to Reference Example 1 using the first pad and the second pad has a position J1 in the flange continuously formed at the end of the ridge line portion of the outward continuous flange 16.
  • the plate thickness reduction rate was 15.4%, which was an acceptable value.
  • the plate thickness reduction rate at the position J2 at the rising curved surface portion between the edge portion of the ridge line portion and the outward continuous flange 16 is ⁇ 13.9%, and the generated wrinkles and thickening are within an allowable range. It was.
  • the structural member according to the present embodiment can be realized using a high-tensile steel plate.
  • the structural member may be a press-molded body obtained by press-molding a metal plate other than a steel plate such as iron, aluminum, titanium, and stainless steel.
  • a metal structural member formed by a method other than press forming may be used.
  • the structural member may be made of a fiber reinforced resin containing a reinforced fiber such as a resin material or carbon fiber.
  • examples of the structural member include a vehicle chassis such as an automobile, a train, and a motorcycle, and a ship hull, but the present invention is not limited to this example.
  • the structural member may be used for other structures such as machines and buildings as long as the structural member can receive an impact load in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Sewage (AREA)

Abstract

【課題】略溝型の横断面形状を有する長尺の金属製の構造部材において、衝撃荷重負荷時の荷重伝達特性に優れた構造部材を提供する。 【解決手段】所定方向に延びる長尺に形成され、溝底部と、溝底部の幅方向の両端に連続する二つの稜線部と、稜線部にさらに連なる二つの縦壁部とを有する金属製の構造部材は、所定方向の端部に、少なくとも溝底部、稜線部及び縦壁部に亘って連続して形成された外向きフランジを有し、溝底部の幅が、外向きフランジを有する端部から離れるにつれて縮小する。

Description

構造部材
 本発明は、構造部材に関する。
 従来、電車や自動車、船舶等の構造体の胴体部分は、複数の構造部材を組み合わせることによって補強されている。例えば、自動車車体のフロア(以下、単に「フロア」という)は、車両走行時に、車体の捻じり剛性や曲げ剛性を第一義的に担うだけではなく、車両の衝突時に、衝撃荷重の伝達を担う。また、フロアは、自動車車体の重量にも大きく影響する。このように、フロアには、高剛性かつ軽量という二律背反の特性を兼ね備えることが要求される。フロアは、互いに溶接されて接合される平板状のパネルと、車幅方向へ向けて平板状のパネルに固定配置される略溝型断面を有する車幅部材と、車体前後方向へ向けて平板状のパネルに固定配置される略溝型断面を有する車長部材とを備える。
 平板状のパネルとしては、例えば、ダッシュパネル、フロントフロアパネル又はリアフロアパネル等が例示される。車幅部材は、溶接等により、これら平板状のパネルの車幅方向へ向けて固定配置されて、フロアの剛性や強度を高める構造部材である。車幅部材としては、例えば、フロアクロスメンバやシートクロスメンバ等が例示される。車長部材は、溶接等により、車体前後方向へ向けて固定配置されてフロアの剛性や強度を高める構造部材である。車長部材としては、例えば、サイドシルやサイドメンバ等が例示される。
 このうち、車幅部材や車長部材等の構造部材は、通常、その端部に形成される外向きフランジを介して他の部材に接合される。例えば、車幅部材の一例であるフロアクロスメンバは、その両端部に形成される外向きフランジを介して、フロントフロアパネルのトンネル部及びサイドシル等の他の部材に接合される。
 図27及び図28は、長手方向の両端部に形成される外向きフランジ4を介して他部材に接合される部材の代表例であるフロアクロスメンバ1を示している。図27はフロアクロスメンバ1の斜視図であり、図28は図27におけるA矢視図である。
 フロントフロアパネル2は、例えば、フロントフロアパネル2の上面(室内側の面)に接合されるトンネル部(図示せず)、サイドシル3及びフロアクロスメンバ1によって補強される。トンネル部は、フロントフロアパネル2の幅方向の略中心に沿って、室内側に膨出する構造部材である。サイドシル3は、フロントフロアパネル2の車幅方向の両側部においてフロントフロアパネル2の上面にスポット溶接される。フロアクロスメンバ1の両端は、長手方向の両端部に形成される外向きフランジ4を介して、トンネル部及びサイドシル3にそれぞれスポット溶接される。これにより、フロアの剛性及び衝撃荷重負荷時の荷重伝達特性が向上する。
 例えば、特許文献1及び2には、自動車の車幅方向に沿って配置される構造部材であって、溝底部、稜線部及び縦壁部を備えた略溝型の横断面形状を有する自動車車体用構造部材が開示されている。このうち、特許文献1に記載の構造部材は、溝型の横断面の開口側に接合される部材の形状に対応させて、縦壁部の高さが、端部に向かうにつれて高くなる形状を有している。また、特許文献2に記載の構造部材は、溝底部の幅が、端部に向かうにつれて大きくなる形状を有している。
国際公開第2010/073303号 特開2009-1227号公報
 例えば、構造部材としてのフロアクロスメンバは、自動車車体の剛性向上や側面衝突時の衝撃荷重を吸収する役目を担う重要な構造部材である。このため、近年では、軽量化及び衝突安全性の向上の観点から、より薄くかつより強度の高い高張力鋼板、例えば引張強度が390MPa以上の高張力鋼板(高強度鋼板又はハイテン)がフロアクロスメンバの素材として用いられている。しかしながら、フロアクロスメンバには、衝撃荷重負荷時の荷重伝達特性のさらなる向上も強く求められている。このため、単に材料強度を高めることだけではなく、フロアクロスメンバの形状を工夫することによって、衝撃荷重負荷時の荷重伝達特性を向上させることが必要となっている。
 上記の特許文献1及び2に開示された構造部材は、縦壁部あるいは溝底部が、端部に向かうにつれて大きくなる形状を有しているが、これらの形状は、荷重伝達特性を向上させる観点から採用されているものではない。自動車車体用の構造部材に限らず、他の構造体に備えられる構造部材においても同様に、その形状を工夫することによって、衝撃荷重負荷時の荷重伝達特性を向上させることが望まれる。
 そこで、本発明は、上記課題に鑑みてなされたものであり、本発明の目的とするところは、略溝型の横断面形状を有する長尺の構造部材において、軽量化が可能であるとともに、衝撃荷重負荷時の荷重伝達特性に優れた構造部材を提供することである。
 上記課題を解決するために、本発明のある観点によれば、所定方向に延びる長尺に形成され、溝底部と、溝底部の幅方向の両端に連続する二つの稜線部と、稜線部にさらに連なる二つの縦壁部とを有する金属製の構造部材において、所定方向の端部に、少なくとも溝底部、稜線部及び縦壁部に亘って連続して形成された外向きフランジを有し、溝底部の幅が、外向きフランジを有する端部から離れるにつれて縮小する、構造部材が提供される。
 下記式(1)で定義される溝底部の幅の縮小度合いを示す値S(mm-1)が0.0002~0.0018の範囲内の値であってもよい。
  S(mm-1)={(Wa-Wb)/Wa}/L  … (1)
Wa:外向き連続フランジを有する端部の根元部分における溝底部の幅
Wb:溝底部の幅が縮小している範囲における根元部分からの任意の距離Lの位置における溝底部の幅
 外向き連続フランジを有する端部から100mm以上の長さの範囲において、溝底部の幅が縮小してもよい。
 自動車車体用構造部材は、外向き連続フランジを介して、抵抗スポット溶接、レーザ貫通溶接、隅肉アーク溶接又は接着剤による接着、あるいはこれらを併用した接合により、他の部材に接合されてもよい。
 構造部材が、引張強度が390MPa以上の高張力鋼板からなってもよい。
 構造部材が、車両用構造部材であってもよい。
 構造部材が、フロアクロスメンバ、サイドシル、フロントサイドメンバ又はフロアトンネルブレースであってもよい。
 本発明によれば、構造部材が所定方向の端部に外向き連続フランジを有することにより、軸方向への圧壊の初期に、稜線部の端部への応力集中が抑制され、応力を他の部分へと分散させることができる。したがって、稜線部の端部の歪みが小さくなって荷重伝達特性が高められる。また、構造部材において、溝底部の幅が、外向き連続フランジを有する端部から離れるにつれて縮小することにより、軸方向への圧壊の中期以降における座屈ピッチが小さくなる。したがって、圧壊の中期以降においても良好な荷重伝達特性が維持され、衝撃エネルギ吸収量を増加させることができる。さらに、溝底部の幅が、外向き連続フランジを有する端部から離れるにつれて縮小することにより、構造部材の軽量化が図られる。このようにして、本発明によれば、軽量、かつ、衝撃荷重負荷時の荷重伝達特性に優れた構造部材を得ることができる。
本実施形態にかかる構造部材(第1の部材)の構成例を示す説明図である。 第1のプレス成形装置の一例を示す断面図である。 第1のプレス成形装置の一例を示す斜視図である。 第1のパッドにより溝底部に成形される部分が拘束される様子を示す断面図である。 第1のパッドにより溝底部に成形される部分が拘束される様子を示す斜視図である。 第2のパッドにより稜線部に成形される部分が拘束される様子を示す断面図である。 第2のパッドにより稜線部に成形される部分が拘束される様子を示す斜視図である。 第2のパッドによる稜線部に成形される部分の押圧範囲と、稜線部の端部のフランジのエッジにおける板厚減少率の最大値との関係を示す特性図である。 第2のパッドによる稜線部に成形される部分の押圧範囲と、稜線部の端部のフランジの根元付近における板厚減少率の最小値との関係を示す特性図である。 ダイ及びパンチにより成形素材がプレス成形される様子を示す断面図である。 溝底部及び稜線部に成形される部分を同時に押えるパッドを用いた例を示す斜視図である。 溝底部及び稜線部に成形される部分を同時に押えるパッド用いてプレス成形を行う場合の成形素材について説明するための図である。 実施例1及び比較例1,2にかかる解析モデルを示す説明図である。 実施例1及び比較例1,2にかかる解析モデルの軸方向荷重に関する解析結果を示すグラフである。 圧壊ストローク10mmの場合における、衝撃エネルギの吸収量に関する解析結果を示すグラフである。 圧壊ストローク20mmの場合における、衝撃エネルギの吸収量に関する解析結果を示すグラフである。 実施例2~10及び比較例3~13の評価方法を示す説明図である。 圧壊ストローク5mmの場合における、溝底部の幅の縮小度合いと衝撃エネルギ吸収量との関係を示すグラフである。 圧壊ストローク20mmの場合における、溝底部の幅の縮小度合いと衝撃エネルギ吸収量との関係を示すグラフである。 圧壊ストローク20mmの場合における、実施例6及び比較例3,8の解析モデルの座屈の様子を示す説明図である。 縦壁部のみを縮小させた解析モデルを示す説明図である。 圧壊ストローク5mmの場合における、溝底部の幅あるいは縦壁部の高さの縮小度合いと衝撃エネルギ吸収量との関係を示すグラフである。 圧壊ストローク20mmの場合における、溝底部の幅あるいは縦壁部の高さの縮小度合いと衝撃エネルギ吸収量との関係を示すグラフである。 圧壊ストローク20mmの場合における、各解析モデルの座屈の様子を示す説明図である。 プレス成形体の板厚減少率の解析位置を示す説明図である。 板厚減少率の解析結果を示す説明図である。 従来の構造部材としてのフロアクロスメンバを示す斜視図である。 図27のA矢視図である。
 以下、添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<1.構造部材>
(1-1.構成例)
 図1は、本実施形態にかかる構造部材(以下、「第1の部材」ともいう。)10の一例を示す説明図である。図1は、第1の部材10と第2の部材18とを接合して構成された接合構造体100の斜視図である。
 本発明を適用し得る構造部材としては、例えば、自動車や電車、自動二輪車等に代表される車両の車台、又は、船舶の船体その他の構造物の補強部材が例示される。これらの補強部材は、衝撃荷重負荷時に圧壊することにより衝撃エネルギを吸収し、乗員等への衝撃を緩和するものであってもよい。以下では、自動車車体用の構造部材を例に採って、構造部材(第1の部材)10について説明する。
 第1の部材10は、例えば、フロアクロスメンバ、サイドシル、フロントサイドメンバ、あるいはフロアトンネルブレースに用いられ得る。第1の部材10が、フロアクロスメンバ、サイドシル、フロントサイドメンバ又はフロアトンネル等の自動車車体用の補強部材として使用される場合、JIS Z 2241に準拠した引張試験により測定される引張強度が390MPa以上の高張力鋼板が成形素材として用いられてもよい。高張力鋼板の引張強度は、590MPa以上であってもよく、さらに780MPa以上であってもよい。
 なお、本明細書においては、構造部材は第1の部材10自体を指し、第1の部材10に第2の部材18が接合された複合構造体を接合構造体100という。例えば、第1の部材10がフロアクロスメンバの場合、フロアパネルが第2の部材18に相当する。一方、第1の部材10がサイドシルに用いられる場合、第1の部材10を、クロージングプレートや、第1の部材と類似した略溝型断面を有する第2の部材18と接合した接合構造体100がサイドシルとして構成される。
 さらに、第1の部材10がフロントサイドメンバに用いられる場合、一般的にはサイドシルと同様に、第1の部材10と第2の部材18とからなる筒状の接合構造体がフロントサイドメンバとして構成される。ただし、フロントサイドメンバの場合、例えばフードリッジパネルが第2の部材18に相当するものとして、フードリッジパネルに接合される第1の部材10自体がフロアサイドメンバと呼ばれる場合もある。
 第1の部材10は、図1中に矢印Xで示す所定方向(以下、「軸方向」ともいう。)へ延びて形成された長尺の部材である。第1の部材10は、溝底部11と、稜線部12a,12bと、縦壁部13a,13bと、曲面部14a,14bと、フランジ部15a,15bとを有する。二つの稜線部12a,12bは、溝底部11の幅方向の両端に連続して形成される。二つの縦壁部13a,13bは、それぞれ二つの稜線部12a,12bに連続して形成される。二つの曲面部14a,14bは、それぞれ二つの縦壁部13a,13bに連続して形成される。二つのフランジ部15a,15bはそれぞれ二つの曲面部14a,14bに連続して形成される。
 また、二つのフランジ部15a,15bは、例えばクロージングプレートや自動車車体を構成する成形パネル(例えばフロアパネル)といった第2の部材18に接合される。これにより、第1の部材10と第2の部材18とにより、閉じた横断面形状が形成される。ただし、本実施形態にかかる構造部材において、縦壁部13a,13bに連続する曲面部14a,14bや、曲面部14a,14bに連続するフランジ部15a,15bは省略されていてもよい。
 かかる第1の部材10において、稜線部12a,12bは、第1の部材10に対する軸方向への衝撃荷重負荷時に、荷重を担う部分となる。そのため、第1の部材10の端部にかかる荷重を効率的に稜線部12a,12bに伝達することが必要とされる。また、第1の部材10によって効率的に衝撃エネルギを吸収させるためには、衝撃エネルギ吸収量を安定させることが必要となる。そのためには、軸方向への圧壊による第1の部材10の座屈ピッチが小さくなることが望ましい。
 第1の部材10と第2の部材18との、フランジ部15a,15bを介した接合方法は、強度が担保できる限り特に限定されない。実用的には、接合構造体100の長手方向に沿って、複数箇所をスポット溶接により接合する方法が一般的である。ただし、例えば、フランジ幅等によっては、レーザ溶接による接合方法であってもよく、その他の接合方法であってもよい。
(1-2.外向き連続フランジ)
 本実施形態にかかる第1の部材10は、長手方向の端部に外向き連続フランジ16を有する。外向き連続フランジ16は、第1の部材10の長手方向の端部に、曲率半径r(mm)を有する立ち上がり曲面部17を介して形成される。図1に示した第1の部材10では、長手方向の端部において、溝底部11から稜線部12a,12b、さらに縦壁部13a,13bに亘って、断面周方向に連続して、外向き連続フランジ16が形成されている。なお、本明細書において、略溝型の横断面を有する第1の部材10の端部を、溝の外側へ折り曲げたフランジを「外向きフランジ」といい、溝底部11から少なくとも稜線部12a,12bに亘って連続する外向きフランジを「外向き連続フランジ」という。
 外向き連続フランジ16は、第1の部材10を、図示しない他の部材への接合に利用される。第1の部材10は、軸方向の端部において、外向き連続フランジ16を介して、例えば、鋼板製のプレス成形体からなる他の部材に対してスポット溶接等により接合される。例えば、第1の部材10は、抵抗スポット溶接、レーザによる貫通溶接、又はアークによる隅肉溶接、あるいはそれらの組み合わせにより、他の部材に接合される。第1の部材10と他の部材との接合は、接着剤による接着であってもよいし、上記溶接と接着とが併用されてもよい。
 第1の部材10が、かかる外向き連続フランジ16を有することにより、第1の部材10に対する軸方向への圧壊の初期(例えば、圧壊ストローク5mm以下)において、第1の部材10の端部における稜線部12a,12bへの応力集中が抑制される。したがって、稜線部12a,12bの端部に生じる歪みが小さくなり、衝撃荷重負荷時の第1の部材10の軸方向への荷重伝達特性が高められている。
 外向き連続フランジ16は、第1の部材10の長手方向の端部のうち、少なくとも溝底部11から稜線部12a,12bに亘って形成されていればよい。または、外向き連続フランジ16は、第1の部材10の長手方向の端部において、溝底部11から縦壁部13a,13bに亘って形成されてもよい。また、外向き連続フランジ16は、第1の部材10の長手方向の端部において、溝底部11に相当する位置で分割されていてもよい。
 さらに、外向き連続フランジ16は、溝底部11や縦壁部13a,13bに相当する位置の全体に亘って形成される必要はなく、少なくとも稜線部12a,12bから連続する溝底部11や縦壁部13a,13bに相当する位置に形成されていればよい。かかる外向き連続フランジ16であれば、稜線部12a,12bに負荷される荷重が分散されやすくなって、稜線部12a,12bへの応力集中を抑制することができる。
 外向き連続フランジ16のフランジ幅に関し、後で説明する構造部材の製造方法によれば、フランジ幅が25mm以上であっても、高張力鋼板を用いて、しわが少なく、割れが抑制された外向き連続フランジ16を形成し得る。なお、例えば外向き連続フランジ16を利用して他の部材にスポット溶接を行うことを容易にする観点からは、フランジ幅が13mm以上であってもよい。
 ただし、外向き連続フランジ16は、稜線部12a,12bに相当する位置に切欠きを有しないフランジである。そのため、外向き連続フランジ16のフランジ幅が13mm以下であっても、第1の部材10の剛性や衝突安全特性を維持することができる。また、衝突安全特性を維持する観点からは、外向き連続フランジ16と溝底部11あるいは縦壁部13a,13bとが成す角度であるフランジの立上り角度が60°以上であってもよい。なお、「フランジに切欠きを設ける」とは、切欠きがフランジの幅方向の全体にわたって設けられ、フランジが不連続となることをいう。また、フランジの幅は、フランジの高さと同じ意味で用いられる。したがって、フランジの幅が部分的に小さくされ、一部のフランジが残される場合には、フランジに切欠きを設けていないものと理解される。
 また、外向き連続フランジ16の幅は、全周に亘って均一でなくてもよい。例えば、外向き連続フランジ16のうち、稜線部12a,12bに相当する領域でのフランジ幅が、他の領域に比べて小さくなっていてもよい。稜線部12a,12bの端部における外向き連続フランジ16は、プレス成形時に、フランジ端部の割れやフランジ根元のしわが発生しやすい。そのため、稜線部12a,12bに相当する領域では、フランジ幅が狭い程、成形が容易になる。ただし、後で説明する構造部材の製造方法は、稜線部12a,12bに相当する領域でのフランジ幅が比較的大きい場合であっても、当該しわや割れを抑制することができる。
(1-3.先拡がり部)
 また、本実施形態にかかる第1の部材10は、溝底部11の幅Wが、軸方向に沿って、外向き連続フランジ16を有する端部から離れるにつれて縮小する形状を有する先拡がり部Tを備える。第1の部材10が先拡がり部Tを備えることにより、第1の部材10の端部側から順に座屈を生じさせることができる。また、第1の部材10が先拡がり部Tを備えることにより、第1の部材10に対する軸方向への圧壊の中期以降(例えば、圧壊ストローク5mm超)において、第1の部材10の圧壊に伴う座屈ピッチが小さくなり、座屈数が増加して、衝撃エネルギ吸収量を安定させることができる。
 これにより、衝撃荷重負荷時の荷重伝達特性がさらに高められる。また、第1の部材10が先拡がり部Tを備えることにより、外向き連続フランジ16を有する端部の断面の長さ(以下、「断面周長」ともいう。)が同じ場合、第1の部材10を軽量化し得る。さらに、第1の部材10が先拡がり部Tを備えることにより、車体に曲げや捻じりが負荷された場合に、他の部品との接合部となる、外向き連続フランジ16を有する端部の応力集中を緩和させることができる。これにより、車体の曲げや捻じり剛性を向上させることができる。
 ここで、溝底部11の幅Wの縮小度合いが小さすぎると、衝撃エネルギ吸収量の安定効果や軽量化の効果が得られにくい。一方、溝底部11の幅Wの縮小度合いが大きすぎると、第1の部材10はより軽量化されるものの、第1の部材10の断面周長が小さくなりすぎて、衝撃エネルギ吸収量が小さくなるおそれがある。したがって、第1の部材10において、下記式(1)で定義される溝底部11の幅Wの縮小度合いを示す値S(mm-1)が、0.0002~0.0018の範囲内であってもよく、さらに、0.0004~0.0015の範囲内であってもよい。
  S(mm-1)={(Wa-Wb)/Wa}/L  … (1)
Wa:外向き連続フランジ16を有する端部の根元部分における溝底部11の幅
Wb:溝底部11の幅が縮小している範囲における根元部分からの任意の距離Lの位置における溝底部11の幅
 なお、溝底部11の幅Wの縮小率が軸方向に変化する場合、上記の縮小度合いを示す値Sは、複数の距離Lにより求められる縮小度合いを示す値Sの平均値として定義される。縮小度合いを示す値Sの平均値は、例えば、先拡がり部Tが設けられる範囲の中で、距離Lを10mm間隔で大きくし、各距離Lにおいて上記式(1)により算出された値Sの平均値とすることができる。
 また、第1の部材10の軸方向に沿う方向において、先拡がり部Tが設けられる範囲は、衝撃荷重負荷時における第1の部材10の軸方向の変形量に応じて設定し得る。例えば、第1の部材10がフロアクロスメンバである場合、第1の部材10の最大変形量が100mmであるとすると、先拡がり部Tが設けられる範囲は、溝底部11と立ち上がり曲面部17との境界部分から100mm以上の範囲とすることができる。
 また、先拡がり部Tが設けられる範囲が長すぎると、外向き連続フランジ16が設けられた端部から離れた位置における第1の部材10の断面周長が短くなって、衝撃荷重に耐えられないおそれがある。したがって、例えば、第1の部材10がフロアクロスメンバである場合、先拡がり部Tが設けられる範囲は、300mm以下であってもよい。
<2.構造部材の製造方法>
 以上、本実施形態にかかる自動車車体用構造部材としての第1の部材10の構成について説明した。第1の部材10の製造方法や製造装置は、特に限定されない。ただし、第1の部材10を金属板、特に高張力鋼板を用いて製造する場合、成形上の制約から、外向き連続フランジ16における、稜線部12a,12bの端部に連続して形成されるフランジのエッジの割れや、稜線部12a,12bの端部近傍におけるフランジの根元付近にしわが発生しやすい。
 これらの成形時の不具合は、成形素材の材料強度が高いほど、また、稜線部に対応する位置におけるフランジの成形時の伸びフランジ率が高い形状であるほど(図28における稜線部1aの折れ曲がり角度θが急峻であるほど)発生しやすい。また。これらの成形時の不具合は、第1の部材10の高さ(図28における高さh)が高いほど、発生しやすい。特に、先拡がり部Tを有する第1の部材10の場合、前述のしわがより発生しやすくなる。
 以下、かかるエッジの割れやしわを抑制しつつ、第1の部材10を、高張力鋼板を用いてプレス成形により製造することが可能な構造部材の製造方法の一例について説明する。以下、構造部材の製造方法の概略を説明した後に、プレス成形装置の構成例及び構造部材の製造方法の例について詳細に説明する。
(2-1.製造方法の概略)
 まず、プレス成形による構造部材の製造方法の一例の概略を説明する。以下に説明する構造部材の製造方法の例は、第1のプレス成形装置を用いて行われる第1の工程と、第2のプレス成形装置を用いて行われる第2の工程とを含む。
(2-1-1.第1の工程の概略)
 第1の工程は、第1のプレス成形装置を用いて行われる。第1の工程では、第1のパッドにより、成形素材のうち溝底部に成形される部分の少なくとも一部が押圧される。これにより、溝底部に成形される部分に連続する成形素材の端部が、第1のパッドの押圧方向とは反対の方向に立ち上げられる。さらに、第1のパッドにより成形素材が第1のパンチに押し当てられて、第1のパッド及び第1のパンチにより、溝底部に成形される部分の少なくとも一部が拘束される。
 第1のパッドにより成形素材における溝底部に成形される部分が拘束された後、第1のパッドとは異なる第2のパッドにより、成形素材のうち稜線部に成形される部分の長手方向の端部の少なくとも一部が押圧される。これにより、稜線部に成形される部分に連続する成形素材の端部が、第2のパッドの押圧方向とは反対の方向に立ち上げられる。さらに、第2のパッドにより、成形素材における稜線部に成形される部分を第2のパッドの押圧方向に曲げながら、第2のパッド及び第1のパンチにより、稜線部に成形される部分の少なくとも一部が拘束される。
 そして、第1のパッド及び第2のパッドと第1のパンチとにより成形素材が拘束された状態で、第1のダイが第1のパンチに近接させられ、成形素材がプレス成形される。かかる第1の工程により、長手方向の端部に、割れが抑制された外向き連続フランジを有するとともに、稜線部の端部近傍でのしわが抑制された中間成形体が成形される。
(2-1-2.第2の工程の概略)
 第2の工程は、第1のプレス成形装置とは異なる第2のプレス成形装置を用いて行われる。第1の工程では、溝底部に成形される部分を拘束する第1のパッド及び稜線部に成形される部分を拘束する第2のパッドを使用するため、第1のダイと第1のパンチによって、完全にはプレスしきれない成形素材の部分が存在する。したがって、第2の工程では、第2のパンチ及び第2のダイによって中間成形体をプレス成形することにより、構造部材が成形される。
 第2のプレス成形装置は、第1のプレス成形装置では成形しきれない部分をプレス成形できるものであればよい。具体的には、第2のプレス成形装置は、溝底部、稜線部及び縦壁部に成形される部分のうち、第1のパッドあるいは第2のパッドによって拘束されない領域をプレス成形できるものであればよい。さらに、第2のプレス成形装置は、第1のプレス成形装置では成形しきれない外向き連続フランジの部分をプレス成形するものであってもよい。かかる第2のプレス成形装置は、ダイ及びパンチを備えた公知のプレス成形装置により構成することができる。
(2-2.製造装置)
 次に、プレス成形装置の構成例について説明する。図2及び図3は、第1のプレス成形装置30の一例を示す概略構成図である。図2は、第1のプレス成形装置30における、中間成形体の端部の領域を成形する部分を概略的に示す断面図であり、図3は、第1のプレス成形装置30を概略的に示す斜視図である。図3では、第1のパンチ31及び第1のパッド34-1を、成形する中間成形体の長手方向に沿う中心線で分割した半分の部分が示されている。
 第1のプレス成形装置30は、第1のパンチ31と、第1のダイ32と、第1のパンチ31に対向する第1のパッド34-1及び第2のパッド34-2とを備えている。かかる第1のプレス成形装置30は、基本的に、第1のパッド34-1及び第2のパッド34-2と第1のパンチ31とにより成形素材を拘束した状態で、第1のダイ32を第1のパンチ31に近づけることにより、成形素材をプレス成形する装置として構成されている。
 第1のパンチ31は、第1のダイ32、第1のパッド34-1及び第2のパッド34-2に対向する側にパンチ面を有している。第1のパンチ31は、上面31aと、中間成形体の稜線部を成形するための肩部31bと、フランジ成形部31cとを備えている。
 第1のパッド34-1は、拘束面34-1aと、フランジ成形部34-1bとを有する。第1のパッド34-1の拘束面34-1aは、パンチ31の上面31aに対向して配置され、パンチ31の上面31aに対して成形素材を押し当てて成形素材を拘束する。拘束面34-1a及び上面31aによって拘束される成形素材の部分は、溝底部に成形される部分である。拘束される成形素材の部分は、溝底部に成形される部分の全部であってもよいし、一部であってもよい。ただし、溝底部に形成される部分のうちの、少なくとも外向き連続フランジが成形される側の端部近傍が拘束されるようにする。第1のパッド34-1のフランジ成形部34-1bは、パンチ31のフランジ成形部31cに対して成形素材を押圧する。これにより、成形素材における溝底部の端部に形成されるフランジ部分が立ち上げられる。
 第2のパッド34-2は、拘束面34-2aと、フランジ成形部34-2bとを有する。第2のパッド34-2は、プレス成形時において、第1のパッド34-1に干渉しないように配置される。第2のパッド34-2の拘束面34-2aは、パンチ31の肩部31bに対向して配置され、パンチ31の肩部31bに対して成形素材を押し当てて成形素材を拘束する。拘束面34-2a及び肩部31bによって拘束される成形素材の部分は、稜線部に成形される部分の端部領域の少なくとも一部である。第2のパッド34-2のフランジ成形部34-2bは、パンチ31のフランジ成形部31cに対して成形素材を押圧する。これにより、成形素材における稜線部の端部に形成されるフランジ部分が立ち上げられる。
 かかる第2のパッド34-2は、第1のパッド34-1により溝底部に成形される部分が拘束された状態で、外向き連続フランジの近傍の領域で稜線部に成形される部分を拘束する。そのため、外向き連続フランジの近傍の領域での稜線部の形状が、概ね第2のパッド34-2によって押圧される部分の材料を張り出させることによって形成される。したがって、第2のパッド34-2が当接する部分の周辺の材料の移動が抑制されて、しわや割れの原因となる周辺の材料の伸びや縮み変形が抑制される。これにより、外向き連続フランジにおける、稜線部に対応するフランジ部分での伸びフランジ割れや、稜線部の端部近傍での稜線部におけるフランジの根元付近のしわの発生を抑制することができる。
 また、第2のパッド34-2は、外向き連続フランジの近傍において、当該領域の材料を張り出させて稜線部を成形することによる周辺材料の移動の抑制効果を狙ったものである。そのため、第2のパッド34-2は、外向き連続フランジに成形される部分の近傍における、稜線部に成形される部分と溝底部に成形される部分との接続部を起点として、稜線部に成形される部分の全域を拘束してもよい。
 具体的には、第2のパッド34-2の拘束面34-2aにより拘束される成形素材の部分は、溝底部に成形される部分と稜線部に成形される部分との接続部を含むことが好ましい。特に、稜線部12a,12bに成形される部分のうち、上記接続部を起点とする断面周長の少なくとも1/3の長さの部分が、第2のパッド34-2により押圧されてもよい。第2のパッド34-2が当該部分を押圧することにより、周辺の鋼板材料の移動を抑制しつつ、第2のパッド34-2の拘束面34-2aにより押圧する部分の鋼板材料を張り出させて稜線部12a,12bの一部を形成することができる。なお、第2のパッド34-2は、稜線部に加えて、縦壁部の一部、例えば、稜線部に連続する縦壁部のうちの20mm以下の長さの部分を押さえるようになっていてもよい。
 これ以外の、第1のパッド34-1及び第2のパッド34-2の寸法や材質等の他の要素は、公知のパッドと同じ構成とすることができる。
 第1のダイ32は、第1のパッド34-1及び第2のパッド34-2により成形素材を拘束した状態で、第1のパンチ31に近接され、成形素材をプレス成形する。第1のダイ32は、プレス成形時において、第1のパッド34-1及び第2のパッド34-2に干渉しないように配置される。好ましくは、第1のパッド34-1、第2のパッド34-2及び第1のダイ32が、押圧方向に対して最小限の隙間で配置されるとよい。
 ここで、第1のプレス成形装置30では、第1のパッド34-1、第2のパッド34-2及び第1のダイ32が、この順に成形素材を押圧するよう構成される。すなわち、第2のパッド34-2は、溝底部に成形される部分の少なくとも一部が第1のパッド34-1によって拘束された後に、稜線部に成形される部分の端部の領域を拘束する。また、第1のダイ32は、第1のパッド34-1及び第2のパッド34-2により成形素材が拘束された状態で、成形素材をプレス成形する。
 例えば、ダイ32に、コイルスプリングを介して、第1のパッド34-1及び第2のパッド34-2を懸架させることにより、かかる構成を実現し得る。このとき、プレス成形前の状態において、第1のパッド34-1の拘束面34-1a、第2のパッド34-2の拘束面34-2a及び第1のダイ32の押圧面が、第1のパンチ31側からこの順に位置するように配置される。そして、第1のダイ32を第1のパンチ31に向けて移動させることにより、第1のパッド34-1及び第2のパッド34-2が、この順に、成形素材に当接して成形素材を拘束した後に、第1のダイ32が成形素材をプレス成形する。
 ただし、第1のパッド34-1、第2のパッド34-2及び第1のダイ32のうちの一つあるいはすべてが、個別に、第1のパンチ31に向けて移動可能に構成されていてもよい。この場合、それぞれの第1のパッド34-1、第2のパッド34-2及び第1のダイ32の移動を制御することで、成形素材に当接する順序が制御される。
 なお、第1のパッド34-1又は第2のパッド34-2が存在することにより、第1のダイ32によっても成形素材を第1のパンチ31に押し当てることができない領域が存在する。例えば、押圧方向において、第2のパッド34-2と重なる縦壁部やフランジ部分は、第1のダイ32によってプレス成形することはできない。かかる領域は、第2のプレス成形装置を用いて行われる第2の工程においてプレス成形される。第2のプレス成形装置は、公知のプレス成形装置により構成することができるため、ここでの説明を省略する。
(2-3.製造方法)
 次に、構造部材の製造方法の一例について具体的に説明する。以下に説明する構造部材の製造方法の例は、図1に例示した、外向き連続フランジ16及び先拡がり部Tを有する第1の部材10の製造方法の例である。
(2-3-1.第1の工程)
 図4~図10は、既に説明した第1のプレス成形装置30を用いて行われる第1の工程を示す説明図である。図4及び図5は、第1のパッド34-1により成形素材33が拘束される様子を模式的に示す断面図及び斜視図である。また、図6及び図7は、第2のパッド34-2により成形素材33が拘束される様子を模式的に示す断面図及び斜視図である。図10は、第1のダイ32により成形素材33がプレス成形される様子を模式的に示す断面図である。
 なお、図4~図10は、先拡がり形状の第1の部材10を製造する際の第1の工程の様子を示している。また、図4、図6及び図10は、第1の工程において、成形素材33のうち、外向き連続フランジ16が形成される長手方向の端部の領域を成形する様子を示している。また、図5及び図7では、第1のパンチ31、第1のパッド34-1及び成形素材33を、成形する中間成形体の長手方向に沿う中心線で分割した半分の部分が示されている。さらに、以下に説明する製造方法では、第1のパッド34-1及び第2のパッド34-2が第1のダイ32に懸架された第1のプレス成形装置30が用いられている。
 第1の工程では、まず、図4及び図5に示すように、第1のダイ32が第1のパンチ31に向けて移動することに伴って、第1のパッド34-1が、成形素材33における溝底部11に成形される部分を拘束する。このとき、図5に示すように、成形素材33における溝底部11に成形される部分の少なくとも一部が、第1のパッド34-1の拘束面34-1aにより拘束される。同時に、成形素材33の長手方向の端部が、押圧方向とは反対の方向に立ち上げられ、第1のパッド34-1のフランジ成形部34-1bと第1のパンチ31のフランジ成形部31cとにより拘束される。
 次いで、図6及び図7に示すように、第1のダイ32が第1のパンチ31に向けてさらに移動することに伴って、第2のパッド34-2が、成形素材33における稜線部12a,12bに成形される部分を拘束する。このとき拘束される成形素材33の部分は、稜線部12a,12bに成形される部分の端部近傍の部分である。すなわち、図7に示すように、成形素材33のうちの稜線部12a,12bに成形される部分の端部が、第2のパッド34-2の拘束面34-2aにより拘束される。同時に、稜線部12a,12bに成形される部分から連続してフランジに成形される部分が、押圧方向とは反対の方向にさらに立ち上げられ、第2のパッド34-2のフランジ成形部34-2bと第1のパンチ31のフランジ成形部31cとにより拘束される。
 このとき、稜線部12a,12bに成形される部分のうち、上記接続部を起点とする断面周長の少なくとも1/3の長さの部分が、第2のパッド34-2により押圧されてもよい。第2のパッド34-2が当該部分を押圧することにより、周辺の鋼板材料の移動を抑制しつつ、第2のパッド34-2の拘束面34-2aにより押圧する部分の鋼板材料を張り出させて稜線部12a,12bの一部を形成することができる。
 図8は、第2のパッド34-2による稜線部に成形される部分の押圧範囲と、形成される外向き連続フランジ16における稜線部12a,12bに連続するフランジ部分のエッジにおける板厚減少率の最大値との関係を示す説明図である。かかる図8において、押圧範囲は、稜線部に成形される部分と溝底部に成形される部分との接続部を0°として第2のパッド34-2が拘束する部分の中心角度を意味する押さえ角度により示されている。押さえ角度が0°とは、稜線部に成形される部分が拘束されない状態を意味する。
 かかる図8に示すように、稜線部に成形される部分が拘束されない場合には、フランジのエッジにおける板厚減少率の最大値が36%程度になっており、伸びフランジ割れが発生する可能性が高いことが分かる。一方、押さえ角度が23°以上、すなわち、接続部を起点とする断面周長の少なくとも1/3の稜線部が拘束されていれば、フランジのエッジにおける板厚減少率の最大値が25%未満に抑えられる。したがって、フランジのエッジの割れが抑制されることが分かる。
 また、図9は、第2のパッド34-2による稜線部に成形される部分の押圧範囲と、形成される稜線部12a,12bの端部近傍のフランジの根元付近における板厚減少率の最小値との関係を示す特性図である。かかる図9においても、押圧範囲は、図8と同様に押さえ角度によって示されている。かかる図9に示すように、稜線部に成形される部分が拘束されない場合には、フランジの根元付近における板厚減少率の最小値が-65%程度になっており、明らかにしわが発生することが分かる。一方、押さえ角度が23°以上、すなわち、接続部を起点とする断面周長の少なくとも1/3の稜線部が拘束されていれば、フランジの根元付近における板厚減少率の最小値が-35%以上に抑えられる。したがって、フランジの根元付近のしわが抑制されることが分かる。
 次いで、図10に示すように、第1のダイ32が第1のパンチ31に向けてさらに移動することに伴って、第1のパッド34-1及び第2のパッド34-2により成形素材33が拘束された状態で、第1のパンチ31及び第1のダイ32により1段階目のプレス成形が行われる。これにより、押圧方向に沿って、第2のパッド34-2の下方に位置する部分(図10の33A)等を除き、成形素材33がプレス成形され、中間成形体が成形される。
 第1のパンチ31及び第1のダイ32を用いた1段階目のプレス成形は、第1のダイ32により成形素材33を押圧して折り曲げ、第1のパンチ31に押し当てる曲げ成形であってよい。あるいは、かかる1段階目のプレス成形は、第1のダイ32及びブランクホルダにより、成形素材33における縦壁部に成形される部分を挟持するとともに、第1のダイ32及びブランクホルダを第1のパンチ31に向けて移動させて成形する、深絞り成形であってもよい。
 このとき、第2のパッド34-2によって、稜線部12a,12bに成形される部分の端部近傍(稜線部12a,12bと外向き連続フランジ16との会合部付近)が拘束されていることから、当該領域におけるしわの発生が抑制される。また、第2のパッド34-2によって当該領域が拘束されていることから、稜線部12a,12bの端部に連続して形成されるフランジの伸びフランジ率が低減し、外向き連続フランジ16の割れを抑制することができる。なお、図4~図10には示されていないが、図1に例示した第1の部材10における曲面部14a,14b及びフランジ部15a,15bの一部は、第1の工程において、第1のパンチ31及び第1のダイ32によってプレス成形される。
 かかる構造部材の製造方法により、稜線部12a,12bの端部領域のフランジの根元付近のしわや、外向き連続フランジ16のエッジの割れが抑制される理由を、以下に説明する。図11及び図12は、第1のパッド及び第2のパッドが分割されておらず、溝底部に成形される部分及び稜線部に成形される部分を同時に拘束するパッド134を用いたプレス成形の様子を示す説明図である。製造する構造部材は、図1に例示した先拡がり部Tを有する構造部材である。図11は、図7に対応する図であって、パンチ131及びパッド134により、成形素材133における溝底部に成形される部分及び稜線部に成形される部分が拘束された状態を示す斜視図である。また、図12は、ダイにより押圧される際の成形素材133を上方から見た図である。
 かかるパッド134を用いた場合、パッド134によって成形素材133をパンチ131に押し当てて拘束しようとすると、最初に、稜線部に成形される部分がパッド134により押圧される。この状態では、溝底部に成形される部分とパッド134との間に隙間が生じ、溝底部に成形される部分はパッドにより押圧されない。また、先拡がり形状を有する構造部材の場合、溝底部に成形される部分の端部の近傍では、長手方向の位置よって断面周長差が存在する。すなわち、図11に示すように、位置Z1での断面周長は、位置Z2での断面周長よりも長い。
 そうすると、図11に示すように、パッド134によって、溝底部に成形される部分及び稜線部に成形される部分がともに拘束されるまでの間、溝底部に成形される部分から稜線部に成形される部分にかけて、外向き連続フランジに成形される部分の鋼板材料が移動することとなる。
 さらに、先拡がり部を有する構造部材の場合、ダイによって曲げ成形される、縦壁部に成形される部分は、図12に示すように、稜線部に成形される部分112に対して垂直方向に、すなわち、外向き連続フランジに成形される部分116から離れる方向に向けて曲げられる。そのため、外向き連続フランジに成形される部分の鋼板材料が、さらに稜線部に成形される部分に向けて移動しやすくなる。したがって、稜線部に成形される部分において、過剰なしわや増肉がより発生しやすくなる。このような理由から、溝底部に成形される部分及び稜線部に成形される部分を同時に拘束するパッド134を用いた場合には、溝底部に成形される部分の端部や稜線部に成形される部分の端部にしわが発生しやすい。
 これに対し、例示した製造方法では、図5及び図7に示すように、第1のパッド34-1により溝底部に成形される部分が拘束された後に、第2のパッド34-2により稜線部に成形される部分の端部が押圧されて拘束される。したがって、第2のパッド34-2により稜線部に成形される部分の端部が押圧される間、溝底部に成形される部分への鋼板材料の移動が抑制される。そのため、溝底部に成形される部分の端部(外向き連続フランジの近傍)における長手方向の位置によって断面周長差が存在する場合であっても、外向き連続フランジに成形される部分の鋼板材料が、溝底部に成形される部分及び稜線部に成形される部分に移動することが抑制される。
 また、第1のパッド34-1によって溝底部に成形される部分が拘束された状態で、第2のパッド34-2によって稜線部に成形される部分の端部が押圧されることから、稜線部に成形される部分の端部は、当該押圧される部分の鋼板材料を張り出させることにより成形される。さらに、第1のパッド34-1及び第2のパッド34-2により成形素材33が拘束された状態で、図10に示すように、第1のパンチ31と第1のダイ32とにより成形素材33がプレス成形される。したがって、稜線部に成形される部分に対して過剰に鋼板材料が移動することが抑制される。その結果、形成される稜線部12a,12bの端部における過剰な増肉やしわが抑制される。
(2-3-2.第2の工程)
 以上のようにして第1の工程において1段階目のプレス成形を行った後、第2の工程では2段階目のプレス成形が行われる。第1の工程では、押圧方向に沿って、第2のパッド34-2の下方に相当する部分のうち、第2のパッド34-2に重なる縦壁部13a,13bに成形される部分は、第1の部材10としての最終形状に成形することができない。また、第1の部材10における曲面部14a,14b及びフランジ部15a,15bに成形される部分の全部又は一部についても、第1の工程において、最終形状に成形できない場合がある。
 さらに、成形素材33に対して、第1のパッド34-1及び第2のパッド34-2が押圧する領域によっては、稜線部12a,12bに成形される部分の一部についても、第1の工程において、最終形状に成形できない場合がある。例えば、第1の工程において、稜線部12a,12bに成形される部分のうち、稜線部12a,12bに成形される部分と溝底部11に成形される部分との接続部を起点とする断面周長の1/3が第2のパッド34-2により成形された場合には、断面周長の残りの2/3を成形する必要がある。
 したがって、第2の工程では、第2のプレス成形装置を用いて、第2のパンチ及び第2のダイにより中間成形体に対して2段階目のプレス成形を行い、最終形状としての第1の部材10を成形する。第2の工程は、最終形状に成形したい部分の形状に対応する押圧面を有する第2のパンチ及び第2のダイを用いて、公知のプレス成形により行うことができる。また、第2の工程においても最終形状としての第1の部材10に成形できない場合には、さらに別の成形工程を追加してもよい。
 なお、第2の工程は、パッドを用いないで行われる、ダイ及びパンチのみによるスタンピングプレス成形でもよく、パッドを用いて行われる通常のプレス成形でもよい。
<3.効果>
 以上説明したように、本実施形態にかかる第1の部材10は、先拡がり部Tを有するとともに、その端部に外向き連続フランジ16を有することにより、軸方向への圧壊時の荷重伝達特性及び衝撃エネルギ吸収量を向上させることができる。具体的に、第1の部材10は、端部に外向き連続フランジ16を有することにより、軸方向への圧壊の初期に、稜線部12a,12bの端部への応力集中が抑制され、応力を他の部分へと分散させることができる。したがって、稜線部12a,12bの端部の歪みが小さくなって、荷重伝達特性が高められる。また、第1の部材10が先拡がり部Tを有することにより、軸方向への圧壊の中期以降において座屈ピッチを小さくすることができる。したがって、荷重伝達特性が高められていることと相俟って、衝撃エネルギ吸収量を増加させることができる。また、第1の部材10が、先拡がり部Tを有することにより、外向き連続フランジ16を有する端部から離れるにつれて溝底部11の幅が縮小し、第1の部材10の断面周長が小さくなる。したがって、本実施形態によれば、第1の部材10を軽量化することができる。
 以下、本実施形態の実施例について説明する。なお、以下の実施例の説明においては、本実施形態にかかる自動車車体用構造部材としての第1の部材10を、プレス成形体10として説明する。
(1)衝撃エネルギ吸収特性評価
 まず、上述の構造部材の製造方法の例により製造されるプレス成形体10における外向き連続フランジ16を有する端部側から軸方向へ衝撃荷重を与え、衝撃エネルギの吸収量を評価した。
 図13は、解析に使用した構造部材の解析モデルを示す説明図である。図13は、上から、比較例1にかかる解析モデル50、比較例2にかかる解析モデル60、及び実施例1にかかる解析モデル70を示す。いずれの解析モデル50,60,70も、略溝型の横断面を有するプレス成形体10,51,61が、曲面部14a,14bを介して縦壁部13a,13bに連続するフランジ部15a,15bを介して、平板状の第2の部材18に接合されている。
 比較例1にかかる解析モデル50は、軸方向の端部に、切欠きのない外向き連続フランジ23を有する。ただし、解析モデル50は、溝底部の幅が一定な形状を有する。溝底部の幅Wa,Wbは100mmである。プレス成形体51の高さは100mmである。また、立ち上がり曲面部17と溝底部との境界部分から、外向きフランジを有しない端部までの長さLxは300mmである。上記式(1)で定義される溝底部の幅の縮小度合いを示す値Sは0である。かかる解析モデル50のプレス成形体51は、溝底部に成形される部分及び稜線部に成形される部分を同時に拘束するパッド(図11のパッド134)を用いたプレス成形により成形されるものである。
 比較例2にかかる解析モデル60は、軸方向の端部に、稜線部12a,12bの端部に達する切欠きを有する不連続な外向きフランジ24を有する。また、解析モデル60は、外向きフランジ24を有する端部から離れるにつれて溝底部の幅が縮小する形状を有する。溝底部の幅の最小値(幅Wb)は100mmであり、最大値(幅Wa)は130mmである。プレス成形体61の高さは100mmである。また、立ち上がり曲面部17と溝底部との境界部分から、外向きフランジ24を有しない端部までの長さLxは300mmである。上記式(1)で定義される溝底部の幅の縮小度合いを示す値Sは0.00077である。かかる解析モデル60のプレス成形体61は、溝底部に成形される部分のみを拘束するパッドを用いたプレス成形により成形されるものである。
 実施例1にかかる解析モデル70は、軸方向の端部に、切欠きのない外向き連続フランジ16を有する。また、解析モデル70は、比較例2と同様に、外向きフランジ24を有する端部に向かうにつれて溝底部の幅が増大する形状を有する。溝底部の幅の最小値(幅Wb)は100mmであり、最大値(幅Wa)は130mmである。プレス成形体10の高さは100mmである。また、立ち上がり曲面部17と溝底部との境界部分から、外向き連続フランジ16を有しない端部までの長さLxは300mmである。上記式(1)で定義される溝底部の幅の縮小度合いを示す値Sは0.00077である。かかる解析モデル70のプレス成形体10は、図4~図10に示す第1のパッド34-1及び第2のパッド34-2を用いたプレス成形により成形されるものである。
 上記以外の解析条件は、解析モデル50,60,70すべて同一とした。共通する解析条件は以下に列記したとおりである。
・使用した鋼板:引張強度980MPa級高張力鋼板、板厚1.4mm
・稜線部の曲率半径:12mm
・フランジ部15a,15bに連続する曲面部14a,14bの曲率半径:5mm
・外向き連続フランジ16及び外向きフランジ24の幅:14mm
・立ち上がり曲面部17の曲率半径r:3mm
 解析を行うにあたり、比較例1において図示したように、剛体壁29を、外向き連続フランジ16,23、あるいは外向きフランジ24が形成された端部側から軸方向へ、衝突速度20km/hで衝突させて、解析モデル50,60,70に対して軸方向変位を与えた。そして、実施例1及び比較例1,2それぞれにおいて、衝突時に発生する軸方向荷重(kN)と、衝撃エネルギの吸収量(kJ)を算出した。
 図14は、解析モデル50,60,70それぞれの、軸方向荷重に関する解析結果を示すグラフである。なお、解析モデル50,60,70の端部の断面周長の影響を排除するために、図14のグラフの縦軸は、軸方向荷重を、立ち上がり曲面部17と溝底部との境界部分の断面周長で除した値(軸方向荷重/周長:kN/mm)とした。この場合の断面周長とは、第2の部材18を含まないプレス成形体10,51,61それぞれの断面の板厚中心の長さを意味する。
 圧壊ストロークが5mm以下の、軸方向への圧壊の初期の領域St1において、切欠きのない外向き連続フランジ16,23を有する実施例1及び比較例1の解析モデル50,70は、切欠きのある外向きフランジ24を有する比較例2の解析モデル60に比べて、軸方向荷重(kN/mm)が高められている。また、圧壊ストロークが5mm超の領域St2において、先拡がり部を有する実施例1及び比較例2の解析モデル60,70は、溝底部の幅が一定である比較例1の解析モデル50に比べて、軸方向荷重(kN/mm)が概ね高められている。
 外向き連続フランジ16及び先拡がり部を有するプレス成形体10を備えた実施例1にかかる解析モデル70は、軸方向への圧壊の初期から後期にかけて、高い軸方向荷重が実現されている。特に、実施例1にかかる解析モデル70は、圧壊ストロークが15mm超の、軸方向への圧壊の後期においても高い軸方向荷重を維持している。
 また、図15及び図16は、解析モデル50,60,70それぞれの、衝撃エネルギの吸収量(E.A.)に関する解析結果を示すグラフである。図15は、圧壊ストロークStが10mmの場合の解析結果を示し、図16は、圧壊ストロークStが20mmの場合の解析結果を示している。
 図15に示すように、軸方向の端部に、切欠きのない外向き連続フランジ16,23を有する解析モデル50,70は、切欠きのある外向きフランジ24を有する解析モデル60に比べて、圧壊ストロークStが10mmの場合の衝撃エネルギ吸収量が増加することが分かる。また、図16に示すように、先拡がり部を有する解析モデル60,70は、溝底部の幅が一定の解析モデル50に比べて、圧壊ストロークStが20mmの場合の衝撃エネルギ吸収量が増加することが分かる。
 このように、実施例1にかかる解析モデル70の荷重伝達特性は、衝突の初期及び後期のいずれの時期においても、比較例1にかかる解析モデル50及び比較例2にかかる解析モデル60よりも、衝撃エネルギ吸収特性に優れていることが分かる。
(2)縮小度合いの影響評価
 次に、上述の実施例1及び比較例2の解析モデル60,70のプレス成形体10,61における溝底部の幅の縮小度合いを変化させ、衝撃エネルギ吸収量に対する縮小度合いの影響を評価した。実施例2~10及び比較例3は、上述した実施例1のプレス成形体10における、外向き連続フランジ16を有する端部とは反対側の端部の溝底部の幅Wbを変化させて、縮小度合いを変化させたものである。また、比較例4~13は、比較例2のプレス成形体61における、外向きフランジ24を有する端部とは反対側の端部の溝底部の幅Wbを変化させて、縮小度合いを変化させたものである。
 実施例2及び比較例4では、溝底部の幅Wbは55mm、縮小度合いを示す値Sは0.00192である。実施例3及び比較例5では、溝底部の幅Wbは60mm、縮小度合いを示す値Sは0.00179である。実施例4及び比較例6では、溝底部の幅Wbは65mm、縮小度合いを示す値Sは0.00166である。実施例5及び比較例7では、溝底部の幅Wbは70mm、縮小度合いを示す値Sは0.00154である。実施例6及び比較例8では、溝底部の幅Wbは85mm、縮小度合いを示す値Sは0.00115である。実施例7及び比較例9では、溝底部の幅Wbは100mm、縮小度合いを示す値Sは0.00077である。実施例8及び比較例10では、溝底部の幅Wbは115mm、縮小度合いを示す値Sは0.00038である。実施例9及び比較例11では、溝底部の幅Wbは120mm、縮小度合いを示す値Sは0.00025である。実施例10及び比較例12では、溝底部の幅Wbは125mm、縮小度合いを示す値Sは0.00013である。比較例3及び比較例13では、溝底部の幅Wbは130mm、縮小度合いを示す値Sは0である。
 また、実施例2~10及び比較例3~13すべてにおいて、図17に示すように、溝底部に対応する部分のフランジ部分で4箇所、縦壁部に対応するフランジ部分でそれぞれ2箇所、スポット溶接することによって、プレス成形体10,61の端部を他の部材に接合した。
 図18及び図19は、それぞれ圧壊ストロークStが5mm、20mmのときの、外向き連続フランジ16を備えたプレス成形体10及び稜線部に対応する位置に切欠きを有する外向きフランジ24を備えたプレス成形体61の縮小度合いを示す値Sと衝撃エネルギ吸収量との関係を示す。
 図18に示すように、圧壊ストロークStが5mmでは、いずれの解析モデル60,70も、縮小度合いを示す値Sの違いによって衝撃エネルギ吸収量に大きな変化は見られなかった。また、同じ縮小度合いを示す値Sでそれぞれの解析モデル60,70を比較すると、外向き連続フランジ16を含む解析モデル70の衝撃エネルギ吸収量が、切欠きを有する外向きフランジ24を含む解析モデル60の衝撃エネルギ吸収量を上回っている。この結果は、切欠きを有する外向きフランジ24を有するプレス成形体61では、稜線部の端部に応力集中して、プレス成形体61の端部の歪みが大きくなったことによる。
 また、図19に示すように、圧壊ストロークStが20mmでは、縮小度合いを示す値Sが0.0002~0.0018の範囲内において、外向き連続フランジ16を含む解析モデル70の衝撃エネルギ吸収量が、切欠きを有する外向きフランジ24を含む解析モデル60の衝撃エネルギ吸収量を上回っている。この結果は、外向き連続フランジ16によって、稜線部以外にも応力が適切に分散されるとともに、先拡がり部によって、端部側から順に、小さい座屈ピッチで座屈が発生したことによる。特に、縮小度合いを示す値Sが0.00025~0.0015の範囲内においては、外向き連続フランジ16を含む解析モデル70の衝撃エネルギ吸収量が、安定的に増加する傾向を示している。
 図20は、実施例6及び比較例3,8の解析モデル60,70それぞれの、圧壊ストロークStが20mmのときの座屈の様子を示す。かかる図20に示すように、端部に外向き連続フランジ16を有するとともに、先拡がり部Tを有するプレス成形体10を備えた実施例6の解析モデル70は、座屈の発生位置が端部側に近く、かつ、座屈ピッチが小さくなっている。
 以上のように、プレス成形体10が、端部に外向き連続フランジ16を有し、かつ、先拡がり部の縮小度合いを示す値Sが0.0002~0.0018の範囲内であれば、圧壊ストロークの初期から中期以降に亘って、衝撃荷重負荷時の荷重伝達特性が高められ、衝撃エネルギ吸収量が増加することが分かった。また、プレス成形体10が先拡がり部Tを有することにより、プレス成形体10の断面周長が短くなって、軽量化し得ることも容易に理解し得る。
 ただし、先拡がり部の縮小度合いが小さいほど、溝底部に連続する外向き連続フランジ16の立上り角度が大きくなって、稜線部の端部に形成されるフランジの割れやしわが発生しやすくなる。したがって、成形性及び生産効率を考慮した場合、先拡がり部の縮小度合いを示す値Sが0.0005~0.0018の範囲内であることが好ましい。
(3)縦壁部の高さの縮小の影響評価
 次に、プレス成形体における溝底部ではなく、縦壁部の高さ(幅)を、外向き連続フランジを有する端部から離れるにつれて縮小させたときの衝撃エネルギ吸収量について評価した。図21は、縦壁部のみを縮小させたプレス成形体を備えた解析モデル80,85と、溝底部及び縦壁部をそれぞれ縮小させたプレス成形体を備えた解析モデル90,95とを示す。解析モデル80,90が、稜線部に対応する位置に切欠きの無い外向き連続フランジを備え、解析モデル85,95が、稜線部に対応する位置に切欠きを有する外向きフランジを備える。
 これらの解析モデル80,85,90,95は、溝底部あるいは縦壁部を縮小させている点以外は、すべて上記の解析モデル50,60,70と同一の構成である。また、衝撃エネルギ吸収量の評価方法も、(2)の評価における評価方法と同じである。ただし、プレス成形体の倒れ込みを抑制するために、剛体壁29(図13を参照)による軸方向の変位以外の変位が生じないように、プレス成形体を拘束して評価を行った。
 図22及び図23は、それぞれ圧壊ストロークStが5mm、20mmのときの、各解析モデル80,85,90,95の縮小度合いを示す値Sと衝撃エネルギ吸収量との関係を示す。なお、溝底部の幅を一定として縦壁部のみを縮小させた場合の縮小度合いを示す値Sは、各縦壁部の高さの縮小度合いを示す。また、溝底部及び縦壁部をそれぞれ縮小させた場合の縮小度合いを示す値Sは、縦壁部の高さ及び溝底部の幅それぞれの縮小度合いを示す。すなわち、解析モデル80,90の縮小度合いを示す値Sが同じであっても、外向き連続フランジを有する端部とは反対側の端部における断面周長は、溝底部の幅の差に相当する分、異なることになる。
 図22に示すように、圧壊ストロークStが5mmでは、外向き連続フランジを備えた解析モデル80,90の衝撃エネルギ吸収量が、縮小度合いにかかわらず、切欠きを有する外向きフランジを備えた解析モデル85,95の衝撃エネルギ吸収量よりも大きくなっていた。また、外向き連続フランジを備えた解析モデル80,90では、縮小度合いの違いによって衝撃エネルギ吸収量に大きな変化は見られなかった。また、同じ縮小度合いでそれぞれ解析モデル80,90を比較しても、各解析モデル80,90の衝撃エネルギ吸収量に大きな差は見られなかった。
 一方、図23に示すように、圧壊ストロークStが20mmでは、外向き連続フランジを備えた解析モデル80,90の衝撃エネルギ吸収量が、縮小度合いにかかわらず、切欠きを有する外向きフランジを備えた解析モデル85,95の衝撃エネルギ吸収量よりも小さくなっていた。また、外向き連続フランジを備えた解析モデル80,90では、縮小度合いが大きいほど衝撃エネルギ吸収量が小さくなった。また、縮小度合いを示す値Sが0.00115前後の範囲を除き、縦壁部のみを縮小した解析モデル80の衝撃エネルギ吸収量に比べて、溝底部及び縦壁部をともに縮小した解析モデル90の衝撃エネルギ吸収量が大きくなっていた。
 なお、図22及び図23において、縮小度合いを示す値Sが0の場合、外向き連続フランジを有する解析モデル80と解析モデル90の衝撃エネルギ吸収量は等しくなるはずである。同様に、縮小度合いを示す値Sが0の場合、フランジに切欠きを有する解析モデル85と解析モデル95の衝撃エネルギ吸収量は等しくなるはずである。ただし、上述のとおり、本評価においては、剛体壁29(図13を参照)による軸方向の変位以外の変位が生じないように、プレス成形体が拘束されていることから、縮小度合いを示す値Sが0の場合の各衝撃エネルギ吸収量に差が生じている。
 図24は、解析モデル80,90それぞれの、圧壊ストロークStが20mmのときの座屈の様子を示す。かかる図24に示すように、いずれの解析モデル80,90においても、生じる座屈ピッチが大きくなっていることが分かる。
 以上のように、溝底部の幅の縮小の有無にかかわらず、縦壁部の高さを、外向き連続フランジを有する端部から離れるにつれて縮小させた場合には、稜線部が担う荷重が低くなって、衝撃エネルギ吸収量が低下することが分かった。したがって、縦壁部を縮小させた場合には、プレス成形体の端部に外向き連続フランジを設ける効果を活かすことができないことが分かった。
(4)外向き連続フランジの成形性(参考)
 参考として、上述のプレス成形体の製造方法により製造されるプレス成形体10における稜線部の端部における板厚減少率を評価した。参考例1では、第1のパッド34-1及び第2のパッド34-2を用いて、上述したプレス成形体の製造方法によりプレス成形体10を製造した。また、参考例2では、第1のパッド及び第2のパッドの代わりに、溝底部のみを押さえるパッドを用いる以外は参考例1と同じ条件で、プレス成形体を製造した。さらに、参考例3では、第1のパッド及び第2のパッドの代わりに、溝底部及び稜線部を同時に押さえるパッドを用いる以外は参考例1と同じ条件で、プレス成形体を製造した。
 使用した成形素材33は、JIS Z 2241に準拠した引張試験により測定される引張強度が980MPa級の板厚1.4mmの鋼板である。また、プレス成形体における、略溝型の横断面の高さは100mm、外向きフランジを有する端部における溝底部の幅の最大値(幅Wa)は148mm、溝底部の幅の最小値(幅Wb)は76mm、溝底部の幅Wの縮小度合いを示す値S0.0027、外向き連続フランジの幅は14mmであった。また、使用したパンチの肩部の曲率半径は12mmであった。
 図25及び図26は、参考例1~3のプレス成形体の板厚減少率の解析結果を示す説明図である。図25は、板厚減少率の解析位置Aを示す図であり、軸方向(x方向)に沿う中心線により分割した一方のプレス成形体10が示されている。図26は、参考例1~3それぞれのプレス成形体の解析結果である。解析には、汎用解析ソフトであるLS-DYNAを用いた。
 溝底部のみを押さえるパッドを用いた参考例2にかかるプレス成形体は、外向き連続フランジのうち、稜線部の端部に連続して形成されるフランジにおける位置Iでの板厚減少率が24.8%であった。かかる板厚減少率では、成形不具合(割れ)の発生が懸念される。また、溝底部及び稜線部を同時に押さえるパッドを用いた参考例2にかかるプレス成形体は、外向き連続フランジのうち、稜線部の端部に連続して形成されるフランジにおける位置H1の板厚減少率は11.2%に低下していた。一方、参考例3にかかるプレス成形体は、稜線部の端部と、外向き連続フランジとの間の立ち上がり曲面部における位置H2の板厚減少率が-15.5%となっており、許容範囲を超えるしわや増肉の発生が懸念される。このように、プレス成形体の端部に設けるフランジを外向き連続フランジとする場合、稜線部の端部に形成されるフランジの端部の割れや、フランジの根元のしわが発生しやすく、従来、実製品への適用は行われていなかった。
 これに対し、第1のパッド及び第2のパッドを用いた参考例1にかかるプレス成形体は、外向き連続フランジ16のうち、稜線部の端部に連続して形成されるフランジにおける位置J1の板厚減少率は15.4%であり許容される値であった。また、稜線部の端部と、外向き連続フランジ16との間の立ち上がり曲面部における位置J2の板厚減少率は-13.9%であり、生じるしわや増肉は許容される範囲であった。すなわち、上述したプレス成形体の製造方法により、本実施形態にかかる構造部材としての第1の部材10を製造する際に、外向き連続フランジ16のフランジ端部における割れや、フランジの根元におけるしわが抑制されることが分かった。したがって、本実施形態にかかる構造部材を、高張力鋼板を用いて実現することも可能となる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記の実施形態では、鋼板をプレス成形することにより得られたプレス成形体からなる構造部材の例を説明したが、構造部材の構成材料はかかる例に限定されない。例えば、構造部材は、鉄、アルミニウム、チタン、ステンレス等の鋼板以外の金属板をプレス成形することにより得られたプレス成形体であってもよい。
 また、軸方向圧壊時の荷重伝達特性を高め、衝撃エネルギ吸収量を増加させることができるという効果を得るには、プレス成形以外の方法によって成形された金属製の構造部材であってもよい。さらに、かかる効果を得るには、構造部材が樹脂材料や炭素繊維等の強化繊維を含有する繊維強化樹脂からなっていてもよい。
 また、上記の実施形態では、構造部材の用途として自動車や電車、自動二輪車等の車両の車台や、船舶の船体を例示したが、本発明はかかる例に限定されない。構造部材は、軸方向に衝撃荷重が負荷され得る構造体であれば、その他の機械や建物等の構造物に用いられてもよい。
 10  第1の部材(自動車車体用構造部材、プレス成形体)
 11  溝底部
 12a,12b  稜線部
 13a,13b  縦壁部
 14a,14b  曲面部
 15a,15a  フランジ部
 16  外向き連続フランジ
 17  立ち上がり曲面部
 18  第2の部材
 23  外向き連続フランジ
 24  外向きフランジ
 29  剛体壁
 50,60,70,80,90  解析モデル
 51,61  プレス成形体
 100  接合構造体
 T  先拡がり部
 W  溝底部の幅
 Wa  外向き連続フランジの根元部分の溝底部の幅
 Wb  根元部分から任意の距離の位置の溝底部の幅

Claims (7)

  1.  所定方向に延びる長尺に形成され、溝底部と、前記溝底部の幅方向の両端に連続する二つの稜線部と、前記稜線部にさらに連なる二つの縦壁部とを有する金属製の構造部材において、
     前記所定方向の端部に、少なくとも前記溝底部、前記稜線部及び前記縦壁部に亘って連続して形成された外向き連続フランジを有し、
     前記溝底部の幅が、前記外向き連続フランジを有する端部から離れるにつれて縮小する、構造部材。
  2.  下記式(1)で定義される前記溝底部の幅の縮小度合いを示す値S(mm-1)が0.0002~0.0018の範囲内の値である、請求項1に記載の構造部材。
      S(mm-1)={(Wa-Wb)/Wa}/L  … (1)
    Wa:前記外向き連続フランジを有する端部の根元部分における前記溝底部の幅
    Wb:前記溝底部の幅が縮小している範囲における前記根元部分からの任意の距離Lの位置における前記溝底部の幅
  3.  前記外向き連続フランジを有する端部から100mm以上の長さの範囲において、前記溝底部の幅が縮小する、請求項1又は2に記載の構造部材。
  4.  前記構造部材は、前記外向き連続フランジを介して、抵抗スポット溶接、レーザ貫通溶接、隅肉アーク溶接又は接着剤による接着、あるいはこれらを併用した接合により、他の部材に接合される、請求項1~3のいずれか1項に記載の構造部材。
  5.  前記構造部材が、引張強度が390MPa以上の高張力鋼板からなる、請求項1~4のいずれか1項に記載の構造部材。
  6.  前記構造部材が、車両用構造部材である、請求項1~5のいずれか1項に記載の構造部材。
  7.  前記車両用構造部材が、フロアクロスメンバ、サイドシル、フロントサイドメンバ又はフロアトンネルブレースである、請求項6に記載の構造部材。
PCT/JP2015/083816 2014-12-22 2015-12-01 構造部材 WO2016104078A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES15872647T ES2824509T3 (es) 2014-12-22 2015-12-01 Miembro estructural
JP2016566071A JP6488487B2 (ja) 2014-12-22 2015-12-01 構造部材
US15/535,755 US10407101B2 (en) 2014-12-22 2015-12-01 Structural member
CA2969555A CA2969555C (en) 2014-12-22 2015-12-01 Structural member
BR112017012652A BR112017012652A2 (pt) 2014-12-22 2015-12-01 membro estrutural
KR1020177020210A KR101947938B1 (ko) 2014-12-22 2015-12-01 구조 부재
EP15872647.1A EP3219589B1 (en) 2014-12-22 2015-12-01 Structural member
MX2017007719A MX2017007719A (es) 2014-12-22 2015-12-01 Miembro estructural.
CN201580070474.6A CN107107968B (zh) 2014-12-22 2015-12-01 构造构件
RU2017121804A RU2672005C1 (ru) 2014-12-22 2015-12-01 Конструктивный элемент

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-259479 2014-12-22
JP2014259479 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104078A1 true WO2016104078A1 (ja) 2016-06-30

Family

ID=56150110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083816 WO2016104078A1 (ja) 2014-12-22 2015-12-01 構造部材

Country Status (12)

Country Link
US (1) US10407101B2 (ja)
EP (1) EP3219589B1 (ja)
JP (1) JP6488487B2 (ja)
KR (1) KR101947938B1 (ja)
CN (1) CN107107968B (ja)
BR (1) BR112017012652A2 (ja)
CA (1) CA2969555C (ja)
ES (1) ES2824509T3 (ja)
MX (1) MX2017007719A (ja)
RU (1) RU2672005C1 (ja)
TW (1) TWI580601B (ja)
WO (1) WO2016104078A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200066050A (ko) * 2018-11-30 2020-06-09 주식회사 포스코 보강구조체의 성형방법 및 보강구조체
US10913102B2 (en) 2016-06-16 2021-02-09 Nippon Steel Corporation Drawn body for vehicle structural member, manufacturing method for drawn body for vehicle structural member, and manufacturing apparatus for drawn body for vehicle structural member
EP4029765A1 (fr) * 2021-01-18 2022-07-20 Renault s.a.s Poutre de renfort d' ancrage de sièges et véhicule automobile associé

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102257663B1 (ko) * 2017-03-31 2021-05-31 닛폰세이테츠 가부시키가이샤 자동차의 충격 흡수 부재 및 사이드 멤버
JP7027777B2 (ja) * 2017-10-02 2022-03-02 スズキ株式会社 車両下部構造
KR102202098B1 (ko) * 2019-04-30 2021-01-12 주식회사 은혜기업 차량용 시트 크로스 멤버 조립체
US11077884B2 (en) * 2019-06-03 2021-08-03 Kawasaki Jukogyo Kabushiki Kaisha Utility vehicle
DE102020120245B4 (de) * 2020-07-31 2022-05-12 Bayerische Motoren Werke Aktiengesellschaft Träger für ein Kraftfahrzeug
CN113200090B (zh) * 2021-05-28 2022-07-22 东风柳州汽车有限公司 后悬架安装结构及车身结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287777A (ja) * 1991-03-14 1992-10-13 Toyota Motor Corp 車両のフロア構造

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226307A (ja) * 1997-02-13 1998-08-25 Nissan Motor Co Ltd 側突用エアバッグ装置のセンサー取付構造
JP4403970B2 (ja) 2005-01-12 2010-01-27 三菱自動車工業株式会社 車体構造
SE529105C2 (sv) * 2005-09-23 2007-05-02 Gestamp Hardtech Ab Krockbox och sätt att fästa en stötfångarbalk
JP4938563B2 (ja) 2007-06-25 2012-05-23 本田技研工業株式会社 自動車の車体構造
RU71312U1 (ru) * 2007-10-10 2008-03-10 Открытое акционерное общество "АВТОВАЗ" Силовая конструкция передней части кузова транспортного средства
JP5041073B2 (ja) 2008-12-22 2012-10-03 トヨタ自動車株式会社 車体前部構造
DE102011015541A1 (de) 2011-03-30 2012-10-04 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Bodenstruktur einer Kraftfahrzeugkarosserie
US20140191539A1 (en) 2011-05-26 2014-07-10 Toyota Jidosha Kabushiki Kaisha Method of forming header extension, and vehicle structure
TWM417290U (en) 2011-07-08 2011-12-01 Ling-Cai Huang Frame structure of automobile chassis
CN104066625B (zh) * 2012-01-18 2016-12-14 麦格纳国际公司 正弦挤压罐组件
JP5931548B2 (ja) 2012-04-02 2016-06-08 川崎重工業株式会社 鉄道車両
RU2581634C1 (ru) * 2012-04-10 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Кузов транспортного средства
JP5965706B2 (ja) 2012-04-12 2016-08-10 日立オートモティブシステムズ株式会社 流量センサの製造方法
TWM443662U (en) 2012-06-04 2012-12-21 Bo-Xiang Chang Rear lower sub-frame dilative ladder brace 2nd version for vehicle
JP5569661B2 (ja) 2012-06-22 2014-08-13 新日鐵住金株式会社 プレス成形体の製造方法および製造装置
ITBO20120547A1 (it) 2012-10-05 2014-04-06 Alba Diego Dall Sistema e metodo per guidare l'inserimento manuale di un ago nel corpo di un paziente durante una procedura chirurgica percutanea
CN102935864A (zh) 2012-10-24 2013-02-20 安徽誉丰汽车技术有限责任公司 一种汽车座椅横梁总成结构
TW201416265A (zh) 2012-10-25 2014-05-01 Energy Control Ltd 車輛之衝擊強度提升裝置
DE102013004793A1 (de) 2013-03-20 2014-09-25 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Bodenstruktur einer Kraftfahrzeugkarosserie
US8991901B2 (en) * 2013-05-07 2015-03-31 GM Global Technology Operations LLC Energy absorber device for a vehicle and method of manufacturing same
KR101821074B1 (ko) * 2013-10-09 2018-01-22 신닛테츠스미킨 카부시키카이샤 프레스 성형체의 제조 방법 및 프레스 성형 장치
JP6079662B2 (ja) * 2014-02-14 2017-02-15 トヨタ自動車株式会社 車体下部構造
US10112563B2 (en) * 2015-06-30 2018-10-30 Faraday & Future Inc. Tapered crush can
US9981698B2 (en) * 2016-09-07 2018-05-29 Thunder Power New Energy Vehicle Development Company Limited Vehicle tunnel floor structure
DE102016222718A1 (de) * 2016-11-18 2018-05-24 Dr. Ing. H.C. F. Porsche Ag Kraftfahrzeugkarosserie-Anordnung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287777A (ja) * 1991-03-14 1992-10-13 Toyota Motor Corp 車両のフロア構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10913102B2 (en) 2016-06-16 2021-02-09 Nippon Steel Corporation Drawn body for vehicle structural member, manufacturing method for drawn body for vehicle structural member, and manufacturing apparatus for drawn body for vehicle structural member
KR20200066050A (ko) * 2018-11-30 2020-06-09 주식회사 포스코 보강구조체의 성형방법 및 보강구조체
KR102153189B1 (ko) 2018-11-30 2020-09-07 주식회사 포스코 보강구조체의 성형방법 및 보강구조체
EP4029765A1 (fr) * 2021-01-18 2022-07-20 Renault s.a.s Poutre de renfort d' ancrage de sièges et véhicule automobile associé
FR3118916A1 (fr) * 2021-01-18 2022-07-22 Renault S.A.S Poutre de renfort d’ancrage de sièges et véhicule automobile associé

Also Published As

Publication number Publication date
US10407101B2 (en) 2019-09-10
KR101947938B1 (ko) 2019-02-13
KR20170097744A (ko) 2017-08-28
US20170349217A1 (en) 2017-12-07
MX2017007719A (es) 2017-09-05
TW201632386A (zh) 2016-09-16
CN107107968B (zh) 2019-07-23
EP3219589A4 (en) 2018-08-22
EP3219589A1 (en) 2017-09-20
EP3219589B1 (en) 2020-09-16
TWI580601B (zh) 2017-05-01
CN107107968A (zh) 2017-08-29
JP6488487B2 (ja) 2019-03-27
JPWO2016104078A1 (ja) 2017-09-14
BR112017012652A2 (pt) 2017-12-26
CA2969555A1 (en) 2016-06-30
CA2969555C (en) 2019-10-22
ES2824509T3 (es) 2021-05-12
RU2672005C1 (ru) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6488487B2 (ja) 構造部材
JP6032374B2 (ja) プレス成形体の製造方法及びプレス成形装置
JP5569661B2 (ja) プレス成形体の製造方法および製造装置
JP5168023B2 (ja) バンパーリインフォースメントおよびその製造方法
JP6032373B2 (ja) 自動車車体用構造部材の製造方法及びプレス成形装置
KR101817022B1 (ko) 자동차 차체용 구조 부재
JP2010023658A (ja) バンパーリインフォースメントおよびその製造方法
JP4932688B2 (ja) 自動車車体用ルーフ補強材
JP6176046B2 (ja) 高張力鋼板製の溶接構造体
JP6613712B2 (ja) 自動車車体の構造部材、その製造方法および自動車車体、ならびに衝撃エネルギー吸収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2969555

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016566071

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/007719

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15535755

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017121804

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177020210

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017012652

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017012652

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170613