WO2016103630A1 - エポキシ樹脂組成物 - Google Patents

エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2016103630A1
WO2016103630A1 PCT/JP2015/006241 JP2015006241W WO2016103630A1 WO 2016103630 A1 WO2016103630 A1 WO 2016103630A1 JP 2015006241 W JP2015006241 W JP 2015006241W WO 2016103630 A1 WO2016103630 A1 WO 2016103630A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
tep
aromatic polyamine
type epoxy
Prior art date
Application number
PCT/JP2015/006241
Other languages
English (en)
French (fr)
Inventor
小野 和男
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to US15/525,537 priority Critical patent/US20170349696A1/en
Priority to KR1020177013641A priority patent/KR20170072288A/ko
Priority to EP15872204.1A priority patent/EP3243856A1/en
Priority to JP2016565898A priority patent/JPWO2016103630A1/ja
Priority to CN201580060900.8A priority patent/CN107075086A/zh
Publication of WO2016103630A1 publication Critical patent/WO2016103630A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/26Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C317/32Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • C08G59/3245Heterocylic compounds containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition having excellent thermal characteristics during curing and a novel inclusion compound.
  • a resin composition containing a glycidylamine type epoxy resin and an aromatic polyamine is often used as a matrix resin for a fiber-reinforced composite material because the cured product has excellent heat resistance and elastic modulus.
  • aromatic polyamines are known to have a slow cross-linking reaction, so they are often used in combination with curing accelerators such as tertiary amines, Lewis acid complexes, onium salts, imidazoles, and phenol compounds. .
  • TGDDM tetraglycidyldiaminodiphenylmethane
  • diethyltoluenediamine diethyltoluenediamine
  • 4,4′-DDS 4,4′-diaminodiphenylsulfone
  • 3,3′-diaminodiphenylsulfone (hereinafter also referred to as 3,3′-DDS) aromatic polyamine curing agent (43.4 parts by mass (ratio by mass: 70:15:15)) and curing acceleration
  • 3,3′-DDS 3,3′-diaminodiphenylsulfone
  • an epoxy resin composition for fiber-reinforced composite material comprising 1.0 part by mass of 4-tert-butylcatechol (TBC) is known.
  • An object of the present invention is to provide an epoxy resin composition containing a phenol compound that has a curing accelerating effect even when a low-reactivity curing agent is used and can reduce the amount of the curing agent used.
  • 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane (hereinafter referred to as “1,1,2,2-tetrakis (4-hydroxyphenyl) ethane”) as a composition containing a glycidylamine type epoxy resin and an aromatic polyamine. , which may be abbreviated as TEP), the inventors have found that the above problems can be solved, and have completed the present invention.
  • the present invention (1) an epoxy resin composition containing a glycidylamine type epoxy resin, an aromatic polyamine, and 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane; (2) The epoxy resin composition according to (1), wherein the aromatic polyamine and 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane form an inclusion compound, (3) The epoxy resin composition according to (1) or (2), wherein the aromatic polyamine is 4,4′-diaminodiphenylsulfone and / or 3,3′-diaminodiphenylsulfone, (4) The epoxy resin composition according to (1) or (2), wherein the glycidylamine type epoxy resin is a tri- or higher functional glycidylamine type epoxy resin, (5) The epoxy resin composition according to (4), wherein the tri- or higher functional glycidylamine-type epoxy resin is N, N, N ′, N′-tetraglycidyl 4,4′-diaminodiphen
  • Inclusion comprising (A) 4,4′-diaminodiphenylsulfone and / or 3,3′-diaminodiphenylsulfone and (B) 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane Relates to compounds.
  • the epoxy resin composition of the present invention When using the epoxy resin composition of the present invention, it is possible to reduce the amount of heat during curing and lower the curing temperature, so that it can be cured with less energy compared to an epoxy resin composition to which no TEP is added, Further, a cured product having physical properties equivalent to those of the prior art can be efficiently obtained with a curing agent in an amount less than the stoichiometric amount.
  • the epoxy resin composition of the present invention containing an aromatic polyamine clathrated with TEP is more stable than one epoxy resin composition containing an aromatic polyamine not clathrated with TEP. Is excellent.
  • thermogravimetry and the differential scanning calorimetry (it may be called TG-DSC) of the clathrate compound (A-1). It is a figure which shows the result of having measured TG-DSC of the inclusion compound (A-2). It is a figure which shows the result of having performed the differential scanning calorimetry (it may be called DSC) of the epoxy resin composition (B-1), (B-5), and (CB-1). It is a figure which shows the result of having measured DSC of the epoxy resin composition (B-4), (B-10), and (CB-4).
  • the glycidylamine type epoxy resin is not particularly limited as long as it is a compound having a glycidylamino group or a glycidylimino group in the molecule, and specific examples thereof include the compounds shown below. Since the obtained cured product is excellent in mechanical properties, heat resistance, environment resistance, and the like, a tri- or higher functional glycidylamine type epoxy resin is preferable, and tetraglycidyldiaminodiphenylmethane is more preferable.
  • the epoxy resin composition of the present invention may contain an epoxy resin having two or more epoxy groups in one molecule (hereinafter also referred to as “polyfunctional epoxy resin”). it can.
  • the epoxy resin means a prepolymer before curing, and includes monomers and oligomers.
  • Novolak type epoxy resins such as phenol novolak type epoxy resins and orthocresol novolak type epoxy resins obtained by epoxidizing novolak resins obtained by condensation or cocondensation with aliphatic aldehyde compounds such as acetaldehyde and propionaldehyde in the presence of an acidic catalyst ;
  • the aromatic polyamine used in the epoxy resin composition of the present invention has a structure in which an amino group having active hydrogen is directly bonded to an aromatic ring, and two or more active hydrogens of these amino groups are present in one molecule It is.
  • 4,4′-methylenedianiline, 4,4′-methylenebis (2-methylaniline), 4,4′-methylenebis (2-ethylaniline), 4,4′-methylenebis (2-isopropyl) Aniline 4,4'-methylenebis (2-chloroaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-methylenebis (2,6-diethylaniline), 4,4 ' -Methylenebis (2-isopropyl-6-methylaniline), 4,4'-methylenebis (2-ethyl-6-methylaniline), 4,4'-methylenebis (2-bromo-6-ethylaniline), 4,4 '-Methylenebis (N-methylaniline), 4,4'-methylenedianiline, 4,4
  • 4,4′-diaminodiphenylmethane and / or 3,3′-diaminodiphenylmethane are preferably used because of their high heat resistance and low melting point. Moreover, these can be used individually by 1 type or in mixture of 2 or more types.
  • the epoxy resin composition of the present invention contains TEP and an aromatic polyamine, but these can be used as one component, respectively, and an aromatic polyamine clathrated with TEP can also be used.
  • TEP and aromatic polyamine are not particularly limited as long as they interact with weak bonds such as hydrogen bonds to form a crystal lattice, and include salts.
  • Preferred examples of the aromatic polyamine used include 4,4′-diaminodiphenylmethane and 3,3′-diaminodiphenylmethane.
  • the ratio of the TEP and the aromatic polyamine forming the clathrate compound is not particularly limited as long as the clathrate compound can be formed, but the aromatic polyamine is 0.1 to 5.0 moles with respect to 1 mole of TEP. It is preferably 0.5 to 3.0 mol. It is possible to further contain a third component as the clathrate compound. In that case, the third component is preferably 40 mol% or less, more preferably 10 mol% or less, based on the total amount of the clathrate compound. In particular, it is most preferable that the third component is not included.
  • the clathrate compound used in the present invention can be obtained in high yield by directly mixing or kneading TEP and aromatic polyamine, or mixing in a solvent.
  • a solvent When using a solvent, it can be obtained by adding TEP and aromatic polyamine to the solvent, followed by heat treatment or heat reflux treatment with stirring as necessary, followed by precipitation.
  • Methanol and ethyl acetate can be used preferably.
  • Formation of the clathrate compound can be confirmed by TG-DSC, infrared absorption spectrum (IR), XRD, solid state NMR spectrum, X-ray structural analysis, and the like.
  • the composition of the clathrate compound and its ratio can be confirmed by thermal analysis, 1 H-NMR spectrum, high performance liquid chromatography (HPLC), elemental analysis and the like.
  • additive ingredients Furthermore, if necessary, various known curing agents, curing accelerators, plasticizers, extenders, fillers, reinforcing agents, pigments, flame retardants, thickeners, modifiers, release agents, etc. Additives can be blended.
  • the glycidylamine type epoxy resin is preferably in the range of 10 to 100% by weight, more preferably in the range of 10 to 60% by weight, and more preferably in the range of 20 to A range of 50% by weight is preferred. If it is less than 10% by weight, the self-adhesion may be insufficient or the heat resistance may be poor.
  • the amount of the aromatic polyamine used in the present invention is preferably in the range of 1.0 to 40.0 parts by weight and more preferably in the range of 4.0 to 28.0 parts by weight with respect to 100 parts by weight of the epoxy resin. .
  • the amine curing agent is used in such an amount that the active hydrogen equivalent (stoichiometric amount) is the same as the epoxy equivalent of the epoxy resin, but the stoichiometric amount or less in the epoxy resin composition of the present invention.
  • the amount of TEP used in the present invention is preferably in the range of 0.1 to 10 mol, more preferably in the range of 0.3 to 2.0, with respect to 1 mol of the aromatic polyamine contained in the epoxy resin composition.
  • the aromatic polyamine and TEP form an inclusion compound, the blending ratio is a ratio corresponding to the inclusion ratio.
  • the epoxy resin composition of the present invention comprises a glycidylamine type epoxy resin, an aromatic polyamine, TEP and other components as required, or a glycidylamine type epoxy resin, an inclusion compound of an aromatic polyamine and TEP, and if necessary
  • the other components are mixed and mixed or kneaded at room temperature so that each component is sufficiently dispersed.
  • a stirrer such as a kneader may be used, a spatula or the like may be used, and the mixture may be heated and melted at a temperature at which no thickening or gelation occurs so that a sufficient mixed state is formed. Good.
  • the cured product of the present invention is a product obtained by curing the epoxy resin composition by heat treatment.
  • the curing temperature depends on the components to be mixed and the purpose, but is preferably in the range of 120 to 320 ° C.
  • the reaction temperature exceeds 320 ° C, the epoxy resin itself has a structure different from the intended one due to the self-opening reaction, and the mechanical properties such as glass transition temperature and elastic modulus may be lowered.
  • the reaction temperature is less than 120 ° C., the addition reaction may not proceed sufficiently.
  • the reaction time is usually in the range of 2 to 12 hours.
  • a plurality of epoxy resins and curing agents can be used in combination to obtain a curing temperature and physical properties according to the purpose.
  • the epoxy resin composition of the present invention can be suitably used for production of a prepreg or a fiber-reinforced composite material in combination with reinforcing fibers.
  • a prepreg can be prepared by dissolving the epoxy resin composition used as a matrix resin in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnating the reinforcing fiber (wet method), or by lowering the viscosity of the matrix resin by heating. It can be produced by a known method such as a hot melt method (dry method) for impregnating reinforcing fibers.
  • the epoxy resin composition of the present invention can be used for applications such as adhesives, semiconductor encapsulants, laminated boards for printed wiring boards, varnishes, powder paints, casting materials, inks, in addition to prepregs and fiber reinforced composite materials. It can be preferably used.
  • thermogravimetric measurement device product name: TGA-DSC1, manufactured by METTLER TOLEDO
  • nitrogen purge nitrogen flow rate 50 mL / min
  • Min measured in the measurement temperature range of room temperature to 500 ° C.
  • DSC differential scanning calorimetry
  • Example 1 200 ml of ethyl acetate was added to 40.0 g of TEP (product name: TEP-DF, manufactured by Asahi Organic Materials Co., Ltd.) and stirred, and a solution of 49.9 g of 4,4′-DDS and 100 ml of ethyl acetate was added thereto at room temperature. The solution was added dropwise and stirred for 3 hours after the addition. After cooling, filtration and vacuum drying were performed to obtain an inclusion compound (A-1) of TEP and 4,4′-DDS (molar ratio 1: 2) in a yield of 91.4%. TG-DSC was measured for the obtained (A-1), and the result is shown in FIG. From FIG. 1, it was found that the release temperature of 4,4′-DDS was 241.2 ° C.
  • TEP product name: TEP-DF, manufactured by Asahi Organic Materials Co., Ltd.
  • Example 2 20 ml of ethyl acetate was added to 4.00 g of TEP and stirred, and a solution of 4.99 g of 3,3′-DDS and 20 ml of ethyl acetate was added dropwise thereto at room temperature. After the addition, the mixture was stirred for 3 hours under reflux. After cooling, filtration and vacuum drying were performed to obtain an inclusion compound (A-2) of TEP and 3,3′-DDS (molar ratio 1: 2) in a yield of 90.4%. TG-DSC was measured for the obtained (A-2), and the result is shown in FIG. From FIG. 2, it was found that the release temperature of 4,4′-DDS was 245.7 ° C.
  • Example 7 to [Example 12] 2.5 g of TGDDM, 4,4′-DDS or 3,3′-DDS, and TEP were kneaded at a blending ratio shown in Table 2 for 10 minutes at room temperature, and epoxy resin compositions (B-5) to (B- 10) was prepared.
  • the epoxy resin composition to which TEP is added has a lower curing start temperature, peak temperature of reaction heat, and calorie than an epoxy resin composition to which nothing is added, It was found that the amount of decrease in the amount of heat becomes particularly large as the amount of addition increases. That is, the epoxy resin composition of the present invention can be cured at a lower temperature and with a smaller amount of energy. Further, it has been clarified that the curing reaction proceeds even with the addition of a curing agent of less than the stoichiometric amount (4 to 28 phr).
  • the obtained epoxy resin compositions (B-3), (B-9), and (CB-3) are stored at 40 ° C., and the number of days until the solidification is visually confirmed is measured. Was evaluated. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)

Abstract

 反応性を低い硬化剤を用いた場合でも硬化促進効果を有し、硬化剤の使用量を減らすことができるフェノール化合物を含有するエポキシ樹脂を提供することを課題とする。 グリシジルアミン型エポキシ樹脂、芳香族ポリアミン、及び1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンを含有するエポキシ樹脂組成物を用いる。また、芳香族ポリアミン及び1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンは、包接化合物を形成してもよい。

Description

エポキシ樹脂組成物
 本発明は、硬化時の熱的特性に優れたエポキシ樹脂組成物及び新規な包接化合物に関する。本願は、2014年12月22日に出願された日本国特許出願第2014-259256号に対し優先権を主張し、その内容をここに援用する。
 グリシジルアミン型エポキシ樹脂と芳香族ポリアミンを含む樹脂組成物は、硬化物の耐熱性や弾性率が優れることから、繊維強化複合材料のマトリクス樹脂としてしばしば用いられている。一般的に、芳香族ポリアミンは架橋反応の進行が遅いことが知られているため、三級アミン、ルイス酸錯体、オニウム塩、イミダゾール、フェノール化合物などの硬化促進剤を配合して用いることが多い。
 硬化促進剤としてフェノール化合物を用いる例として、テトラグリシジルジアミノジフェニルメタン(以下、TGDDMともいう)100質量部と、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルスルホン(以下、4,4’-DDSともいう)、及び3,3’-ジアミノジフェニルスルホン(以下、3,3’-DDSともいう)からなる芳香族ポリアミン硬化剤43.4質量部(質量部比:70:15:15)と、硬化促進剤として4-tert-ブチルカテコール(TBC)1.0質量部からなる繊維強化複合材料用エポキシ樹脂組成物が知られている。(特許文献1を参照)
WO2003/040206パンフレット
 4,4’-DDS等の反応性の低い硬化剤を用いた場合の硬化促進剤として実用的なフェノール化合物としてはTBCしか知られておらず、TBCを用いた場合でも、硬化剤を化学量論量用いる必要があり、取り扱いが困難であるという問題があった。
 本発明は、反応性の低い硬化剤を用いた場合でも硬化促進効果を有し、硬化剤の使用量を減らすことができるフェノール化合物を含むエポキシ樹脂組成物を提供することを課題とする。
 本発明者らは、上記課題達成のために鋭意検討した結果、グリシジルアミン型エポキシ樹脂と芳香族ポリアミンを含む組成物に、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン(以下、TEPと略すことがある)を添加することで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)グリシジルアミン型エポキシ樹脂、芳香族ポリアミン、及び1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンを含有するエポキシ樹脂組成物、
(2)芳香族ポリアミンと1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンが包接化合物を形成している、(1)に記載のエポキシ樹脂組成物、
(3)芳香族ポリアミンが、4,4’-ジアミノジフェニルスルホン及び/又は3,3’-ジアミノジフェニルスルホンである、(1)又は(2)に記載のエポキシ樹脂組成物、
(4)グリシジルアミン型エポキシ樹脂が、3官能以上のグリシジルアミン型エポキシ樹脂である、(1)又は(2)に記載のエポキシ樹脂組成物、
(5)前記3官能以上のグリシジルアミン型エポキシ樹脂が、N,N,N’,N’-テトラグリシジル4,4’-ジアミノジフェニルメタンである、(4)に記載のエポキシ樹脂組成物、及び
(6)(1)~(5)のいずれかに記載のエポキシ樹脂組成物を硬化させて得られる硬化物、
に関する。
 さらに、
(7)(A)4,4’-ジアミノジフェニルスルホン及び/又は3,3’-ジアミノジフェニルスルホン、及び(B)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンを含む包接化合物に関する。
 本発明のエポキシ樹脂組成物を用いると、硬化時の熱量低減や硬化温度の低下が可能なため、TEPが添加されていないエポキシ樹脂組成物と比べて、より少ないエネルギーで硬化させることができ、さらに化学量論量以下の量の硬化剤で効率よく従来と同等の物性を有する硬化物を得ることができる。また、TEPで包接化された芳香族ポリアミンを含む本発明のエポキシ樹脂組成物は、TEPで包接化されていない芳香族ポリアミンを含むエポキシ樹脂組成物に比して一液安定性の点で優れている。
包接化合物(A-1)の熱重量測定・示差走査熱量測定(TG-DSCということがある)を行った結果を示す図である。 包接化合物(A-2)のTG-DSCを測定した結果を示す図である。 エポキシ樹脂組成物(B-1)、(B-5)、及び(CB-1)の示差走査熱量測定(DSCということがある)を行った結果を示す図である。 エポキシ樹脂組成物(B-4)、(B-10)、及び(CB-4)のDSCを測定した結果を示す図である。
(グリシジルアミン型エポキシ樹脂)
 グリシジルアミン型エポキシ樹脂としては、分子内にグリシジルアミノ基、またはグリシジルイミノ基を有する化合物であれば、特に限定されないが、具体的には、以下に示した化合物等を例示することができる。得られる硬化物の機械的特性、耐熱性および耐環境性等が優れることから、3官能以上のグリシジルアミン型エポキシ樹脂が好ましく、さらに、テトラグリシジルジアミノジフェニルメタンが好ましい。
Figure JPOXMLDOC01-appb-C000001
 テトラグリシジルジアミノジフェニルメタンの市販品としては、スミエポキシ(登録商標)ELM434(住友化学(株)製)、“アラルダイト(登録商標)”MY720、“アラルダイト(登録商標)”MY721、“アラルダイト(登録商標)”MY9512、“アラルダイト(登録商標)”MY9663(以上ハンツマン・アドバンスト・マテリアルズ社製)、jER(登録商標)604(三菱化学社製)、および“エポトート(登録商標)”YH―434(新日鉄化学(株)製)などが挙げられる。
(その他のエポキシ樹脂)
 本発明のエポキシ樹脂組成物には、上記グリシジルアミン型エポキシ樹脂以外に、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(以下、「多官能エポキシ樹脂」ともいう)を配合することができる。ここでエポキシ樹脂とは、硬化前のプレポリマーを意味し、モノマー及びオリゴマーを含む。具体的には、
フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化した、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;
上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したトリフェニルメタン型エポキシ樹脂;
上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化した共重合型エポキシ樹脂;
ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;
アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;
スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;
ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;
ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;
フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステル型エポキシ樹脂;
アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジルアミン型エポキシ樹脂;
ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したジシクロペンタジエン型エポキシ樹脂;
分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;
パラキシリレン変性フェノール樹脂のグリシジルエーテル;
メタキシリレン変性フェノール樹脂のグリシジルエーテル;
テルペン変性フェノール樹脂のグリシジルエーテル;
ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテル;
シクロペンタジエン変性フェノール樹脂のグリシジルエーテル;
多環芳香環変性フェノール樹脂のグリシジルエーテル;
ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;
ハロゲン化フェノールノボラック型エポキシ樹脂;
ハイドロキノン型エポキシ樹脂;
トリメチロールプロパン型エポキシ樹脂;
オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;
ジフェニルメタン型エポキシ樹脂;
フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物であるアラルキル型エポキシ樹脂など
が挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。
(芳香族ポリアミン)
 本発明のエポキシ樹脂組成物で用いられる芳香族ポリアミンは、活性水素を有するアミノ基が芳香環に直接結合した構造を持ち、それらのアミノ基の活性水素が1分子内に2個以上存在する化合物である。
 具体的には、4,4’-メチレンジアニリン、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(2-イソプロピルアニリン)、4,4’-メチレンビス(2-クロロアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2-イソプロピル-6-メチルアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、4,4’-メチレンビス(2-ブロモ-6-エチルアニリン)、4,4’-メチレンビス(N-メチルアニリン)、4,4’-メチレンビス(N-エチルアニリン)、4,4’-メチレンビス(N-sec-ブチルアニリン)、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-シクロヘキシリデンジアニリン、4,4’-(9-フルオレニリデン)ジアニリン、4,4’-(9-フルオレニリデン)ビス(N-メチルアニリン)、4,4’-ジアミノベンズアニリド、4,4’-オキシジアニリン、2,4-ビス(4-アミノフェニルメチル)アニリン、4-メチル-m-フェニレンジアミン、2-メチル-m-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、2-クロロ-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ジエチルトルエンジアミン(主として2,4-ジエチル-6-メチル-m-フェニレンジアミンと4,6-ジエチル-2-メチル-m-フェニレンジアミンからなる混合物)、ビス(メチルチオ)トルエンジアミン(主として6-メチル-2,4-ビス(メチルチオ)-m-フェニレンジアミンと2-メチル-4,6-ビス(メチルチオ)-m-フェニレンジアミンからなる混合物)、4,6-ジメチル-m-フェニレンジアミン、トリメチレンビス(4-アミノベンゾエート)等が挙げられる。中でも、耐熱性が高く、融点が低いことから、4,4’-ジアミノジフェニルメタン及び/又は3,3’-ジアミノジフェニルメタンを用いるのが好ましい。また、これらは、1種単独で、又は2種以上を混合して用いることができる。
(包接化合物)
 本発明のエポキシ樹脂組成物では、TEPと芳香族ポリアミンを含有するが、それらをそれぞれ一成分として用いることができる他、TEPにより包接化された芳香族ポリアミンを用いることもできる。TEPと芳香族ポリアミンは、水素結合等の弱い結合で相互作用をして結晶格子を形成していれば特に制限されず、塩も含まれる。用いられる芳香族ポリアミンとしては、4,4’-ジアミノジフェニルメタン、又は3,3’-ジアミノジフェニルメタン等を好ましく例示することができる。
 包接化合物を形成するTEPと芳香族ポリアミンとの比率は、包接化合物を形成しうる限り特に制限はないが、TEP1モルに対して、芳香族ポリアミンが0.1~5.0モルであることが好ましく、0.5~3.0モルであることがより好ましい。包接化合物としてさらに第3成分を含有することが可能であり、その場合には、第3成分は包接化合物全量に対して40モル%以下であることが好ましく、さらには10モル%以下が好ましく、特に、第3成分を含まないことが最も好ましい。
 本発明に用いられる包接化合物は、TEPと芳香族ポリアミンとを直接混合または混練するか、あるいは溶媒中で混合することにより高収率で得ることができる。溶媒を使用する場合は、TEP及び芳香族ポリアミンを溶媒に添加後、必要に応じて攪拌しながら、加熱処理又は加熱還流処理を行った後、析出させることにより得ることができる。溶媒としては特に限定はないがメタノール、酢酸エチルを好ましく用いることができる。
 包接化合物の形成は、TG-DSC、赤外吸収スペクトル(IR)、XRD、固体NMRスペクトル、X線構造解析等により確認できる。また、包接化合物の組成及びその比率は、熱分析、H-NMRスペクトル、高速液体クロマトグラフィー(HPLC)、元素分析等により確認することができる。
(その他の成分)
 さらに必要に応じて、さらに公知の硬化剤、硬化促進剤、可塑剤、増量剤、充填剤、補強剤、顔料、難燃化剤、増粘剤、改質剤、離型剤などの種々の添加剤を配合することができる。
(配合割合)
 本発明のエポキシ樹脂組成物において、グリシジルアミン型エポキシ樹脂は、使用する全エポキシ樹脂のうち10~100重量%の範囲であるのが好ましく、さらに10~60重量%の範囲が好ましく、さらに20~50重量%の範囲が好ましい。10重量%に満たない場合は、自己接着性が十分でない場合や耐熱性に劣る場合がある。
 本発明に用いられる芳香族ポリアミンの量は、エポキシ樹脂100重量部に対して、1.0~40.0重量部の範囲が好ましく、さらに、4.0~28.0重量部の範囲が好ましい。一般に、アミン系硬化剤は、エポキシ樹脂のエポキシ当量と同量の活性水素当量(化学量論量)となるような量が用いられるが、本発明のエポキシ樹脂組成物では化学量論量以下でよい。
 本発明に用いられるTEPの量は、エポキシ樹脂組成物に含まれる芳香族ポリアミン1モルに対して、0.1~10モルの範囲が好ましく、0.3~2.0の範囲がさらに好ましい。芳香族ポリアミンとTEPとが包接化合物を形成している場合、その配合比率は包接比に応じた比率となる。
(本発明の組成物及びその硬化物の製造)
 本発明のエポキシ樹脂組成物は、グリシジルアミン型エポキシ樹脂、芳香族ポリアミン、TEP及び必要に応じて他の成分、あるいは、グリシジルアミン型エポキシ樹脂、芳香族ポリアミンとTEPの包接化合物及び必要に応じて他の成分を混合し、各成分が十分に分散するよう室温にて混合又は混練して得られる。混合又は混練には、ニーダー等の攪拌機を使用しても、ヘラ等を用いてもよく、十分な混合状態が形成されるよう増粘、ゲル化の起こらない温度で加熱して溶融させてもよい。
 本発明の硬化物は、前記エポキシ樹脂組成物を加熱処理して硬化させたものである。硬化温度は混合する成分や目的にもよるが、120~320℃の範囲が好ましい。反応温度が320℃を超えるとエポキシ樹脂自体の自己開環反応により目的とは異なる構造となり、ガラス転移温度や弾性率等の機械物性が低下することがある。一方、反応温度が120℃未満では付加反応が十分に進行しないことがある。反応時間は、通常2~12時間の範囲である。複数のエポキシ樹脂や硬化剤を併用して目的に応じた硬化温度及び物性を得ることができる。
(使用の態様)
 本発明のエポキシ樹脂組成物は、強化繊維と組み合わせて、プリプレグや繊維強化複合材料の製造に好適に使用することができる。例えば、プリプレグは、マトリックス樹脂として用いられる前記エポキシ樹脂組成物をメチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、強化繊維に含浸させる方法(ウェット法)や、マトリックス樹脂を加熱により低粘度化し、強化繊維に含浸させるホットメルト法(ドライ法)等、公知の方法により作製することができる。
 本発明のエポキシ樹脂組成物は、プリプレグや繊維強化複合材料の他に、接着剤、半導体封止材、プリント配線板用積層板、ワニス、粉体塗料、注型材料、インク等の用途にも好適に使用することができる。
 以下に実施例により本発明を説明するが、本発明の技術的範囲はこれらに限定されるものではない。
[分析方法]
<熱重量測定・示差走査熱量測定(TG-DSC)> 
 熱重量測定装置(製品名:TGA-DSC1、メトラー・トレド社製)を用いて、アルミ容器内に約3mgの結晶を設置し、窒素パージ下(窒素の流速50mL/分)昇温速度20℃/分、室温~500℃の測定温度範囲で測定した。
<示差走査熱量測定(DSC)>
 差走査熱量測定装置(製品名:DSC1、メトラー・トレド社製)を用いて、アルミ容器内に約8mgの結晶を設置し、窒素パージ下(窒素の流速50mL/分)昇温速度10℃/分、30℃~350℃の測定温度範囲で測定した。
[実施例1]
 TEP(製品名:TEP-DF、旭有機材工業(株)製)40.0gに酢酸エチル200mlを加えて撹拌し、そこに4,4’-DDS49.9gと酢酸エチル100mlの溶液を室温で滴下し、添加後、3時間、還流下に撹拌した。冷却後、ろ過、真空乾燥を行い、TEPと4,4’-DDS(モル比1:2)の包接化合物(A-1)を収率91.4%で得た。得られた(A-1)につき、TG-DSCを測定し、その結果を図1に示す。図1より、4,4’-DDSの放出温度は241.2℃であることがわかった。
[実施例2]
 TEP4.00gに酢酸エチル20mlを加えて撹拌し、そこに3,3’-DDS4.99gと酢酸エチル20mlの溶液を室温で滴下し、添加後、3時間、還流下に撹拌を行った。冷却後、ろ過・真空乾燥を行い、TEPと3,3’-DDS(モル比1:2)の包接化合物(A-2)を収率90.4%で得た。得られた(A-2)につき、TG-DSCを測定し、その結果を図2に示す。図2より、4,4’-DDSの放出温度は245.7℃であることがわかった。
[実施例3]~[実施例6]
 TGDDM2.5gと、包接化合物(A-1)又は(A-2)を、表1に示す配合割合で室温にて10分間混練し、エポキシ樹脂組成物(B-1)~(B-4)を調製した。
Figure JPOXMLDOC01-appb-T000001

*1 括弧内の数字は、樹脂組成物中における全エポキシ樹脂の重量を100としたときの包接化合物に含まれる4,4’-DDS又は3,3’-DDS重量部を表す(単位:phr)
[実施例7]~[実施例12]
 TGDDM2.5gと、4,4’-DDS又は3,3’-DDS、及びTEPを表2に示す配合割合で室温にて10分間混練し、エポキシ樹脂組成物(B-5)~(B-10)を調製した。
Figure JPOXMLDOC01-appb-T000002

*1 括弧内の数字は、樹脂組成物中における全エポキシ樹脂の重量を100としたときの4,4’-DDS又は3,3’-DDS重量部を表す(単位:phr)
*2 括弧内の数字は、用いるDDS1モルに対する、用いるTEPのモル数を示す
[比較例1]~[比較例4]
 TEPを用いない以外は、実施例7、実施例10、実施例11、実施例12と同様の方法で、エポキシ樹脂(CB-1)~(CB-4)を調製した。
 得られたエポキシ樹脂組成物(B-1)~(B-10)、及び(CB-1)~(CB-4)の一部をそれぞれ採取し、示差走査熱量計でエポキシ樹脂組成物の硬化反応に基づく発熱を測定した。その結果として、各々の硬化開始温度(オンセット)、反応熱のピーク温度、及び100℃以上350℃以下における熱量(添加したTEPの重量を除いて換算した1重量部あたりの熱量積分値)を、表3に示す。
 エポキシ樹脂組成物(B-1)、(B-5)、及び(CB-1)のDSCチャートを図3に、(B-4)、(B-10)、及び(CB-4)のDSCチャートを図4に示す。図中、横軸は測定温度(℃)、縦軸は発熱量(Heat Flow/mW)をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、TEPが添加されているエポキシ樹脂組成物は、何も添加されていないエポキシ樹脂組成物と比較して、硬化開始温度、反応熱のピーク温度及び熱量が低下し、TEPの添加量の増加に伴い、特に熱量の減少幅が大きくなることがわかった。即ち、本発明のエポキシ樹脂組成物は、より低温、かつ少ないエネルギー量で硬化させることができる。さらに、化学量論量以下(4~28phr)の硬化剤の添加であっても硬化反応が進行することも明らかとなった。
 得られたエポキシ樹脂組成物(B-3)、(B-9)、及び(CB-3)を40℃で保存し、目視で固化を確認するまでの日数を測定することにより、保存安定性の評価を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、TEPと4,4’-DDSの包接化合物を添加したエポキシ樹脂組成物(B-3)は、TEPを用いないエポキシ樹脂組成物(CB-3)より固化までの日数が長く、一液安定性が向上することがわかった。一方、TEPを4,4’-DDSと包接化せずに添加したエポキシ樹脂組成物(B-9)は、TEPを用いないエポキシ樹脂組成物(CB-3)よりも早く固化することから、TEPに硬化促進効果があることがわかった。

Claims (7)

  1. グリシジルアミン型エポキシ樹脂、芳香族ポリアミン、及び1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンを含有するエポキシ樹脂組成物。
  2. 芳香族ポリアミンと1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンが包接化合物を形成している、請求項1に記載のエポキシ樹脂組成物。
  3. 芳香族ポリアミンが、4,4’-ジアミノジフェニルスルホン及び/又は3,3’-ジアミノジフェニルスルホンである、請求項1又は2に記載のエポキシ樹脂組成物。
  4. グリシジルアミン型エポキシ樹脂が、3官能以上のグリシジルアミン型エポキシ樹脂である、請求項1又は2に記載のエポキシ樹脂組成物。
  5. 前記3官能以上のグリシジルアミン型エポキシ樹脂が、N,N,N’,N’-テトラグリシジル4,4’-ジアミノジフェニルメタンである、請求項4に記載のエポキシ樹脂組成物。
  6. 請求項1~5のいずれかに記載のエポキシ樹脂組成物を硬化させて得られる硬化物。
  7. (A)4,4’-ジアミノジフェニルスルホン及び/又は3,3’-ジアミノジフェニルスルホン、及び(B)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンを含む包接化合物。
PCT/JP2015/006241 2014-12-22 2015-12-15 エポキシ樹脂組成物 WO2016103630A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/525,537 US20170349696A1 (en) 2014-12-22 2015-12-15 Epoxy resin composition
KR1020177013641A KR20170072288A (ko) 2014-12-22 2015-12-15 에폭시 수지 조성물
EP15872204.1A EP3243856A1 (en) 2014-12-22 2015-12-15 Epoxy resin composition
JP2016565898A JPWO2016103630A1 (ja) 2014-12-22 2015-12-15 エポキシ樹脂組成物
CN201580060900.8A CN107075086A (zh) 2014-12-22 2015-12-15 环氧树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-259256 2014-12-22
JP2014259256 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016103630A1 true WO2016103630A1 (ja) 2016-06-30

Family

ID=56149696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006241 WO2016103630A1 (ja) 2014-12-22 2015-12-15 エポキシ樹脂組成物

Country Status (8)

Country Link
US (1) US20170349696A1 (ja)
EP (1) EP3243856A1 (ja)
JP (1) JPWO2016103630A1 (ja)
KR (1) KR20170072288A (ja)
CN (1) CN107075086A (ja)
MA (1) MA41308A (ja)
TW (1) TW201623432A (ja)
WO (1) WO2016103630A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202018008A (zh) * 2018-08-17 2020-05-16 德商漢高智慧財產控股公司 液體壓縮成型或封裝組合物
GB2580087B (en) * 2018-12-20 2022-09-07 Hexcel Composites Ltd Improved thermocurable moulding process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171449A (ja) * 1996-12-27 1999-03-16 Nippon Soda Co Ltd エポキシ樹脂用硬化剤・硬化促進剤及びエポキシ樹脂組成物
JP2009191231A (ja) * 2008-02-18 2009-08-27 Sekisui Chem Co Ltd 電子部品接合用接着剤
JP2010215863A (ja) * 2009-03-18 2010-09-30 Sekisui Chem Co Ltd 電子部品用接着剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029469A1 (fr) * 1996-12-27 1998-07-09 Nippon Soda Co., Ltd. Agents de durcissement de resine epoxy, accelerateur de durcissement, et composition de resine epoxy
US20040247882A1 (en) * 2001-11-07 2004-12-09 Shinji Kouchi Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
JP5669289B2 (ja) * 2008-05-23 2015-02-12 新日鉄住金化学株式会社 新規エポキシ樹脂及びその製造方法、該エポキシ樹脂を必須成分とするエポキシ樹脂組成物及び該エポキシ樹脂を必須成分とする硬化物
WO2011045941A1 (ja) * 2009-10-16 2011-04-21 日本曹達株式会社 エポキシ硬化樹脂形成用組成物及びその硬化物
KR101732539B1 (ko) * 2010-04-09 2017-05-24 주식회사 케이씨씨 유리전이온도가 높은 분체도료 조성물
JP2014185115A (ja) * 2013-03-25 2014-10-02 Nippon Soda Co Ltd 新規な包接化合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171449A (ja) * 1996-12-27 1999-03-16 Nippon Soda Co Ltd エポキシ樹脂用硬化剤・硬化促進剤及びエポキシ樹脂組成物
JP2009191231A (ja) * 2008-02-18 2009-08-27 Sekisui Chem Co Ltd 電子部品接合用接着剤
JP2010215863A (ja) * 2009-03-18 2010-09-30 Sekisui Chem Co Ltd 電子部品用接着剤

Also Published As

Publication number Publication date
US20170349696A1 (en) 2017-12-07
CN107075086A (zh) 2017-08-18
EP3243856A1 (en) 2017-11-15
TW201623432A (zh) 2016-07-01
MA41308A (fr) 2017-11-14
JPWO2016103630A1 (ja) 2017-08-10
KR20170072288A (ko) 2017-06-26

Similar Documents

Publication Publication Date Title
JP5475223B2 (ja) 一液型シアネート−エポキシ複合樹脂組成物、その硬化物及びその製造方法、並びにそれを用いた封止用材料及び接着剤
JP5415947B2 (ja) 一液型シアネート−エポキシ複合樹脂組成物
JP5934245B2 (ja) 硬化性組成物
TW201124437A (en) Polyoxazolidone resins
EP2426159B1 (en) Low temperature curable epoxy compositions
JP6077496B2 (ja) 一成分エポキシ樹脂組成物中の硬化剤としてのアミンおよびポリマーフェノールならびにそれらの使用
TW201200535A (en) Curable compositions
JP7012012B2 (ja) 新規ホスホニウム化合物
JP2015212399A (ja) エポキシ樹脂組成物
WO2016103630A1 (ja) エポキシ樹脂組成物
TW201136974A (en) Adducts based on divinylarene oxides
JP6620981B2 (ja) 熱硬化性成形材料、その製造方法および半導体封止材
JP7038565B2 (ja) 熱硬化性エポキシ樹脂組成物、接着剤、エポキシ樹脂硬化物、塩、及び硬化剤
JP7202136B2 (ja) N-アルキル置換アミノピリジン・フタル酸塩及びそれを含むエポキシ樹脂組成物
WO2016117298A1 (ja) 包接化合物の結晶多形、それを含有する硬化性組成物、及び硬化物
JP2015530463A (ja) 硬化性エポキシ樹脂組成物
JP7166525B2 (ja) エポキシ樹脂組成物
JP6251407B2 (ja) 包接化合物の結晶、その製造方法及び硬化性樹脂組成物
JP7465926B2 (ja) エポキシ樹脂、その製造方法、それを含むエポキシ組成物及びその用途
US20240166796A1 (en) Epoxy resin for semiconductor adhesive, preparing method thereof and composition comprising the same
WO2022004596A1 (ja) ベンゾオキサジン化合物含有混合物、これを含む硬化性組成物および該硬化性組成物を硬化させてなる硬化物
WO2023037818A1 (ja) 硬化性樹脂組成物、ワニス、硬化物、硬化物の製造方法
JP2022013418A (ja) ベンゾオキサジン化合物含有混合物、これを含む硬化性組成物および該硬化性組成物を硬化させてなる硬化物
JP2022013415A (ja) ベンゾオキサジン化合物含有混合物の製造方法
JP2014162854A (ja) 樹脂組成物及び硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565898

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15525537

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015872204

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177013641

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE