WO2016103473A1 - 核酸分析用基板、核酸分析用フローセルおよび核酸分析装置 - Google Patents

核酸分析用基板、核酸分析用フローセルおよび核酸分析装置 Download PDF

Info

Publication number
WO2016103473A1
WO2016103473A1 PCT/JP2014/084584 JP2014084584W WO2016103473A1 WO 2016103473 A1 WO2016103473 A1 WO 2016103473A1 JP 2014084584 W JP2014084584 W JP 2014084584W WO 2016103473 A1 WO2016103473 A1 WO 2016103473A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
nucleic acid
substrate
region
acid analysis
Prior art date
Application number
PCT/JP2014/084584
Other languages
English (en)
French (fr)
Inventor
雄一郎 大田
庄司 智広
横山 徹
奈良原 正俊
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2016565817A priority Critical patent/JP6346308B2/ja
Priority to CN201480083088.6A priority patent/CN107735496B/zh
Priority to DE112014007175.7T priority patent/DE112014007175B4/de
Priority to PCT/JP2014/084584 priority patent/WO2016103473A1/ja
Priority to GB1708820.4A priority patent/GB2548733B/en
Priority to US15/533,087 priority patent/US10711294B2/en
Publication of WO2016103473A1 publication Critical patent/WO2016103473A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the present invention relates to a nucleic acid analysis substrate, a nucleic acid analysis flow cell, and a nucleic acid analysis apparatus.
  • a method for analyzing the base sequence of a nucleic acid a method for analyzing the base sequences of a number of DNA fragments in parallel is known.
  • this method for example, a large number of adsorbing parts that can adsorb DNA fragments and the like and non-adsorbing parts that are difficult to adsorb are formed on a substrate by using a photolithography technique, an etching technique, and the like, and the adsorption part becomes an analysis target. Analysis is performed by adsorbing DNA fragments or the like (for example, see Patent Document 1).
  • excitation light is irradiated to an analysis region including a large number of DNA fragments into which a substrate with a fluorescent dye corresponding to a base is introduced, and the fluorescence emitted from each DNA fragment is detected to identify the base.
  • excitation light is irradiated to an analysis region including a large number of DNA fragments into which a substrate with a fluorescent dye corresponding to a base is introduced, and the fluorescence emitted from each DNA fragment is detected to identify the base.
  • each analysis region is analyzed by the same operation as described above, and the base sequence can be determined efficiently by repeating this.
  • the analysis region when the same analysis region is repeatedly analyzed, the analysis region may be displaced in each cycle, and this positional displacement causes the DNA fragments to be associated between the cycles. There is a possibility that a correct base sequence cannot be obtained due to difficulty.
  • the present invention has been made based on the circumstances as described above, and the purpose thereof is a nucleic acid capable of reproducibly determining the position of the analysis region even when the same analysis region is repeatedly aligned.
  • An object of the present invention is to provide an analysis substrate, a flow cell for nucleic acid analysis and a nucleic acid analysis apparatus provided with the nucleic acid analysis substrate.
  • a nucleic acid analysis substrate having a plurality of analysis regions partitioned on a substrate and measuring each analysis region in turn,
  • the analysis region is composed of an adsorption part capable of adsorbing a DNA fragment or a carrier carrying the DNA fragment, and a non-adsorption part other than the adsorption part,
  • the non-adsorbing part is a nucleic acid analysis substrate characterized in that a marker part having a predetermined shape for determining the position of the analysis region is provided at least in part.
  • Another invention made in order to solve the said subject is: The nucleic acid analysis substrate; A light-transmitting cover disposed so as to face the nucleic acid analysis substrate and transmitting light; A plurality of spacers provided between the nucleic acid analysis substrate and the light-transmitting cover and disposed substantially parallel to and away from each other; Formed in a portion sandwiched between adjacent spacers between the nucleic acid analysis substrate and the light-transmitting cover, and a flow path through which a fluid flows; An inlet opening at one end of the flow path and injecting the fluid; It is a flow cell for nucleic acid analysis provided with the discharge port which opens to the other end on the opposite side to the said injection port of the said flow path, and discharges
  • the nucleic acid analysis flow cell A flow means for flowing a fluid through the flow path of the nucleic acid analysis flow cell; Temperature control means for adjusting the reaction temperature of the DNA fragment; An irradiating means for irradiating an analysis region to be analyzed through a light-transmitting cover with excitation light; Detecting the fluorescence emitted from the DNA fragment by irradiation of the excitation light through the light-transmitting cover, and detecting the position of the marker portion in the analysis region from the detected fluorescence;
  • the nucleic acid analyzer is provided with a moving means on which the flow cell for nucleic acid analysis is placed and moves the analysis region to a predetermined position with the marker portion as a mark.
  • the “predetermined shape” means a predetermined planar view shape (for example, a cross shape) used for specifying a position in the analysis region.
  • the “predetermined position” means a predetermined position where the analysis region to be analyzed is moved.
  • “a plurality of spacers” includes not only a spacer composed of a plurality of members but also a spacer composed of a single member such as a hollow sheet formed by punching a sheet to form a plurality of spacer portions. It is a concept.
  • the present invention provides a nucleic acid analysis substrate capable of reproducibly determining the position of the analysis region even when the same analysis region is repeatedly aligned, and a nucleic acid analysis flow cell comprising the nucleic acid analysis substrate.
  • a nucleic acid analyzer can be provided.
  • FIG. 1 is a schematic plan view showing a first embodiment of a nucleic acid analysis substrate of the present invention. It is a schematic plan view which shows 2nd Embodiment of the board
  • the nucleic acid analysis substrate of the present invention is a nucleic acid analysis substrate having a plurality of analysis regions partitioned on the substrate, and measuring each of the analysis regions in turn, wherein the analysis region includes DNA fragments or
  • the adsorbing part capable of adsorbing the carrier carrying the DNA fragment (the DNA fragment and the carrier are collectively referred to as “analysis sample” hereinafter) and a non-adsorbing part other than the adsorbing part
  • the non-adsorptive part includes a marker part having a predetermined shape for determining the position of the analysis region at least in part.
  • FIG. 1 is a schematic plan view showing a first embodiment of the substrate for nucleic acid analysis of the present invention.
  • the nucleic acid analysis substrate 100 of the present embodiment schematically includes a substrate 10, a reaction region 11, an analysis region 12, an adsorption unit 13, and a non-adsorption unit 14.
  • FIG. 1 is an enlarged view of the reaction region 11, the analysis region 12, and the marker unit 15 (described later) on the substrate 10 in order.
  • the substrate 10 is a plate-like base material on which a reaction region 11 is formed on one side.
  • Examples of the substrate 10 include a substrate in which a hydrophobic thin film is formed on the surface of a quartz plate, a silicon plate, a synthetic resin plate, or the like.
  • the reaction region 11 is a region partitioned into a plurality of analysis regions 12 described later. In this embodiment, the reaction region 11 is divided into 140 analysis regions 12.
  • the analysis region 12 is a region that adsorbs the analysis sample s.
  • the analysis region 12 includes a large number of adsorption parts 13 that can adsorb the analysis sample s and non-adsorption parts 14 other than the adsorption parts 13.
  • the adsorption part 13 is formed of a hydrophilic film or the like laminated on the substrate 10 and exposed on the surface so that the analysis sample s can be adsorbed.
  • a hydrophilic film for example, a film of an inorganic oxide or the like into which a functional group (for example, an amino group or the like) capable of immobilizing the analysis sample s is introduced (hereinafter also referred to as “specific inorganic oxide”) or the like can be given. It is done.
  • a functional group for example, an amino group or the like
  • each analysis region 12 has a plurality of suction portions 13 having a circular shape in plan view, and the suction portions 13 are arranged in a grid pattern.
  • each analysis region 12 has a plurality of suction portions 13 and each suction portion 13 is arranged in a grid pattern, so that the position of the suction portion 13 in the analysis region 12 can be easily and reliably grasped. can do.
  • the diameter of the suction unit 13 in a plan view is usually 0.01 to 10 ⁇ m.
  • the lower limit of the diameter is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m, and even more preferably 0.2 ⁇ m from the viewpoint of improving the ease of forming the adsorbing portion 13 and the analytical sample adsorbability.
  • the upper limit of the diameter is preferably 5 ⁇ m, more preferably 1 ⁇ m, and even more preferably 0.5 ⁇ m from the viewpoint of improving the arrangement density of the suction portions 13.
  • the diameter of the adsorption unit 13 in plan view corresponds to the spatial resolution (pixel size) in the detection means of the nucleic acid analyzer using the nucleic acid analysis substrate 100.
  • the diameter is preferably one pixel size from the viewpoint of improving the arrangement density of the suction portions 13.
  • the pitch of the suction portions 13 is usually 0.05 to 50 ⁇ m.
  • the lower limit of the pitch is preferably 0.1 ⁇ m, more preferably 0.5 ⁇ m, and even more preferably 1 ⁇ m from the viewpoint of improving the interference preventing property between adjacent adsorbing portions 13 in analysis.
  • the upper limit of the pitch is preferably 10 ⁇ m, more preferably 5 ⁇ m, and even more preferably 2 ⁇ m, from the viewpoint of improving the arrangement density of the suction portions 13.
  • the pitch of the adsorbing portion 13 corresponds to the spatial resolution (pixel size) in the detection means of the nucleic acid analyzer, similarly to the above diameter.
  • the pitch is preferably 4 to 5 pixels, and more preferably 5 pixels, from the viewpoint of improving the fluorescence resolution and the arrangement density of the adsorption portions 13.
  • the non-adsorbing portion 14 is formed of a hydrophobic film laminated on the substrate 10 so as to prevent the analysis sample s from being adsorbed.
  • the compound that forms this hydrophobic film include polyvalent organic compounds, carboxylic acid compounds, phosphoric acid compounds, sulfuric acid compounds and nitrile compounds, and salts thereof.
  • the non-adsorption portion 14 includes a cross-shaped marker portion 15 for determining the position of the analysis region 12 in a part thereof. Since the fluorescent DNA fragment is difficult to be adsorbed to the marker portion 15, the adsorbing portion 13 and the marker portion 15 can be easily distinguished using the fluorescence image of the analysis region 12.
  • the adsorption part 13 (hereinafter also referred to as “specific adsorption part”) in which a specific dye excited by excitation light exists emits fluorescence.
  • specific adsorption part in which a specific dye excited by excitation light exists emits fluorescence.
  • the non-adsorbing portion 14 is provided with a marker portion 15 (a portion that does not fluoresce) having a predetermined shape for determining the position of the analysis region 12 at least in part, the marker portion is searched by searching the acquired fluorescence image. By finding 15, the position of the analysis region 12 is specified. Next, the nucleic acid analysis substrate 100 is moved based on the identified position of the analysis region 12, and the analysis region 12 and the acquisition range of the fluorescence image are matched. Thereby, the fluorescence image of the analysis region 12 to be analyzed can be acquired.
  • a marker portion 15 a portion that does not fluoresce
  • the nucleic acid analysis substrate 100 includes the marker portion 15 having a predetermined shape for determining the position of the analysis region 12 in at least a part of the non-adsorption portion 14 in the analysis region 12, so that the alignment is repeated. Even in this case, the position of the analysis region 12 can be determined with good reproducibility, and as a result, the base sequence of the DNA fragment can be analyzed reliably and rapidly.
  • FIG. 2 is a schematic plan view showing a second embodiment of the substrate for nucleic acid analysis of the present invention.
  • the nucleic acid analysis substrate 200 of the second embodiment schematically includes a substrate 10, a reaction region 11, an analysis region 12, an adsorption unit 13, and a non-adsorption unit 14. ing.
  • the nucleic acid analysis substrate 200 of the second embodiment is different from the first embodiment in that the shape of the marker portion 15 in the non-adsorbing portion 14 in plan view is different depending on the analysis region 12.
  • the shape of the marker unit 15 in plan view is different from each other at least between the adjacent analysis regions 12.
  • the nucleic acid analysis substrate 200 has two types of analysis regions 12a and 12b in which the shape of the marker 15 in plan view is different, and these types of different analysis regions 12a. , 12b are alternately arranged (the shape of the marker portion 15 is different between the odd-numbered analysis region 12a and the even-numbered analysis region 12b).
  • the analysis region 12a has a marker portion 15a
  • the analysis region 12b has a marker portion 15b (see the shape of the marker portion 15 in FIG. 2).
  • the shape of each of the marker portions 15a and 15b in the odd-numbered analysis region 12a and the even-numbered analysis region 12b is stored in advance in an external computer (not shown).
  • alignment is performed on the first analysis region 12 by the same method as the alignment of the first embodiment.
  • the shape of the marker unit 15 is recognized when a fluorescent image of the target analysis region 12 is acquired, and based on the recognized shape, the analysis region 12 is an odd-numbered analysis region 12a or an even-numbered analysis region 12a. It is determined whether it is the analysis region 12b. For example, when the first analysis region 12 is set to an odd number, the adjacent analysis region 12 that moves after the analysis of the analysis region 12a has no malfunction such as step-out in the transport means (described later) of the nucleic acid analysis substrate 200. As long as the marker portion 15b is even-numbered, it should be recognized. If an odd-numbered marker portion 15a, not an even-numbered number, is recognized or no fluorescence can be detected in the acquired fluorescence image, it means that the region is not the analysis region 12 to be analyzed.
  • the nucleic acid analysis substrate 200 can distinguish each analysis region 12 from the shape of the marker portion 15 by having the shape of the marker portion 15 in plan view different from each other at least between the adjacent analysis regions 12.
  • the analysis area 12 to be analyzed can be analyzed reliably.
  • the shape of the marker unit 15 in plan view is preferably different in all analysis regions 12. Specifically, as the shape of the marker unit 15, for example, a shape imitating a number or a distinguishable symbol (not shown) can be employed.
  • each analysis region 12 can be clearly distinguished from the shape of the marker unit 15.
  • the region 12 can be analyzed more reliably.
  • FIG. 3 is a schematic view showing a third embodiment of the substrate for nucleic acid analysis of the present invention.
  • the nucleic acid analysis substrate 300 according to the third embodiment is schematically illustrated as a substrate 10, a reaction region 11, an analysis region 12, an adsorption unit 13, and a non-adsorption unit 14. And.
  • the substrate for nucleic acid analysis 300 of the third embodiment is different from the first embodiment in the adsorption unit 13 and the non-adsorption unit 14.
  • substrate 10 the reaction area
  • the alignment of the analysis region 12 using the nucleic acid analysis substrate 300 according to the third embodiment is the same as that in the first embodiment, the detailed description thereof is omitted.
  • the entire area of the non-adsorption part 14 is the marker part 15, and the area other than the marker part 15 in the analysis area 12 is the adsorption part 13.
  • a cross-shaped non-adsorption portion 14 that becomes the marker portion 15 is formed at a substantially central portion of the analysis region 12, and the non-adsorption portion in the analysis region 12 is formed.
  • All the areas other than 14 (marker part 15) are suction parts 13.
  • FIG. 3B shows an example of a fluorescence image k obtained using the nucleic acid analysis substrate 300 of this embodiment.
  • the part displayed by the white dot is a part corresponding to the analysis sample s emitting fluorescence.
  • the entire region of the non-adsorption portion 14 is the marker portion 15, and the region other than the marker portion 15 in the analysis region 12 is the adsorption portion 13, so that the analysis sample s is densely packed. And more analysis can be done at once.
  • FIG. 4 is a schematic plan view showing a fourth embodiment of the nucleic acid analysis substrate 400 of the present invention, and is an enlarged view of one analysis region 12.
  • the substrate for nucleic acid analysis 400 according to the fourth embodiment schematically includes a substrate 10, a reaction region 11, an analysis region 12, an adsorption unit 13, and a non-adsorption unit 14.
  • the nucleic acid analysis substrate 400 of the fourth embodiment is the first in that the marker portion 15 is arranged at four corners in addition to the central portion of the analysis region 12. This is different from the embodiment.
  • the substrate 10, the reaction region 11, and the analysis region 12 are the same as those in the first embodiment, and thus detailed description thereof is omitted.
  • suction part 13 is the same as that of 1st Embodiment, and description of the several adsorption
  • the marker unit 15 is used for correcting the position of each suction unit 13 in the analysis region 12.
  • the nucleic acid analysis substrate 400 includes a marker portion 15 c located at the center of the analysis region 12 and L-shaped marker portions 15 d formed at four corners of the analysis region 12. ing.
  • the marker portions 15d located at the four corners are arranged so that the distance a between the marker portion 15c located at the center and the straight line connecting the adjacent marker portions 15d is equal.
  • the suction portions 13 are arranged in a grid pattern at intervals of 5 pixels in the analysis region other than the marker portion 15.
  • the position of the adsorption unit 13 can be corrected by the following method. That is, as shown in FIG. 5A, due to distortion of the fluorescent image k1, a portion 15c ′ corresponding to the marker portion 15c at the central portion of the fluorescent image k1 (hereinafter also referred to as “marker corresponding portion 15c ′”) is adjacent. Assume that the distances from the straight lines connecting the portions (marker corresponding portions 15d ′) corresponding to the marker portions 15d at the matching corners are b, c, d, and e.
  • an interpolation method such as a linear interpolation method that interpolates for each of the upper left, upper right, lower left, and lower right regions around the marker corresponding unit 15c ′ can be given. It is done.
  • the quotient of a (see FIG. 4) is obtained for each of b, c, d, and e, and the actual pitch is calculated by multiplying by 5 pixel dimensions.
  • the actual pitch in the BD direction of the region on the B side from the marker corresponding portion 15c ′ shown in FIG. 5A is b / a ⁇ 5 pixel size, the region on the E side from the marker corresponding portion 15c ′.
  • the actual pitch in the CE direction is e / a ⁇ 5 pixel size
  • the actual pitch in the BD direction of the region on the D side from the marker corresponding portion 15c ′ is d / a ⁇ 5 pixel size, than the marker corresponding portion 15c ′.
  • the actual pitch in the CE direction of the region on the C side is calculated as c / a ⁇ 5 pixel dimensions, and the position of each suction portion 13 is corrected using this.
  • the calculation may be performed only in the first analysis region 12 in the first cycle, and in the analysis region 12 to be analyzed later using this calculation result. Perform the correction.
  • the calculation and correction are performed by each detector.
  • the position of the adsorption unit 13 can be corrected by the following method. That is, as shown in FIG. 5B, the inclination ⁇ 1 is calculated from the marker corresponding portion 15d ′ in the fluorescence image k2 obtained by the detector. Next, the rotational direction is corrected by correcting the calculated inclination ⁇ 1.
  • the above calculation may be performed only for the first analysis region 12 in the first cycle, and this calculation result is used for subsequent analysis.
  • FIG. 5C shows a fluorescence image k3 (inclination ⁇ 2) detected by another detector different from the above detector.
  • the marker unit 15 is used to correct the position of each suction unit 13 in the analysis region 12, so that the position of each suction unit 13 in the analysis region 12 can be accurately grasped.
  • FIG. 6 is a schematic view showing a method for producing the nucleic acid analysis substrate 100 of FIG.
  • the nucleic acid analysis substrate 100 can be produced, for example, using a method according to Japanese Patent Application Laid-Open No. 2011-99720. That is, a substrate 10 on which a hydrophobic thin film is previously laminated on one side is used (see FIG. 6A), and, for example, a vacuum deposition method, a sputtering deposition method, a CVD method, or a PVD method is formed on the hydrophobic thin film.
  • a hydrophilic thin film 16 made of a specific inorganic oxide or the like is deposited by, for example, (see FIG. 6B).
  • the nucleic acid analysis substrate 100 on which the desired adsorbing portion 13 is formed can be produced. It should be noted that the portion other than the adsorption portion 13 in the analysis region 12 becomes the non-adsorption portion 14 because the hydrophobic thin film is exposed.
  • the nucleic acid analysis flow cell of the present invention includes the nucleic acid analysis substrate, a light-transmitting cover that is disposed so as to face the nucleic acid analysis substrate, transmits light, the nucleic acid analysis substrate, and the light transmission property.
  • a plurality of spacers provided between the cover and disposed so as to be substantially parallel to and spaced from each other, and a portion sandwiched between adjacent spacers between the nucleic acid analysis substrate and the light-transmitting cover A flow path through which the fluid flows, an inlet opening at one end of the flow path, an inlet for injecting the fluid, an opening at the other end opposite to the inlet of the flow path, and discharging the fluid And a discharge port.
  • FIG. 7 is a schematic perspective view showing an example of the flow cell for nucleic acid analysis of the present invention, in which a part of the light-transmitting cover is cut.
  • the nucleic acid analysis flow cell 500 schematically includes a nucleic acid analysis substrate 100, a light-transmitting cover 21, a spacer 22, and a flow path 23.
  • the nucleic acid analysis substrate 100 described above is used as the nucleic acid analysis substrate, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light-transmitting cover 21 is a flat cover that is disposed so as to face the nucleic acid analysis substrate 100 and transmits light.
  • Examples of the material of the light transmissive cover include glass such as soda glass, quartz glass, and sapphire glass, and light transmissive resin such as transparent polyimide resin and polycarbonate resin.
  • the spacer 22 is provided between the nucleic acid analysis substrate 100 and the light-transmitting cover 21 and is disposed so as to be substantially parallel and spaced apart from each other.
  • the nucleic acid analysis flow cell 500 has a plurality of spacers 22.
  • the material of the spacer 22 include thermosetting and photocurable epoxy resins, acrylic resins, and silicone resins described in JP-A-2006-87974. Among these, from the viewpoint of improving the adhesive strength with the glass and the light transmissive resin, a silicone resin is preferable, polysiloxane is more preferable, and polydimethylsiloxane (PDMS) is more preferable.
  • the thickness of the spacer 22 is not particularly limited, but is preferably 0.05 to 2 mm, more preferably 0.2 to 1 mm, from the viewpoint of reducing the amount of reagent used and ease of production.
  • the flow path 23 is formed in a portion sandwiched between adjacent spacers 22 between the nucleic acid analysis substrate 100 and the light-transmitting cover 21 and is a flow path through which fluid flows.
  • a fluid such as a reagent that reacts with a DNA fragment flows through the channel 23.
  • the flow path 23 is surrounded by the nucleic acid analysis substrate 100, the light-transmitting cover 21, and the spacer 22, and has a rectangular cross section orthogonal to the flow direction. It is constituted by a substantially rectangular parallelepiped space.
  • the flow path 23 has an inlet 23a that opens at one end and injects fluid, and an outlet 23b that opens at the other end opposite to the inlet 23a and discharges fluid.
  • the nucleic acid analysis flow cell 500 includes the nucleic acid analysis substrate 100, the position of the analysis region 12 can be determined with good reproducibility even when the alignment is repeatedly performed during nucleic acid analysis. As a result, the base sequence of the DNA fragment can be analyzed reliably and rapidly.
  • the flow cell 500 for nucleic acid analysis is bonded to the above-described nucleic acid analysis substrate 100 using an adhesive so that the two spacers 22 are parallel to each other.
  • the light-transmitting cover 21 is bonded onto the bonded spacer 22 using an adhesive.
  • the type of the adhesive is not particularly limited as long as it does not affect nucleic acid analysis.
  • the flow cell 500 for nucleic acid analysis of the present invention can be produced.
  • the nucleic acid analyzer of the present invention comprises a flow cell for nucleic acid analysis, a flow means for flowing a fluid through the flow path of the flow cell for nucleic acid analysis, a temperature adjusting means for adjusting the reaction temperature of DNA fragments, and a light-transmitting cover.
  • Irradiating means for irradiating the analysis region to be analyzed via the excitation light, and detecting the fluorescence emitted from the DNA fragment by the irradiation of the excitation light through the light-transmitting cover, and from the detected fluorescence Detection means for detecting the position of the marker portion in the analysis region, and moving means for mounting the nucleic acid analysis flow cell and moving the analysis region to a predetermined position with the marker portion as a mark.
  • FIG. 8 is a schematic view showing an example of the nucleic acid analyzer of the present invention.
  • the nucleic acid analyzer 600 schematically includes a nucleic acid analysis flow cell 500, a flow means 31, a temperature control means 32, an irradiation means 33, a detection means 34, and a movement means 35. It has.
  • the nucleic acid analysis flow cell 500 is the same as the nucleic acid analysis flow cell 500 described in the above section ⁇ Nucleic acid analysis flow cell>. Therefore, the same parts are denoted by the same reference numerals and detailed description thereof is omitted. To do.
  • the distribution means 31 distributes the fluid through the flow path 23 of the flow cell 500 for nucleic acid analysis.
  • the distribution means 31 includes a reagent cooling storage 312 that houses a plurality of reagent containers 311 containing reagents, a nozzle 313 that accesses the reagent containers 311, a pipe 314 that introduces the reagent into the nucleic acid analysis flow cell 500, and a DNA fragment And a waste liquid tank 315 for discarding reagents and the like that have reacted with each other.
  • the temperature control means 32 adjusts the reaction temperature of the DNA fragment.
  • the temperature adjustment means 32 is provided on an XY stage 351 described later, and includes a temperature adjustment substrate 321 that promotes the reaction between a DNA fragment to be analyzed (analysis sample s) and the reagent.
  • the temperature control board 321 includes, for example, a Peltier element.
  • the irradiation means 33 includes a light source 331 such as an LED (Light Emitting Diode) that serves as excitation light, a filter switching mechanism 332 that can select an arbitrary wavelength with respect to the excitation light emitted from the light source 331, and reflects the excitation light.
  • a dichroic mirror 333 that transmits fluorescence, which will be described later
  • an objective lens 334 that emits excitation light to the analysis sample s to be analyzed, and the objective lens 334 is driven in the Z-axis direction orthogonal to both the X-axis and the Y-axis.
  • a Z stage 335 for adjusting the focus of the excitation light.
  • the detecting means 34 detects the fluorescence emitted from the DNA fragment by the irradiation of the excitation light through the light-transmitting cover 21 and detects the position of the marker portion 15 in the analysis region 12 from the detected fluorescence.
  • the detection means 34 includes an objective lens 334 that collects fluorescence emitted from the analysis sample s, a dichroic mirror for fluorescence separation 341 that divides parallel light from the objective lens 334 for each fluorescence wavelength, and a tube lens 342 that forms an image of the parallel light. And a detector 343 having a sensor such as a CMOS sensor for detecting the formed image. Note that the objective lens 334 of the detection means 34 is assigned the same reference numeral because the object lens 334 described above is also used.
  • the moving means 35 has the nucleic acid analysis flow cell 500 mounted thereon, and moves the analysis region 12 to a predetermined position with the marker portion 15 as a mark.
  • the moving unit 35 includes an XY stage 351 that can be transported in directions of the X axis and the Y axis that are orthogonal to each other in the same plane, and a drive motor (not shown) that drives the XY stage 351.
  • the XY stage 351 is controlled by an open loop method.
  • the analysis using the nucleic acid analyzer 600 includes, for example, “preparation of a flow cell”, “installation of a flow cell”, “reagent introduction”, “temperature adjustment”, “stage movement”, and “stage position”. It can be performed by combining steps such as “combination”.
  • steps such as “combination”.
  • the analysis using the nucleic acid analyzer 600 is not limited to the following modes.
  • a nucleic acid analysis flow cell 500 (see FIG. 7) on which an analysis sample s is previously supported is prepared.
  • the nucleic acid analysis substrate 100 in the nucleic acid analysis flow cell 500 has an adsorption portion 13 and a non-adsorption portion 14 in each analysis region 12 on the substrate 10, and a central portion of the non-adsorption portion 14. Is formed with a cross-shaped marker portion 15.
  • the analysis sample s is carried only on the adsorption unit 13.
  • the flow cell 500 for nucleic acid analysis prepared in [Preparation of flow cell] is fixed on the temperature control substrate 321 provided on the XY stage 351 of the nucleic acid analyzer 600.
  • the nozzle 313 of the distribution means 31 accesses the reagent container 311 in the reagent cooling storage 312 and sucks the reagent.
  • the aspirated reagent is injected into the flow path in the nucleic acid analysis flow cell 500 via the pipe 314 and the injection port 23a, and the injected reagent is brought into contact with the analysis sample s carried on the adsorption portion to cause a reaction. .
  • the reagent after the reaction is discarded into the waste liquid tank 315 through a pipe.
  • the temperature of the nucleic acid analysis flow cell 500 is adjusted by the temperature adjustment substrate 321 so that the analysis sample s has a predetermined temperature.
  • the analysis sample s in the nucleic acid analysis flow cell 500 reacts with the reagent.
  • the introduction of the reagent and the temperature adjustment described above are repeated as appropriate to carry out a DNA elongation reaction.
  • This extension reaction is performed by reacting four types of nucleotides labeled with polymerase and different fluorescent dyes.
  • the nucleotides are FAM-dCTP, Cy3-dATP, Texas Red-dGTP, and Cy5-dTsTP.
  • the reagent contains a polymerase, and only one base of fluorescent nucleotide complementary to the DNA fragment is incorporated.
  • the XY stage 351 is driven by a drive motor (not shown) to move the nucleic acid analysis flow cell 500 to a preset position.
  • the above-mentioned “preset position” means the position of the first target analysis region 12 and means the position where the marker unit 15 will be present in the fluorescence detection range of the detection means 34. Yes.
  • the accurate alignment of the stage will be described in detail in the “stage alignment” step described later.
  • the Z stage 335 of the detection means 34 is driven to adjust the focus position of the analysis sample s in the objective lens 334.
  • the analysis sample s is irradiated with excitation light having a specific wavelength by using the filter switching mechanism 332.
  • the filter switching mechanism 332 only the analysis sample s corresponding to the excitation wavelength among the analysis samples s carried on the adsorption unit 13 emits fluorescence by irradiation with excitation light.
  • the marker unit 15 does not emit fluorescence.
  • the fluorescence image k is acquired using the detection means 34.
  • the analysis sample s emits fluorescence with a probability of 1/4, and therefore the shape of the marker unit 15 that does not emit fluorescence is recognized in the acquired fluorescence image k. Can do.
  • the marker unit 15 having a shape stored in advance in a computer (not shown) is searched for the fluorescent image k acquisition range.
  • the pixel values of the X-axis and Y-axis at the center of the marker unit 15 are calculated (see FIG. 10A). If the marker unit 15 cannot be searched, the XY stage 351 is driven to move to the next analysis region. If the calculated pixel value is within the target position range 344, the XY stage 351 is not aligned. On the other hand, if the calculated pixel value is outside the target position range 344, the relative pixel numbers Xa and Ya of the pixel value with respect to the center position in the target position range 344 are calculated (see FIG. 10B). . Next, the calculated Xa and Ya are converted into the number of pulses necessary for alignment and transmitted to the moving means 35. After this transmission, the driving motor of the moving means 35 is driven to move the XY stage 351 (see FIG. 10C).
  • the irradiation of the excitation light and the detection of the position of the marker unit 15 by the detection means 34 are performed again, and it is confirmed whether or not the marker unit 15 has moved into the target position range 344.
  • the alignment of the XY stage 351 is completed.
  • the marker unit 15 is outside the target position range 344, the alignment is performed again.
  • the position (the number of pulses) is stored. If the position of the marker unit 15 has not changed after the alignment of the XY stage 351, it is considered that the drive motor has stepped out, an alarm is issued, and the analysis is stopped.
  • the objective lens 334 of the detection means 34 is driven again to adjust the focus position.
  • the readjustment of the focus position is for correcting a vertical shift due to the movement of the XY stage, but this adjustment is not necessary if the detection means 34 and the analysis sample s have a sufficient depth of field. It is.
  • the filter switching mechanism 332 is used to irradiate the analysis region 12 with the excitation light while switching the excitation light in the two wavelength bands having a median wavelength of 490 nm and 595 nm, and detect fluorescence each time.
  • the excitation light having a median wavelength of 490 nm is used for fluorescence detection of FAM-dCTP and Cy3-dATP
  • the excitation light having a median value of wavelength of 595 nm is used for fluorescence detection of Texas Red-dGTP and Cy5-dTsTP, respectively.
  • Fluorescence emitted from the analysis sample 12 is taken into the two detectors 343 via the dichroic mirror 341 for fluorescence separation.
  • the dichroic mirror for fluorescence separation 341 has gentle reflection characteristics in the fluorescence wavelength regions of the four colors, the fluorescence intensity ratios of the bright spots emitted from the analysis sample s are calculated using the two detectors 343, respectively. be able to. Therefore, by calculating the intensity ratio on the imaging plane of the two detectors 343, it is possible to determine which of the four colors of fluorescence described above belongs to the fluorescence of the analysis sample s.
  • tens of thousands to hundreds of thousands of analysis samples s are carried in the analysis region 12, and which position of the analysis sample s emits which fluorescence is collectively detected by fluorescence detection.
  • FIG. 11 an example of a fluorescence image k detected by fluorescence detection is shown in FIG.
  • reference numeral 345 denotes a pixel of the fluorescent image k
  • reference numeral 13 ′ denotes a part on the fluorescent image k corresponding to the adsorption part 13
  • reference numeral 15 ′ denotes a part on the fluorescent image k corresponding to the marker part 15.
  • the suction units 13 are arranged at intervals of 1.4 ⁇ m
  • the spatial resolution of the detection means 34 is 0.28 ⁇ m / pixel
  • the suction units 13 are arranged at the same intervals as the 5-pixel interval of the fluorescent image k. It is an example of the fluorescence image in the case of being.
  • the size of the analysis sample s is 0.28 ⁇ m or more. Therefore, when detecting the fluorescence of the analysis sample s, the sample position is specified at an interval of 5 pixels from the end of the cross-shaped marker portion 15, and the fluorescence detection of 9 pixels (3 pixels square) is performed for each position of each analysis sample s. .
  • the next analysis region 12 is moved.
  • alignment of the XY stage 351 is performed again, and fluorescence detection in the analysis region 12 is performed.
  • Such movement of the XY stage 351, alignment of the analysis sample s, storage of the position of the analysis sample s, and fluorescence detection are repeated until the entire analysis region 12 is completed.
  • the analysis sample s may be aligned only in the arbitrary analysis region 12 and may be performed in the other analysis regions 12 using the stored position information. The above is the outline of the operation of one cycle in the analysis.
  • the stage movement after the second cycle the stage moves to the position of the first analysis region 12 obtained by the first cycle alignment, and alignment is performed. This alignment is performed in order to correct thermal expansion due to temperature changes inside the nucleic acid analyzer 600. After this alignment is completed, the corrected position is stored.
  • the next analysis area 12 moves at a relative position from the first analysis area 12 obtained in the first cycle.
  • the positions of the first analysis region 12 and the two subsequent analysis regions 12 in the first cycle are 1,000 ⁇ m, 2,000 ⁇ m, and 3,000 ⁇ m, respectively.
  • the positions of the two analysis regions 12 are 1,950 ⁇ m and 2,950 ⁇ m, respectively.
  • the above cycle is repeated to analyze the DNA base sequence of the analysis sample s. For example, if a certain analysis sample s emits fluorescence of Cy3 ⁇ Texas Red ⁇ FAM ⁇ Cy5 ⁇ ... In each cycle, the base sequence of the sample is A ⁇ G ⁇ C ⁇ T from dNTP corresponding to the fluorescent dye. ⁇ can be determined. In this way, tens of thousands to hundreds of thousands of analysis samples s are collectively detected by fluorescence, and the base sequences of all these analysis samples s are determined in parallel.
  • the analysis of the DNA base sequence of the analysis sample s is started from the first cycle.
  • the mapping operation of the analysis region 12 may be performed in the first cycle.
  • this mapping operation for example, when Texas Red-dGTP is incorporated into DNA fragments of all analysis samples, all analysis samples emit fluorescence with excitation light of 595 nm. Thereby, since a marker part can be detected more reliably, the analysis area
  • the nucleic acid analyzer 600 includes the nucleic acid analysis flow cell 500 having the nucleic acid analysis substrate 100, the position of the adsorption unit 13 can be determined with good reproducibility even in the case of repeated alignment. As a result, the base sequence of the DNA fragment can be analyzed reliably and rapidly.
  • the substrate for nucleic acid analysis, the flow cell for nucleic acid analysis, and the nucleic acid analyzer of the present invention are not limited to the configuration of the above-described embodiment, but are shown by the scope of claims and have the same meaning as the scope of claims. And all changes within the scope are intended to be included.
  • the shape of the marker unit 15 is exemplified by a cross shape or a key shape, but any shape can be used as long as the position of the marker unit 15 can be specified in the analysis region 12 such as a star shape or a circular shape. Shaped marker portions can also be employed.
  • the marker portion 15 is formed at the central portion. Those not provided or those provided with the marker portion 15 only on one diagonal are also within the scope of the present invention.
  • the flow cell 500 for nucleic acid analysis including the two spacers 22 disposed so as to be substantially parallel and spaced apart from each other has been described.
  • the flow cell 500 includes three or more spacers 22 and a plurality of the spacers 22 are provided.
  • the flow cell for nucleic acid analysis having the flow path 23 may be used.
  • the nucleic acid analysis may include a hollow sheet formed by using a material such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • a flow cell or the like can also be employed.
  • nucleic acid analyzer 600 In the description of the nucleic acid analyzer 600 described above, the apparatus including the nucleic acid analysis flow cell 500 has been described. However, any nucleic acid analysis flow cell may be used as long as the configuration of the nucleic acid analysis flow cell of the present invention is satisfied. be able to.
  • the nucleic acid analyzer 600 in which the detection unit 34 includes two detectors 343 has been described. However, a fluorescence separation dichroic mirror is added, and the detection unit 34 includes three or four detectors. It may be a nucleic acid analysis device.

Abstract

 同一の分析領域について繰り返し位置合わせする場合であっても、上記分析領域の位置を再現よく割り出すことができる核酸分析用基板、並びに当該核酸分析用基板を備えている核酸分析用フローセルおよび核酸分析装置の提供を目的とする。本発明の核酸分析用基板100は、基板10上に区画された複数の分析領域12を有し、前記各分析領域12を順次換えて測定される核酸分析用基板100であって、前記分析領域12は、DNA断片または前記DNA断片を担持した担持体を吸着可能な吸着部13と、前記吸着部13以外の非吸着部14とにより構成され、前記非吸着部14は、少なくとも一部に前記分析領域12の位置を割り出すための所定形状のマーカ部15を備えていることを特徴とする。

Description

核酸分析用基板、核酸分析用フローセルおよび核酸分析装置
 本発明は、核酸分析用基板、核酸分析用フローセルおよび核酸分析装置に関する。
 近年、核酸の塩基配列を分析する方法として、多数のDNA断片の塩基配列を並行して分析する方法が知られている。この方法では、例えば、フォトリソグラフィ技術やエッチング技術などを用いて基板上にDNA断片等を吸着可能な多数の吸着部と吸着し難い非吸着部とを形成し、上記吸着部に分析対象となるDNA断片等を吸着させて分析を行う(例えば、特許文献1参照)。
 上述のような分析方法では、塩基に対応する蛍光色素付き基質を導入した多数のDNA断片を含む分析領域に励起光を照射し、個々のDNA断片から発せられる蛍光を検出して塩基を特定する(例えば、非特許文献1参照)。
 このような分析方法では、通常、上記分析領域は一つの基板に複数設けられ、一回照射するごとに分析領域を換えて全ての分析領域で分析を行った後、ポリメラーゼ伸長反応を用いて新たな蛍光色素付き基質の導入により上記と同様な操作で各分析領域を分析し、これを繰り返すことで効率よく塩基配列を決定することができる。
米国特許出願公開第2009/0270273号明細書
サイエンス(Science)、2005年、第309巻、p.1728-1732
 しかしながら、上述したような従来の技術では、同一の分析領域を繰り返して分析する際、サイクルごとに分析領域が位置ずれを起こすことがあり、この位置ずれによりサイクル間でのDNA断片の対応付けが困難になって正しい塩基配列が得られない虞がある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、同一の分析領域について繰り返し位置合わせする場合であっても、上記分析領域の位置を再現よく割り出すことができる核酸分析用基板、並びに当該核酸分析用基板を備えている核酸分析用フローセルおよび核酸分析装置を提供することにある。
 上記課題を解決するためになされた発明は、
 基板上に区画された複数の分析領域を有し、前記各分析領域を順次換えて測定される核酸分析用基板であって、
 前記分析領域は、DNA断片または前記DNA断片を担持した担持体を吸着可能な吸着部と、前記吸着部以外の非吸着部とにより構成され、
 前記非吸着部は、少なくとも一部に前記分析領域の位置を割り出すための所定形状のマーカ部を備えていることを特徴とする核酸分析用基板である。
 また、上記課題を解決するためになされた別の発明は、
 当該核酸分析用基板と、
 前記核酸分析用基板に対向するように配設され、光を透過する光透過性カバーと、
 前記核酸分析用基板と前記光透過性カバーとの間に設けられ、互いに略平行かつ離間するように配設された複数のスペーサと、
 前記核酸分析用基板と前記光透過性カバーとの間の隣り合うスペーサに挟まれた部位に形成され、流体が流通する流路と、
 前記流路の一端に開口し、前記流体を注入する注入口と、
 前記流路の前記注入口と反対側の他端に開口し、前記流体を排出する排出口とを備えている核酸分析用フローセルである。
 さらに、上記課題を解決するためになされた別の発明は、
 当該核酸分析用フローセルと、
 前記核酸分析用フローセルの流路に流体を流通させる流通手段と、
 DNA断片の反応温度を調整する温調手段と、
 光透過性カバーを介して分析対象となる分析領域に励起光を照射する照射手段と、
 前記励起光の照射によりDNA断片から放出された蛍光を前記光透過性カバーを介して検出すると共に、検出された前記蛍光から前記分析領域におけるマーカ部の位置を検出する検出手段と、
 前記核酸分析用フローセルが載置され、前記マーカ部を目印にして当該分析領域を所定の位置に移動させる移動手段とを備えている核酸分析装置である。
 なお、本明細書において「所定形状」とは、分析領域中において位置の特定に用いられる予め定められた平面視の形状(例えば十字状など)を意味する。また、本明細書において「所定の位置」とは、分析対象となる分析領域を移動させる予め定められた位置を意味する。また、本明細書において「複数のスペーサ」とは、複数の部材からなるスペーサだけでなく、シートを打ち抜いて複数のスペーサ部を形成した中抜きシートなどの単一の部材からなるスペーサをも含む概念である。
 本発明は、同一の分析領域について繰り返し位置合わせする場合であっても、上記分析領域の位置を再現よく割り出すことができる核酸分析用基板、並びに当該核酸分析用基板を備えている核酸分析用フローセルおよび核酸分析装置を提供することができる。
本発明の核酸分析用基板の第1の実施形態を示す概略平面図である。 本発明の核酸分析用基板の第2の実施形態を示す概略平面図である。 本発明の核酸分析用基板の第3の実施形態を示す概略図であって、(a)は当該実施形態の平面図、(b)は蛍光画像の一例をそれぞれ示す。 本発明の核酸分析用基板の第4の実施形態を示す概略平面図であって、一つの分析領域を拡大した図である。 図4の核酸分析用基板を用いて取得した蛍光画像が歪んでいる状態を示す概略図であって、(a)は蛍光画像が伸縮した状態、(b)は蛍光画像が回転した状態、(c)は蛍光画像が回転した他の状態をそれぞれ示す。 図1の核酸分析用基板の作製方法を示す概略図であって、(a)は親水性膜形成前の状態、(b)は親水性膜形成後の状態、(c)はレジスト膜形成後の状態、(d)は現像後の状態、(e)はエッチング後の状態、(f)はレジスト膜除去後の状態をそれぞれ示す。 本発明の核酸分析用フローセルの一例を示す概略斜視図であって、光透過性カバーの一部を切断した図である。 本発明の核酸分析装置の一例を示す概略図である。 図8の核酸分析装置の制御過程を示すフローチャートである。 本発明の核酸分析装置を用いた分析方法の一例を示す概略図であって、(a)は移動前の蛍光画像中におけるマーカ部の位置関係、(b)は移動前の目標位置範囲とマーカ部との位置関係、(c)は移動後の目標位置範囲とマーカ部との位置関係をそれぞれ示す。 図1の核酸分析用基板を用いた蛍光画像の一例を示す概略図である。
<核酸分析用基板>
 本発明の核酸分析用基板は、基板上に区画された複数の分析領域を有し、前記各分析領域を順次換えて測定される核酸分析用基板であって、前記分析領域は、DNA断片または前記DNA断片を担持した担持体(上記DNA断片および担持体をまとめて、以下、「分析サンプル」とも称する)を吸着可能な吸着部と、前記吸着部以外の非吸着部とにより構成され、前記非吸着部は、少なくとも一部に前記分析領域の位置を割り出すための所定形状のマーカ部を備えていることを特徴とする。
 以下、本発明の核酸分析用基板の第1~第4の実施形態について図面を参照して説明するが、本発明は、第1~第4の実施形態および当該図面に記載の実施態様にのみ限定されるものではない。
[第1の実施形態]
 図1は、本発明の核酸分析用基板の第1の実施形態を示す概略平面図である。本実施形態の核酸分析用基板100は、図1に示すように、概略的に、基板10と、反応領域11と、分析領域12と、吸着部13と、非吸着部14とを備えている。なお、図1は、基板10における反応領域11、分析領域12およびマーカ部15(後述)を順次拡大した図である。
 基板10は、その片面上に反応領域11が形成される板状の基材である。この基板10としては、例えば、石英板、シリコン板、合成樹脂板などの表面に疎水性の薄膜が形成されているもの等が挙げられる。上記反応領域11は、後述する複数の分析領域12に区画された領域である。なお、この実施形態では、反応領域11が140個の分析領域12に区画されている。
 分析領域12は、分析サンプルsを吸着する領域である。分析領域12は、分析サンプルsを吸着可能な多数の吸着部13と、吸着部13以外の非吸着部14とにより構成されている。
 吸着部13は、上記分析サンプルsが吸着可能となるように、基板10上に積層され表面に露出した親水性膜等により形成されている。この親水性膜としては、例えば、分析サンプルsを固定可能な官能基(例えば、アミノ基等)が導入された無機酸化物などの膜(以下、「特定無機酸化物」ともいう)等が挙げられる。この特定無機酸化物としては、例えば、アミノシラン等が挙げられる。
 各分析領域12は、図1に示すように、平面視円形状の複数の吸着部13を有し、各吸着部13は碁盤目状に配列されている。このように、各分析領域12が複数の吸着部13を有し、各吸着部13が碁盤目状に配列されていることで、分析領域12内の吸着部13の位置を容易かつ確実に把握することができる。
 なお、吸着部13の平面視の直径は、通常0.01~10μmである。上記直径の下限としては、吸着部13の形成容易性および分析サンプル吸着性を向上させる観点から、0.05μmが好ましく、0.1μmがより好ましく、0.2μmがさらに好ましい。一方、上記直径の上限値としては、吸着部13の配置密度向上の観点から、5μmが好ましく、1μmがより好ましく、0.5μmがさらに好ましい。
 また、吸着部13の平面視の直径は、当該核酸分析用基板100を用いる核酸分析装置の検出手段における空間分解能(画素寸法)に対応していることも好ましい。かかる場合、上記直径は、吸着部13の配置密度向上の観点から、1画素寸法であることが好ましい。
 吸着部13のピッチは、通常0.05~50μmである。上記ピッチの下限としては、分析上隣り合う吸着部13どうしの干渉防止性を向上する観点から、0.1μmが好ましく、0.5μmがより好ましく、1μmがさらに好ましい。一方、上記ピッチの上限としては、吸着部13の配置密度向上の観点から、10μmが好ましく、5μmがより好ましく、2μmがさらに好ましい。
 また、吸着部13のピッチは、上記直径と同様に、核酸分析装置の検出手段における空間分解能(画素寸法)に対応していることも好ましい。かかる場合、上記ピッチは、蛍光分解能および吸着部13の配置密度向上の観点から、4~5画素寸法であることが好ましく、5画素寸法であることがより好ましい。
 非吸着部14は、上記分析サンプルsが吸着するのを阻止できるように、基板10上に積層された疎水性膜により形成されている。この疎水性膜を形成する化合物としては、例えば、多価性有機化合物、カルボン酸化合物、リン酸化合物、硫酸化合物およびニトリル化合物、並びにこれらの塩等が挙げられる。なお、上記化合物は、単独で又は2種以上を組み合わせて用いてもよい。
 非吸着部14は、その一部に分析領域12の位置を割り出すための十字状のマーカ部15を備えている。このマーカ部15には蛍光を発するDNA断片が吸着し難いため、分析領域12の蛍光画像を用いて吸着部13とマーカ部15とを容易に区別することができる。
 次に、第1の実施形態に係る核酸分析用基板100を用いた分析領域12の位置合わせについて説明する。
 当該核酸分析用基板100を用いる場合、塩基に対応する蛍光色素付き基質が導入されたDNA断片(分析サンプル)が吸着した吸着部13を含む分析領域12に特定波長の励起光を照射すると、この励起光で励起する特定の色素が存する吸着部13(以下、「特定吸着部」ともいう)が蛍光を発する。なお、例えば4色蛍光検出(4種の塩基それぞれに対応する異なる4種の蛍光の検出)を行った場合、任意の吸着部13における特定波長の励起光の照射による蛍光確率は約25%である。
 ここで、非吸着部14には、少なくとも一部に分析領域12の位置を割り出すための所定形状のマーカ部15(蛍光しない部位)が備えられているので、取得した蛍光画像の探索によりマーカ部15を見つけることで分析領域12の位置が特定される。次いで、特定された分析領域12の位置に基づき当該核酸分析用基板100を移動させ、当該分析領域12と蛍光画像の取得範囲とを一致させる。これにより、分析対象となる分析領域12の蛍光画像が取得可能となる。
 このように、当該核酸分析用基板100は、分析領域12における非吸着部14が少なくとも一部に分析領域12の位置を割り出すための所定形状のマーカ部15を備えているので、繰り返し位置合わせする場合であっても、分析領域12の位置を再現よく割り出すことができ、その結果、DNA断片の塩基配列を確実かつ迅速に分析することができる。
[第2の実施形態]
 図2は、本発明の核酸分析用基板の第2の実施形態を示す概略平面図である。第2の実施形態の核酸分析用基板200は、図2に示すように、概略的に、基板10と、反応領域11と、分析領域12と、吸着部13と、非吸着部14とを備えている。第2の実施形態の核酸分析用基板200は、分析領域12によって非吸着部14におけるマーカ部15の平面視の形状が相異している点で、第1の実施形態とは異なっている。なお、基板10、反応領域11、分析領域12および吸着部13は、第1の実施形態のものと同様であるため、同一部分には同一の符号を付してその詳細な説明は省略する。
 本実施形態では、マーカ部15の平面視の形状が、少なくとも隣り合う分析領域12どうしで互いに異なっている。具体的には、図2に示すように、核酸分析用基板200は、マーカ部15の平面視の形状が異なる2種類の分析領域12a、12bを有しており、これら種類の異なる分析領域12a、12bが交互(奇数番号の分析領域12aと偶数番号の分析領域12bとでマーカ部15の形状が異なる)に配設されている。この実施形態では、分析領域12aがマーカ部15aを有していると共に、分析領域12bがマーカ部15bを有している(図2のマーカ部15の形状参照)。
 次に、第2の実施形態に係る核酸分析用基板200を用いた分析領域12の位置合わせについて説明する。
 当該核酸分析用基板200を用いる場合、外部のコンピュータ(不図示)に予め奇数番号の分析領域12aおよび偶数番号の分析領域12bでのそれぞれのマーカ部15a、15bの形状を記憶させておく。次いで、第1の実施形態の位置合わせと同様の方法で、最初の分析領域12に位置合わせを行う。
 次いで、励起光の照射による蛍光の検出を行う。この蛍光の検出では、対象となる分析領域12の蛍光画像を取得する際にマーカ部15の形状を認識させ、認識した形状に基づき当該分析領域12が奇数番号の分析領域12aか、偶数番号の分析領域12bかを判定する。例えば、最初の分析領域12を奇数番号に設定した場合、この分析領域12aの分析後に移動する隣接した分析領域12は、核酸分析用基板200の搬送手段(後述)に脱調等の誤動作がない限り、偶数番号のマーカ部15bが認識されるはずである。もし、偶数番号ではなく奇数番号のマーカ部15aが認識されたり、取得した蛍光画像中に蛍光が全く検出できない場合は、その領域が分析対象とする分析領域12ではないことを意味している。
 このように、当該核酸分析用基板200は、マーカ部15の平面視の形状が、少なくとも隣り合う分析領域12どうしで互いに異なることで、マーカ部15の形状から各分析領域12を区別することができ、分析対象とする分析領域12を確実に分析することができる。
 なお、マーカ部15の平面視の形状は、全ての分析領域12で異なっていることが好ましい。具体的には、マーカ部15の形状として、例えば、数字や区別可能な記号などを模った形状等(不図示)を採用することができる。
 このように、マーカ部15の平面視の形状が全ての分析領域12で異なっていることで、当該マーカ部15の形状から各分析領域12を明確に区別することができ、分析対象とする分析領域12をより確実に分析することができる。
[第3の実施形態]
 図3は、本発明の核酸分析用基板の第3の実施形態を示す概略図である。第3の実施形態の核酸分析用基板300は、図3(a)に示すように、概略的に、基板10と、反応領域11と、分析領域12と、吸着部13と、非吸着部14とを備えている。第3の実施形態の核酸分析用基板300は、吸着部13および非吸着部14が第1の実施形態とは異なっている。なお、基板10、反応領域11および分析領域12は、第1の実施形態のものと同様であるため、同一部分には同一の符号を付してその詳細な説明は省略する。また、第3の実施形態に係る核酸分析用基板300を用いた分析領域12の位置合わせについては、第1の実施形態と同様であるため、その詳細な説明を省略する。
 本実施形態では、非吸着部14の全領域がマーカ部15であり、分析領域12におけるマーカ部15以外の領域が吸着部13である。具体的には、図3(a)に示すように、マーカ部15となる十字状の非吸着部14が分析領域12の略中心部に形成されており、当該分析領域12における上記非吸着部14(マーカ部15)以外の全ての領域が吸着部13となっている。なお、図3(b)は本実施形態の核酸分析用基板300を用いて得られた蛍光画像kの一例を示している。この図において、白抜きのドットで表示されている部分は、蛍光を発した分析サンプルsに対応する部位である。
 このように、当該核酸分析用基板300は、非吸着部14の全領域がマーカ部15であり、分析領域12におけるマーカ部15以外の領域が吸着部13であることで、分析サンプルsを密に配置することができ、一度により多くの分析を行うことができる。
[第4の実施形態]
 図4は、本発明の核酸分析用基板400の第4の実施形態を示す概略平面図であって、一つの分析領域12を拡大した図である。第4の実施形態の核酸分析用基板400は、概略的に、基板10と、反応領域11と、分析領域12と、吸着部13と、非吸着部14とを備えている。第4の実施形態の核酸分析用基板400は、図4に示すように、マーカ部15が分析領域12の中心部に加え、さらに4つの角部に配設されている点で、第1の実施形態とは異なっている。なお、基板10、反応領域11および分析領域12は、第1の実施形態のものと同様であるため、その詳細な説明は省略する。また、吸着部13は第1の実施形態のものと同様であり、図4では便宜上複数ある吸着部13の記載を省略している。
 本実施形態では、マーカ部15が、分析領域12内における各吸着部13位置の補正に用いられる。具体的には、当該核酸分析用基板400は、分析領域12の中心部に位置するマーカ部15cと、当該分析領域12の4つの角部に形成されたL字状のマーカ部15dとを備えている。また、4つの角部に位置するマーカ部15dは、中心部に位置するマーカ部15cと隣り合う角部のマーカ部15dを結んだ直線との間隔aが等しくなるように配置されている。また、図示していないが、各吸着部13はマーカ部15以外の分析領域において5画素間隔で碁盤目状に配列されている。
 次に、第4の実施形態に係る核酸分析用基板400を用いた分析領域12内での各吸着部13の位置の補正について、図5を参照して説明する。
 例えば、当該核酸分析用基板400を用いて取得した蛍光画像が歪みを有する場合、以下の方法で吸着部13の位置の補正を行うことができる。すなわち、図5(a)に示すように、蛍光画像k1の歪みにより、当該蛍光画像k1中心部のマーカ部15cに対応する部位15c’(以下、「マーカ対応部15c’」ともいう)と隣り合う角部のマーカ部15dに対応する部位(マーカ対応部15d’)を結んだ直線との間隔がb、c、d、eになったとする。かかる場合、実際の吸着部13の位置を推定する方法として、例えば、マーカ対応部15c’を中心とする左上、右上、左下、右下の領域毎に補間する線形補間方法等の補間方法が挙げられる。
 例えば、上記線形補間方法の一例として、b、c、d、eそれぞれに対してa(図4参照)との商を求め、5画素寸法を乗算することで実際のピッチが算出される。具体的には、図5(a)に示すマーカ対応部15c’よりもB側の領域のBD方向の実際のピッチはb/a×5画素寸法、マーカ対応部15c’よりもE側の領域のCE方向の実際のピッチはe/a×5画素寸法、マーカ対応部15c’よりもD側の領域のBD方向の実際のピッチはd/a×5画素寸法、マーカ対応部15c’よりもC側の領域のCE方向の実際のピッチはc/a×5画素寸法と算出され、これを用いて各吸着部13の位置の補正を行う。
 なお、蛍光画像の歪みは、核酸分析装置の検出器に依存するため、上記算出は、1サイクル目の最初の分析領域12のみでよく、この算出結果を用いて以降に分析する分析領域12での補正を行う。また、上記検出器を2台以上用いて分析する場合は、それぞれの検出器で上記算出および補正を行う。
 一方、当該核酸分析用基板400に照射する励起光の光軸に対する回転方向の蛍光画像の歪み(ずれ)については、以下の方法で吸着部13の位置の補正を行うことができる。すなわち、図5(b)に示すように、検出器により得られた蛍光画像k2におけるマーカ対応部15d’から、傾きθ1を算出する。次いで、算出された傾きθ1分の修正を行うことで回転方向の補正を行う。なお、蛍光画像kの回転方向の歪みは、核酸分析装置の検出器に依存するため、上記算出は、1サイクル目の最初の分析領域12のみでよく、この算出結果を用いて以降に分析する分析領域12での補正を行う。また、検出器を2台以上用いて分析する場合は、それぞれの検出器で上記算出および補正を行う。例えば、図5(c)は、上記検出器と異なる他の検出器で検出された蛍光画像k3(傾きθ2)を示している。
 このように、マーカ部15が分析領域12内における各吸着部13位置の補正に用いられることで、分析領域12における各吸着部13の位置を正確に把握することができる。
<核酸分析用基板の作製方法>
 次に、上述した核酸分析用基板の作製方法について説明する。図6は、図1の核酸分析用基板100の作製方法を示す概略図である。当該核酸分析用基板100は、例えば、特開2011-99720号公報に準じた方法を用いて作製することができる。すなわち、片面上に予め疎水性の薄膜が積層された基板10を用い(図6(a)参照)、上記疎水性の薄膜上に、例えば真空蒸着法や、スパッタリング蒸着法、CVD法、PVD法等により特定無機酸化物などからなる親水性の薄膜16を蒸着する(図6(b)参照)。
 次いで、得られた親水性の薄膜16上にレジスト17を塗布した後(図6(c)参照)、フォトリソグラフィ技術を用いて所定のパターニングを行い(図6(d)参照)、パターニングされたレジスト17をマスクとして不要な親水性の薄膜をエッチングにより除去し(図6(e)参照)、残ったレジスト17を溶解除去する(図6(f)参照)ことで、親水性の薄膜16からなる所望の吸着部13が形成された核酸分析用基板100を作製することができる。なお、分析領域12における吸着部13以外の部位は、上記疎水性の薄膜が露出しているため非吸着部14となる。
<核酸分析用フローセル>
 本発明の核酸分析用フローセルは、当該核酸分析用基板と、前記核酸分析用基板に対向するように配設され、光を透過する光透過性カバーと、前記核酸分析用基板と前記光透過性カバーとの間に設けられ、互いに略平行かつ離間するように配設された複数のスペーサと、前記核酸分析用基板と前記光透過性カバーとの間の隣り合うスペーサに挟まれた部位に形成され、流体が流通する流路と、前記流路の一端に開口し、前記流体を注入する注入口と、前記流路の前記注入口と反対側の他端に開口し、前記流体を排出する排出口とを備えている。
 以下、本発明の核酸分析用フローセルについて図面を参照して説明するが、本発明は、当該図面に記載の実施態様にのみ限定されるものではない。
 図7は、本発明の核酸分析用フローセルの一例を示す概略斜視図であって、光透過性カバーの一部を切断した図である。当該核酸分析用フローセル500は、図7に示すように、概略的に、核酸分析用基板100と、光透過性カバー21と、スペーサ22と、流路23とを備えている。なお、本実施形態では、核酸分析用基板として上述した核酸分析用基板100を用いているため、同一部分には同一の符号を付してその詳細な説明は省略する。
 光透過性カバー21は、核酸分析用基板100に対向するように配設され、光を透過する平板状のカバーである。光透過性カバーの材質としては、例えば、ソーダガラス、石英ガラス、サファイアガラスなどのガラス、透明ポリイミド樹脂、ポリカーボネート樹脂などの光透過性樹脂等が挙げられる。
 スペーサ22は、核酸分析用基板100と光透過性カバー21との間に設けられ、互いに略平行かつ離間するように配設されている。当該核酸分析用フローセル500は、複数のスペーサ22を有している。スペーサ22の材質としては、例えば、特開2006-87974号公報に記載の熱硬化性や光硬化性のエポキシ樹脂、アクリル樹脂、シリコーン樹脂等が挙げられる。これらの中で、上記ガラスや光透過性樹脂との接着強度向上の観点から、シリコーン樹脂が好ましく、ポリシロキサンがより好ましく、ポリジメチルシロキサン(PDMS)がさらに好ましい。また、スペーサ22の厚さとしては、特に制限されないが、使用する試薬量低減および作製容易性の観点から、0.05~2mmが好ましく、0.2~1mmがより好ましい。
 流路23は、核酸分析用基板100と光透過性カバー21との間の隣り合うスペーサ22に挟まれた部位に形成され、流体が流通する流路である。この流路23には、例えば、DNA断片と反応する試薬等の流体が流される。具体的には、流路23は、核酸分析用基板100と光透過性カバー21とスペーサ22との間に囲まれ、流れ方向に直行する断面が長方形状に形成されており、流れ方向に長手形状の略直方体の空間により構成されている。流路23は、その一端に開口し流体を注入する注入口23aと、注入口23aと反対側の他端に開口し流体を排出する排出口23bとを有している。
 このように、当該核酸分析用フローセル500は、当該核酸分析用基板100を備えているので、核酸分析の際、繰り返し位置合わせする場合であっても、分析領域12の位置を再現よく割り出すことができ、その結果、DNA断片の塩基配列を確実かつ迅速に分析することができる。
<核酸分析用フローセルの作製方法>
 次に、核酸分析用フローセル500の作製方法について説明する。当該核酸分析用フローセル500は、例えば、上述した核酸分析用基板100上に2本のスペーサ22が互いに平行になるように接着剤を用いて接着する。次いで、接着したスペーサ22上に光透過性カバー21を接着剤を用いて接着する。なお、上記接着剤の種類は、核酸分析に影響を与えない限り特に限定されない。以上のようにして、本発明の核酸分析用フローセル500を作製することができる。
<核酸分析装置>
 本発明の核酸分析装置は、当該核酸分析用フローセルと、前記核酸分析用フローセルの流路に流体を流通させる流通手段と、DNA断片の反応温度を調整する温調手段と、光透過性カバーを介して分析対象となる分析領域に励起光を照射する照射手段と、前記励起光の照射によりDNA断片から放出された蛍光を前記光透過性カバーを介して検出すると共に、検出された前記蛍光から前記分析領域におけるマーカ部の位置を検出する検出手段と、前記核酸分析用フローセルが載置され、前記マーカ部を目印にして当該分析領域を所定の位置に移動させる移動手段とを備えている。
 以下、本発明の核酸分析装置について図面を参照して説明するが、本発明は、当該図面に記載の実施態様にのみ限定されるものではない。
 図8は、本発明の核酸分析装置の一例を示す概略図である。当該核酸分析装置600は、図8に示すように、概略的に、核酸分析用フローセル500と、流通手段31と、温調手段32と、照射手段33と、検出手段34と、移動手段35とを備えている。なお、核酸分析用フローセル500は、上述の<核酸分析用フローセル>の項で説明した核酸分析用フローセル500と同様であるため、同一部分には同一の符号を付してその詳細な説明は省略する。
 流通手段31は、核酸分析用フローセル500の流路23に流体を流通させる。流通手段31は、試薬を含む複数の試薬容器311を収容する試薬冷却保管庫312と、試薬容器311へアクセスするノズル313と、上記試薬を核酸分析用フローセル500へ導入する配管314と、DNA断片と反応した試薬等を廃棄する廃液タンク315とを備えている。
 温調手段32は、DNA断片の反応温度を調整する。温調手段32は、後述のXYステージ351上に設けられ、分析するDNA断片(分析サンプルs)と上記試薬との反応を促進させる温調基板321を備えている。温調基板321は、例えば、ペルチェ素子を内臓している。
 照射手段33は、励起光となるLED(Light Emitting Diode)などの光源331と、光源331から出射された励起光に対して任意の波長を選択可能なフィルタ切替機構332と、上記励起光を反射しかつ後述の蛍光を透過するダイクロイックミラー333と、分析する分析サンプルsに励起光を照射する対物レンズ334と、上記X軸およびY軸の両軸に直交するZ軸方向に対物レンズ334を駆動させ上記励起光のフォーカスを調整するZステージ335とを備えている。
 検出手段34は、励起光の照射によりDNA断片から放出された蛍光を光透過性カバー21を介して検出すると共に、検出された蛍光から分析領域12におけるマーカ部15の位置を検出する。検出手段34は、分析サンプルsが発する蛍光を回収する対物レンズ334と、対物レンズ334からの平行光を蛍光波長ごとに分割する蛍光分離用ダイクロイックミラー341と、平行光を結像させるチューブレンズ342と、結像された像を検出するCMOSセンサなどのセンサを有する検出器343とを備えている。なお、検出手段34の対物レンズ334は、上述した照射手段33のものが兼用されているため、同一の符号を付している。
 移動手段35は、核酸分析用フローセル500が載置され、マーカ部15を目印にして分析領域12を所定の位置に移動させる。移動手段35は、同一平面内において直交するX軸およびY軸の各方向に搬送可能なXYステージ351と、XYステージ351を駆動する駆動用モータ(不図示)とを備えている。なお、XYステージ351は、オープンループ方式で制御される。
<分析方法>
 次に、本発明の核酸分析装置600を用いたDNA断片の塩基配列の分析方法について、図8~図11を参照して説明する。なお、ここでは、分析サンプルsがDNA断片を担持する担持体であり、上述した第1の実施形態の核酸分析用基板100を備えている核酸分析用フローセル500を用いた場合を例にして説明する。
 当該核酸分析装置600を用いた分析は、例えば、以下に例示する「フローセルの用意」、「フローセルの設置」、「試薬の導入」、「温度調整」、「ステージの移動」および「ステージの位置合わせ」等のステップを組み合わせることにより行うことができる。以下、これら各ステップについて詳説するが、当該核酸分析装置600を用いた分析は、以下に記載の態様にのみ限定されるものではない。
[フローセルの用意]
 このステップでは、予め分析サンプルsが担持された核酸分析用フローセル500(図7参照)を用意する。核酸分析用フローセル500内の核酸分析用基板100は、図1に示すように、基板10上の各分析領域12に吸着部13と非吸着部14とを有し、非吸着部14の中央部には十字状のマーカ部15が形成されている。なお、分析サンプルsは、吸着部13のみに担持されている。
[フローセルの設置]
 このステップでは、上記[フローセルの用意]において用意した核酸分析用フローセル500を核酸分析装置600のXYステージ351に設けられた温調基板321上に固定する。
[試薬の導入]
 このステップでは、流通手段31のノズル313が試薬冷却保管庫312内の試薬容器311にアクセスし、試薬を吸引する。次いで、吸引された試薬を配管314および注入口23aを介して核酸分析用フローセル500内の流路に注入し、注入された試薬を吸着部に担持されている分析サンプルsに接触させて反応させる。なお、上記反応後の試薬は、配管を介して廃液タンク315に捨てる。
[温度調整]
 このステップでは、核酸分析用フローセル500を温調基板321で温度調整し、分析サンプルsが所定の温度になるように調整する。この温度調整により、核酸分析用フローセル500内の分析サンプルsと試薬とが反応する。その際、上述の試薬の導入および温度調整を適宜繰り返してDNAの伸長反応を行う。この伸長反応は、ポリメラーゼおよびそれぞれ異なる蛍光色素でラベルされた4種類のヌクレオチドを反応させることで行う。上記ヌクレオチドは、FAM-dCTP、Cy3-dATP、Texas Red-dGTP、Cy5-dTsTPである。試薬中にはポリメラーゼが含まれており、DNA断片に相補的な蛍光ヌクレオチドが1塩基だけ取り込まれる。
[ステージの移動]
 このステップでは、反応した分析サンプルsを観察するために、駆動用モータ(不図示)によりXYステージ351を駆動させて予め設定した位置へ核酸分析用フローセル500を移動させる。ここで、上述の「予め設定した位置」とは、目標とする最初の分析領域12の位置であり、検出手段34の蛍光検出範囲内にマーカ部15が存在するであろう位置を意味している。なお、ステージの正確な位置合わせについては、後述の[ステージの位置合わせ]のステップで詳述する。
[ステージの位置合わせ]
 このステップでは、まず、検出手段34のZステージ335を駆動させ、対物レンズ334における分析サンプルsのフォーカス位置を調整する。次いで、対物レンズ334をフォーカス位置に移動させた後、フィルタ切替機構332を用いて特定の波長の励起光を分析サンプルsに照射する。その際、励起光の照射により、吸着部13に担持された分析サンプルsのうちの励起波長に対応した分析サンプルsのみが蛍光を発する。一方、マーカ部15は蛍光を発しない。
 次いで、検出手段34を用いて蛍光画像kを取得する。その際、例えば上述した4色蛍光検出の場合、分析サンプルsが1/4の確率で蛍光を発しているので、取得した蛍光画像k中に蛍光を発しないマーカ部15の形状を認識することができる。次いで、図10に示すように、蛍光画像k取得範囲に対して、予めコンピュータ(不図示)に記憶させた形状のマーカ部15を探索する。その際、マーカ部15を探索できれば、マーカ部15中心のX軸、Y軸の画素値(蛍光画像kにおけるマーカ部15の画素換算の座標)を算出する(図10(a)参照)。もし、マーカ部15を探索できなければ、XYステージ351を駆動して次の分析領域へ移動する。なお、上記算出された画素値が目標位置範囲344内であれば、XYステージ351の位置合わせは行わない。一方、上記算出された画素値が目標位置範囲344外であれば、目標位置範囲344内の中心位置に対する当該画素値の相対的な画素数Xa、Yaを算出する(図10(b)参照)。次いで、算出されたXa、Yaを位置合わせに必要なパルス数に変換し、移動手段35へ送信する。この送信後、移動手段35の駆動用モータを駆動させ、XYステージ351を移動させる(図10(c)参照)。
 次いで、再度励起光の照射および検出手段34によるマーカ部15の位置検出を行い、マーカ部15が目標位置範囲344内に移動したか否かを確認する。その際、マーカ部15が目標位置範囲344内にあればXYステージ351の位置合わせは完了する。一方、マーカ部15が目標位置範囲344外にあれば、再度上記位置合わせを行う。次いで、この位置合わせが完了した後、当該位置(上記パルス数)を記憶しておく。なお、XYステージ351の位置合わせ後、マーカ部15の位置が変化していない場合は駆動用モータの脱調とみなし、アラームを発して分析を中止する。
[蛍光検出]
 このステップでは、再度検出手段34の対物レンズ334を駆動させ、フォーカス位置を調整する。なお、フォーカス位置の再調整は、XYステージの移動による垂直方向のずれを補正するためであるが、検出手段34および分析サンプルsが十分な被写界深度を有するのであれば、本調整は不要である。
 次いで、フィルタ切替機構332を用い、中央値が波長490nmおよび595nmの2つの波長帯の励起光を切り替えながら分析領域12に当該励起光を照射し、都度蛍光を検出する。ここで、中央値が波長490nmの励起光はFAM-dCTPおよびCy3-dATPを、中央値が波長595nmの励起光はTexas Red-dGTPおよびCy5-dTsTPを、それぞれ蛍光検出するために用いられる。
 分析サンプル12から発せられた蛍光は、蛍光分離用ダイクロイックミラー341を介して2つの検出器343に取り込まれる。ここで、蛍光分離用ダイクロイックミラー341は、4色の蛍光波長領域について緩やかな反射特性を持つので、2つの検出器343を用いて分析サンプルsから発した輝点の蛍光強度比をそれぞれ算出することができる。そのため2つの検出器343における結像面上での強度比を算出することによって、この分析サンプルsの蛍光が上述した4色の蛍光のいずれに帰属するかを判定することが可能となる。なお、分析領域12には、数万~数十万の分析サンプルsが担持されており、蛍光検出によりどの位置の分析サンプルsがどの蛍光を発したかを一括して検出する。
 次に、蛍光検出で検出された蛍光画像kの一例を図11に示す。図11において、符号345は蛍光画像kの画素、符号13’は吸着部13に対応する蛍光画像k上の部位、符号15’はマーカ部15に対応する蛍光画像k上の部位をそれぞれ示している。図11は、各吸着部13が1.4μm間隔で配置され、検出手段34の空間分解能が0.28μm/画素であり、吸着部13が蛍光画像kの5画素間隔と同じ間隔で配置されている場合の蛍光画像の例である。また、この例では、分析サンプルsの大きさが0.28μm以上である。そのため、分析サンプルsの蛍光検出時は、十字状のマーカ部15の端から5画素間隔でサンプル位置を特定し、各分析サンプルsの位置ごとに9画素(3画素四方)の蛍光検出を行う。
 一つの分析領域12での蛍光検出完了後、次の分析領域12に移動する。次いで、再度XYステージ351の位置合わせを行い、当該分析領域12での蛍光検出を行う。このようなXYステージ351の移動、分析サンプルsの位置合わせ、分析サンプルsの位置の記憶、および蛍光検出を全分析領域12が完了するまで繰り返す。なお、分析時間を短縮するため、上記分析サンプルsの位置合わせは任意の分析領域12のみで行い、他の分析領域12では上述の記憶した位置情報を用いて行ってもよい。以上が当該分析における1サイクルの動作の概略である。
 次いで、2サイクル目以降を行う。2サイクル目以降のステージ移動において、上記1サイクル目の位置合わせで得られた最初の分析領域12の位置へ移動し、位置合わせを行う。この位置合わせは、核酸分析装置600内部の温度変化による熱膨張を補正するために行う。この位置合わせ完了後、補正した位置を記憶する。
 次の分析領域12以降は、1サイクル目で得られた最初の分析領域12からの相対位置で移動する。例えば、1サイクル目での最初の分析領域12およびそれ以降2つの分析領域12の位置が、それぞれ1,000μm、2,000μm、3,000μmであったとする。そして2サイクル目の最初の分析領域12が950μmである場合、以降2つの分析領域12の位置は、それぞれ1,950μmおよび2,950μmとなる。
 なお、この動作ではXYステージ351の繰返し位置決め精度の誤差分、位置ずれが生じる可能性がある。XYステージ351の繰返し位置決め精度が十分小さい場合、検出ロスはほとんど生じないが、大きい場合は無視できない。もし上記繰返し位置決め精度が大きい場合は、検出ロスと検出時間を考慮し、位置合わせをする分析領域12を増加する必要がある。
 以上のサイクルを繰返し、分析サンプルsのDNA塩基配列を分析する。例えば、ある分析サンプルsがサイクルごとにCy3→Texas Red→FAM→Cy5→・・・の蛍光を発したとすると、蛍光色素に対応したdNTPから、サンプルの塩基配列はA→G→C→T→…と決定することができる。このようにして、数万~数十万の分析サンプルsを一括して蛍光検出し、これらの分析サンプルs全ての塩基配列を並列に決定する。
 なお、この例では1サイクル目から分析サンプルsのDNA塩基配列の分析を開始したが、1サイクル目は分析領域12のマッピング動作としてもよい。このマッピング動作では、例えばTexas Red-dGTPを全分析サンプルのDNA断片に取り込ませると、595nmの励起光で全分析サンプルが蛍光を発する。これにより、マーカ部をより確実に検出できるので、位置合わせができない分析領域12を低減することができる。
 このように、当該核酸分析装置600は、当該核酸分析用基板100を有する核酸分析用フローセル500を備えているので、繰り返し位置合わせする場合であっても、吸着部13の位置を再現よく割り出すことができ、その結果、DNA断片の塩基配列を確実かつ迅速に分析することができる。
 なお、本発明の核酸分析用基板、核酸分析用フローセルおよび核酸分析装置は、上述した実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 例えば、上述した実施形態では、マーカ部15の形状として十字状やカギ状のものを例示したが、例えば星形状や円形状など、分析領域12においてマーカ部15の位置を特定できる限り、いずれの形状のマーカ部をも採用することができる。
 また、図4および図5においては、マーカ部15が分析領域12の中心部および4つの角部に形成されている核酸分析用基板400について説明したが、上記中心部にマーカ部15が形成されていないものや、一方の対角のみにマーカ部15が設けられているもの等も本発明の範疇である。
 また、上述した核酸分析用フローセル500の説明では、核酸分析用基板100を備えているものについて説明したが、本発明の核酸分析用基板の構成を満たす限り、いずれの核酸分析用基板をも採用することができる。
 また、図7においては、互いに略平行かつ離間するように配設されている2本のスペーサ22を備えている核酸分析用フローセル500について説明したが、3本以上のスペーサ22を備え、複数本の流路23を備えている核酸分析用フローセルであってもよく、例えばポリジメチルシロキサン(PDMS)等の材料を用いて形成され流路部を中抜きした中抜きシートを備えている核酸分析用フローセル等を採用することもできる。
 また、上述した核酸分析装置600の説明では、核酸分析用フローセル500を備えているものについて説明したが、本発明の核酸分析用フローセルの構成を満たす限り、いずれの核酸分析用フローセルをも採用することができる。
 また、図8においては、検出手段34が2つの検出器343を備えている核酸分析装置600について説明したが、蛍光分離用ダイクロイックミラーを増設し、検出手段34が3つまたは4つの検出器を有する核酸分析装置であってもよい。
 10 基板
 11 反応領域
 12 分析領域
 13 吸着部
 14 非吸着部
 15 マーカ部
 21 光透過性カバー
 22 スペーサ
 23 流路
 23a 注入口
 23b 排出口
 31 流通手段
 32 温調手段
 33 照射手段
 34 検出手段
 35 移動手段
 100、200、300、400 核酸分析用基板
 500 核酸分析用フローセル
 600 核酸分析装置
 s 分析サンプル
 k 蛍光画像

Claims (8)

  1.  基板上に区画された複数の分析領域を有し、前記各分析領域を順次換えて測定される核酸分析用基板であって、
     前記分析領域は、DNA断片または前記DNA断片を担持した担持体を吸着可能な吸着部と、前記吸着部以外の非吸着部とにより構成され、
     前記非吸着部は、少なくとも一部に前記分析領域の位置を割り出すための所定形状のマーカ部を備えていることを特徴とする核酸分析用基板。
  2.  マーカ部の平面視の形状が、少なくとも隣り合う分析領域どうしで互いに異なっている請求項1に記載の核酸分析用基板。
  3.  マーカ部の平面視の形状が、全ての分析領域で異なっている請求項2に記載の核酸分析用基板。
  4.  各分析領域は複数の吸着部を有し、前記各吸着部が碁盤目状に配列されている請求項1から請求項3のいずれか1項に記載の核酸分析用基板。
  5.  非吸着部の全領域がマーカ部であり、分析領域における前記マーカ部以外の領域が吸着部である請求項1から請求項3のいずれか1項に記載の核酸分析用基板。
  6.  マーカ部が、分析領域内における各吸着部位置の補正に用いられる請求項1から請求項5のいずれか1項に記載の核酸分析用基板。
  7.  請求項1から請求項6のいずれか1項に記載の核酸分析用基板と、
     前記核酸分析用基板に対向するように配設され、光を透過する光透過性カバーと、
     前記核酸分析用基板と前記光透過性カバーとの間に設けられ、互いに略平行かつ離間するように配設された複数のスペーサと、
     前記核酸分析用基板と前記光透過性カバーとの間の隣り合うスペーサに挟まれた部位に形成され、流体が流通する流路と、
     前記流路の一端に開口し、前記流体を注入する注入口と、
     前記流路の前記注入口と反対側の他端に開口し、前記流体を排出する排出口とを備えている核酸分析用フローセル。
  8.  請求項7に記載の核酸分析用フローセルと、
     前記核酸分析用フローセルの流路に流体を流通させる流通手段と、
     DNA断片の反応温度を調整する温調手段と、
     光透過性カバーを介して分析対象となる分析領域に励起光を照射する照射手段と、
     前記励起光の照射によりDNA断片から放出された蛍光を前記光透過性カバーを介して検出すると共に、検出された前記蛍光から前記分析領域におけるマーカ部の位置を検出する検出手段と、
     前記核酸分析用フローセルが載置され、前記マーカ部を目印にして当該分析領域を所定の位置に移動させる移動手段とを備えている核酸分析装置。
PCT/JP2014/084584 2014-12-26 2014-12-26 核酸分析用基板、核酸分析用フローセルおよび核酸分析装置 WO2016103473A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016565817A JP6346308B2 (ja) 2014-12-26 2014-12-26 核酸分析装置
CN201480083088.6A CN107735496B (zh) 2014-12-26 2014-12-26 核酸分析装置
DE112014007175.7T DE112014007175B4 (de) 2014-12-26 2014-12-26 Substrat zur Verwendung bei der Analyse einer Nucleinsäure, Durchflusszelle zur Verwendung bei der Analyse einer Nucleinsäure und Nucleinsäure-Analysenvorrichtung
PCT/JP2014/084584 WO2016103473A1 (ja) 2014-12-26 2014-12-26 核酸分析用基板、核酸分析用フローセルおよび核酸分析装置
GB1708820.4A GB2548733B (en) 2014-12-26 2014-12-26 Nucleic acid analysis device
US15/533,087 US10711294B2 (en) 2014-12-26 2014-12-26 Nucleic acid analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084584 WO2016103473A1 (ja) 2014-12-26 2014-12-26 核酸分析用基板、核酸分析用フローセルおよび核酸分析装置

Publications (1)

Publication Number Publication Date
WO2016103473A1 true WO2016103473A1 (ja) 2016-06-30

Family

ID=56149558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084584 WO2016103473A1 (ja) 2014-12-26 2014-12-26 核酸分析用基板、核酸分析用フローセルおよび核酸分析装置

Country Status (6)

Country Link
US (1) US10711294B2 (ja)
JP (1) JP6346308B2 (ja)
CN (1) CN107735496B (ja)
DE (1) DE112014007175B4 (ja)
GB (1) GB2548733B (ja)
WO (1) WO2016103473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402241A (zh) * 2017-08-07 2019-03-01 深圳华大基因研究院 鉴定和分析古dna样本的方法
WO2020145124A1 (ja) * 2019-01-09 2020-07-16 株式会社日立ハイテク 核酸分析用基板、核酸分析用フローセル、及び画像解析方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11676685B2 (en) 2019-03-21 2023-06-13 Illumina, Inc. Artificial intelligence-based quality scoring
US11210554B2 (en) 2019-03-21 2021-12-28 Illumina, Inc. Artificial intelligence-based generation of sequencing metadata
US11593649B2 (en) 2019-05-16 2023-02-28 Illumina, Inc. Base calling using convolutions
CN115136244A (zh) 2020-02-20 2022-09-30 因美纳有限公司 基于人工智能的多对多碱基判读
US20220336054A1 (en) 2021-04-15 2022-10-20 Illumina, Inc. Deep Convolutional Neural Networks to Predict Variant Pathogenicity using Three-Dimensional (3D) Protein Structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307518A (ja) * 2002-02-14 2003-10-31 Ngk Insulators Ltd プローブ反応性チップ、試料解析装置および試料解析方法
JP2013527848A (ja) * 2010-04-30 2013-07-04 コンプリート・ゲノミックス・インコーポレーテッド Dnaシークエンシング用アレイの正確なアラインメント及びレジストレーションのための方法及びシステム
JP2013150568A (ja) * 2012-01-25 2013-08-08 Hitachi High-Technologies Corp 核酸分析用反応デバイスの再生方法およびその方法に用いる洗浄機構を有する核酸分析装置
JP2014020832A (ja) * 2012-07-13 2014-02-03 Hitachi High-Technologies Corp 生体物質分析用フローセルと生体物質分析装置
WO2014148419A1 (ja) * 2013-03-19 2014-09-25 独立行政法人理化学研究所 核酸配列決定用のフローセル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152255A1 (en) 2002-02-14 2003-08-14 Ngk Insulators, Ltd. Probe reactive chip, apparatus for analyzing sample and method thereof
JP2006087974A (ja) 2004-09-21 2006-04-06 Ntt Advanced Technology Corp 微小流路基板と微小流路基板製造方法
SG170802A1 (en) * 2006-03-31 2011-05-30 Solexa Inc Systems and devices for sequence by synthesis analysis
US20090270273A1 (en) 2008-04-21 2009-10-29 Complete Genomics, Inc. Array structures for nucleic acid detection
JP2011099720A (ja) 2009-11-05 2011-05-19 Hitachi High-Technologies Corp 分析装置,オートフォーカス装置、及びオートフォーカス方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307518A (ja) * 2002-02-14 2003-10-31 Ngk Insulators Ltd プローブ反応性チップ、試料解析装置および試料解析方法
JP2013527848A (ja) * 2010-04-30 2013-07-04 コンプリート・ゲノミックス・インコーポレーテッド Dnaシークエンシング用アレイの正確なアラインメント及びレジストレーションのための方法及びシステム
JP2013150568A (ja) * 2012-01-25 2013-08-08 Hitachi High-Technologies Corp 核酸分析用反応デバイスの再生方法およびその方法に用いる洗浄機構を有する核酸分析装置
JP2014020832A (ja) * 2012-07-13 2014-02-03 Hitachi High-Technologies Corp 生体物質分析用フローセルと生体物質分析装置
WO2014148419A1 (ja) * 2013-03-19 2014-09-25 独立行政法人理化学研究所 核酸配列決定用のフローセル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402241A (zh) * 2017-08-07 2019-03-01 深圳华大基因研究院 鉴定和分析古dna样本的方法
WO2020145124A1 (ja) * 2019-01-09 2020-07-16 株式会社日立ハイテク 核酸分析用基板、核酸分析用フローセル、及び画像解析方法
JPWO2020145124A1 (ja) * 2019-01-09 2021-10-07 株式会社日立ハイテク 核酸分析用基板、核酸分析用フローセル、及び画像解析方法
GB2594813A (en) * 2019-01-09 2021-11-10 Hitachi High Tech Corp Substrate for nucleic acid analysis, flow cell for nucleic acid analysis, and image analysis method

Also Published As

Publication number Publication date
DE112014007175B4 (de) 2022-10-06
US10711294B2 (en) 2020-07-14
JP6346308B2 (ja) 2018-06-27
US20170362634A1 (en) 2017-12-21
DE112014007175T5 (de) 2017-08-24
CN107735496A (zh) 2018-02-23
CN107735496B (zh) 2021-05-07
GB2548733B (en) 2020-04-08
GB2548733A (en) 2017-09-27
JPWO2016103473A1 (ja) 2017-08-17
GB201708820D0 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6346308B2 (ja) 核酸分析装置
US11795504B2 (en) High performance fluorescence imaging module for genomic testing assay
US6488892B1 (en) Sample-holding devices and systems
JP5026851B2 (ja) 化学発光検出装置
US20090112482A1 (en) Microarray detector and synthesizer
US20100204057A1 (en) Substrate for microarray, method of manufacturing microarray using the same and method of obtaining light data from microarray
KR20130142179A (ko) 마이크로어레이의 해석 방법 및 판독 장치
US20090284746A1 (en) Radiation detectors using evanescent field excitation
US20170089836A1 (en) Analysis Device
JP2014071056A (ja) 光学的測定装置及び光学的測定用マイクロチップ
WO2020003823A1 (ja) 核酸分析用基板、核酸分析用フローセル、及び解析方法
JP5978147B2 (ja) 生体物質分析装置
JP2002014035A (ja) 光測定方法及びマイクロプレート
WO2020095405A1 (ja) 生体分子分析用基板、生体分子分析用フローセル、及び生体分子解析方法
WO2020145124A1 (ja) 核酸分析用基板、核酸分析用フローセル、及び画像解析方法
JP2015017940A (ja) 検出方法、検出装置、バイオチップのスクリーニング方法、スクリーニング装置及びバイオチップ
JP2018049034A (ja) 検出方法、検出装置、スクリーニング方法、スクリーニング装置、及びバイオチップ
KR20240025515A (ko) 선형 푸리에 기점
JP2014228411A (ja) 検査用パッケージ及びその検査方法、スクリーニング方法並びにスクリーニング装置
WO2018051426A1 (ja) 分析装置
JPWO2005056145A1 (ja) 生物学的チップおよびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565817

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201708820

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141226

WWE Wipo information: entry into national phase

Ref document number: 15533087

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007175

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909077

Country of ref document: EP

Kind code of ref document: A1