JP2014071056A - 光学的測定装置及び光学的測定用マイクロチップ - Google Patents

光学的測定装置及び光学的測定用マイクロチップ Download PDF

Info

Publication number
JP2014071056A
JP2014071056A JP2012219166A JP2012219166A JP2014071056A JP 2014071056 A JP2014071056 A JP 2014071056A JP 2012219166 A JP2012219166 A JP 2012219166A JP 2012219166 A JP2012219166 A JP 2012219166A JP 2014071056 A JP2014071056 A JP 2014071056A
Authority
JP
Japan
Prior art keywords
region
detection
optical
detection light
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012219166A
Other languages
English (en)
Inventor
Shinichi Kai
慎一 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012219166A priority Critical patent/JP2014071056A/ja
Priority to CN201310439608.XA priority patent/CN103712964A/zh
Priority to US14/036,855 priority patent/US20140091208A1/en
Publication of JP2014071056A publication Critical patent/JP2014071056A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/148Specific details about calibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/021Identification, e.g. bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Abstract

【課題】 検出精度が良好な光学的測定装置及び検出精度を良好にすることが可能な光学的測定用マイクロチップを提供すること。
【解決手段】 検出光量校正用領域からの光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する制御部を備える光学的測定装置。前記検出光量校正用領域が、マイクロチップの外部に及び/又は内部に、設けられていてもよい。;ID領域を有する接着層が形成されている光学的測定用マイクロチップ。前記ID領域には、さらにアッセイ情報及び/又はチップ情報が含まれていてもよい。
【選択図】図1

Description

本技術は、光学的測定装置及び光学的測定用マイクロチップに関する。
近年、医療分野、創薬分野、臨床検査分野、食品分社、農業分野、工学分野等の様々な分野で、遺伝子解析、タンパク質解析、細胞解析等に関する技術研究が進められている。
特に最近では、核酸やタンパク質、細胞等の検出や解析等の各種反応を、チップに設けられたマイクロスケールの流路やウェル内で行うラボ・オン・チップの技術開発や実用化が進められている。これらは、生体分子等を簡便に計測する手法として注目を集めている。
このとき、微量の検体でも検出・測定できるように、例えば、DNA断片を数十万倍にも増幅させるPCR法による核酸増幅反応を利用する方法が一般的に用いられている。
さらに、多数のウェルを有するマイクロプレートなどを用いて、吸光、蛍光及び発光にて多数の検体を少量の目的物質でも検出・測定する光学分析装置の開発がなされている。
近年、タングステンハロゲンランプや放電管に代えて、発光ダイオード(LED)や半導体レーザを光源とする光学分析装置が主流となってきている。
そして、発光ダイオードからの光を直接的に試料へ照射させる照射機構を備える吸光光度計が知られている(例えば、特許文献1参照)。この第2の実施形態として、被験体の複数の測定部位がマトリックス状に配置されていることに対応して、複数のLED及びこれらとそれぞれ対の複数の受光素子を有する構成が挙げられている。
また、光学系により照射光を移動させるビーム走査法及びサンプルを載置している台を移動させるステージ走査方法がある。そして、核酸増幅の反応場があるカードリッジ内のサンプルを測定する走査検出器であって、この操作検出器には、光源と検出ユニットとともに、その機構に支柱構造の使用を組み入れていることが知られている(例えば、特許文献2参照)。
特開平9−264845号公報 特表2009−515162号公報
本技術は、検出精度が良好な光学的測定装置及び検出精度を良好にすることが可能な光学的測定用マイクロチップを提供することを主目的とするものである。
本技術は、検出光量校正用領域からの光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する制御部を備える光学的測定装置を提供するものである。
前記校正用領域が、マイクロチップの外部に及び/又は内部に、設けられていてもよい。
本技術は、ID領域を有する接着層が形成されている光学的測定用マイクロチップを提供するものである。
前記ID領域には、さらにアッセイ情報及び/又はチップ情報が含まれていてもよい。
本開示は、検出精度が良好な光学的測定装置及び検出精度を良好にすることが可能な光学的測定用マイクロチップを提供することが可能である。
本技術の光学的分析装置1(第一実施形態)を示す図である。 本技術の光学的分析装置1の検出光学系7を示す模式図である。 各反応領域4の検出光学系位置と信号量(検出光)の関係を示す図である。 各反応領域4の対物レンズ−ウェル間の距離と信号量(検出光)の関係を示す図である。 本技術の光学的分析装置1の移動式の検出光学系7が異常な状態を示す一例の図である。 移動式の検出光学系7が異常な状態の場合の各反応領域4の検出光学系位置と信号量(検出光)の関係を示す一例である。 各検出光量校正用領域2及び各反応領域4の検出光学系位置と信号量(検出光)の関係を示す図である。 移動式の検出光学系7が異常な状態の場合の各検出光量校正用領域2及び各反応領域4の検出光学系位置と信号量(検出光)の関係を示す一例の図である。 本技術の光学的分析装置1(第二実施形態)を示す図A及び各検出光量校正用領域2の検出光学系位置と信号量(検出光)の関係を示す図Bである。 本技術のID領域33を有するマイクロチップを示す例示(A及びB)である。複数のID領域33を検出光量校正用領域2として利用可能な一例の図Aである。 接着層の有無(接着剤331及び空間332)により形成されたID領域33を有する本技術のマイクロチップを示す図である。 光学的分析装置及び本技術のID領域33を有するマイクロチップを示す図である。このとき移動式の検出光学系7のID領域33及び各反応領域4の検出光学系位置と信号量(検出光)の関係を示す一例である。 本技術のマイクロチップに備えるID領域33が有するアッセイ情報及び/又はチップ情報に基づく、光学的分析装置の動作を示すフロー図である。
以下、本開示を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本開示の代表的な実施形態の一例を示したものであり、これにより本開示の範囲が狭く解釈されることはない。
1.本技術の光学的測定装置1
(1)検出光量校正用領域2
(2)制御部
(3)検出光学系7
(4)光源部5
(5)検出部6
(6)光学的測定用マイクロチップ3
3.本技術の光学的測定装置1の動作
(1)ID領域による光学的測定装置の動作
1.本技術の光学的測定装置1
本技術に係わる光学的測定装置1(図1参照)は、検出光量校正用領域2からの光学的情報に基づき、マイクロチップ3にある各種反応の場となる反応領域4から生じる検出光を補正する制御部(図示せず)を備えるものである。
また、前記光学的測定装置1には、光源部5と、検出部6とが備えられていることが好適である。さらに、光源部5と検出部6から構成される検出光学系7を備えることが好適である(図2参照)。
また、前記光学的測定装置1には、反応領域の反応熱を制御する加熱部8が備えられていることが好適である。
また、前記光学的測定装置1には、検出光量校正用領域2、マイクロチップ3等を支持する支持体9(例えば支持体91、支持台92等)が備えられていることが好適である。
(1)検出光量校正用領域2
本技術の光学的測定装置1には、検出光量校正用領域2を単数又は複数備えられている。
前記検出光量校正用領域2が、マイクロチップ3の外部に及び/又は内部に設けられていることが好適である。マイクロチップの内部に設ける場合については、後述する。
前記検出光量校正用領域(以下、「校正用領域」ともいう)2は、反応領域4からの検出光を校正する際の基準となる光学的情報を生じさせることが可能である。
本技術において、前記マイクロチップ3の外部として、光学的測定装置1の装置内に校正用領域2を設けることが可能である。当該校正用領域2は着脱可能であってもよい。着脱可能な場合には、測定対象に対応して適宜校正用領域を変更することが可能である。
前記校正用領域2の配置は、少なくとも校正用領域からの検出光を受光可能な対物レンズ10と対面可能な位置が望ましい。また、当該校正用領域2の位置は、光学部からの出射光を校正用領域に出射する対物レンズ10と対面可能な位置が望ましい。
前記校正用領域2は、支持体91にて支持されることが望ましい。また、前記校正用領域2を単数又は複数設ける部材21を支持体91に設けてもよい。さらに、当該部材21は、校正用領域を動かすことができるスライド式又は回転式等の可動式部材とすることが好適である。これにより、校正用領域2を測定対象に対応して簡易に変更することが可能となる。この校正用領域2が複数の場合には、これらの変更がより簡易に行うことが可能となる。
また、前記単数又は複数の校正用領域2は、マイクロチップ3にある単数又は複数の反応領域4のX方向及び/又はY方向の両端側又は片側に配置されていることがより好適である。さらに前記校正用領域2は、反応領域4とX方向で直列的に配置されていることが好適である。また、前記校正用領域2は、反応領域4の両端側に複数配置するのが好適である。
そして、複数の校正用領域2は、平面的に又は立体的に配置されることが好適である。
ここで、「平面的」配置とは、X方向及び/又はY方向に配置されることであり、「立体的」配置とは、さらにZ方向にも配置されることである。
複数の校正用領域を配置することにより、校正用領域の1つを少なくとも基準とし、この基準と他(検出用領域、反応領域等)を対比することで、より精度の高い補正値を算出することが可能となる。また、複数の校正用領域2を配置することにより、単数又は複数の反応領域4を同時期又は別々の時期に測定した際、より精度の高い補正値を算出することが可能となる。
また、可動式の検出光学系を有する装置の場合には、少なくとも2つの校正用領域2,2を反応領域4の行又は列の両端側に設けることが好ましい。スキャンすることで簡易に補正することが容易となる。
前記校正用領域2は、校正用物質を収容したものであることが好ましい。当該校正用物質によって、反応領域4からの検出光を校正する際の判断基準となる光学的情報を生じさせることが可能となる。
前記校正用物質は、所望の光成分及び光量を発する物質であることが好ましく、さらに、当該校正用物質は、反応領域から生じる検出光に対応可能な物質(例えば、検出光の波長領域と同一又は近似する物質等)であることが好ましい。さらに、校正用領域を形成している基板から生じる波長に影響されにくい波長ピークの検出光を発する校正用物質を選択することが望ましい。
前記校正用物質として、例えば、蛍光物質、化学発光物質、濁度物質等を挙げることができ、また当該校正用物質は、無機物又は有機物の何れでもよい。
また、当該校正用物質は、蛍光を発する物質であり、凹凸の厚みを有する層状物(例えば、接着層)であってもよい。
また、前記検出光量校正用物質は、固形状、半固形状又は液状の何れでもよいが、固体の方が、安定的に長期間使用することができるので、好適である。
前記校正用物質が、蛍光物質である場合には、励起光の照射により蛍光を発するルビー、蛍石等から選ばれる1種又は2種以上の無機物;プラスチックフィルム等から選ばれる1種又は2種以上の有機物が挙げられる。
前記校正用物質が、接着層である場合には、その接着層に用いる接着剤に、蛍光を発する物質を有する物質が含まれていることが好適である。
当該接着剤には、無機系、有機系、天然系が挙げられる。このうち有機系の合成系接着剤が、好適である。当該合成系接着剤として、例えば、アクリルクリル樹脂系、o−オレフィン系、ウレタン樹脂系、エチレン−酢酸ビニル樹脂系、エポキシ樹脂系、塩化ビニル系、クロロプレンゴム系、酢酸ビニル樹脂系、シアノアクリレート系、シリコーン系、ニトリル系から選ばれる1種又は2種以上のものが挙げられる。このうちマイクロチップ等の接着に用いられているもの、具体的には、アクリルクリル樹脂系が好適である。
さらに、前記校正用物質は、マイクロチップ内の反応領域や流路とフォーカス方向について同じ位置にあることが望ましい。さらに、当該校正用物質は、透過率、球面収差等の光学的な特性をウェルや流路と等しくするために、当該校正用物質の上部も反応領域4の上部の材質と同じ材質で覆われていることが望ましい。
(2)制御部
本技術の制御部は、単数又は複数の前記校正用領域2からの光学的情報に基づき、マイクロチップ3にある反応領域4から生じる検出光を補正する。
なお、当該反応領域は、マイクロチップ内において所望の検出光が検出可能な領域であれば特に限定されず、例えばウェル及び流路等を挙げることができる。
また、本技術の装置の動作、補正方法、判定方法及び手順等を、CPU、RAM、ROM等を含む制御部及び記憶媒体(USBメモリ、HDD、CD等)等を備えるハードウエア資源に、プログラムとして格納し、前記制御部等によってこのプログラムを実行させることも可能である。
前記制御部は、光源部5から前記校正用領域2に所定の光を照射するように光源部5を制御する。そして、前記制御部は、前記校正用領域2から生じた検出光を光学的情報として検出部6にて検出するように検出部6を制御する。
また、前記制御部は、光源部5及び検出部6を制御して、所定の光を照射し、マイクロチップ3にある反応領域4から生じる検出光を検出する。
また、前記制御部は、光学的測定装置における各種制御(例えば、反応条件に関する制御等)を行うことも可能である。反応条件としては、測定対象の反応温度及び反応時間に対応して加熱部を制御すること、光学検出系が可動式の場合にこの駆動を制御すること、各種演算を処理すること等が挙げられる。
さらに、前記制御部は、平面的な又は立体的な複数の校正用領域2から得られた光学的情報に基づき、前記反応領域4から生じる検出光を補正する。複数の校正用領域を用いることで、1つを基準にし、他と対比することで、より精度よく補正値を算出することができる。
前記制御部は、校正用領域2と検出光学系7との第1距離(信号)及び反応領域4と検出光学系7との第2距離(信号)に基づき、反応領域からの検出光を補正することが好適である。前記第1距離(信号)は、光学的光情報に基づくものである。
このとき、前記制御部は、X方向及び/又はY方向の平面的な位置関係にある複数の校正用領域2から得られる複数の光学的情報に基づき、反応領域からの検出光を補正することが望ましい。
ここで、「第1距離」は、検出光学系(例えば対物レンズ)と校正用領域の間のZ方向の距離である。また、「第2距離」は検出光学系(例えば対物レンズ)と反応領域との間のZ方向の距離である。なお、Z方向は、フォーカス方向でもある。
フォーカス方向(Z方向)の距離を求める際の起点又は終点として、例えば、検出光学系7に配置されている検出部6、対物レンズ10等が挙げられるが、特に限定されない。
また、前記制御部は、校正用領域2と反応領域4との平面上(X方向及び/又はY方向)の距離に基づき、検出光を補正することが好適である。
また、前記制御部は、校正用領域2を、階段状に複数設けるような、立体的な配置の複数の校正用領域2から得られる光学的情報に基づき、マイクロチップ3にある反応領域4から生じる検出光を補正することが好適である。
また、前記制御部は、反応領域4を加熱する加熱部8の加熱制御、光学的情報を取得する可動式検出光学系7の可動制御等の本技術の光学的測定装置1の各部の制御に関することを行うことも可能である。
例えば、前記制御部によって、前記検出光学系7が、可動機構(ガイド機構、ラックピニオン機構等)を有する可動式の場合、マイクロチップ上を移動して測定対象をスキャンすることも可能である。
そして、可動式検出光学系から送信される光学的情報に基づき制御部が、複数の検出光量校正用領域からの光学的情報から想定される第1信号量を算出する。また、取得した光学的情報から算出された第2信号量を算出する。第1信号量と第2信号量とを比較することで、可動式検出光学系の状態(正常か異常か)を判断することも可能である。
さらに、光学的光情報に基づく検出光量校正用領域2と検出光学系7との第1距離及び前記反応領域4と検出光学系7との第2距離との関係に基づき検出光を補正することが好適である。
さらに、第1距離と第2距離の関係と、前記検出光量校正用領域と前記反応領域との平面上の距離との関係に基づき、検出光を補正することが好適である。
また、前記複数の検出光量校正用領域を立体的に設け、各検出光量校正用領域からの複数の光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正することが好適である。
より詳細に、図1〜5を参照して、校正用領域2からの光学的情報に基づき、マイクロチップ3にある反応領域4から生じる検出光を補正する方法について可動式検出光学系を備える光学的測定装置にて、説明する。
なお、本技術は、アレイ検出器やCCD検出器等の可動式でない検出部を備える光学的測定装置にも利用可能である。
本技術における図1及び5に示す走査型光学的測定装置を用いた検出光量補正用領域及び反応領域を測定する際の、可動式検出光学系7の基本的な動作について図2等を参照して説明する。
走査型光学測定装置の制御部は、可動式検出光学系7内の光源部5(例えばLED)から光を出射する。出射光は、レンズ51、バンドパスフィルタ52を経て、反射ミラー(ビームスプリッター)53にて対物レンズ10から、マイクロチップ3内の検出光量校正用領域2に照射され、校正用領域2から検出光が放射される。この検出光は対物レンズ10によって集光され、反射ミラー53を通過し、エミッションフィルタ54で特定の波長の光を通過させ、その光量が検出光学系7内の受光素子で検出される(図2参照)。この検出された量は信号量と呼ばれている。そして、前記制御部は、可動式検出光学系7を用いて、反応領域4及び校正用領域2を走査し、各検出光(信号量)を検出する。
図3〜8を参照して、本技術の反応領域からの検出光の補正方法を、より詳細に説明するが、本技術はこれに限定されるものではない。
図3に、同一濃度で、同一の試薬及びサンプルが含まれている反応領域4から放射される検出光(蛍光等)を、正常な検出光学系7にて検出した場合の信号の例を示す。この場合は、全ての反応領域4から、等量の検出量(蛍光量等)が放射されていることとなる。また、可動式の検出光学系7がマイクロチップ3上を移動してスキャンし、対物レンズ10の中心に反応領域4の直上になるときに、検出される信号が増加している。
また、図4に、検出光学系7と反応領域4との距離を変化させた場合の、反応領域4から検出光学系で検出される信号量を示す。「対物レンズ−反応領域の間の距離」は最適な距離からのズレを指す。
図5には、本技術の光学的測定装置1の可動式検出光学系7の可動機構(ガイド機構等)の取り付けが機械的に誤っていることにより、対物レンズ−反応領域の間の距離が、反応領域ごとに異なっている。
この図5の場合、「対物レンズ−反応領域の間の距離」が最適値からズレており、右方向に可動式の検出光学系7が移動するに従って、「対物レンズ−反応領域の間の距離」が離れてくる。このため、図5に示すように、反応領域4から検出される信号量は右方向になるに従って減少する。このように「対物レンズ−反応領域の間の距離」が変化しているため、信号量が、反応領域ごとに異なっている。このように検出光の補正を行わない状態では、反応領域内の検出光の量(たとえば蛍光量)が正確に測ることができないので、サンプル(例えば、DNA等)量や経時的変化も正確に測定することができない。
特に、ある閾値をもってサンプル(例えばDNA)の量を判定する場合、本技術のように検出光の補正を行わない従来の装置であれば、装置側の変動に起因する信号量の変化は間違った判定を行う可能性が高い。
より詳細に説明すると、例えば、所定の閾値を0.7とし、閾値の0.7以上を陽性(+)、0.7未満を陰性(−)と、装置の制御部に設定する。装置の状態に不備・不良がない状態での正しい信号量を図3に示し、装置の不備等の異常状態により誤った信号量を図6に示す。
図6において、最も右端の反応領域の信号は0.6であるので、正しく測定できた検出結果(図3参照)であれば、陽性判定とされるべきものが、陰性と間違った判定を下すこととなる。
なお、「対物レンズ−反応領域の間の距離」が変動する原因としては、例えば、可動機構にある場合と、マイクロチップのセッテングにミスがある場合等が考えられる。可動機構の原因としては、検出光学系のガイドの取り付けのズレや、検出光学系を支持する支持体の取り付けのズレ等が挙げられる。またマイクロチップの原因としては、マイクロチップを支持するための支持体の下に弾性体(バネ等)を入れている場合、弾性特性の変化等が挙げられる。
これに対し、本技術を採用し、校正用領域2を設け、校正用領域2からの光学的情報に基づき、反応領域4から生じる検出光を補正するような方法が実行可能な制御部を設けたことで、より精度検出精度の高い結果を得ることが可能となる。
以下に、具体的な一例を説明するが、校正用領域からの光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する処理手法及び判断手法が、これに限定されるものではない。
各反応領域のサンプル濃度等の反応条件を一定とした場合、図7及び8に示すような、校正用領域及び反応領域の各信号量を得ることができる。
図7に示すように、光学的測定装置の「対物レンズ−反応領域の間の距離」が変動していない正常な可動式光学検出系7の状態であれば、2つの校正用領域2からの信号量は同じとなる。このように同じになることで、本技術の制御部は、可動式光学検出系7が正常な状態であると判断する。
一方で、「対物レンズ−反応領域の間の距離」が変動した異常な可動式光学検出系7の状態の場合には、2つの校正用領域2からの信号量が異なる。このように異なることで、本技術の制御部は、可動式光学検出系7が異常な状態であると判断する。そして、本技術の制御部は、反応領域4からの検出光のキャリブレーションが必要と判断する。
本技術の制御部は、正常な状態であれば2つの校正用領域2からの信号量が同じになる。一方で、異常な状態であれば2つの校正用領域2からの信号量は、本来同じ信号量であるものが、異なって現れる。これらの信号量の違いを用いて反応領域4からの検出光のキャリブレーション(補正)を行う。
そして、本技術の制御部は、前記反応領域4と、当該反応領域から生じる検出光を検出する可動式光学検出系7(好適には検出部6)との、距離を信号量として算出する。そして、当該制御部は、当該信号量及び校正用領域2からの光学的情報に基づく信号量との差を用いて、検出光の補正を行う。
具体的には、本技術の制御部は、各反応領域4と、2つの校正用領域2からの距離(X方向及び/又はY方向の距離)に応じて、図8に示すような信号量と検出光学系位置に基づいたデータを作成する。校正用領域2からの光学的情報に基づき、各反応領域4の信号量の補正を行う。
例えば、図8のような場合、左側の校正用領域の位置や信号量を基準として、その信号量をSI、右側の校正用領域までの距離をLI、右側の校正用領域からの信号量をSr、i番目の反応領域までの距離をLi、i番目の反応領域からの信号量をSiとする。
このとき校正用領域が平面的に配置されていることを、予め制御部に設定していてもよいし、入力してもよく、またID領域等の光学的情報に含ませていてもよい。また、測定の最初と最後に校正用領域が配置されている場合に、制御部に平面的と判断させてもよい。
これにより、補正後のi番目の反応領域からの信号量Si_compは、Si_comp=Si×(SI/Sr)×(Li/LI)から算出できる。
また、「対物レンズ−反応領域の間の距離」の絶対値をより正確に求めるために、フォーカス方向に幾つか高さ(Z方向)を変えた複数の校正用領域2を設けた検出光量校正用領域群20を形成することが好適である。このとき校正用領域が立体的に配置されていることを、予め制御部に設定していてもよいし、オペレータが入力してもよく、またID領域等の光学的情報に含ませていてもよい。また、複数の校正用領域がX方向及び/又はY方向に連続的に配置されている場合に、制御部に立体的と判断させてもよい。
また、図9に示すように、立体的な配置で複数の検出光量補正用領域からなる1群において、Z方向の高さを変えて階段状に複数の検出光量補正用領域2,2,2,・・・を設ける。さらに、各校正用領域2は、可動式検出光学系7が移動する方向になるにつれ、フォーカス方向が遠くなるようにZ方向の高さを変えて階段状にすることが好適である。
さらに、フォーカス方向(Z方向)に幾つか高さを変えた複数の校正用領域2,2,2,・・・の1群を、反応領域4の両端に設けることが好ましい。
より詳細には、前記校正用領域群20は、複数の校正用領域2をZ方向の高さを変えながら、X方向及び/又はY方向に直列するように配置されている。可動式の検出光学系の場合には、高さを変え、X方向又はY方向で直列する校正用領域群20が好適である。
具体的には前記校正用領域2の1群である校正用領域群20は、「対物レンズ−反応領域の間の距離」の−2から2までに想到する距離において0.5刻みで高さ(Z方向)を変えて構成されている。各検出光量補正用領域2,2,2,・・・からの検出光を可動式検出光学系7で検出すると、図9Bのような信号(単峰で左右対称な形)が得られる。図9Aでは、左側の1群からの信号は検出光量補正用領域cにおいて、右側の1群からの信号は検出光量補正用領域iにおいて最大になる。これにより、本技術の制御部は、それぞれの反応領域4からの検出光において、c,iの位置が基準の「対物レンズ−反応領域の間の距離」であることを判断し、記憶する。そして、この記憶により、本技術の制御部は、検出光量校正用領域群20からの光学的情報に基いて、各反応領域4からの信号量の補正を行う。これによって、反応領域からの検出光をより精度よく補正することが可能となる。
また、可動式の検出光学系に異常がある場合には、補正用領域からの検出光は、左右対称でない形が生じることとなる。このような場合には、校正用領域群を単峰で左右対称となるように校正用領域群からの検出光を補正し、この群の形(光学的情報)に基づき、反応領域からの検出光を補正することが可能である。また、例えばcとh等のような高さが同じ検出用領域を対比させて校正用領域の検出光を補正し、この補正した光学的情報に基づき、反応領域からの検出光を補正することが可能である。
また、上述の校正用領域の1群の例によって、本技術の制御部は、「対物レンズ−反応領域の間」の基準の位置での補正用領域2からの信号量を計測することが可能となる。これによって、本技術の制御部は、可動式の検出光学系の変化をより容易に精度よく見出し、判断することも可能となる。
よって、本技術の光学的測定装置の制御部に、予め、上述のような信号を測定し、記憶させておいた情報に基いて、反応領域4からの検出光の補正を行うことも可能となる。
そして、ユーザが測定する際に、本技術の制御部は、反応領域4からの検出光(信号量)と、記憶されている信号量との間で最大値を比較することが可能となる。この比較により、本技術の制御部は、励起光量の変化や検出光学系の透過率変化に起因する検出光学系の変化を見出し、判断することも可能となる。
さらに、本技術の光学的測定装置を陽性・陰性の判定に使用することも可能である。この際、本技術の制御部は、その陽性・陰性の判定となる閾値を、上述のように反応領域4からの信号量を、校正用領域2からの光学的情報に基づいた判断に応じて変更させることが可能である。これにより、本技術の制御部は、可動式検出光学系の変化部分をより正確に補正することが可能となる。
(3)検出光学系7
検出光学系7には、光源部5及び検出部6が備えられている。また、必要に応じて所望の各種フィルタ、各種レンズ、各種ミラー等が設けられている。
本技術において、光源部5と検出部6は可動機構701を有する検出光学系7(以下、「可動式検出光学系」ともいう)であるのが好適である。可動式検出光学系7の場合、XY方向などに検出系が移動すること、また外部からの振動や衝撃によって、検出系が傾いたりズレが生じるという問題が生じやすい。しかし、本技術を採用することで、精度が良好な検出が可能となる。
(4)光源部5
光源部5の数は、単数又は複数の何れでもよい。なお、単数又は複数の光源部5の出射タイミング、出力(励起光波長や光量等)を制御部にて制御してもよい。
前記光源部5としては、例えば、レーザ光源、発光ダイオード(LED)光源、水銀灯、タングステンランプ等が挙げられる。これらを単独で又は複数組み合わせて使用してもよい。
レーザ光源の場合、狭いスペクトル幅で高出力であるので、従来必要であった励起フィルタ(Ex.fiilter)を排除することが可能となる。
LED光源の場合、赤色、橙色、黄色、緑色、青色、白色、紫外線等のLED光源が挙げられ、これらを単独で又は複数組み合わせて使用してもよい。多色LED光源として、例えば3色LED光源や4色LED光源等が挙げられる。これらは励起フィルタにより所望の励起光とすることが可能である。また、導光板を採用することで、複数種のLED光源による多色での励起が可能となり、このとき時分割も可能となる。また、多色LED光源の場合、一括励起の他、導光板を用いなくとも順次励起が可能である。
(5)検出部6
検出部6は、前記反応領域4内から発生する光成分(例えば、透過光、蛍光、散乱光等)を検出できるように配置されていればよい。
また、前記検出系6は、目的とする光成分を検出できる光検出器(例えば、蛍光検出器、濁度検出器、散乱光検出器、紫外可視分光検出器等)を備えていればよい。該検出器としては、例えばCCDやCMOS素子等のエリア撮像素子、PMT(光電子倍増管)、フォトダイオード、小型センサ等が挙げられる。
尚、蛍光色素を複数し、各反応領域内で各々異なる波長にて励起された蛍光色素は、それぞれ異なる波長の蛍光を発することとなる。これら光成分を効率よく検出するためには、例えば複数の蛍光スペクトルに対応した透過帯を有するマルチバンドパスフィルタを搭載することで可能となる。そして、複数波長の励起光をそれぞれ時分割照射し、それと同期して光検出器により各蛍光の強度検出を行うことが可能となる。
前記励起フィルタは、各種光分析方法に応じて所望とされる特定波長の光成分にすることが可能なフィルタを適宜選択すればよい。
前記検出フィルタは、検出に必要な光成分(蛍光、散乱光、透過光等)に応じて適宜フィルタを選択すればよい。
これら励起フィルタや検出フィルタは、本技術の光学的測定装置に、必要に応じて単数又は複数を備えればよく、場合によっては備えなくともよい。これにより、必要な光成分とすることができ、また不要な光成分が除去できる。これにより、検出感度や検出精度が向上できる。
また、本技術の光学的測定装置は、反応領域を加熱制御する加熱部8(ヒータ等)、レンズ、励起フィルタ、検出フィルタ、各部を支持したり反応領域を搭載するための支持体9等を適宜単数又は複数備えてもよい。また、前記光学的測定装置1に、励起光の出射タイミングや出力(励起光波長や光量等)、時分割、多色時分割等を制御する制御部を設けて、上述の各部を制御してもよい。
また、加熱部として、特に限定されないが、光透過性のあるITOヒータ等の透明導電膜等が挙げられる。
(6)光学的測定用マイクロチップ3
上記光学的測定装置1に使用するマイクロチップ3は、校正用領域2がマイクロチップの外部に設けられている場合には、通常のマイクロチップ3を使用すればよい。
また、校正用領域2がマイクロチップの内部に設けられている場合には、本技術のマイクロチップの校正用領域2に基づき、反応領域からの検出光を補正することが可能である。
また、校正用領域2がマイクロチップの内部に設けられている場合には、本技術のマイクロチップの校正用領域2に基づき、反応領域からの検出光を補正することが可能である。当該チップ内部に形成されている校正用領域2は、上述「(1)検出光量校正用領域2」のとおりである。
また、本技術のマイクロチップ3には、接着層34にID領域33を作成し、このID領域33を校正用領域2として使用することも可能である。当該ID領域33を有する接着層34に、アッセイ情報及び/又はチップ情報として、反応場となる反応領域から生ずる検出光を補正するための校正用領域2が複数設けられている。
また、前記ID領域33は、接着層34の厚みにより識別パターン化させることも可能である。
本技術のマイクロチップ3は、接着層34に単数又は複数のID領域33部分が形成されているものである。さらに、ID領域33には、アッセイ情報及び/又はチップ情報が含まれている。また、前記ID領域33には、接着層の厚みにより識別パターン化された領域がある。
本技術の光学的測定用マイクロチップ30には、基板の接着層34にID領域33となる部分が形成されている。例えば、ID領域33が単数の場合には、図10Bのようなマイクロチップ30bが例示として、またID領域33が複数の場合には図10Aのようなマイクロチップ30aが例示として挙げられる。
前記ID領域33には、種々の情報が記憶され、含まれており、例えば、検出光量校正情報、アッセイ情報及びチップ情報等から選ばれる1種又は2種以上のものが挙げられる。
前記検出光量校正情報とは、例えば、上述した、本技術の光学的測定装置の制御部に反応領域4からの検出光の補正を行わせるための情報であって、予め信号を装置にて測定し、記憶させておいた情報等が挙げられる。また、反応領域4からの検出光を補正するための検出光量校正情報は、アッセイ情報とすることも可能である。
前記アッセイ情報として、後述する化学反応の反応条件(蛍光物質、反応温度等)及び上述した校正用物質(発する波長、演算処理方法等)等が挙げられる。
また、チップ情報として、例えばマイクロチップの材質や耐久性、基板表面から反応領域又は校正用領域までの厚み等が挙げられる。
図11に示すように、情報取得部(例えば検出光学系等)が上述の種々の情報を読み取ることで、装置にその情報が送信され、その情報を元に条件設定や変更を行なって測定する。
例えば、図12を参照して説明するが、ID領域33を読み取ることで信号パターン(高低差や幅差等)を取得する。本技術の制御部によって、予め記憶部に記憶されている信号パターンとマッチングさせて、この信号パターンに基づき、反応領域4からの検出光の補正を行う。また、複数のID領域33が存在する場合には、それらの対比から導きだされた結果に基づき、反応領域4からの検出光の補正を行うことも可能である。
例えば、校正用物質の情報及びマイクロチップの材質、領域までの厚み等を読み取ることで、反応領域4から生じる検出光の補正をより精度よく行うことが可能となる。
さらに、前記ID領域33は、接着層34の厚みにより識別パターン化された領域であるのが好適であり、これにより光学的情報等の広範囲の情報を記憶させておくことが可能となる。識別パターン化された領域を形成する場合には、図11に示すように、接着剤がない部分の間隔や厚みによって形成することが可能である。形成方法として、例えば、インクジェット法、プリント法、レーザー等によるエッチング法等が挙げられる。
反応領域4は、化学反応の反応場となるエリアであり、例えば、化学反応用マイクロチップ等の反応容器内に形成されている。
前記反応領域は、単数又は複数の反応基板により形成される。当該反応基板は、ガラス製基板層のウェットエッチングやドライエッチングによって、又はプラスチック製基板層のナノインプリントや射出形成、切削加工によって形成することができる。このときに、前記反応領域の形状を適宜設定することができ、例えばウェル状にしてもよい。
当該反応基板の材料は、特に限定されず、検出方法や加工容易性、耐久性等を考慮して適宜選択するのが好適である。当該材料としては、光透過性のある素材で所望の検出方法に応じて適宜選択すればよく、例えば、ガラスや各種プラスチック(ポリプロピレン、ポリカーボネイト、シクロオレフィンポリマー、ポリジメチルシロキサン等)が挙げられる。
また、反応容器を形成する際に、反応領域内に、適宜、核酸増幅反応に必要な試薬類を充填していてもよい。
また、本技術のマイクロチップのID領域33からの光学的情報(データ)は、検出光学系7を介して前記制御部に送信され、当該制御部によって光学的測定装置の各部の動作を制御することも可能である。
以下に、本技術の光学的測定用マイロチップを使用する際の一例について以下に述べる。
図12にマイクロチップ30中のウェルや流路からの蛍光量を検出するシステムを示す。
この場合、マイクロチップ30は上部及び下部の2つの基板31,32から作製されており、流路やウェルは下部の基板32に形成されている。上部・下部の基板31,32は、それらの間の接着層34により一体化されている。
ここで、流路やウェル上には接着層34は存在しない。また、このシステムではマイクロチップ30上を検出光学系7が走査することで、図12中の下に示すグラフのように、各流路やウェルからの信号を検出することが可能である。
ここでは、ウェルや流路にサンプルが無い場合を示している。サンプルが存在する場合には、信号量が増大する。
マイクロチップ30に検出光学系7から励起光を照射される。これにより、接着層34が有る部分(接着剤331)では、接着層が自家蛍光を発生するので検出光学系で検出される信号量が大きくなる。また、接着層が存在しない場所(空間332)では、検出光学系で検出される信号量が小さくなっている。なお、ウェルや流路の部分においては接着層は存在しないので、信号量は小さい。
そして、これらの信号の大小を、ある信号量を閾値として用いて判別することで、サンプル処理前にウェルや流路の位置を求めることが可能である。
また、接着剤の有無や多寡によって、信号量が変化することから、マイクロチップ内に接着剤の有無や多寡によってID領域を設けることで、上述の如くアッセイ情報及び/又はチップ情報をID領域に保持させておくことも可能である。
従来の光学的測定装置での走査では、各アッセイに固有な処理条件の入力をオペレータが行なっているが、この各アッセイに固有な処理条件は重要である。しかし、ヒューマンエラーによって、この各アッセイに固有な処理条件である温度設定や温度変化のサイクル回数を間違えてしまうおそれが高い。そうすると、生化学的な処理が最適条件から外れるため、誤った結果を導いてしまうことになる。これはこのシステムを診断機器として用いる場合、重大な事態を引き起こす可能性がある。
図13に、本技術のシステムの実施形態1を示す。
〔ステップS1〕マイクロチップ30を光学的測定装置1にセットする。これは使用者がセットしてもよく、オートセットでもよい。
〔ステップS2〕マイクロチップ30をセット後、検出光学系7が、チップ3上のID領域33を走査する。ID領域33を検出光学系7で読み取ることで、そのチップ3に必要なアッセイの条件を正確に知ることができ、その情報から正確な温度や温度サイクルの回数を設定することができる。
なお、図10〜12に示すように、ウェルや流路の近傍の接着層34にID領域33を設ける。このID領域33にチップの情報及び/又はチップで用いられるアッセイの情報等を記録保持している。
〔ステップS3〕その後、各アッセイに固有な、溶液とサンプルの混合、温度サイクルの回数等の条件が、制御部によって光学的測定装置1の記憶部にセットされる。そして制御部によって、サンプルの生化学的な処理(反応)が開始される。
〔ステップS4〕反応終了後、制御部によって、検出光学系7は、チップ3上を再度走査し、各ウェル内の処理されたサンプルから検出光(信号量)の検出を行う。なお、本技術において、リアルタイムに測定することを選択することも可能であり、この場合には、反応中に反応領域4を連続的に又は非連続的に走査する。
また、本技術のシステムの実施形態2を示す。
上述の実施形態1の〔ステップS2〕を〔ステップS21〕に代えた以外は、上記の実施形態1と同じフローである。
〔ステップS21〕図14に示すように、ID領域33及びウェル・流路のある反応領域4を走査する。この走査に基づき、制御部によって、図12の下図のグラフのように、各ウェル位置の検出や、初期状態(各ウェル内にサンプルが無い時)の信号量の検出を行うことが可能である。
ステップS21にてID領域以外に反応領域4を走査することで、正確にウェル及び流路のある箇所を検出の際に走査し測定することができ、この走査は、ブランクとして利用することが可能である。これにより、精度よく測定対象の検出を行うことが可能となる。
なお、図11に示すように、検出用のスポットは、通常、ウェルや流路の位置で最小となるように設計されており、チップ上部でのスポット径は大きくなっている。
ここで、本技術のID領域33の情報の記録方法として、上部・下部の基板間の接着層34の有無を用いて信号を記録する。これら信号は、光ディスクシステムに用いられているような、デジタル信号であることが望ましい。
また、本技術において、接着層34は、自家蛍光を発するので、接着層34があるところでは検出光学系で検出される信号量は大きくなり、接着層34が無い部分では信号量が小さくなる。
この信号量の大小を変調信号として用いることで、チップ3のアッセイの識別データやチップ情報を記録することができる。
このような本技術におけるマイクロチップにおいて、接着層は元々必要であり、この接着層にわずかな加工を行うだけで情報付きのチップを安価に作製することができるという産業上の大きな利点がある。
ところで、従来のチップ外形に識別用のバーコートを付加する方法や、チップ上部に自家蛍光を発する物質を付加する方法があるが、バーコード等はチップに余分に付加する必要があるので、チップを製造するコストが増大してしまう。特にバーコードの場合は検出光学系の他にバーコード読み取り装置が別途必要となってしまい、装置が複雑になったり装置のコストが増大してしまう。
よって、従来のように、チップ上部に外側からID用物質を付加する場合は、一つ一つの信号を大きくすることが必要となる。それに伴いIDに必要な領域が増大してしまったり、ウェルや流路の位置検出に悪影響を与えてしまう可能性がある。例えば、ID領域の長い信号部分をウェルと判別してしまうおそれがある。
また、ID記録の別の方法として、例えば下部の基板に単なる凹凸のエンボスを加えることも可能である。しかし、このようなID記録だけでは自家蛍光を発生しないので、検出光学系に新たな光路(例えば蛍光光学系ではない光路)を設ける必要がある。このような工程の付加は、検出光学系が大きく高価になってしまうというデメリットがある。
これに対し、本技術のマイクロチップであれば、接着層にIDを記録する場合にID領域を最小とすることができるため、検出光学系の走査範囲を小さくすることや、チップの大きさを小さくすることができる。
本技術のマイクロチップでは、チップ内のウェルや流路近傍領域の接着層において、接着層の量の有無を利用して、チップ情報及び又はそのアッセイ情報を、光学的情報(信号)として記録している。本技術のマイクロチップではこのような方法を採用することにより、バーコードを後から付加するといったような方法と比較して、チップ情報やそのアッセイの情報を記録したチップを安価に作製することが可能となった。
また、本技術のチップ情報やアッセイ情報を含むID領域33は、検出用光学系の従来の測定方法により簡便に読み取ることが出来る。このため、光学的測定装置に別の読取装置を設けなくともよいため、装置を小型かつ安価に作製することも可能である。また、オペレータによるアッセイ方法の入力を必要としないので、生化学処理を正確に行うことが可能となる。
このように、本技術において、複数の基板が積層されることで構成されるようなマイクロチップにおいて、基板間の接着層の有無又は接着層の多寡を用いてチップの情報をID領域として記憶させる光学的測定用マイクロチップを提供することが可能である。該ID領域を設けることで、チップ情報を有するチップを安価に製造することが可能となる。また、オペレータがアッセイ情報を光学的測定装置に入力する手間がなくなるか軽減できる。しかも、オペレータによる誤入力も軽減される。このようなことから、正確な測定を行うことが可能である。
また、従来、ひとつの光学的測定装置で、生化学処理の異なる複数の種類のアッセイを扱うシステムの場合、チップの外形は同じであるが、チップにスポッティングされている物質は異なっており、そこで用いるアッセイも異なっている。
このため、チップの種類により温度や温度サイクルの回数等をチップに施す処理の条件はチップごとに設定する必要があり、オペレータが入力を行なっていたのが実状であった。
又は、チップの外周部分にバーコード等のチップの種類判別用の識別子を設けることも可能であるが、バーコード等の識別子をチップに付加するとその付加する製造工程を増やすことやチップ製造コストが上昇してしまうのが実状であった。
しかも、バーコード等の場合には、それに対応するバーコードリーダーが必要であり、装置が複雑化し、コスト高になる実状があった。
しかし、本技術の如く、基板を接着させる際に使用する接着剤の層部分にID領域となる部分を用いることで、これらの実状を解消することができる。また、ID領域を設けることは容易であることは有利であり、また、この接着層を形成することも製造コスト面でも有利である。
すなわち、本技術の光学的測定用マイクロチップ及びその制御方法は従来のマイクロチップと比較して優れた効果を有するものである。
なお、本開示に係るマイクロチップを用いて行う「化学反応」については、化学的及び/又は生物学的分析が可能な化学反応が望ましい。
この化学反応において、化学物質(生理活性物質等)、タンパク質、ペプチド、DNA、RNA、オリゴヌクレオチド、ポリヌクレオチド、抗原、抗体、微生物、ウイルス及びホルモン等並びに各断片等の、あらゆる物質が測定対象となり得る。測定試料としては、細胞、培養物、核酸増幅物、組織、体液、尿、血清及び生検試料等の生体に関連する試料が望ましい。
「化学反応」は、測定対象を反応させて検出することが可能な公知の化学反応方法を用いて行えばよい。「化学反応」として、例えば、核酸増幅反応、相補的な核酸同士のハイブリダイゼーション反応、PCR伸長反応、抗原抗体反応等が挙げられる。また、化学反応における標識法は特に限定されないが、例えば、蛍光物質、放射性物質、酵素等から選ばれる1種又は2種以上のものを用いる標識法が挙げられる。
なお、「核酸増幅反応」については、温度サイクルを実施する従来のPCR(Polymerase Chain Reaction)法や、温度サイクルを伴わない各種等温増幅法が含まれる。等温増幅法としては、例えば、LAMP(Loop-Mediated Isothermal Amplification)法、SMAP(SMartAmplificationProcess)法、NASBA(Nucleic Acid Sequence-Based Amplification)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法(登録商標)、TRC(Transcription-Reverse transcription Concerted)法、SDA(Strand Displacement Amplification)法、TMA(Transcription-Mediated Amplification)法、RCA(Rolling Circle Amplification)法等が挙げられる。この他、「核酸増幅反応」には核酸の増幅を目的とする、変温あるいは等温による核酸増幅反応が広く包含されるものとする。また、これらの核酸増幅反応には、リアルタイムPCR法などの増幅核酸の定量を伴う反応も包含される。
以上のように、本技術の光学的測定装置1は、検出精度が良好である。
さらに、本技術の光学的測定装置を、蛍光検出装置として使用する場合の一例を説明する。
本技術の蛍光検出装置において、マイクロチップチップ内のウェルや流路からの蛍光を検出する際に、検出用光学系からみて、ウェルや流路と同じ距離にキャリブレーション用の蛍光物質を複数の校正用領域にそれぞれ収容する。これらキャリブレーション用蛍光物質からの信号量を用いて、ウェルや流路からの信号量を補正することで、チップと検出光学系の距離が変化した場合や、検出光学系の特性が変化した場合でも、検出される蛍光の判定の確度をあげることができる。
また、従来、チップ内のウェルや流路中のDNA量を推定する際に、molecular beacon等のDNAと結合する蛍光試薬を用い、ウェルや流路に蛍光試薬の励起光を照射することで、ウェルや流路から蛍光が放射される。ここで、ウェルや流路中のDNAの量と蛍光の量には関係性があるので、検出用光学系により蛍光量を検出することで、ウェルや流路中のDNAの量を推定することができる。
しかし、実際には、チップ毎に、チップ内でのウェルや流路の位置がばらついたり、検出光学系とチップの間の距離がばらつくことといったような機械的な特性が変化する。このことにより、DNAの量が等しくても、検出光学系で検出される信号量が異なる場合があり、そのような場合は、DNAの量を間違って推定してしまうおそれがある。特に、ある値のDNA量をもってその遺伝子が検体中に存在する(陽性)・しない(陰性)を判定するシステムの場合、前記の機械的な精度のばらつきによる蛍光信号量のばらつきは間違った判定を引き起こしてしまう、という問題があった。
しかしながら、このような問題について、本技術のマイクロチップ及び制御方法を用いれば解決することが可能である。
本技術は、以下の〔1〕〜〔19〕の構成を採用することもできる。
〔1〕
検出光量校正用領域からの光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する制御部を備える光学的測定装置。
〔2〕
前記検出光量校正用領域が、マイクロチップの外部に及び/又は内部に、設けられている前記〔1〕記載の光学的測定装置。
〔3〕
前記光学的光情報に基づく検出光量校正用領域と検出光学系との第1距離及び前記反応領域と検出光学系との第2距離に基づき、検出光を補正する前記〔1〕又は〔2〕記載の光学的測定装置。
〔4〕
さらに、前記検出光量校正用領域と前記反応領域との平面上の距離に基づき、検出光を補正する前記〔1〕〜〔3〕の何れか1項記載の光学的測定装置。
〔5〕
前記検出光量校正用領域を階段状に複数設け、各検出光量校正用領域からの複数の光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する前記〔1〕〜〔4〕の何れか1項記載の光学的測定装置。
〔6〕
前記検出光量校正用領域には固形状、半固形状又は液状の検出光量校正用物質が収容されている前記〔1〕〜〔4〕の何れか1項記載の光学的測定装置。
〔7〕
前記検出光量校正用物質は、所望の光成分及び光量を発する無機物及び/又は有機物である前記〔7〕記載の光学的測定装置。
〔8〕
前記検出光量補正用の領域には、ID領域を有する接着層が形成されている前記〔1〕〜〔7〕の何れか1項記載の光学的測定装置。
〔9〕
前記ID領域には、検出光量校正情報が含まれる前記〔8〕記載の光学的測定装置。
〔10〕
前記ID領域には、さらにアッセイ情報及び/又はチップ情報が含まれる前記〔8〕又は〔9〕記載の光学的測定装置。
〔11〕
前記ID領域は、接着層の厚みにより識別パターン化された領域である前記前記〔8〕〜〔10〕の何れか1項記載の光学的測定装置。
〔12〕
前記光学的情報を取得する可動式検出光学系を有し、
当該可動式検出光学系から送信される光学的情報に基づき制御部が、複数の検出光量校正用領域からの光学的情報から想定される信号量と、取得した光学的情報から算出された信号量とを比較することで、前記可動式検出光学系の状態を判断する前記〔1〕〜〔11〕の何れか1項記載の光学的測定装置。
〔13〕
さらに、前記光学的光情報に基づく検出光量校正用領域と検出光学系との第1距離及び前記反応領域と検出光学系との第2距離との関係、並びに、
前記検出光量校正用領域と前記反応領域との平面上の距離との関係に基づき、検出光を補正する前記〔12〕記載の光学的測定装置。
〔14〕
前記検出光量校正用領域を階段状に複数設け、各検出光量校正用領域からの複数の光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する前記〔1〕〜〔13〕の何れか1項記載の光学的測定装置。
〔15〕
ID領域を有する接着層が形成されている光学的測定用マイクロチップ。
〔16〕
前記ID領域には、さらにアッセイ情報及び/又はチップ情報が含まれる前記〔15〕記載の光学的測定用マイクロチップ。
〔17〕
前記ID領域は、接着層の厚みにより識別パターン化された領域である前記〔15〕又は〔16〕記載の光学的測定用マイクロチップ。
〔18〕
前記ID領域を有する接着層に、アッセイ情報として、反応場となる反応領域から生ずる検出光を補正するための検出光量校正用領域を複数設けた前記〔15〕〜〔17〕の何れか1項記載の光学的測定用マイクロチップ。
〔19〕
核酸増幅反応用マイクロチップである前記〔15〕〜〔18〕の何れか1項記載の光学的測定用マイクロチップ。
1 光学的測定装置;2 検出光量校正用領域;20 検出光量校正用領域群;21 部材;3 マイクロチップ;30 接着層;33 ID領域;4 反応領域;5 光源部;6 検出部;7 検出光学系 ;8 加熱部;91 支持体;92 支持台
本技術は、遺伝子発現解析、感染症検査、またSNP解析等の遺伝子解析、タンパク質解析、細胞解析等に供せられる走査型光学的測定装置及び核酸増幅反応用マイクロチップとして利用可能である。

Claims (19)

  1. 検出光量校正用領域からの光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する制御部を備える光学的測定装置。
  2. 前記検出光量校正用領域が、マイクロチップの外部に及び/又は内部に、設けられている請求項1記載の光学的測定装置。
  3. 前記光学的光情報に基づく検出光量校正用領域と検出光学系との第1距離及び前記反応領域と検出光学系との第2距離に基づき、検出光を補正する請求項2記載の光学的測定装置。
  4. さらに、前記検出光量校正用領域と前記反応領域との平面上の距離に基づき、検出光を補正する請求項3記載の光学的測定装置。
  5. 前記検出光量校正用領域を階段状に複数設け、各検出光量校正用領域からの複数の光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する請求項2記載の光学的測定装置。
  6. 前記検出光量校正用領域には固形状、半固形状又は液状の検出光量校正用物質が収容されている請求項3記載の光学的測定装置。
  7. 前記検出光量校正用物質は、所望の光成分及び光量を発する無機物及び/又は有機物である請求項7記載の光学的測定装置。
  8. 前記検出光量補正用の領域には、ID領域を有する接着層が形成されている請求項1記載の光学的測定装置。
  9. 前記ID領域には、検出光量校正情報が含まれる請求項8記載の光学的測定装置。
  10. 前記ID領域には、さらにアッセイ情報及び/又はチップ情報が含まれる請求項9記載の光学的測定装置。
  11. 前記ID領域は、接着層の厚みにより識別パターン化された領域である請求項10記載の光学的測定装置。
  12. 前記光学的情報を取得する可動式検出光学系を有し、
    当該可動式検出光学系から送信される光学的情報に基づき制御部が、複数の検出光量校正用領域からの光学的情報から想定される信号量と、取得した光学的情報から算出された信号量とを比較することで、前記可動式検出光学系の状態を判断する請求項1記載の光学的測定装置。
  13. さらに、前記光学的光情報に基づく検出光量校正用領域と検出光学系との第1距離及び前記反応領域と検出光学系との第2距離との関係、並びに、
    前記検出光量校正用領域と前記反応領域との平面上の距離との関係に基づき、検出光を補正する請求項12記載の光学的測定装置。
  14. 前記複数の検出光量校正用領域を立体的に設け、各検出光量校正用領域からの複数の光学的情報に基づき、マイクロチップにある反応領域から生じる検出光を補正する請求項13記載の光学的測定装置。
  15. ID領域を有する接着層が形成されている光学的測定用マイクロチップ。
  16. 前記ID領域には、さらにアッセイ情報及び/又はチップ情報が含まれる請求項15記載の光学的測定用マイクロチップ。
  17. 前記ID領域は、接着層の厚みにより識別パターン化された領域である請求項16記載の光学的測定用マイクロチップ。
  18. 前記ID領域を有する接着層に、アッセイ情報として、反応場となる反応領域から生ずる検出光を補正するための検出光量校正用領域を複数設けた請求項17記載の光学的測定用マイクロチップ。
  19. 核酸増幅反応用マイクロチップである請求項15記載の光学的測定用マイクロチップ。
JP2012219166A 2012-10-01 2012-10-01 光学的測定装置及び光学的測定用マイクロチップ Pending JP2014071056A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012219166A JP2014071056A (ja) 2012-10-01 2012-10-01 光学的測定装置及び光学的測定用マイクロチップ
CN201310439608.XA CN103712964A (zh) 2012-10-01 2013-09-24 光学测量装置和光学测量微芯片
US14/036,855 US20140091208A1 (en) 2012-10-01 2013-09-25 Optical measuring apparatus and optical measuring microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012219166A JP2014071056A (ja) 2012-10-01 2012-10-01 光学的測定装置及び光学的測定用マイクロチップ

Publications (1)

Publication Number Publication Date
JP2014071056A true JP2014071056A (ja) 2014-04-21

Family

ID=50384284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219166A Pending JP2014071056A (ja) 2012-10-01 2012-10-01 光学的測定装置及び光学的測定用マイクロチップ

Country Status (3)

Country Link
US (1) US20140091208A1 (ja)
JP (1) JP2014071056A (ja)
CN (1) CN103712964A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523401A (ja) * 2014-06-18 2017-08-17 スカンジナビアン マイクロ バイオデバイシズ エイピーエスScandinavian Micro Biodevices Aps マイクロ流体検出システム及びマイクロ流体カートリッジ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9971071B2 (en) * 2016-01-29 2018-05-15 The United States Of America, As Represented By The Secretary Of The Navy Frequency- and amplitude- modulated narrow-band infrared emitters
US11428787B2 (en) * 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
CN115516315A (zh) * 2021-04-12 2022-12-23 苏州鼎实医疗科技有限公司 周期性自动校准的全自动免疫分析仪及其自动校准方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998803A (en) * 1989-04-13 1991-03-12 Tacan Corporation Mounting structure for optical and electro-optical components and method of making same
US6472671B1 (en) * 2000-02-09 2002-10-29 Jean I. Montagu Quantified fluorescence microscopy
EP1245946B1 (en) * 2001-03-28 2004-09-29 Agilent Technologies Inc. a Delaware Corporation Improved apparatus and method for absorbance detection
US6583424B2 (en) * 2001-06-25 2003-06-24 Agilent Technologies Inc. Scanning system with calibrated detection and method
US6851617B2 (en) * 2002-04-19 2005-02-08 Avery Dennison Corporation Laser imageable RFID label/tag
US20060210984A1 (en) * 2003-03-03 2006-09-21 Jeremy Lambert Use of nucleic acid mimics for internal reference and calibration in a flow cell microarray binding assay
US20100032582A1 (en) * 2008-08-07 2010-02-11 General Electric Company Fluorescence detection system and method
JP5715068B2 (ja) * 2009-01-30 2015-05-07 マイクロニクス, インコーポレイテッド 携帯型高利得蛍光検出システム
WO2011008233A1 (en) * 2009-05-07 2011-01-20 President And Fellows Of Harvard College Methods and apparatus for fluorescence sensing employing fresnel zone plates
JP5691187B2 (ja) * 2010-02-10 2015-04-01 ソニー株式会社 核酸増幅反応用マイクロチップ及びその製造方法
JP2012085605A (ja) * 2010-10-22 2012-05-10 Sony Corp 核酸増幅反応装置、核酸増幅反応装置に用いる基板、及び核酸増幅反応方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523401A (ja) * 2014-06-18 2017-08-17 スカンジナビアン マイクロ バイオデバイシズ エイピーエスScandinavian Micro Biodevices Aps マイクロ流体検出システム及びマイクロ流体カートリッジ
US11779919B2 (en) 2014-06-18 2023-10-10 Zoetis Denmark Aps Microfluidic detection system and a microfluidic cartridge

Also Published As

Publication number Publication date
CN103712964A (zh) 2014-04-09
US20140091208A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
EP2419743B1 (en) OPTICAL DETECTION SYSTEM FOR MONITORING rtPCR REACTION
US6942971B2 (en) Apparatus for analysis of a nucleic acid amplification reaction
EP2315005B1 (en) Fluorometry device and method for detection in biological samples
US11035869B2 (en) Automated liquid-phase immunoassay apparatus
KR102287272B1 (ko) 검사장치 및 그 제어 방법
US9244014B2 (en) Multi-channel fluorescence detecting module and nucleic acid analysis system having the same
KR102407905B1 (ko) 미세유체 검출 시스템 및 미세유체 카트리지
US20080206848A1 (en) Nucleic acid analysis device by optical detection using disk
US20080207461A1 (en) Devices for Conducting and Analyzing Microarray Experiments
KR101802460B1 (ko) 유전자 진단 장치
US10393659B2 (en) Instrument and method for detecting analytes
US10850282B2 (en) Multiplex PCR chip and multiplex PCR device comprising same
JP2006337245A (ja) 蛍光読み取り装置
JP2014071056A (ja) 光学的測定装置及び光学的測定用マイクロチップ
JP2007315772A (ja) 蛍光検出装置および生化学反応分析装置
KR20160067872A (ko) 중합 효소 연쇄 반응을 실행하기 위한 분석 유닛, 분석 장치, 상기 분석 유닛의 작동 방법 및 상기 분석 유닛의 제조 방법
JP2007047110A (ja) 蛍光物質検出装置とそれを含む検体分析装置
KR100818351B1 (ko) 다채널 바이오 칩 스캐너
JP2009097902A (ja) 反応制御装置及び反応制御方法
JP2009069011A (ja) 反応制御装置及び反応制御方法
JP2009162556A (ja) 反応処理装置及び反応処理方法