WO2016103388A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2016103388A1
WO2016103388A1 PCT/JP2014/084281 JP2014084281W WO2016103388A1 WO 2016103388 A1 WO2016103388 A1 WO 2016103388A1 JP 2014084281 W JP2014084281 W JP 2014084281W WO 2016103388 A1 WO2016103388 A1 WO 2016103388A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
dimensional
comprehensive
analysis
unit
Prior art date
Application number
PCT/JP2014/084281
Other languages
English (en)
French (fr)
Inventor
真一 山口
佳克 梅村
将弘 池上
田中 浩二
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US15/539,413 priority Critical patent/US10763094B2/en
Priority to JP2016565748A priority patent/JP6380555B2/ja
Priority to PCT/JP2014/084281 priority patent/WO2016103388A1/ja
Priority to EP14908995.5A priority patent/EP3252798A4/en
Priority to CN201480084673.8A priority patent/CN107430979B/zh
Publication of WO2016103388A1 publication Critical patent/WO2016103388A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • G01N30/463Flow patterns using more than one column with serial coupling of separation columns for multidimensional chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8651Recording, data aquisition, archiving and storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8658Optimising operation parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0009Calibration of the apparatus

Definitions

  • the present invention relates to an analyzer having a display function, and more specifically, a comprehensive two-dimensional gas chromatograph, a comprehensive two-dimensional liquid chromatograph, and a comprehensive two-dimensional gas chromatograph mass spectrometer combining these chromatographs and a mass spectrometer. And an analytical apparatus suitable for a comprehensive two-dimensional liquid chromatograph mass spectrometer or an imaging mass spectrometer.
  • a gas chromatograph mass spectrometer or liquid chromatograph mass spectrometer (LC-MS) using a mass spectrometer as a detector for gas chromatograph (GC) or liquid chromatograph (LC)
  • the chromatographic column The sample containing the components separated in terms of time is repeatedly measured in the mass spectrometer.
  • the mass spectrometer for example, when scan measurement over a predetermined mass-to-charge ratio m / z range is repeated, data indicating a mass spectrum in the predetermined mass-to-charge ratio range is obtained corresponding to each scan measurement.
  • a peak derived from that component appears. Therefore, an unknown component can be identified by analyzing the peak pattern appearing in the mass spectrum in addition to the elution time (that is, the retention time) of the component in the chromatograph.
  • mass spectrometers such as a quadrupole type, a time-of-flight type, an ion trap type, and a Fourier transform ion cyclotron resonance type.
  • the mass depends on various factors such as changes in ambient temperature. Deviation (difference between measured mass-to-charge ratio and true mass-to-charge ratio) occurs.
  • a mass deviation is calculated based on the result of measuring a specific substance (for example, a standard substance) whose accurate mass-to-charge ratio is known, and correction is performed in the data processing so that the calculated mass deviation is eliminated.
  • a method called comprehensive two-dimensional GC or GC ⁇ GC is known (see, for example, Patent Document 2).
  • comprehensive two-dimensional GC various components contained in a target sample are first separated by a first-dimensional column (hereinafter referred to as “primary column”), and the eluted components are introduced into a modulator.
  • the modulator collects the introduced components every certain modulation time (usually several seconds to several tens of seconds) and then releases them with a very narrow time bandwidth.
  • the second dimension column (hereinafter referred to as “secondary column”) Repeat the operation to install.
  • the component separation is performed under the same separation conditions as those for normal GC or slightly slower elution than normal GC.
  • the secondary column a column having a polarity different from that of the primary column and having a short inner diameter is used, and the component separation is performed under such a condition that the elution is completed within a predetermined modulation time. In this way, a comprehensive two-dimensional GC can separate multiple components with overlapping peaks without being separated in the primary column by the secondary column, and the separation performance is greatly improved compared to normal GC. To do.
  • a method called comprehensive two-dimensional LC or LC ⁇ LC using two-stage columns with different separation characteristics is known, as in the above-described comprehensive two-dimensional GC.
  • the comprehensive two-dimensional GC and the comprehensive two-dimensional LC are collectively referred to as a comprehensive two-dimensional chromatograph.
  • the retention time in the secondary column (second dimension retention time RT2) is an expansion of a very narrow time range in the retention time in the primary column (first dimension retention time RT1).
  • the measurement result can be represented by a chromatogram similar to a normal chromatograph.
  • the first-dimensional holding time RT1 and the second-dimensional holding time RT2 are two orthogonal axes, and the signal intensity is expressed by contour lines, color scale, or gray scale.
  • a represented two-dimensional chromatogram is created.
  • “GC Image” see Non-Patent Document 3 provided by GC Image LLC (USA) is well known.
  • the present invention has been made in view of the above-described problems, and its main purpose is to provide mass deviations and retention time deviations in analyzers such as comprehensive two-dimensional chromatograph mass spectrometers and imaging mass spectrometers.
  • Analytical device that can present to analysts in an easy-to-understand manner the temporal variation of processing parameters such as various error amounts that appear in measurement and correction amounts to correct this, or their spatial distribution Is to provide.
  • Another object of the present invention is to provide a difference in analysis results for a plurality of samples or a difference in analysis results for different components in the same sample in an analyzer such as a comprehensive two-dimensional chromatograph mass spectrometer or an imaging mass spectrometer. Or, it is easy to understand the difference between various physical quantities and statistics calculated from the analysis results for multiple samples, and the various physical quantities and statistics calculated from the analysis results for different components in the same sample.
  • An object of the present invention is to provide an analyzer that can be presented to an analyst.
  • each micro region on an N-dimensional space (N is an integer of 2 or more) which is a real space or a virtual space for one sample.
  • An analysis device that performs the analysis in to obtain data that is a signal intensity value, a) an error information collection unit that collects an error amount related to analysis or correction information for correcting this error when performing analysis in each of the micro regions; b) An error amount or correction information for each minute region collected by the error information collection unit in an N + 1 dimensional space obtained by adding an axis indicating the error amount or correction information to N axes forming the N-dimensional space.
  • a graph creation unit that creates a graph showing the distribution based on the image and displays it on the screen of the display unit; It is characterized by having.
  • the correction information may be a correction amount itself for correcting the error, or may be a coefficient of a correction formula for correcting the error.
  • the analyzer according to the present invention is a comprehensive two-dimensional GC or a comprehensive two-dimensional LC using a mass spectrometer as a detector
  • the two axes of the two-dimensional space where N is 2 are both retention times. is there.
  • the error amount may be a mass shift in the mass spectrometer, or a holding time shift in the comprehensive two-dimensional GC or the comprehensive two-dimensional LC.
  • the mass shift can be determined based on, for example, the result of mass spectrometry of an internal standard substance with a known accurate mass-to-charge ratio added to the sample after separation by chromatography.
  • the retention time lag is, for example, based on the result of mass spectrometry of an internal standard substance with a known accurate retention time added to a sample before separation by chromatograph, and further considering the flow rate of the mobile phase.
  • the two-dimensional space is a virtual space.
  • the analyzer according to the present invention is an imaging mass spectrometer
  • the two axes of the two-dimensional space where N is 2 can be position information in different directions on the sample.
  • the two-dimensional space is naturally a real space.
  • the error amount is a mass shift in the mass spectrometer.
  • the error information collection unit includes the retention time in the primary column and the secondary column.
  • the mass deviation amount and the correction information for the set with the retention time in are collected.
  • the mass shift can be calculated based on the result of detecting the internal standard substance continuously added to the sample introduced into the mass spectrometer by mass spectrometry.
  • the graph creation unit expresses the distribution of the mass deviation amount in a three-dimensional space with two holding times and the mass deviation amount as axes.
  • a graph is created and displayed on the screen of the display unit. This graph may simply represent the amount of mass deviation with respect to the set of retention times as a plot point in the three-dimensional space, or create a virtual curved surface on which the plot point is placed and draw it in the three-dimensional space. .
  • Such a display allows the analyst to intuitively grasp temporal variations and spatial distributions such as the mass deviation amount and the retention time deviation amount. For example, whether an abnormal state has occurred during measurement execution. It is possible to easily check whether or not.
  • the graph displayed on the display screen can be rotated about an arbitrary axis by an arbitrary angle in accordance with an appropriate operation by an analyst. Accordingly, the analyst can observe the error amount and the distribution of the correction information from an arbitrary direction, and can easily confirm whether, for example, the mass deviation is within a predetermined range.
  • the display mode of the blot points and the surface typically the display color, is changed so that the error amount and the correction information deviating from the preset value range can be distinguished from others. It may be.
  • the error amount and the distribution of the correction information are represented by a three-dimensional graph or more.
  • the distribution is calculated from the comparison result of the signal intensity value obtained by the analysis and the signal intensity.
  • the amount and value can be displayed in a similar graph.
  • the second aspect of the present invention which has been made to solve the above-mentioned problems, is for each sample on an N-dimensional space (N is an integer of 2 or more) that is a real space or a virtual space.
  • An analysis device that performs analysis in a minute region and acquires data that is a signal intensity value, a) For a plurality of samples or a plurality of components in one sample, a signal intensity value obtained by analysis in each of the micro regions or a difference between physical quantities or statistics obtained by a predetermined calculation from the signal intensity values is indicated.
  • a difference information acquisition unit for calculating difference information for each minute region b) Create a graph showing the distribution based on the difference information for each micro area calculated by acquiring the difference information in the N + 1 dimensional space obtained by adding the axis indicating the difference information to the N axes forming the N-dimensional space.
  • a graph creation unit to be displayed on the screen of the display unit It is characterized by having.
  • the difference information may be information that can compare two signal intensity values, physical quantities, statistics, and the like, and may be not only a difference but also a ratio.
  • the analyzer according to the present invention is a comprehensive two-dimensional GC or a comprehensive two-dimensional LC using a mass spectrometer as a detector or an imaging mass spectrometer
  • the analysis is performed on each of the micro regions for a plurality of samples.
  • the signal intensity value obtained by the above is, for example, a signal intensity value at a specific mass to charge ratio or an integrated value (total ion current value) of signal intensity values over the entire mass to charge ratio range.
  • the signal intensity values obtained by analysis in each of the micro regions for a plurality of components in one sample in that case are, for example, signal intensity values at mass-to-charge ratios respectively corresponding to different components.
  • the physical quantity obtained from the signal intensity value by a predetermined calculation is, for example, the concentration or content of the component.
  • the statistical amount obtained from the signal intensity value by a predetermined calculation is, for example, a test amount, a coordinate position in the statistical space, a distance, or the like.
  • the difference information acquisition unit for example, a mass spectrum obtained repeatedly as time elapses for a certain two samples The signal intensity value at a specific mass-to-charge ratio of interest in the data is acquired, and the difference between the signal intensity values of the two samples is obtained for each holding time. Since the difference information acquisition unit can obtain a two-dimensional distribution of the difference amount of the signal intensity value, the graph creation unit expresses the distribution of the difference amount in a three-dimensional space with two holding times and the difference amount as axes. A graph is created, and the graph is displayed on the screen of the display unit. In this graph, the difference amount with respect to the set of retention times may be simply represented by a plot point in the three-dimensional space, or a virtual curved surface on which the plot point is placed may be created and drawn in the three-dimensional space.
  • Such display allows the analyst to intuitively grasp temporal variations and spatial distributions such as differences in signal intensity values between two samples.
  • the analyzer which is the first aspect of the present invention, in a comprehensive two-dimensional chromatograph mass spectrometer, an imaging mass spectrometer or the like, various error amounts appearing in measurement such as a mass shift and a hold time shift are measured. It is possible to present to the analyst in an easy-to-understand manner a temporal variation of processing parameters such as a correction amount for correction, or their spatial distribution. Thereby, the analyst can confirm at a glance whether, for example, the measurement is properly performed.
  • the analyzer which is the 2nd aspect of this invention, in a comprehensive two-dimensional chromatograph mass spectrometer, an imaging mass spectrometer, etc., with respect to the difference of the analysis result with respect to a some sample, or with respect to the different component in the same sample
  • Differences in analysis results, differences in various physical quantities and statistics calculated from analysis results for multiple samples, differences in various physical quantities and statistics calculated from analysis results for different components in the same sample, etc. Can be presented to the analyst in an easy-to-understand manner.
  • FIG. 1 is a schematic configuration diagram of a comprehensive two-dimensional LC-MS system that is one embodiment (first embodiment) of the present invention.
  • FIG. 1 is a schematic diagram of data obtained by measurement in the comprehensive two-dimensional LC-MS system of the first embodiment.
  • the schematic block diagram of the comprehensive two-dimensional LC-MS system which is another Example (2nd Example) of this invention. Explanatory drawing of the process which displays a signal strength value difference in the comprehensive two-dimensional LC-MS system of 2nd Example.
  • FIG. 1 is a schematic configuration diagram of a comprehensive two-dimensional LC-MS system according to the first embodiment.
  • the comprehensive two-dimensional LC-MS system of the first embodiment includes a comprehensive two-dimensional LC unit 1, a mass spectrometer 2, an internal standard substance addition unit 3, a data processing unit 4, an input unit 5, and a display unit 6.
  • the data processing unit 4 includes, as functional blocks, a spectrum data collection unit 41, a mass calibration unit 42, a mass calibration information collection unit 43, and a three-dimensional display information creation unit 44, in order to execute characteristic processing described later.
  • Each function of the data processing unit 4 can be realized by using a personal computer as a hardware resource and executing dedicated processing software installed in the personal computer in advance on the computer.
  • the comprehensive two-dimensional LC unit 1 includes a pump for supplying a mobile phase, an injector for injecting a sample into the mobile phase, a primary column, and components eluted from the outlet of the primary column for a certain modulation time.
  • a modulator that collects at intervals and compresses it in time and delivers it, and a secondary column capable of high-speed separation with different separation characteristics (typically different polarities) from the primary column.
  • Various components contained in the sample injected from the injector into the mobile phase that is sent to the primary column at a constant flow rate by the action of the pump are temporally separated with high resolution by the primary and secondary two-stage columns. Elute after separation. Then, the eluate is continuously introduced into the mass spectrometer 2 through the internal standard substance addition unit 3.
  • the internal standard substance addition unit 3 continuously adds a predetermined amount of a standard substance whose known mass-to-charge ratio value is known and that is clearly not present in the target sample to the eluate. Therefore, the sample introduced into the mass spectrometer 2 includes components and internal standard substances contained in the eluate from the comprehensive two-dimensional LC unit 1. Note that one type of standard substance may be used, but in some cases, the mass deviation may be different between the low mass-to-charge ratio and the high mass-to-charge ratio, so use multiple standard substances with different mass-to-charge ratios. Is preferred.
  • the mass spectrometer 2 is a quadrupole mass spectrometer equipped with an atmospheric pressure ion source such as an electrospray ionization (ESI) method.
  • an atmospheric pressure ion source such as an electrospray ionization (ESI) method.
  • the mass spectrometer 2 is not limited to this, and can be replaced with a mass spectrometer of another configuration such as a Q-TOF type mass spectrometer or an ion trap time-of-flight mass spectrometer.
  • the components in the sample to be introduced are sequentially ionized by the atmospheric pressure ion source.
  • the ions thus generated are introduced into a quadrupole mass filter, and ions having a specific mass-to-charge ratio that has passed through the quadrupole mass filter reach the ion detector and are detected.
  • the control unit (not shown) drives the quadrupole mass filter so that scan measurement in a predetermined mass-to-charge ratio range is repeated.
  • the spectrum data collection unit 41 of the data processing unit 4 repeatedly collects mass spectrum data indicating ion intensity over a predetermined mass-to-charge ratio range from the analysis start point to the end point.
  • FIG. 2 is a schematic diagram of mass spectrum data obtained by measurement in the comprehensive two-dimensional LC-MS system of the first embodiment.
  • various components contained in the sample are separated with high resolution in the time direction in the comprehensive two-dimensional LC unit 1, and scan measurement is repeatedly performed in the mass spectrometer 2.
  • the spectrum data collection unit 41 has a small area (FIG. 2) in a virtual space having two time axes, ie, a first-dimensional holding time RT1 and a second-dimensional holding time RT2.
  • Mass spectrum data corresponding to a pixel in a rectangular range indicated by diagonal lines in (a) is stored.
  • the mass spectrum data in one minute region is data constituting a mass spectrum indicating the relationship between the mass-to-charge ratio m / z and the ion intensity, as shown in FIG.
  • the mass calibration unit 42 detects the appearance position of the peak P derived from the internal standard material every time a mass spectrum is obtained, and calculates the mass deviation amount using the detection result.
  • the mass spectrum having no mass deviation (or less) is created by correcting the mass-to-charge ratio axis of the mass spectrum accordingly.
  • the mass calibration information collection unit 43 collects and stores the mass shift amount, that is, the mass correction amount obtained for each mass spectrum, that is, for each pixel on the two-dimensional chromatogram, in the mass calibration unit 42. Thereby, the same amount of mass deviation as the total number of pixels on the two-dimensional chromatogram is obtained. Then, after the measurement is completed, the three-dimensional display information creation unit 44 receives a predetermined input from the input unit 5 and sets the first-dimensional holding time RT1 and the second-dimensional holding time RT2 to axes that are orthogonal to each other, and further orthogonal to this.
  • An image showing a two-dimensional distribution of the mass correction amount is created by plotting the value of the mass correction amount stored in the mass calibration information collection unit 43 in a three-dimensional display space in which the mass correction amount is taken on the axis to be corrected. .
  • the created three-dimensional display image is displayed on the screen of the display unit 6.
  • FIG. 3 shows an example of this three-dimensional display image.
  • FIG. 3A shows a display image when the mass correction amount is zero in all pixels, that is, there is no mass deviation. At this time, all the plots are located on a plane including the two axes of the first-dimensional holding time RT1 and the second-dimensional holding time RT2.
  • FIG. 3B is a display image in the case where a mass shift has occurred in each pixel. The analyst can intuitively grasp the two-dimensional distribution of the mass deviation amount by viewing such a display.
  • the value of the mass correction amount is only indicated by plot points.
  • the curved surface is displayed together with the plot points.
  • the unevenness becomes more clear.
  • the three-dimensional display image as shown in FIG. 3 can display a state viewed from an arbitrary direction by rotating at an arbitrary angle around each axis. Thereby, for example, by looking at the distribution of the mass deviation amount from the direction in which the second-dimensional holding time R2 is orthogonal to the paper surface, in which first-dimensional holding time RT1 the mass deviation amount is maximum. It becomes possible to recognize this at a glance.
  • the two-dimensional distribution of the mass-to-charge ratio deviation amount is displayed.
  • the two-dimensional retention time deviation amount or the retention time deviation correction amount in each of the primary column and the secondary column is displayed.
  • the distribution may be displayed.
  • a plurality of internal standard substances whose accurate retention times are known are added to the sample, and the eluate obtained by separating the components in the comprehensive two-dimensional LC unit 1 is subjected to mass spectrometry.
  • the time for detecting each of the plurality of internal standard substances may be used.
  • the retention time shift in the time range between the time when one internal standard substance is detected and the time when another internal standard substance is subsequently detected is the retention time shift in both detection times. What is necessary is just to obtain
  • the above embodiment is a comprehensive two-dimensional LC-MS system
  • the same display can be performed in a comprehensive two-dimensional GC-MS system.
  • an imaging mass spectrometer can perform the same two-dimensional display of the mass shift amount.
  • mass spectrum data is obtained by performing mass analysis for each minute region obtained by finely dividing a two-dimensional region. Therefore, mass spectrum data at each pixel in the two-dimensional region is obtained by replacing the holding time with the position on the sample in FIG.
  • mass analysis is performed on each pixel one by one while changing the relative position between the mass analyzer and the sample, so it takes a certain amount of time to obtain mass analysis results for the entire two-dimensional region. It takes.
  • mass deviation may fluctuate, it was obtained for each pixel by using an internal standard substance (for example, a matrix for MALDI) almost uniformly added to all pixels as a reference for mass deviation detection.
  • a mass shift amount can be obtained from each mass spectrum. Then, using the mass deviation amount, a three-dimensional display image of the mass deviation amount as shown in FIG. 3 can be created.
  • FIG. 5 is a schematic configuration diagram of the comprehensive two-dimensional LC-MS system of the second embodiment
  • FIG. 6 is an explanatory diagram of processing for displaying a signal intensity value difference in the comprehensive two-dimensional LC-MS system of the second embodiment. It is.
  • the error amount generated during the execution of the analysis and the two-dimensional distribution of correction information for correcting the error are three-dimensionally displayed.
  • the signal intensity value as the analysis result is displayed.
  • the two-dimensional distribution of the comparison result is displayed in three dimensions.
  • the data processing unit 7 includes, as functional blocks, a SIM data collection unit 71, a signal intensity value difference calculation unit 72, and a three-dimensional display information creation unit 73.
  • a SIM data collection unit 71 receives SIM data from a SIM data collection unit 71 and a signal intensity value difference calculation unit 72.
  • a three-dimensional display information creation unit 73 receives SIM data from a SIM data collection unit 71 and a three-dimensional display information creation unit 73.
  • a plurality of components included in a target sample are known and a difference amount of signal intensity values detected for the plurality of components is desired to be observed will be described as an example.
  • the mass-to-charge ratio corresponding to a plurality of components is measured over the entire measurement time in the SIM (selection ion monitoring) measurement mode.
  • a plurality of components are component A and component B
  • a mass-to-charge ratio m / z corresponding to component A is Ma
  • a mass-to-charge ratio m / z corresponding to component B is Mb.
  • a sample is introduced from the injector into the mobile phase, and the eluate from the primary and secondary two-stage columns is introduced into the mass spectrometer 2.
  • a two-dimensional chromatogram mass chromatogram
  • Mb signal intensity value data
  • the signal intensity value difference calculation unit 72 calculates and stores a difference in signal intensity value obtained for each pixel on the two-dimensional chromatogram corresponding to each of the components A and B. As a result, the same number of signal intensity value differences as the total number of pixels on the two-dimensional chromatogram are obtained. Then, after the measurement is completed, the three-dimensional display information creation unit 73 receives a predetermined input from the input unit 5 and sets the first-dimensional holding time RT1 and the second-dimensional holding time RT2 to axes that are orthogonal to each other, and further orthogonal to this.
  • the signal intensity value difference stored in the signal intensity value difference calculation unit 72 is plotted in a three-dimensional display space in which the signal intensity value difference amount is taken as an axis to be analyzed, thereby obtaining a two-dimensional distribution of the signal intensity value difference. Create an image showing. The created three-dimensional display image is displayed on the screen of the display unit 6. Thereby, the relationship between the difference between the signal intensity values detected for the two components and the retention time of the two columns can be visually displayed.
  • various information can be displayed three-dimensionally in the same manner other than the difference or ratio of the signal intensity values detected for the two components.
  • the difference or ratio of total ion intensity values integrated values of signal intensity values over the entire mass-to-charge ratio range
  • various values calculated from the signal intensity values can be displayed in the same manner, not the signal intensity values themselves obtained by mass spectrometry.
  • the concentration of a component and the content (absolute amount) of the component are calculated from the signal intensity value using a calibration curve obtained in advance. May be displayed three-dimensionally.
  • a statistical difference or ratio obtained by performing a statistical calculation according to a predetermined algorithm on the signal intensity value, concentration value, content, etc. may be displayed in a three-dimensional manner.
  • a statistic for example, a test amount, a coordinate position in the statistical space, a distance, and the like can be considered.
  • the same display as that of the system of the second embodiment can be performed in the imaging mass spectrometer. That is, the two-dimensional chromatograms as shown in FIGS. 6A-1 and 6A-2 are imaging images for a specific mass-to-charge ratio in the imaging mass spectrometer.
  • the sum, difference, product or division of signal intensity values obtained for each pixel for a plurality of different mass to charge ratio imaging images obtained for a sample ie, addition, subtraction, multiplication, or By performing division, it is possible to obtain an image obtained as a result of arithmetic processing of the plurality of imaging images.
  • FIG. 7 shows an example of such an imaging image. Based on the data obtained by imaging mass spectrometry, an imaging image of m / z 538 and an imaging image of m / z 835 are obtained as shown in FIGS. On the other hand, FIGS. 7C to 7F show imaging images based on results obtained by performing addition, subtraction, multiplication, and division of signal intensity values for each pixel. The analyst can estimate from these imaging images the difference or similarities in the two-dimensional distribution of ions at different mass to charge ratios.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

 質量校正部(42)はマススペクトルデータが得られる毎に、m/z値が既知である内部標準物質由来のピークの出現位置を利用して質量ずれ量を求め、これを補正する処理を行う。質量校正情報収集部(43)はマススペクトルデータ毎の質量ずれ量や質量補正量を収集し、測定終了後に3次元表示情報作成部(44)は、包括的2次元LC部(1)における1次カラムの保持時間と2次カラムの保持時間とを直交する2軸とし、その2軸に直交する軸に質量補正量をとった3次元空間に、収集した多数の質量補正量をプロット点として配置した3次元グラフを作成する。これにより、分離特性が相違する各カラムの保持時間と質量ずれ量との関係が一目で分かるようになり、例えば、測定実行中に質量ずれ量が異常に増加したような状況を容易に把握することができる。

Description

分析装置
 本発明は表示機能を有する分析装置に関し、さらに詳しくは、包括的2次元ガスクロマトグラフ、包括的2次元液体クロマトグラフ、これらクロマトグラフと質量分析装置とを組み合わせた包括的2次元ガスクロマトグラフ質量分析装置や包括的2次元液体クロマトグラフ質量分析装置、或いは、イメージング質量分析装置などに好適な分析装置に関する。
 ガスクロマトグラフ(GC)や液体クロマトグラフ(LC)の検出器として質量分析装置を用いたガスクロマトグラフ質量分析装置(GC-MS)や液体クロマトグラフ質量分析装置(LC-MS)では、クロマトグラフのカラムで時間的に分離された成分を含む試料を、質量分析装置において繰り返し測定する。該質量分析装置において例えば所定質量電荷比m/z範囲に亘るスキャン測定を繰り返す場合には、各スキャン測定に対応してそれぞれ所定質量電荷比範囲のマススペクトルを示すデータが得られる。或る成分を含む試料が質量分析装置に導入されたときに得られるマススペクトルには、その成分由来のピークが現れる。そこで、クロマトグラフにおける成分の溶出時間(つまりは保持時間)以外に、マススペクトルに現れているピークパターンを解析することで、未知の成分を同定することができる。
 質量分析装置には、四重極型、飛行時間型、イオントラップ型、フーリエ変換イオンサイクロトロン共鳴型など様々な方式の装置があるが、いずれの装置でも、周囲温度の変化など様々な要因によって質量ずれ(測定上の質量電荷比と真の質量電荷比との差異)が生じる。通常、こうした質量ずれは正確な質量電荷比が既知である特定の物質(例えば標準物質)を測定した結果に基づいて算出され、算出された質量ずれが無くなるようにデータ処理において補正が行われる。クロマトグラフ質量分析装置では、試料をクロマトグラフに導入した時点から時間が経過するに伴い質量ずれ量が変化することがよくあり、高い分析精度が要求される場合には、そうした時間経過に伴う質量ずれをほぼリアルタイムで補正する必要がある。特許文献1に記載のように、こうした質量ずれの補正は、クロマトグラフで成分分離された試料に対し内部標準物質を連続的に添加しながら質量分析を行い、その内部標準物質が検出される質量電荷比を利用して行うことができる。
 こうした質量ずれの補正が可能である場合でも、測定途中で質量ずれが極端に大きくなるような状況は正常な状況であるとはいえず、何らかの不具合が生じている可能性がある。そのため、質量ずれ量又は質量ずれを補正するための質量補正量の時間的な変動を観察することによって、測定が適切に行われたか否かを確認したり検証したりしたいことがある。そのために、従来、例えば図4に示すように、保持時間と質量補正量との関係をグラフとして表示することが可能な装置が知られている(非特許文献1のFig.4、非特許文献2の第9頁など参照)。こうしたグラフにより、分析者は、例えば測定途中で質量補正量が或る値以上に大きくなることがあったか否かを一目で把握することができ、測定の信頼性を確認するうえで便利である。
 ところで、GC分析手法の一つとして、包括的2次元GC、或いは、GC×GC、と呼ばれる手法が知られている(特許文献2など参照)。包括的2次元GCでは、目的試料に含まれる各種成分を1次元目のカラム(以下「1次カラム」という)でまず分離し、その溶出成分をモジュレータに導入する。モジュレータは、導入された成分を一定のモジュレーション時間(通常、数秒~十数秒程度)毎に捕集した後にごく狭い時間バンド幅で離脱させ、2次元目のカラム(以下「2次カラム」という)に導入する、という操作を繰り返す。一般に、1次カラムでは、通常のGCと同様の又は通常のGCよりもやや緩慢な溶出が行える分離条件で以て成分分離が行われる。これに対し、2次カラムとしては1次カラムとは異なる極性で且つ短く内径が小さいカラムが使用され、決められたモジュレーション時間内で溶出が終了するような条件で以て成分分離が行われる。このようにして包括的2次元GCでは、1次カラムで分離されずにピークが重なり合っている複数の成分を2次カラムで分離することができ、通常のGCに比べて分離性能が大幅に向上する。
 また、LC分析においても、上記包括的2次元GCと同様に、分離特性が相違する2段のカラムを用いた包括的2次元LC或いはLC×LCと呼ばれる手法が知られている。本明細書では、包括的2次元GCと包括的2次元LCとを合わせて包括的2次元クロマトグラフと呼ぶ。
 これら包括的2次元クロマトグラフでは、2次カラムにおける保持時間(2次元目保持時間RT2)は1次カラムにおける保持時間(1次元目保持時間RT1)におけるごく狭い時間範囲を拡大したものであるので、通常のクロマトグラフと同様のクロマトグラムで測定結果を表すことができる。しかしながら、多くの場合、二つのカラムの分離特性は相違するため、1次元的なクロマトグラムでは各カラムでの分離状態を把握しにくい。そこで、各カラムでの分離状態をそれぞれ分かり易く示すために、1次元目保持時間RT1と2次元目保持時間RT2とをそれぞれ直交する二つの軸とし、信号強度を等高線やカラースケール或いはグレイスケールで表した2次元クロマトグラムが作成される。2次元クロマトグラムを作成するためのデータ処理ソフトウエアとしては、米国ジーシー・イメージ社(GC Image LLC)が提供している「GC Image」(非特許文献3参照)がよく知られている。
 最近では、包括的2次元GCや包括的2次元LCにおいても、質量分析装置が検出器として使用されることが多い。そうした包括的2次元クロマトグラフ質量分析装置において、略リアルタイムで質量ずれの補正が実施される場合、保持時間と質量ずれ量や質量補正量との関係を図4に示したように描出することは可能である。しかしながら、上述したように、包括的2次元クロマトグラフでは多くの場合、二つのカラムの分離特性が相違するため、図4に示すように質量ずれ情報を表示しても、独立した二本のカラムそれぞれの保持時間と質量ずれとの関係などを把握しにくいという問題があった。また、質量ずれ情報のみならず、例えばクロマトグラフでの保持時間ずれ(測定上の保持時間と真の保持時間との差異)についても同様の問題があった。
 一方、特許文献3に開示されているような、生体試料の測定に頻用されるイメージング質量分析装置では、試料上の2次元領域中の多数の微小領域それぞれについてマススペクトルやMSnスペクトルを取得することができ、その結果から、測定対象の2次元領域に対応する特定の質量電荷比の信号強度分布を示すマッピング画像を作成することができる。こうした装置では、例えば試料を移動させながら多数の微小領域についての質量分析を順番に実行するから、一つの試料に対する測定を開始してから終了するまでに或る程度時間が掛かり、その間に質量ずれが変動する可能性がある。しかしながら、従来のイメージング質量分析装置では、各微小領域における質量分析の際の質量ずれ量や質量補正量を分かり易く表示することは行われていなかった。
 また、包括的2次元クロマトグラフやイメージング質量分析装置では、複数の試料に対する分析結果の差異や同じ試料中の異なる成分に対する分析結果の差異、或いは、複数の試料に対する分析結果からそれぞれ計算される種々の物理量や統計量の差異や同じ試料中の異なる成分に対する分析結果からそれぞれ計算される種々の物理量や統計量の差異などを、分析者が直感的に把握し易いように表示することも行われていなかった。
特開2001-28252号公報 特開2011-122822号公報 特開2009-25268号公報
アレクサンダー・マカロフ(Alexsander Makarov)、ほか3名、「ダイナミック・レンジ・オブ・マス・アキュラシー・イン・エルティキュー・オービトラップ・ハイブリッド・マス・スペクトロメーター(Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer)」、ジャーナル・オブ・アメリカン・ソサイエティー・フォー・マス・スペクトロメトリー(J. Am. Soc. Mass Spectrom.)、Vol. 17、7、July 2006年、pp.977?982、インターネット<URL: http://www.sciencedirect.com/science/article/pii/S1044030506002686> 「ベンチトフ(BenchTOF)」、マークス・インターナショナル(Markes International)社、[平成26年年12月5日検索]、インターネット<URL: http://www.labicom.cz/administrace/ckfinder/userfiles/files/BenchTOF_series_brochure.pdf> 「GC Image GCxGC Software」、[online]、米国GC Image LLC、[平成26年11月10日検索]、インターネット<URL : http://www.gcimage.com/gcxgc/index.html>
 本発明は上記のような課題に鑑みて成されたものであり、その主な目的は、包括的2次元クロマトグラフ質量分析装置やイメージング質量分析装置などの分析装置において、質量ずれや保持時間ずれなどの測定上現れる様々な誤差量やこれを補正するための補正量といった処理上のパラメータの時間的な変動、或いはそれらの空間的な分布を分かり易く分析者に提示することができる分析装置を提供することである。
 また、本発明の他の目的は、包括的2次元クロマトグラフ質量分析装置やイメージング質量分析装置などの分析装置において、複数の試料に対する分析結果の差異や同じ試料中の異なる成分に対する分析結果の差異、或いは、複数の試料に対する分析結果からそれぞれ計算される種々の物理量や統計量の差異や同じ試料中の異なる成分に対する分析結果からそれぞれ計算される種々の物理量や統計量の差異などを、分かり易く分析者に提示することができる分析装置を提供することである。
 上記課題を解決するために成された本発明の第1の態様は、一つの試料に対し、実空間又は仮想的な空間であるN次元空間(Nは2以上の整数)上の各微小領域における分析を実行して信号強度値であるデータを取得する分析装置であって、
 a)前記微小領域それぞれにおける分析実行時に、分析に関する誤差量又はこの誤差を補正するための補正情報を収集する誤差情報収集部と、
 b)前記N次元空間を形成するN個の軸に前記誤差量又は補正情報を示す軸を加えたN+1次元の空間に、前記誤差情報収集部により収集された微小領域毎の誤差量又は補正情報に基づく分布を示すグラフを作成して表示部の画面上に表示するグラフ作成部と、
 を備えることを特徴としている。
 ここで、補正情報とは、誤差を補正するための補正量そのものである場合もあるし、或いは、誤差を補正するための補正式の係数などでもよい。
 本発明に係る分析装置が、質量分析装置を検出器として用いた包括的2次元GC又は包括的2次元LCである場合、Nが2である2次元空間の二つの軸はいずれも保持時間である。このとき、前記誤差量は、質量分析装置における質量ずれ、又は包括的2次元GC若しくは包括的2次元LCにおける保持時間ずれとすればよい。質量ずれは例えば、クロマトグラフによる分離後の試料に添加した正確な質量電荷比が既知である内部標準物質を質量分析した結果に基づき求めることができる。一方、保持時間ずれは例えば、クロマトグラフによる分離前の試料に添加した正確な保持時間が既知である内部標準物質を質量分析した結果に基づき、さらに移動相の流速などを考慮したものである。なお、この場合、2次元空間は仮想的な空間である。
 また本発明に係る分析装置がイメージング質量分析装置である場合、Nが2である2次元空間の二つの軸は試料上の異なる方向の位置情報であるものとすることができる。この場合、2次元空間は当然、実空間である。このとき、前記誤差量は、質量分析装置における質量ずれである。
 本発明に係る分析装置が質量分析装置を検出器として用いた包括的2次元LCであり、前記誤差量が質量ずれである場合、誤差情報収集部は、1次カラムにおける保持時間と2次カラムにおける保持時間との組に対する質量ずれ量や補正情報を収集する。上述したように、質量ずれは、質量分析装置に導入される試料に対し連続的に添加される内部標準物質を質量分析により検出した結果に基づいて算出することができる。誤差情報収集部では質量ずれ量の2次元的な分布が得られるから、グラフ作成部は、二つの保持時間と質量ずれ量とを軸とする3次元空間に、質量ずれ量の分布を表現するグラフを作成し、該グラフを表示部の画面上に表示する。このグラフは、保持時間の組に対する質量ずれ量を単に3次元空間にプロット点で表したものでもよいし、そのプロット点が載る仮想的な曲面を作成して3次元空間に描出してもよい。
 こうした表示により、分析者は、質量ずれ量や保持時間ずれ量などの時間的な変動や空間的な分布を直感的に把握することができ、例えば測定実行中に異常な状態が生じていないかどうか等の確認を簡単に行うことができる。
 ここで、表示画面上に表示されるグラフは、分析者による適宜の操作に応じて、任意の軸を中心に任意の角度だけ回転可能であることが望ましい。それによって、分析者は任意の方向から誤差量や補正情報の分布を観察することができ、例えば質量ずれが所定範囲内に収まっているか否かといった確認を容易に行うことができる。
 また、グラフ表示の際に、予め設定した値の範囲を逸脱している誤差量や補正情報を他と区別できるように、ブロット点や面の表示の態様、典型的には表示色を変えるようにしてもよい。
 上記本発明の第1の態様に係る分析装置では、誤差量や補正情報の分布を3次元以上のグラフで表していたが、分析によって得られた信号強度値の比較結果や信号強度から計算される量や値を同様のグラフで表示することもできる。
 即ち、上記課題を解決するために成された本発明の第2の態様は、一つの試料に対し、実空間又は仮想的な空間であるN次元空間(Nは2以上の整数)上の各微小領域における分析を実行して信号強度値であるデータを取得する分析装置であって、
 a)複数の試料について又は一つの試料中の複数の成分について、前記微小領域それぞれにおける分析により得られた信号強度値又はその信号強度値から所定の演算によって得られる物理量若しくは統計量の差異を示す差異情報を該微小領域毎に算出する差情報取得部と、
 b)前記N次元空間を形成するN個の軸に差異情報を示す軸を加えたN+1次元の空間に、前記差情報取得により算出された微小領域毎の差異情報に基づく分布を示すグラフを作成して表示部の画面上に表示するグラフ作成部と、
 を備えることを特徴としている。
 ここで、差異情報とは、或る二つの信号強度値や物理量、統計量などの比較が可能な情報であればよく、単なる差のみならず比でもよい。
 本発明に係る分析装置が、質量分析装置を検出器として用いた包括的2次元GC又は包括的2次元LCである場合やイメージング質量分析装置である場合、複数の試料について前記微小領域それぞれにおける分析により得られた信号強度値とは、例えば特定の質量電荷比における信号強度値又は全質量電荷比範囲に亘る信号強度値の積算値(トータルイオン電流値)である。一方、その場合の一つの試料中の複数の成分について前記微小領域それぞれにおける分析により得られた信号強度値とは、例えば異なる成分にそれぞれ対応する質量電荷比における信号強度値である。
 また、信号強度値から所定の演算によって得られる物理量とは例えば成分の濃度や含有量である。信号強度値から所定の演算によって得られる統計量とは例えば検定量、統計空間上の座標位置や距離などである。
 本発明に係る分析装置が質量分析装置を検出器として用いた包括的2次元LCである場合、差異情報取得部は、例えば或る二つの試料について時間が経過するに伴い繰り返し得られたマススペクトルデータの中で着目する特定の質量電荷比における信号強度値を取得し、保持時間毎にその二つの試料における信号強度値の差異を計算により求める。差異情報取得部では信号強度値の差異量の2次元的な分布が得られるから、グラフ作成部は、二つの保持時間と差異量とを軸とする3次元空間に、差異量の分布を表現するグラフを作成し、該グラフを表示部の画面上に表示する。このグラフは、保持時間の組に対する差異量を単に3次元空間にプロット点で表したものでもよいし、そのプロット点が載る仮想的な曲面を作成して3次元空間に描出してもよい。
 こうした表示により、分析者は、二つの試料の間の信号強度値の差異などの時間的な変動や空間的な分布を直感的に把握することができる。
 本発明の第1の態様である分析装置によれば、包括的2次元クロマトグラフ質量分析装置やイメージング質量分析装置などにおいて、質量ずれや保持時間ずれなどの測定上現れる様々な誤差量やこれを補正するための補正量といった処理上のパラメータの時間的な変動、或いはそれらの空間的な分布を分かり易く分析者に提示することができる。それによって、分析者は、例えば測定が適切に行われたか否かを一目で確認することができる。
 また、本発明の第2の態様である分析装置によれば、包括的2次元クロマトグラフ質量分析装置やイメージング質量分析装置などにおいて、複数の試料に対する分析結果の差異や同じ試料中の異なる成分に対する分析結果の差異、或いは、複数の試料に対する分析結果からそれぞれ計算される種々の物理量や統計量の差異や同じ試料中の異なる成分に対する分析結果からそれぞれ計算される種々の物理量や統計量の差異などを、分かり易く分析者に提示することができる。
本発明の一実施例(第1実施例)である包括的2次元LC-MSシステムの概略構成図。 第1実施例の包括的2次元LC-MSシステムにおいて測定によって得られるデータの概略図。 第1実施例の包括的2次元LC-MSシステムにおける質量補正量3次元表示の一例を示す図。 従来の質量補正量表示の一例を示す図。 本発明の他の実施例(第2実施例)である包括的2次元LC-MSシステムの概略構成図。 第2実施例の包括的2次元LC-MSシステムにおいて信号強度値差を表示する処理の説明図。 第2実施例のシステムをイメージング質量分析装置に適用したときに得られるイメージング画像の一例を示す図。
 本発明の第1実施例である包括的2次元LC-MSシステムについて、添付図面を参照して説明する。
 図1は第1実施例の包括的2次元LC-MSシステムの概略構成図である。
 第1実施例の包括的2次元LC-MSシステムは、包括的2次元LC部1、質量分析装置2、内部標準物質添加部3、データ処理部4、入力部5、及び表示部6、を備える。
 データ処理部4は後述する特徴的な処理を実行するために、機能ブロックとして、スペクトルデータ収集部41、質量校正部42、質量校正情報収集部43、及び、3次元表示情報作成部44、を備える。
 データ処理部4は、パーソナルコンピュータをハードウエア資源とし、そのパーソナルコンピュータに予めインストールされた専用の処理ソフトウエアを該コンピュータで実行することによりそれぞれの機能が実現されるものとすることができる。
 図示しないが、包括的2次元LC部1は、移動相を送給するポンプ、移動相中に試料を注入するインジェクタ、1次カラム、該1次カラムの出口から溶出する成分を一定のモジュレーション時間間隔で捕集し時間的に圧縮して送り出すモジュレータ、及び、1次カラムとは異なる分離特性(典型的には異なる極性)を有する高速分離可能な2次カラム、を含む。ポンプの作用により1次カラムに一定流量で送られる移動相中にインジェクタから注入された試料に含まれる各種成分は、1次、2次の2段階のカラムによって、高い分離能で以て時間的に分離されて溶出する。そして、その溶出液が内部標準物質添加部3を経て質量分析装置2へと連続的に導入される。
 内部標準物質添加部3は、正確な質量電荷比値が既知であり且つ目的試料中に存在しないことが明らかである標準物質を、溶出液中に所定量ずつ連続的に添加する。したがって、質量分析装置2に導入される試料には、包括的2次元LC部1からの溶出液に含まれる成分と内部標準物質とが含まれる。なお、標準物質は一種類でもよいが、場合によっては、低質量電荷比と高質量電荷比とで質量ずれ量が異なることもあるため、質量電荷比が相違する複数の標準物質を利用することが好ましい。
 質量分析装置2は、例えば、エレクトロスプレーイオン化(ESI)法などの大気圧イオン源を備えた四重極型質量分析装置である。ただし、質量分析装置2はこれに限るものではなく、Q-TOF型質量分析装置、イオントラップ飛行時間型質量分析装置など、他の構成の質量分析装置に置き換えることができる。
 質量分析装置2において、導入される試料中の成分は大気圧イオン源で順次イオン化される。こうして生成されたイオンが四重極マスフィルタに導入され、該四重極マスフィルタを通過した特定の質量電荷比を有するイオンがイオン検出器に到達して検出される。ここでは、図示しない制御部により、四重極マスフィルタは所定の質量電荷比範囲のスキャン測定が繰り返されるように駆動される。データ処理部4のスペクトルデータ収集部41は、分析開始時点から終了時点まで、所定質量電荷比範囲に亘るイオン強度を示すマススペクトルデータを繰り返し収集する。
 図2は、第1実施例の包括的2次元LC-MSシステムにおける測定によって得られるマススペクトルデータの概略図である。
 上述したように、試料に含まれる各種成分は包括的2次元LC部1において時間方向に高い分離能で分離され、質量分析装置2ではスキャン測定が繰り返し実施される。それによって、スペクトルデータ収集部41には、図2に示すように、1次元目保持時間RT1と2次元目保持時間RT2という二つの時間軸を有する仮想的な空間上の各微小領域(図2(a)中で斜線で示した矩形状の範囲であるピクセル)に対応するマススペクトルデータが格納される。一つの微小領域におけるマススペクトルデータは図2(b)に示すように、質量電荷比m/zとイオン強度との関係を示すマススペクトルを構成するデータである。
 上述したように、質量分析の対象には内部標準物質が必ず含まれる。そのため、スキャン測定毎に得られるマススペクトルには内部標準物質由来のピークPが現れる。何らかの要因によって測定上の質量電荷比にずれが生じる場合には、マススペクトル上で内部標準物質由来のピークPの出現位置もずれるから、その出現位置(つまり見かけ上の質量電荷比値)と既知である真の質量電荷比値との差が質量ずれ量となる。そこで、データ処理部4において質量校正部42は、マススペクトルが得られる毎に内部標準物質由来のピークPの出現位置を検出し、その検出結果を利用して質量ずれ量を算出する。具体的には例えば、内部標準物質の既知の質量電荷比値を中心に所定範囲のウインドウを定め、得られたマススペクトルにおいて該ウインドウの範囲内に所定強度以上のピークが観測されたならば、それが内部標準物質由来のピークであると判断すればよい。そして、質量ずれ量が算出されたならば、その分だけマススペクトルの質量電荷比軸を補正することによって質量ずれのない(又はより少ない)マススペクトルを作成する。
 質量校正情報収集部43は、上述したように質量校正部42においてマススペクトル毎、つまりは2次元クロマトグラム上のピクセル毎に得られる質量ずれ量、即ち質量補正量を収集して記憶する。これによって、2次元クロマトグラム上のピクセル総数と同じ数の質量ずれ量が求まる。そして、測定終了後に3次元表示情報作成部44は、入力部5からの所定の入力を受けて、1次元目保持時間RT1と2次元目保持時間RT2を互いに直交する軸とし、さらにこれに直交する軸に質量補正量をとった3次元表示空間内に、質量校正情報収集部43に記憶された質量補正量の値をプロットすることで、質量補正量の2次元分布を示す画像を作成する。そして、作成した3次元表示画像を表示部6の画面上に表示する。
 図3はこの3次元表示画像の一例を示す図である。図3(a)は全てのピクセルにおいて質量補正量がゼロである、つまりは質量ずれが全くない場合の表示画像である。このときには、全てのプロットが、1次元目保持時間RT1、2次元目保持時間RT2の二軸を含む平面上に位置している。一方、図3(b)は各ピクセルにおいてそれぞれ質量ずれが生じている場合の表示画像である。分析者はこうした表示を見ることで、質量ずれ量の2次元的な分布を直感的に把握することができる。
 なお、図3では質量補正量の値をプロット点で示しているだけであるが、もちろん、こうした多数のプロット点が載るような滑らかな曲面を計算し、その曲面をプロット点と併せて表示すると、凹凸がより明確になる。
 また、図3に示したような3次元表示画像は、各軸を中心に任意の角度で回転させることで任意の方向から見た状態を表示できるようにしておくことが望ましい。それによって、例えば、2次元目保持時間R2が紙面に直交するような方向から質量ずれ量の分布を眺めることで、どの1次元目保持時間RT1において質量ずれ量が最大になっているのか、といったことを一目で認識することが可能となる。
 上記実施例では、質量電荷比のずれ量の2次元分布を表示していたが、同様にして、1次カラム、2次カラムそれぞれにおける保持時間のずれ量又は保持時間ずれの補正量の2次元分布を表示できるようにしてもよい。保持時間ずれを求めるためには、正確な保持時間が既知である複数の内部標準物質を試料に添加し、該試料を包括的2次元LC部1で成分分離して得られる溶出液を質量分析し、複数の内部標準物質がそれぞれ検出される時間を利用すればよい。この場合、或る一つの内部標準物質が検出される時間とそれに続き別の内部標準物質が検出される時間との間の時間範囲における保持時間ずれは、その両方の検出時間における保持時間ずれを利用した計算式に基づいて求まるようにすればよい。
 また、上記実施例は包括的2次元LC-MSシステムであるが、包括的2次元GC-MSシステムでも全く同様の表示を行うようにすることができる。
 さらにまた、包括的2次元クロマトグラフ質量分析装置ではなく、イメージング質量分析装置においても同様の質量ずれ量の2次元表示を行うようにすることができる。
 即ち、イメージング質量分析装置では、2次元領域内を2次元的に細かく区分した微小領域毎に質量分析を実施してマススペクトルデータを取得する。したがって、図2(a)において保持時間を試料上の位置に読み替えた、2次元領域内の各ピクセルにおけるマススペクトルデータが得られる。通常のイメージング質量分析装置では、質量分析部と試料との相対位置を変化させながら一つずつピクセルに対する質量分析を実行するから、2次元領域全体の質量分析結果を得るには或る程度の時間が掛かる。その間に、質量ずれが変動することがあるから、全てのピクセルにほぼ満遍なく添加した内部標準物質(例えばMALDI用のマトリックス)を質量ずれ検出の基準として用いることで、各ピクセルに対して得られたマススペクトルからそれぞれ質量ずれ量を求めることができる。そして、その質量ずれ量を用いて、図3に示すような質量ずれ量の3次元表示画像を作成することができる。
 次に、本発明の第2実施例である包括的2次元LC-MSシステムについて図5、図6を参照して説明する。図5はこの第2実施例の包括的2次元LC-MSシステムの概略構成図、図6は第2実施例の包括的2次元LC-MSシステムにおいて信号強度値差を表示する処理の説明図である。上記第1実施例は、分析の実行時に生じる誤差量やこれを補正する補正情報の二次元分布を3次元表示するものであったが、この第2実施例では分析結果である信号強度値の比較結果の2次元分布を3次元表示する。
 図5において第1実施例と同じ構成要素には同じ符号を付してある。この第2実施例の包括的2次元LC-MSシステムにおいて、データ処理部7は機能ブロックとして、SIMデータ収集部71、信号強度値差算出部72、及び、3次元表示情報作成部73を含む。ここでは、目的とする試料に含まれる複数の成分が既知であり、その複数の成分に対して検出される信号強度値の差異量を観測したい場合について例を挙げて説明する。
 質量分析装置2では、複数の成分に対応した質量電荷比をそれぞれSIM(選択イオンモニタリング)測定モードで全測定時間に亘り測定する。ここでは、複数の成分を成分A、成分Bとし、成分Aに対応する質量電荷比m/zをMa、成分Bに対応する質量電荷比m/zをMbとする。包括的2次元LC部1においてインジェクタから移動相中に試料を導入し、1次、2次の2段のカラムからの溶出液を質量分析装置2に導入する。そして、質量分析装置2においてSIM測定を繰り返し実行することにより、SIMデータ収集部71にはm/z=Maとm/z=Mbにおける各保持時間での信号強度値データが格納される。例えば、m/z=Maにおける各保持時間での信号強度値データに基づいて2次元クロマトグラム(マスクロマトグラム)を作成すると、例えば図6(a-1)に示すようになり、m/z=Mbにおける各保持時間での信号強度値データに基づいて2次元クロマトグラムを作成すると、例えば図6(a-2)に示すようになる。
 信号強度値差算出部72は、成分A、Bにそれぞれ対応する2次元クロマトグラム上のピクセル毎に得られる信号強度値の差を算出し記憶する。これによって、2次元クロマトグラム上のピクセル総数と同じ数の信号強度値差が求まる。そして、測定終了後に3次元表示情報作成部73は、入力部5からの所定の入力を受けて、1次元目保持時間RT1と2次元目保持時間RT2を互いに直交する軸とし、さらにこれに直交する軸に信号強度値差量をとった3次元表示空間内に、信号強度値差算出部72に記憶された信号強度値の差の値をプロットすることで、信号強度値差の2次元分布を示す画像を作成する。そして、作成した3次元表示画像を表示部6の画面上に表示する。これにより、二つの成分に対して検出された信号強度値の差と二つのカラムの保持時間との関係を視覚的に表示することができる。
 なお、二つの成分に対して検出された信号強度値の差や比以外に、様々な情報を同様にして3次元表示することができる。例えば、異なる試料に対してそれぞれ得られたトータルイオン強度値(全質量電荷比範囲に亘る信号強度値の積算値)の差や比を同様にして表示することができる。また、質量分析によって得られた信号強度値そのものではなく、信号強度値から算出される様々な値を同様にして表示することができる。例えば、定量分析の場合には、予め求めておいた検量線などを用いて信号強度値から成分濃度や成分の含有量(絶対量)を算出するから、そうした濃度値や含有量の差や比を3次元表示するようにしてもよい。さらにまた、信号強度値や濃度値、含有量などに対し所定のアルゴリズムに従った統計的演算を実施して得られる統計量の差や比を3次元表示するようにしてもよい。そうした統計量としては、例えば、検定量、統計空間上の座標位置や距離などが考えられる。
 第1実施例において述べたのと同様に、この第2実施例のシステムと同様の表示を、イメージング質量分析装置においても行うようにすることができる。即ち、図6(a-1)、(a-2)に示したような2次元クロマトグラムは、イメージング質量分析装置においては特定の質量電荷比に対するイメージング画像である。したがって、例えば一つの試料に対して得られた複数の異なる質量電荷比に対するイメージング画像についてピクセル毎に得られる信号強度値の和、差、積又は除をとる(つまり、加算、減算、乗算、又は除算を行う)ことで、そうした複数のイメージング画像を演算処理した結果の画像を得ることができる。
 図7はそうしたイメージング画像の一例を示す図である。イメージング質量分析によって得られたデータに基づき、m/z 538のイメージング画像、m/z 835のイメージング画像は図7(a)、(b)のように得られる。これに対し、ピクセル毎の信号強度値の加算、減算、乗算、及び除算を行って得られた結果に基づくイメージング画像が図7(c)~(f)である。分析者は、こうしたイメージング画像から、異なる質量電荷比におけるイオンの2次元分布の相違や類似の程度を推定することができる。
 なお、上記実施例はいずれも本発明の一例にすぎず、上記記載した以外の点において、本発明の趣旨の範囲で適宜変形、修正、追加などを行っても本願特許請求の範囲に包含されることは明らかである。
1…包括的2次元LC部
2…質量分析装置
3…内部標準物質添加部
4、7…データ処理部
41…スペクトルデータ収集部
42…質量校正部
43…質量校正情報収集部
44、73…3次元表示情報作成部
71…SIMデータ収集部
72…信号強度値差算出部
5…入力部
6…表示部

Claims (5)

  1.  一つの試料に対し、実空間又は仮想的な空間であるN次元空間(Nは2以上の整数)上の各微小領域における分析を実行して信号強度値であるデータを取得する分析装置であって、
     a)前記微小領域それぞれにおける分析実行時に、分析に関する誤差量又はこの誤差を補正するための補正情報を収集する誤差情報収集部と、
     b)前記N次元空間を形成するN個の軸に前記誤差量又は補正情報を示す軸を加えたN+1次元の空間に、前記誤差情報収集部により収集された微小領域毎の誤差量又は補正情報に基づく分布を示すグラフを作成して表示部の画面上に表示するグラフ作成部と、
     を備えることを特徴とする分析装置。
  2.  請求項1に記載の分析装置であって、
     各微小領域における分析データは、質量分析装置を検出器として用いた包括的2次元ガスクロマトグラフ又は包括的2次元液体クロマトグラフにより得られたデータであり、Nが2である2次元空間の二つの軸はいずれも保持時間で、第3の軸は質量電荷比のずれ又は該ずれを補正する補正情報であることを特徴とする分析装置。
  3.  請求項1に記載の分析装置であって、
     各微小領域における分析データは、包括的2次元ガスクロマトグラフ又は包括的2次元液体クロマトグラフにより得られたデータであり、Nが2である2次元空間の二つの軸はいずれも保持時間で、第3の軸は保持時間のずれ又は該ずれを補正する補正情報であることを特徴とする分析装置。
  4.  請求項1に記載の分析装置であって、
     各微小領域における分析データは、イメージング質量分析装置により得られたデータであり、Nが2である2次元空間の二つの軸は試料上の異なる方向の位置情報であり、第3の軸は質量電荷比のずれ又は該ずれを補正する補正情報であることを特徴とする分析装置。
  5.  一つの試料に対し、実空間又は仮想的な空間であるN次元空間(Nは2以上の整数)上の各微小領域における分析を実行して信号強度値であるデータを取得する分析装置であって、
     a)複数の試料について又は一つの試料中の複数の成分について、前記微小領域それぞれにおける分析により得られた信号強度値又はその信号強度値から所定の演算によって得られる物理量若しくは統計量の差異を示す差異情報を該微小領域毎に算出する差情報取得部と、
     b)前記N次元空間を形成するN個の軸に差異情報を示す軸を加えたN+1次元の空間に、前記差情報取得により算出された微小領域毎の差異情報に基づく分布を示すグラフを作成して表示部の画面上に表示するグラフ作成部と、
     を備えることを特徴とする分析装置。
PCT/JP2014/084281 2014-12-25 2014-12-25 分析装置 WO2016103388A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/539,413 US10763094B2 (en) 2014-12-25 2014-12-25 Analyzing apparatus
JP2016565748A JP6380555B2 (ja) 2014-12-25 2014-12-25 分析装置
PCT/JP2014/084281 WO2016103388A1 (ja) 2014-12-25 2014-12-25 分析装置
EP14908995.5A EP3252798A4 (en) 2014-12-25 2014-12-25 Analytical device
CN201480084673.8A CN107430979B (zh) 2014-12-25 2014-12-25 分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084281 WO2016103388A1 (ja) 2014-12-25 2014-12-25 分析装置

Publications (1)

Publication Number Publication Date
WO2016103388A1 true WO2016103388A1 (ja) 2016-06-30

Family

ID=56149484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084281 WO2016103388A1 (ja) 2014-12-25 2014-12-25 分析装置

Country Status (5)

Country Link
US (1) US10763094B2 (ja)
EP (1) EP3252798A4 (ja)
JP (1) JP6380555B2 (ja)
CN (1) CN107430979B (ja)
WO (1) WO2016103388A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510742B1 (ja) * 2018-06-15 2019-05-08 積水メディカル株式会社 イメージング質量分析方法
WO2019150576A1 (ja) * 2018-02-05 2019-08-08 株式会社島津製作所 質量分析装置及び質量分析装置における質量較正方法
WO2019229899A1 (ja) * 2018-05-30 2019-12-05 株式会社島津製作所 イメージング質量分析データ処理装置
WO2019239612A1 (ja) * 2018-06-15 2019-12-19 積水メディカル株式会社 イメージング質量分析方法
WO2020162438A1 (ja) 2019-02-04 2020-08-13 株式会社日立ハイテク 液体クロマトグラフ質量分析装置
WO2021015148A1 (ja) * 2019-07-25 2021-01-28 株式会社日立ハイテク 検体分析装置
US11761934B2 (en) 2018-10-12 2023-09-19 Shimadzu Corporation Automatic analysis device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201500377D0 (en) 2015-01-09 2015-02-25 Micromass Ltd Lock mass using chromatographic peaks
US11456167B2 (en) * 2016-12-22 2022-09-27 Shimadzu Corporation Mass spectrometer and program for mass spectrometer
CN108152419B (zh) * 2018-01-15 2020-09-22 华南理工大学 一种测定肽分子量的二维液相色谱及其用途
JP7167705B2 (ja) * 2018-12-26 2022-11-09 株式会社島津製作所 質量分析方法
CN110243958A (zh) * 2019-05-31 2019-09-17 中国石油天然气股份有限公司 一种分析复杂地质样品组分的方法
CN112946058A (zh) * 2019-12-10 2021-06-11 中国科学院大连化学物理研究所 一种用于光电离质谱的信号校正的方法
CN113049663B (zh) * 2021-01-27 2023-10-20 中国科学院成都生物研究所 一维线材样品转储及质谱分析的装置和使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064562A (ja) * 2004-08-27 2006-03-09 Hitachi High-Technologies Corp 質量分析方法及び質量分析システム
JP2009025268A (ja) * 2007-07-24 2009-02-05 Shimadzu Corp 質量分析装置
JP2009053070A (ja) * 2007-08-28 2009-03-12 Hitachi High-Technologies Corp クロマトグラフィー質量分析の分析結果表示方法及び表示装置
JP2011122822A (ja) * 2009-12-08 2011-06-23 Shimadzu Corp クロマトグラフ質量分析装置
JP2013068444A (ja) * 2011-09-21 2013-04-18 Shimadzu Corp 包括的2次元クロマトグラフ質量分析用データ処理装置
US20140088884A1 (en) * 2012-05-04 2014-03-27 Battelle Memorial Institute Methods of source attribution for chemical compounds
WO2014064790A1 (ja) * 2012-10-25 2014-05-01 株式会社島津製作所 包括的2次元クロマトグラフ用データ処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683749B2 (ja) 1999-07-14 2005-08-17 日本電子株式会社 質量分析方法
US20060255261A1 (en) * 2005-04-04 2006-11-16 Craig Whitehouse Atmospheric pressure ion source for mass spectrometry
WO2015198385A1 (ja) * 2014-06-24 2015-12-30 株式会社島津製作所 包括的2次元クロマトグラフ用データ処理装置
CN107076712B (zh) * 2014-09-03 2019-01-11 株式会社岛津制作所 色谱数据处理方法以及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064562A (ja) * 2004-08-27 2006-03-09 Hitachi High-Technologies Corp 質量分析方法及び質量分析システム
JP2009025268A (ja) * 2007-07-24 2009-02-05 Shimadzu Corp 質量分析装置
JP2009053070A (ja) * 2007-08-28 2009-03-12 Hitachi High-Technologies Corp クロマトグラフィー質量分析の分析結果表示方法及び表示装置
JP2011122822A (ja) * 2009-12-08 2011-06-23 Shimadzu Corp クロマトグラフ質量分析装置
JP2013068444A (ja) * 2011-09-21 2013-04-18 Shimadzu Corp 包括的2次元クロマトグラフ質量分析用データ処理装置
US20140088884A1 (en) * 2012-05-04 2014-03-27 Battelle Memorial Institute Methods of source attribution for chemical compounds
WO2014064790A1 (ja) * 2012-10-25 2014-05-01 株式会社島津製作所 包括的2次元クロマトグラフ用データ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252798A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063342B2 (ja) 2018-02-05 2022-05-09 株式会社島津製作所 質量分析装置及び質量分析装置における質量較正方法
WO2019150576A1 (ja) * 2018-02-05 2019-08-08 株式会社島津製作所 質量分析装置及び質量分析装置における質量較正方法
US11798795B2 (en) 2018-02-05 2023-10-24 Shimadzu Corporation Mass spectrometer and mass calibration method in mass spectrometer
CN111684565A (zh) * 2018-02-05 2020-09-18 株式会社岛津制作所 质谱分析装置以及质谱分析装置的质量校正方法
JPWO2019150576A1 (ja) * 2018-02-05 2021-01-07 株式会社島津製作所 質量分析装置及び質量分析装置における質量較正方法
WO2019229899A1 (ja) * 2018-05-30 2019-12-05 株式会社島津製作所 イメージング質量分析データ処理装置
JPWO2019229899A1 (ja) * 2018-05-30 2021-03-25 株式会社島津製作所 イメージング質量分析データ処理装置
US11211235B2 (en) 2018-05-30 2021-12-28 Shimadzu Corporation Imaging mass spectrometry data processing device
WO2019239612A1 (ja) * 2018-06-15 2019-12-19 積水メディカル株式会社 イメージング質量分析方法
JP6510742B1 (ja) * 2018-06-15 2019-05-08 積水メディカル株式会社 イメージング質量分析方法
US11761934B2 (en) 2018-10-12 2023-09-19 Shimadzu Corporation Automatic analysis device
US11635413B2 (en) 2019-02-04 2023-04-25 Hitachi High-Tech Corporation Liquid chromatograph mass spectrometer
WO2020162438A1 (ja) 2019-02-04 2020-08-13 株式会社日立ハイテク 液体クロマトグラフ質量分析装置
JPWO2021015148A1 (ja) * 2019-07-25 2021-01-28
WO2021015148A1 (ja) * 2019-07-25 2021-01-28 株式会社日立ハイテク 検体分析装置
JP7395591B2 (ja) 2019-07-25 2023-12-11 株式会社日立ハイテク 検体分析装置

Also Published As

Publication number Publication date
JP6380555B2 (ja) 2018-08-29
US10763094B2 (en) 2020-09-01
US20180218892A1 (en) 2018-08-02
EP3252798A4 (en) 2018-07-11
CN107430979A (zh) 2017-12-01
CN107430979B (zh) 2019-11-05
JPWO2016103388A1 (ja) 2017-09-07
EP3252798A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6380555B2 (ja) 分析装置
JP6494588B2 (ja) 滞留時間の決定または確認のための窓処理質量分析データの使用
JP5590145B2 (ja) 質量分析データ処理装置
JP4973628B2 (ja) クロマトグラフ質量分析データ解析方法及び装置
US10818485B2 (en) Multidimensional mass spectrometry data processing device
JP5375411B2 (ja) クロマトグラフ質量分析データ解析方法及び装置
US20150008310A1 (en) Pulsed Mass Calibration in Time-of-Flight Mass Spectrometry
JP6158965B2 (ja) Srmアッセイにおけるバックグラウンド干渉の決定のためのtof−msmsデータの可変xic幅の使用
EP2728350A1 (en) Analysis data processing method and device
CN108982729B (zh) 用于提取质量迹线的系统和方法
JP6048590B2 (ja) 包括的2次元クロマトグラフ用データ処理装置
JP6152301B2 (ja) 定量方法およびプログラム
WO2018087824A1 (ja) クロマトグラフ質量分析用データ解析装置
Yu et al. A chemometric-assisted method based on gas chromatography–mass spectrometry for metabolic profiling analysis
JP2018504600A (ja) 干渉検出および着目ピークのデコンボルーション
JP2017161442A (ja) クロマトグラフ質量分析データ処理装置
JP4602854B2 (ja) マスクロマトグラム表示方法
US10203309B2 (en) Chromatogram display method, chromatogram display device, and chromatograph comprising said device
JP7056767B2 (ja) クロマトグラフを用いた物質同定方法
US20230420234A1 (en) Systems and Method for Image and/or Video Processing of Mass Spectrometry Data
JP7380866B2 (ja) クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
JP6896830B2 (ja) イオン種の質量を判定するためのシステムおよび方法
Bielow et al. Bioinformatics for qualitative and quantitative proteomics
WO2022080145A1 (ja) 解析システム、解析方法及びプログラム
CN115516302A (zh) 色谱质量分析数据处理方法、色谱质量分析装置以及色谱质量分析数据处理用程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014908995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15539413

Country of ref document: US