WO2016103325A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016103325A1
WO2016103325A1 PCT/JP2014/083935 JP2014083935W WO2016103325A1 WO 2016103325 A1 WO2016103325 A1 WO 2016103325A1 JP 2014083935 W JP2014083935 W JP 2014083935W WO 2016103325 A1 WO2016103325 A1 WO 2016103325A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
information
capacitor
ambient temperature
Prior art date
Application number
PCT/JP2014/083935
Other languages
English (en)
French (fr)
Inventor
裕司 砂田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/083935 priority Critical patent/WO2016103325A1/ja
Priority to JP2016565624A priority patent/JP6410841B2/ja
Publication of WO2016103325A1 publication Critical patent/WO2016103325A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • This invention relates to the power converter device used for an air-conditioning cooling / heating apparatus.
  • a power converter generates a bus voltage, which is a DC voltage, by rectifying and smoothing the output of an AC power supply using a bridge diode and a smoothing capacitor.
  • the power conversion device When generating the bus voltage, the power conversion device attenuates the harmonic components by using a PFC (Power Factor Correction) circuit or a reactor as an inexpensive measure.
  • PFC Power Factor Correction
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can satisfy a harmonic standard with a simple configuration.
  • a power conversion device includes a main circuit capacitor directly or indirectly connected to an output terminal of a rectifier circuit, and a parallel connection with the main circuit capacitor.
  • Compensation capacitor a switch connected in parallel with the main circuit capacitor and in series with the compensation capacitor, power output from the inverter circuit to the rotating equipment, operating state of the connected load, ambient temperature of the device itself
  • a control device that determines whether to use the compensation capacitor by using one or more pieces of information, and controls on / off of the switch.
  • the power conversion device has an effect that the harmonic standard can be satisfied with a simple configuration.
  • FIG. 1 is a block diagram illustrating a configuration example of a power conversion device according to a first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a control device according to a first embodiment.
  • the flowchart which shows the operation
  • the flowchart which shows the ON / OFF determination operation
  • FIG. 3 is a block diagram illustrating a configuration example of a power conversion device according to a second embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of the power conversion device according to the first embodiment of the present invention.
  • the AC power source current output from the AC power source 1 is rectified by the diode bridge 2 that is a rectifier circuit including the diodes 20 a, 20 b, 20 c, and 20 d, and passes through the reactor 3 to be a main circuit capacitor that is a smoothing capacitor. 4 is smoothed by charging, and a bus voltage 5 of a DC voltage with respect to GND (ground) 13 is generated.
  • the main circuit capacitor 4 is indirectly connected to the positive output terminal of the diode bridge 2 via the reactor 3 and directly to the negative output terminal of the diode bridge 2.
  • switching that is a switch in parallel with the main circuit capacitor 4, further, a compensation capacitor 4 a for load compensation, in parallel with the main circuit capacitor 4, and in series with the compensation capacitor 4 a.
  • the element 14a is connected.
  • a diode 16a is connected in parallel with the switching element 14a.
  • the compensation capacitor 4a functions as a smoothing capacitor in the same manner as the main circuit capacitor 4 when the switching element 14a is on.
  • the compensation capacitor 4a functions as a smoothing capacitor, that is, when the switching element 14a is on, in the power converter, the capacity of the smoothing capacitor is larger than when only the main circuit capacitor 4 is used.
  • the switching element 14a is, for example, a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor).
  • the bus converter 5 drives the voltage converter 7 for supplying an appropriate voltage to each component of the load 17 and the power converter.
  • the control device 9 supplied with the power supply voltage Vdd8 by the voltage converter 7 controls the inverter circuit 10 to rotate the rotating device 11.
  • the inverter circuit 10 includes inverter switching elements 100a, 100b, 100c, 100d, 100e, and 100f, and diodes 101a, 101b, 101c, 101d, 101d connected in parallel to the corresponding inverter switching elements 100a to 100f, respectively. 101e, 101f, and the control device 9 controls on / off of each of the inverter switching elements 100a to 100f.
  • Bus voltage resistors 6 a and 6 b are connected in series between the bus voltage 5 and the GND 13, and a voltage divided by the bus voltage resistors 6 a and 6 b is input to the control device 9.
  • the control device 9 recognizes the bus voltage 5 by restoring the voltage value by an operation such as AD conversion and DC voltage restoration gain multiplication, and controls the inverter circuit 10 to rotate an appropriate voltage. Control is applied to the device 11 to rotate the rotating device 11.
  • the voltage applied from the inverter circuit 10 to the rotating device 11 and the current output from the inverter circuit 10 to the rotating device 11 are collectively referred to as an inverter output.
  • the inverter output detection unit 18 detects the inverter output, and outputs the inverter output information to the control device 9 by the inverter output frequency detection signal 12c.
  • FIG. 2 is a block diagram of a configuration example of the control device 9 according to the first embodiment.
  • the control device 9 includes a signal input unit 91 to which the ambient temperature detection signal 12a, the load detection signal 12b, and the inverter output frequency detection signal 12c are input, and the on / off of the switching element 14a based on the information of each input signal. Is determined by the control unit 92, the storage unit 93 that stores threshold information used when the control unit 92 determines the on / off state of the switching element 14a, and the control unit 92. And a signal output unit 94 that outputs an on / off signal 15a to the switching element 14a based on on / off of the switching element 14a.
  • the control device 9 performs control to turn on / off the inverter switching elements 100a to 100f of the inverter circuit 10 based on the voltage divided by the bus voltage resistors 6a and 6b input as described above. Since it is the same as that of the prior art, description of general operations is omitted.
  • the ambient temperature detection signal 12a is a signal including information on the ambient temperature of the power converter.
  • a thermistor (not shown in FIG. 1) installed around the power conversion device outputs information on the measured ambient temperature to the control device 9 by the ambient temperature detection signal 12a.
  • each thermistor outputs an ambient temperature detection signal 12 a to the control device 9.
  • a plurality of, for example, m ambient temperature detection signals 12 a are input to the signal input unit 91 of the control device 9.
  • the load detection signal 12b is a signal including information on the operating state of the load 17. Information indicating whether or not the load 17 is operating and information on the power used when the load 17 is operating are output to the control device 9 by the load detection signal 12b.
  • FIG. 1 shows an example in which only one load 17 is connected to the voltage converter 7, when a plurality of loads 17 are connected, each load 17 sends the load detection signal 12 b to the control device 9. Output to.
  • a plurality of, for example, m load detection signals 12 b are input to the signal input unit 91 of the control device 9.
  • the load 17 includes a fan or the like when the power conversion device is mounted on an air-conditioning / cooling device. If the load 17 is a fan, the load detection signal 12b may include abnormality information such as locking and operation stop.
  • the inverter output frequency detection signal 12c is a signal including inverter output information.
  • the inverter output detection unit 18 outputs the detected inverter output information to the control device 9 by the inverter output frequency detection signal 12c.
  • each inverter output detection unit 18 outputs an inverter output frequency detection signal 12 c to the control device 9.
  • a plurality of, for example, m inverter output frequency detection signals 12 c are input to the signal input unit 91 of the control device 9.
  • the ambient temperature detection signal 12a, the load detection signal 12b, and the inverter output frequency detection signal 12c are m signals in a plurality of cases, the number of each signal does not need to be the same.
  • FIG. 3 is a flowchart illustrating an operation in which the control device 9 according to the first embodiment controls on / off of the switching element 14a.
  • each of the ambient temperature detection signal 12 a, the load detection signal 12 b, and the inverter output frequency detection signal 12 c which is necessary when the control unit 92 determines whether the switching element 14 b is turned on or off in the signal input unit 91.
  • a signal is input (step S1).
  • the control unit 92 determines on / off of the switching element 14b based on the information of each signal input to the signal input unit 91 (step S2).
  • the controller 92 can recognize the ambient temperature of the power converter by the ambient temperature detection signal 12a, can recognize the on / off of the load 17 and the power used by the load detection signal 12b, and can be recognized by the inverter output frequency detection signal 12c.
  • the rotational speed of the rotating device 11 can be recognized from the inverter output to the rotating device 11.
  • the controller 92 recognizes that the rotational speed of the rotating device 11 is high based on the inverter output frequency detection signal 12 c, and the rotational speed of the rotational threshold value set in the storage unit 93 is the rotational speed of the rotating device 11. Is exceeded, the signal output unit 94 is controlled to turn on the on / off signal 15a output to the switching element 14a to operate the compensation capacitor 4a as a smoothing capacitor. In the power converter, by charging the compensation capacitor 4a, a stable bus voltage 5 can be generated even when the rotating device 11 is in a high rotation state.
  • the rotating device 11 such as a compressor occupies a large proportion of the entire product load.
  • the harmonic standard the smaller the input power, the more difficult it is to satisfy the standard value.
  • the controller 92 turns off the on / off signal 15a when the input power is low and the rotating device 11 is in a low rotation state equal to or lower than the rotation threshold.
  • the harmonic component is reduced by generating the bus voltage 5 using only the main circuit capacitor 4 out of the main circuit capacitor 4 and the compensation capacitor 4a.
  • the control unit 92 turns on the on / off signal 15a in a high rotation state where the input power is large and the rotating device 11 exceeds the rotation threshold.
  • the bus voltage 5 can be stabilized and the rotating device 11 can be rotated, and even if the main circuit capacitor 4 and the compensation capacitor 4a are connected, the input High power makes it easier to meet harmonic standards.
  • the control unit 92 grasps the operating state of the load 17 based on the load detection signal 12b, and when the power used by the operating load 17 is large and there are a plurality of loads 17 or a plurality of loads 17, When the total power of each load 17 exceeds the power threshold set in the storage unit 93, the signal output unit 94 is controlled to turn on the on / off signal 15a output to the switching element 14a. On the other hand, when the total power is less than or equal to the power threshold, the control unit 92 controls the signal output unit 94 to turn off the on / off signal 15a output to the switching element 14a.
  • the control unit 92 recognizes that the ambient temperature is high, and when the ambient temperature exceeds the temperature threshold set in the storage unit 93, the control unit 92 controls the signal output unit 94 to perform switching.
  • the on / off signal 15a output to the element 14a is turned on.
  • the control unit 92 controls the signal output unit 94 to turn off the on / off signal 15a output to the switching element 14a.
  • FIG. 4 is a flowchart illustrating an on / off determination operation of the switching element 14a in the control unit 92 according to the first embodiment.
  • Step S11: Yes When the rotation speed of the rotating device 11 is equal to or less than the rotation threshold (step S11: Yes), the total power of each load is equal to or less than the power threshold (step S12: Yes), and the ambient temperature is equal to or less than the temperature threshold. (Step S13: Yes), the on / off signal 15a output to the switching element 14a is turned off (Step S14).
  • step S11 when the rotation speed of the rotating device 11 exceeds the rotation threshold value (step S11: No), or when the total power of each load exceeds the power threshold value (step S12: No),
  • step S13: No When the ambient temperature exceeds the temperature threshold (step S13: No), the on / off signal 15a output to the switching element 14a is turned on (step S15).
  • the signal output unit 94 outputs the on / off signal 15a to the switching element 14a in accordance with the on / off signal 15a determined by the control unit 92 (step S3).
  • the control unit 92 turns on the on / off signal 15a output to the switching element 14a when even one of the rotational speed of the rotating device 11, the total power of each load, and the ambient temperature exceeds the threshold. It is an example and the present invention is not limited to this.
  • the control unit 92 determines to turn on the on / off signal 15a output to the switching element 14a when the threshold is exceeded for two or all of the rotational speed of the rotating device 11, the total power of each load, and the ambient temperature. You may do. Further, the control unit 92 uses only the information obtained from the rotation number of the rotating device 11, the total power of each load, and the ambient temperature, that is, the rotation number of the rotating device 11, the total power of each load, and the ambient temperature.
  • One or more pieces of information may be used to determine to turn on the on / off signal 15a output to the switching element 14a.
  • the control unit 92 may determine to turn on the on / off signal 15a output to the switching element 14a using the abnormality information.
  • control device 9 reads each load state and, when reaching a preset threshold value, prevents the compensation capacitor 4a generating the bus voltage 5 from being charged / discharged, thereby converting the power.
  • the phase delay of the commercial power supply current due to the capacitor capacity is reduced, the power factor is improved, and the harmonic standards can be satisfied from heavy load to light load.
  • FIG. 5 is a diagram illustrating a hardware configuration of the control device 9 according to the first embodiment.
  • the control unit 92 is realized by the processor 81 executing a program stored in the memory 82.
  • the signal input unit 91 is realized by the input unit 83.
  • the signal output unit 94 is realized by the output unit 84.
  • the processor 81, the memory 82, the input unit 93, and the output unit 84 are connected by a system bus 85.
  • a plurality of processors 81 and a plurality of memories 82 may cooperate to execute the functions of the components shown in the block diagram of FIG.
  • the control device 9 can be realized by the hardware configuration shown in FIG. 5, but can be implemented by either software or hardware.
  • the control device 9 may be configured by one MCU (Micro Controller Unit).
  • the control device 9 turns on and off the switching element 14a based on the information on the rotational speed of the rotating device 11, the power used by the load, and the ambient temperature.
  • the charging / discharging of the compensation capacitor 4a is controlled.
  • Embodiment 2 shows the case where only one of the compensation capacitors 4a is controlled, fine control cannot be performed. In this embodiment, the case where a plurality of low-capacity and inexpensive compensation capacitors and switching elements are provided in the power conversion device will be described.
  • FIG. 6 is a block diagram illustrating a configuration example of the power conversion apparatus according to the second embodiment of the present invention.
  • the power converter includes the configuration of the first embodiment shown in FIG. 1 with n ⁇ 1 compensation capacitors 4b to 4n, n ⁇ 1 switching elements 14b to 14n, and n ⁇ 1 diodes 16b to 16n. Has been added.
  • the signal output unit 94 further outputs on / off signals 15b to 15n.
  • Compensation capacitors 4b to 4n are connected in parallel with the main circuit capacitor 4.
  • the switching elements 14b to 14n are connected in parallel with the main circuit capacitor 4 and in series with the corresponding compensation capacitors 4b to 4n.
  • the diodes 16b to 16n are connected in parallel to the corresponding switching elements 14b to 14n.
  • the compensation capacitors 4b to 4n have the same configuration as the compensation capacitor 4a, the switching devices 14b to 14n have the same configuration as the switching device 14a, and the diodes 16b to 16n have the same configuration as the diode 16a.
  • the compensation capacitors 4a to 4n may have different capacities.
  • the control unit 92 determines on / off of the switching elements 14a to 14n in the process of step S2 shown in FIG. 3 based on the information on the rotational speed of the rotating device 11, the total power of the load, and the ambient temperature. That is, the number of compensation capacitors to be used is determined.
  • the control unit 92 controls on / off of the switching elements 14a to 14n to control charging / discharging of the compensation capacitors 4a to 4n.
  • the signal output unit 94 outputs on / off signals 15a to 15n to the switching elements 14a to 14n based on the on / off of the switching elements 14a to 14n determined by the control unit 92.
  • the control unit 92 determines a compensation capacitor to be used depending on the combination of the compensation capacitors 4a to 4n, and controls on / off of the switching elements 14a to 14n. .
  • the control unit 92 refers to a plurality of rotation threshold values set in the storage unit 93 with respect to the rotation number of the rotating device 11, and determines the compensation capacitor used from the relationship between the rotation number of the rotating device 11 and each rotation threshold value. The number can be determined.
  • the control unit 92 refers to a plurality of power threshold values set in the storage unit 93 with respect to the total power of the load, and the number of compensation capacitors used from the relationship between the total power of the load and each power threshold value. Can be determined.
  • the control unit 92 refers to a plurality of temperature threshold values set in the storage unit 93 with respect to the ambient temperature, and determines the number of compensation capacitors to be used from the relationship between the ambient temperature and each temperature threshold value. Can do.
  • control unit 92 may determine the number of compensation capacitors to be used by combining a plurality of pieces of information as well as determining the number of compensation capacitors to be used based on each information.
  • the storage unit 93 stores information on the number of used compensation capacitors 4a to 4n corresponding to the state of each information.
  • the control unit 92 refers to the information registered in the storage unit 93 and performs compensation. A decision can be made to use “xx” of the capacitors 4a-4n.
  • Embodiment 1 it is also possible to apply to Embodiment 1 by storing the information on the presence or absence of the use of the compensation capacitor 4a corresponding to the state of each information in the storage unit 93 as described above.
  • the control unit 92 corresponds to the state of each information registered in the storage unit 93.
  • the use of the compensation capacitor 4a can be determined.
  • the power conversion device further includes the compensation capacitors 4b to 4n and the switching elements 14b to 14n, and the control device 9 controls the rotational speed and load of the rotating device 11.
  • the compensation capacitor to be used was determined based on the information on power consumption and ambient temperature. Thereby, it is possible to generate an appropriate capacitor capacity in order to obtain a stable bus voltage 5 as compared with the first embodiment while satisfying the harmonic standards.
  • the number of compensation capacitors 4b to 4n and switching elements 14b to 14n can be selected depending on the model equipped with the power converter, so that the cost can be reduced and the harmonic standards can be satisfied and stabilized. Operation can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 ダイオードブリッジ2の出力端と直接または間接的に接続された主回路コンデンサ4と、主回路コンデンサ4と並列に接続された補償用コンデンサ4aと、主回路コンデンサ4と並列かつ補償用コンデンサ4aと直列に接続されたスイッチング素子14aと、インバータ回路10から回転機器11へ出力される電力、接続する負荷17の動作状態、自装置の周囲温度の情報のうち1つ以上の情報を用いて、補償用コンデンサ4aを使用するかどうかを決定し、スイッチング素子14aのオンオフを制御する制御装置9と、を備える。

Description

電力変換装置
 本発明は、空調冷熱機器に使用される電力変換装置に関する。
 従来、電力変換装置は、交流電源の出力をブリッジダイオードおよび平滑コンデンサによって整流および平滑することで、直流電圧である母線電圧を生成している。母線電圧を生成する際、電力変換装置では、PFC(Power Factor Correction)回路または安価な対策としてリアクタを用いることで、高調波成分を減衰させている。このような技術が下記特許文献1において開示されている。
特開2011-234428号公報
 しかしながら、上記従来の技術によれば、必要な出力値が大きい場合は平滑コンデンサの容量を大きくする必要があり、この場合、リアクタのみでは高調波規格を満たすことが難しくなる、という問題があった。高調波規格を満たすためにPFC回路を用いる場合、消費電力が増加し、またコストがかかる、という問題があった。
 本発明は、上記に鑑みてなされたものであって、簡易な構成で高調波規格を満たすことが可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、整流回路の出力端と直接または間接的に接続された主回路コンデンサと、前記主回路コンデンサと並列に接続された補償用コンデンサと、前記主回路コンデンサと並列かつ前記補償用コンデンサと直列に接続されたスイッチと、インバータ回路から回転機器へ出力される電力、接続する負荷の動作状態、自装置の周囲温度の情報のうち1つ以上の情報を用いて、前記補償用コンデンサを使用するかどうかを決定し、前記スイッチのオンオフを制御する制御装置と、を備えることを特徴とする。
 本発明に係る電力変換装置は、簡易な構成で高調波規格を満たすことができるという効果を奏する。
実施の形態1にかかる電力変換装置の構成例を示すブロック図 実施の形態1にかかる制御装置の構成例を示すブロック図 実施の形態1の制御装置がスイッチング素子のオンオフを制御する動作を示すフローチャート 実施の形態1の制御部におけるスイッチング素子のオンオフ決定動作を示すフローチャート 実施の形態1の制御装置のハードウェア構成を示す図 実施の形態2にかかる電力変換装置の構成例を示すブロック図
 以下に、本発明の実施の形態に係る電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置の構成例を示すブロック図である。電力変換装置では、交流電源1から出力される交流電源電流がダイオード20a,20b,20c,20dを備える整流回路であるダイオードブリッジ2によって整流され、リアクタ3を経由して平滑コンデンサである主回路コンデンサ4において充電により平滑され、GND(グラウンド)13を基準にした直流電圧の母線電圧5が生成される。図1において、主回路コンデンサ4は、ダイオードブリッジ2の正側出力端とはリアクタ3を経由して間接的に、ダイオードブリッジ2の負側出力端とは直接接続している。
 本実施の形態の電力変換装置では、主回路コンデンサ4と並列に、さらに、負荷補償用の補償用コンデンサ4aと、主回路コンデンサ4と並列、かつ、補償用コンデンサ4aと直列にスイッチであるスイッチング素子14aを接続している。また、スイッチング素子14aと並列にダイオード16aが接続されている。補償用コンデンサ4aは、スイッチング素子14aがオンのときは、主回路コンデンサ4と同様に平滑コンデンサとして機能する。補償用コンデンサ4aが平滑コンデンサとして機能している場合、すなわちスイッチング素子14aがオンの場合、電力変換装置では、平滑コンデンサの容量が主回路コンデンサ4のみのときよりも大きくなる。なお、スイッチング素子14aは、例えば、MOS-FET(Metal Oxide Semiconductor ‐ Field Effect Transistor)である。
 電力変換装置では、母線電圧5によって、負荷17および電力変換装置の各構成に適切な電圧を供給するための電圧変換機7を駆動させている。また、電圧変換機7によって電源電圧Vdd8を供給された制御装置9が、インバータ回路10を制御して回転機器11を回転させている。詳細には、インバータ回路10は、インバータスイッチング素子100a,100b,100c,100d,100e,100fと、対応する各インバータスイッチング素子100a~100fに各々並列に接続されたダイオード101a,101b,101c,101d,101e,101fと、を備えており、制御装置9は、各インバータスイッチング素子100a~100fのオンオフを制御している。母線電圧5とGND13との間に母線電圧抵抗6a,6bが直列に接続されており、制御装置9には、母線電圧抵抗6a,6bによって分圧された電圧が入力される。制御装置9は、入力された電圧値をAD変換、直流電圧復元ゲイン乗算などの演算によって電圧値を復元することで母線電圧5を認識し、インバータ回路10を制御して、適切な電圧を回転機器11に印加して回転機器11を回転させる制御を行う。
 インバータ回路10から回転機器11に印加される電圧、およびインバータ回路10から回転機器11に出力されている電流を総じてインバータ出力とする。インバータ出力検出部18は、インバータ出力を検出し、インバータ出力の情報をインバータ出力周波数検知信号12cにより制御装置9へ出力する。
 図2は、実施の形態1にかかる制御装置9の構成例を示すブロック図である。制御装置9は、周囲温度検知信号12a、負荷検知信号12b、インバータ出力周波数検知信号12cの各信号が入力される信号入力部91と、入力された各信号の情報に基づいてスイッチング素子14aのオンオフを決定してスイッチング素子14aを制御する制御部92と、制御部92においてスイッチング素子14aのオンオフを決定する際に使用する閾値の情報が記憶されている記憶部93と、制御部92で決定されたスイッチング素子14aのオンオフに基づいて、スイッチング素子14aへオンオフ信号15aを出力する信号出力部94と、を備える。なお、制御装置9では、前述のように入力された母線電圧抵抗6a,6bで分圧された電圧に基づいてインバータ回路10の各インバータスイッチング素子100a~100fをオンオフする制御を行っているが、従来と同様のため、一般的な動作についての説明は省略する。
 周囲温度検知信号12aは、電力変換装置の周囲温度の情報が含まれる信号である。電力変換装置の周囲に設置された図1において図示しないサーミスタが、計測した周囲温度の情報を周囲温度検知信号12aによって制御装置9へ出力する。周囲温度を測定する箇所が複数あってサーミスタが複数設置されている場合には、各サーミスタが、周囲温度検知信号12aを制御装置9へ出力する。この場合、制御装置9の信号入力部91には、複数の、例えばm個の周囲温度検知信号12aが入力される。
 負荷検知信号12bは、負荷17の動作状態の情報が含まれる信号である。負荷17が、動作しているかどうかを示す情報、動作している場合の使用電力の情報を負荷検知信号12bによって制御装置9へ出力する。図1では負荷17が1つのみ電圧変換機7に接続されている例を示しているが、負荷17が複数接続されている場合には、各負荷17が、負荷検知信号12bを制御装置9へ出力する。この場合、制御装置9の信号入力部91には、複数の、例えばm個の負荷検知信号12bが入力される。負荷17とは、電力変換装置が空調冷熱機器に搭載されている場合では、ファンなどがある。負荷検知信号12bには、負荷17がファンの場合であれば、ロックして動作が停止しているなどの異常情報を含めてもよい。
 インバータ出力周波数検知信号12cは、インバータ出力の情報が含まれる信号である。インバータ出力検出部18が、検出したインバータ出力の情報をインバータ出力周波数検知信号12cによって制御装置9へ出力する。回転機器11が複数あってインバータ出力検出部18が複数設置されている場合には、各インバータ出力検出部18が、インバータ出力周波数検知信号12cを制御装置9へ出力する。この場合、制御装置9の信号入力部91には、複数の、例えばm個のインバータ出力周波数検知信号12cが入力される。なお、周囲温度検知信号12a、負荷検知信号12b、およびインバータ出力周波数検知信号12cについて、複数の場合にm個の信号としているが、各信号の数は同じである必要はない。
 つづいて、制御装置9がスイッチング素子14aのオンオフを制御する動作について説明する。図3は、実施の形態1の制御装置9がスイッチング素子14aのオンオフを制御する動作を示すフローチャートである。まず、制御装置9では、信号入力部91に、制御部92においてスイッチング素子14bのオンオフを決定する際に必要な、周囲温度検知信号12a、負荷検知信号12b、インバータ出力周波数検知信号12c、の各信号が入力される(ステップS1)。
 制御部92は、信号入力部91に入力された各信号の情報に基づいて、スイッチング素子14bのオンオフを決定する(ステップS2)。制御部92は、周囲温度検知信号12aによって電力変換装置の周囲温度を認識することができ、負荷検知信号12bによって負荷17のオンオフおよび使用電力を認識することができ、インバータ出力周波数検知信号12cによって回転機器11へのインバータ出力から回転機器11の回転数を認識することができる。
 制御部92は、インバータ出力周波数検知信号12cに基づいて回転機器11の回転数が高回転であることを認識し、回転機器11の回転数が記憶部93に設定されている回転閾値の回転数を超えた場合、信号出力部94を制御して、スイッチング素子14aへ出力されるオンオフ信号15aをオンにして補償用コンデンサ4aを平滑コンデンサとして動作させる。電力変換装置では、補償用コンデンサ4aに電荷が充電されることで、回転機器11が高回転状態になっても安定した母線電圧5を生成することができる。
 一般的に、空調冷熱機器、例えば冷蔵庫の場合、圧縮機などの回転機器11が製品全体負荷の割合を大きく占めている。高調波規格は、入力電力が小さくなるほど規格値を満足させることが難しくなる。
 そのため、制御部92では、入力電力が小さい、回転機器11が回転閾値以下の低回転の状態ではオンオフ信号15aをオフにする。電力変換装置では、主回路コンデンサ4および補償用コンデンサ4aのうち主回路コンデンサ4のみを使用して母線電圧5を生成することで高調波成分を軽減する。一方、制御部92では、入力電力が大きい、回転機器11が回転閾値を超えた高回転の状態ではオンオフ信号15aをオンにする。電力変換装置では、主回路コンデンサ4および補償用コンデンサ4aを使用することで母線電圧5を安定させて回転機器11を回転でき、主回路コンデンサ4および補償用コンデンサ4aが接続されていても、入力電力が大きいため高調波規格を満足しやすくなる。
 同様に、制御部92は、負荷検知信号12bに基づいて負荷17の動作状態を把握し、動作している負荷17で使用される電力が大きく、負荷17の電力または負荷17が複数ある場合には各負荷17の合計電力が記憶部93に設定されている電力閾値を超えた場合、信号出力部94を制御して、スイッチング素子14aへ出力されるオンオフ信号15aをオンにする。一方、制御部92では、合計電力が電力閾値以下の場合、信号出力部94を制御して、スイッチング素子14aへ出力されるオンオフ信号15aをオフにする。
 また、電力変換装置では、インバータ回路10および電圧変換機7からの出力が大きい場合には、電力変換装置の周囲温度が高くなることが想定される。制御部92は、周囲温度検知信号12aに基づいて周囲温度が高いことを認識し、周囲温度が記憶部93に設定されている温度閾値を超えた場合、信号出力部94を制御して、スイッチング素子14aへ出力されるオンオフ信号15aをオンにする。一方、制御部92では、周囲温度が温度閾値以下の場合、信号出力部94を制御して、スイッチング素子14aへ出力されるオンオフ信号15aをオフにする。
 上記で説明した制御部92におけるスイッチング素子14aのオンオフ決定動作をフローチャートに基づいて説明する。図4は、実施の形態1の制御部92におけるスイッチング素子14aのオンオフ決定動作を示すフローチャートである。
 制御部92は、回転機器11の回転数が回転閾値以下であり(ステップS11:Yes)、各負荷の合計電力が電力閾値以下であり(ステップS12:Yes)、周囲温度が温度閾値以下の場合(ステップS13:Yes)、スイッチング素子14aへ出力されるオンオフ信号15aをオフにする(ステップS14)。
 一方、制御部92は、回転機器11の回転数が回転閾値を超えた場合(ステップS11:No)、または、各負荷の合計電力が電力閾値を超えた場合(ステップS12:No)、または、周囲温度が温度閾値を超えた場合(ステップS13:No)、スイッチング素子14aへ出力されるオンオフ信号15aをオンにする(ステップS15)。
 図3に戻って、制御装置9では、信号出力部94が、制御部92で決定されたオンオフ信号15aのオンまたはオフに従って、スイッチング素子14aへオンオフ信号15aを出力する(ステップS3)。
 なお、制御部92は、回転機器11の回転数、各負荷の合計電力、周囲温度のうち1つでも閾値を超えた場合はスイッチング素子14aへ出力されるオンオフ信号15aをオンにしているが、一例であり、これに限定するものではない。制御部92は、回転機器11の回転数、各負荷の合計電力、周囲温度のうち2つまたは3つ全てについて閾値を超えた場合はスイッチング素子14aへ出力されるオンオフ信号15aをオンにする決定をしてもよい。また、制御部92は、回転機器11の回転数、各負荷の合計電力、周囲温度のうち取得できた情報のみを用いて、すなわち、回転機器11の回転数、各負荷の合計電力、周囲温度のうち1つ以上の情報を用いて、スイッチング素子14aへ出力されるオンオフ信号15aをオンにする決定をしてもよい。また、制御部92は、負荷検知信号12bに異常情報が含まれる場合には、異常情報を用いてスイッチング素子14aへ出力されるオンオフ信号15aをオンにする決定をしてもよい。
 このように、制御装置9では、各負荷状態を読み取り、予め設定された閾値まで到達すると、母線電圧5を生成している補償用コンデンサ4aに充放電が成されないようにすることで、電力変換回路においてコンデンサ容量による商用電源電流の位相遅れが軽減され、力率が向上し、重負荷から軽負荷まで高調波規格を満足することができる。
 ここで、図2に示す制御装置9のブロック図の各構成を実現するハードウェア構成について説明する。図5は、実施の形態1の制御装置9のハードウェア構成を示す図である。制御部92は、プロセッサ81がメモリ82に記憶されたプログラムを実行することにより実現される。信号入力部91は、入力部83により実現される。信号出力部94は、出力部84により実現される。プロセッサ81、メモリ82、入力部93および出力部84は、システムバス85により接続されている。制御装置9では、複数のプロセッサ81および複数のメモリ82が連携して図2のブロック図に示す各構成の機能を実行してもよい。制御装置9については、図5に示すハードウェア構成により実現することができるが、ソフトウェアまたはハードウェアのいずれでも実装可能である。制御装置9を1つのMCU(Micro Controller Unit)で構成してもよい。
 以上説明したように、本実施の形態によれば、電力変換装置では、制御装置9が、回転機器11の回転数、負荷の使用電力、周囲温度の情報に基づいて、スイッチング素子14aをオンオフし、補償用コンデンサ4aの充放電を制御することとした。これにより、電力変換装置では、回転機器11の回転数が変化した場合、負荷の使用電力が変化した場合、周囲温度が変化した場合においても、簡易な構成で高調波規格を満足しつつ安定した動作を得ることができる。また、各情報の条件別にスイッチング素子14aをオンオフしているだけなので、複雑なチューニングを必要とせず、開発負荷を軽減することができる。
実施の形態2.
 実施の形態1では、補償用コンデンサ4aの1つのみを制御するため、細かい制御ができない。本実施の形態では、電力変換装置内に、低容量で安価な補償用コンデンサおよびスイッチング素子を複数個設ける場合について説明する。
 図6は、本発明の実施の形態2にかかる電力変換装置の構成例を示すブロック図である。電力変換装置は、図1に示す実施の形態1の構成に、n-1個の補償用コンデンサ4b~4n、n-1個のスイッチング素子14b~14n、およびn-1個のダイオード16b~16nを追加している。また、信号出力部94から、オンオフ信号15aに加えて、さらに、オンオフ信号15b~15nを出力している。
 補償用コンデンサ4b~4nは、主回路コンデンサ4と並列に接続されている。また、スイッチング素子14b~14nは、主回路コンデンサ4と並列、かつ、各々が対応する補償用コンデンサ4b~4nと直列に接続されている。また、ダイオード16b~16nは、各々が対応するスイッチング素子14b~14nと並列に接続されている。補償用コンデンサ4b~4nは補償用コンデンサ4aと同様の構成であり、スイッチング素子14b~14nはスイッチング素子14aと同様の構成であり、ダイオード16b~16nはダイオード16aと同様の構成である。なお、補償用コンデンサ4a~4nは、各々異なる容量にしてもよい。
 制御装置9では、制御部92が、回転機器11の回転数、負荷の合計電力、周囲温度の情報に基づいて、図3に示すステップS2の処理において、スイッチング素子14a~14nのオンオフを決定、すなわち、使用する補償用コンデンサの数を決定する。制御部92は、スイッチング素子14a~14nのオンオフを制御して、補償用コンデンサ4a~4nの充放電を制御する。信号出力部94は、制御部92で決定されたスイッチング素子14a~14nのオンオフに基づいて、スイッチング素子14a~14nへオンオフ信号15a~15nを出力する。なお、各補償用コンデンサ4a~4nの容量が異なる場合、制御部92は、各補償用コンデンサ4a~4nの組み合わせにより、使用する補償用コンデンサを決定し、スイッチング素子14a~14nのオンオフを制御する。
 制御部92は、回転機器11の回転数に対して記憶部93に設定されている複数の回転閾値を参照し、回転機器11の回転数と各回転閾値との関係から使用する補償用コンデンサの数を決定することができる。同様に、制御部92は、負荷の合計電力に対して記憶部93に設定されている複数の電力閾値を参照し、負荷の合計電力と各電力閾値との関係から使用する補償用コンデンサの数を決定することができる。同様に、制御部92は、周囲温度に対して記憶部93に設定されている複数の温度閾値を参照し、周囲温度と各温度閾値との関係から使用する補償用コンデンサの数を決定することができる。
 また、制御部92では、各々の情報に基づいて使用する補償用コンデンサの数を決定するだけでなく、複数の情報を組み合わせることで使用する補償用コンデンサの数を決定してもよい。この場合、制御装置9では、記憶部93において、各情報の状態に対応する補償用コンデンサ4a~4nの使用数の情報を記憶しておく。制御部92は、回転機器11の回転数が「○○」、周囲温度が「△△」、合計負荷が「□□」の場合、記憶部93に登録されている情報を参照し、補償用コンデンサ4a~4nのうち「××」個を使用するという決定をすることができる。
 なお、このように、記憶部93に各情報の状態に対応する補償用コンデンサ4aの使用有無の情報を記憶しておくことで、実施の形態1に適用することも可能である。制御部92は、回転機器11の回転数が「○○」、周囲温度が「△△」、合計負荷が「□□」の場合、記憶部93に登録されている各情報の状態に対応する補償用コンデンサ4aの使用有無の情報を参照し、補償用コンデンサ4aの使用を決定することができる。
 以上説明したように、本実施の形態によれば、電力変換装置では、さらに、補償用コンデンサ4b~4nおよびスイッチング素子14b~14nを備え、制御装置9が、回転機器11の回転数、負荷の使用電力、周囲温度の情報に基づいて、使用する補償用コンデンサを決定することとした。これにより、高調波規格を満足しつつ、実施の形態1よりも、安定した母線電圧5を得るために適切なコンデンサ容量を生成することができる。また、電力変換装置を搭載する機種によって、補償用コンデンサ4b~4nおよびスイッチング素子14b~14nの実装または未実装の数を選択することができるため、コストを抑えつつ、高調波規格を満足し安定した動作を得ることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 交流電源、2 ダイオードブリッジ、3 リアクタ、4 主回路コンデンサ、4a~4n 補償用コンデンサ、5 母線電圧、6a,6b 母線電圧抵抗、7 電圧変換機、8 電源電圧、9 制御装置、10 インバータ回路、11 回転機器、12a 周囲温度検知信号、12b 負荷検知信号、12c インバータ出力周波数検知信号、13 GND、14a~14n スイッチング素子、15a~15n オンオフ信号、16a~16n ダイオード、17 負荷、18 インバータ出力検出部、91 信号入力部、92 制御部、93 記憶部、94 信号出力部。

Claims (5)

  1.  整流回路の出力端と直接または間接的に接続された主回路コンデンサと、
     前記主回路コンデンサと並列に接続された補償用コンデンサと、
     前記主回路コンデンサと並列かつ前記補償用コンデンサと直列に接続されたスイッチと、
     インバータ回路から回転機器へ出力される電力、接続する負荷の動作状態、自装置の周囲温度の情報のうち1つ以上の情報を用いて、前記補償用コンデンサを使用するかどうかを決定し、前記スイッチのオンオフを制御する制御装置と、
     を備えることを特徴とする電力変換装置。
  2.  前記制御装置は、前記回転機器の回転数と回転閾値とを比較した結果、前記負荷の使用電力量と電力閾値とを比較した結果、前記周囲温度と温度閾値とを比較した結果に基づいて、前記補償用コンデンサの使用を決定する、
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記制御装置は、前記回転機器の回転数、前記負荷の使用電力量、前記周囲温度の各情報と各情報の状態に対応する前記補償用コンデンサの使用有無の情報とを用いて、前記補償用コンデンサの使用を決定する、
     ことを特徴とする請求項1に記載の電力変換装置。
  4.  前記補償用コンデンサおよび前記スイッチを複数備える、
     ことを特徴とする請求項1に記載の電力変換装置。
  5.  前記制御装置は、前記回転機器の回転数、前記負荷の使用電力量、前記周囲温度の各情報と各情報の状態に対応する前記補償用コンデンサの使用数の情報とを用いて、前記補償用コンデンサの使用数を決定する、
     ことを特徴とする請求項4に記載の電力変換装置。
PCT/JP2014/083935 2014-12-22 2014-12-22 電力変換装置 WO2016103325A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/083935 WO2016103325A1 (ja) 2014-12-22 2014-12-22 電力変換装置
JP2016565624A JP6410841B2 (ja) 2014-12-22 2014-12-22 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083935 WO2016103325A1 (ja) 2014-12-22 2014-12-22 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016103325A1 true WO2016103325A1 (ja) 2016-06-30

Family

ID=56149429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083935 WO2016103325A1 (ja) 2014-12-22 2014-12-22 電力変換装置

Country Status (2)

Country Link
JP (1) JP6410841B2 (ja)
WO (1) WO2016103325A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018155073A1 (ja) * 2017-02-24 2019-07-11 工機ホールディングス株式会社 電動工具
FR3108991A1 (fr) * 2020-04-06 2021-10-08 Vitesco Technologies Commande d’une unité électronique de commutation pour l’alimentation électrique d’une charge inductive de puissance.
FR3143461A1 (fr) * 2022-12-16 2024-06-21 Psa Automobiles Sa Vehicule automobile comprenant un moyen de chauffage de cellules de batterie sur la base d’un courant alternatif d’onduleur, et procede et programme sur la base d’un tel vehicule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183273A (en) * 1981-04-30 1982-11-11 Mitsubishi Electric Corp Starting circuit for high frequency inverter
JP2007318957A (ja) * 2006-05-29 2007-12-06 Power System:Kk 交流電動機の制御装置
JP2010213510A (ja) * 2009-03-11 2010-09-24 Ebara Corp ドライ真空ポンプ用電源装置、及びその運転方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094570A (ja) * 2007-10-03 2009-04-30 Toshiba Corp 増幅器
JP5393609B2 (ja) * 2010-07-22 2014-01-22 株式会社Ns電子 高調波電流抑制装置および高調波電流抑制による省エネシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183273A (en) * 1981-04-30 1982-11-11 Mitsubishi Electric Corp Starting circuit for high frequency inverter
JP2007318957A (ja) * 2006-05-29 2007-12-06 Power System:Kk 交流電動機の制御装置
JP2010213510A (ja) * 2009-03-11 2010-09-24 Ebara Corp ドライ真空ポンプ用電源装置、及びその運転方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018155073A1 (ja) * 2017-02-24 2019-07-11 工機ホールディングス株式会社 電動工具
FR3108991A1 (fr) * 2020-04-06 2021-10-08 Vitesco Technologies Commande d’une unité électronique de commutation pour l’alimentation électrique d’une charge inductive de puissance.
WO2021204561A1 (fr) * 2020-04-06 2021-10-14 Vitesco Technologies GmbH Commande d'une unite electronique de commutation pour l'alimentation electrique d'une charge inductive de puissance
US11716012B2 (en) 2020-04-06 2023-08-01 Vitesco Technologies GmbH Controlling an electronic switching unit for supplying power to an inductive power load
FR3143461A1 (fr) * 2022-12-16 2024-06-21 Psa Automobiles Sa Vehicule automobile comprenant un moyen de chauffage de cellules de batterie sur la base d’un courant alternatif d’onduleur, et procede et programme sur la base d’un tel vehicule

Also Published As

Publication number Publication date
JPWO2016103325A1 (ja) 2017-04-27
JP6410841B2 (ja) 2018-10-24

Similar Documents

Publication Publication Date Title
JP5947109B2 (ja) 無停電電源装置、無停電電源装置の制御方法
WO2014017146A1 (ja) 電源装置
JP2010259153A (ja) 電源装置
US20160380555A1 (en) Synchronous rectifier and control circuit thereof
JP6410841B2 (ja) 電力変換装置
JP2019158456A (ja) 正弦波フィルタのコンデンサ容量判定装置
JP6505256B2 (ja) 空気調和機
TWI614977B (zh) 不斷電電源裝置
JP6465242B2 (ja) アクティブフィルタシステム、空気調和装置
JP6282378B2 (ja) モータ駆動制御装置及び空気調和機
JP2016082866A (ja) インバータの制御方法
JP2010110179A (ja) 整流回路
KR100992587B1 (ko) 수퍼캐패시터를 이용한 정류회로
JP2001314085A (ja) 電源装置と、インバータ装置および空気調和機
JP6295006B2 (ja) 電力変換装置及び電力変換システム
JP5876748B2 (ja) コンバータ装置
JP6834753B2 (ja) アクティブフィルタ装置、及びそれを用いた空気調和装置
JP6539354B2 (ja) 電力変換装置
JP2015117908A (ja) モータの制御装置
JP2017100224A5 (ja)
WO2018216144A1 (ja) 電力変換装置
JP2014176254A (ja) 交流電力供給装置
JP6682003B2 (ja) 電力変換装置
JP6958387B2 (ja) 直流電源装置および直流電源装置の制御方法
JPWO2016170633A1 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908936

Country of ref document: EP

Kind code of ref document: A1