WO2016103313A1 - 鋼管杭の回転抑止構造 - Google Patents

鋼管杭の回転抑止構造 Download PDF

Info

Publication number
WO2016103313A1
WO2016103313A1 PCT/JP2014/083867 JP2014083867W WO2016103313A1 WO 2016103313 A1 WO2016103313 A1 WO 2016103313A1 JP 2014083867 W JP2014083867 W JP 2014083867W WO 2016103313 A1 WO2016103313 A1 WO 2016103313A1
Authority
WO
WIPO (PCT)
Prior art keywords
fitting
steel pipe
outer fitting
rotation
end portion
Prior art date
Application number
PCT/JP2014/083867
Other languages
English (en)
French (fr)
Inventor
雅司 北濱
弘信 松宮
妙中 真治
津留 英司
義法 小林
俊彦 坂本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016565612A priority Critical patent/JP6344487B2/ja
Priority to PCT/JP2014/083867 priority patent/WO2016103313A1/ja
Publication of WO2016103313A1 publication Critical patent/WO2016103313A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles

Definitions

  • the present invention relates to a rotation inhibition structure for a steel pipe pile that inhibits relative rotation between a first steel pipe pile and a second steel pipe pile connected to have a common axis.
  • Patent Document 1 discloses a structure for preventing rotation of a steel pipe pile, which is intended to suitably prevent the joint from loosening or coming off when the steel pipe pile is rotated in reverse.
  • the steel pipe pile rotation suppression structure disclosed in Patent Document 1 when the female cylinder and the male cylinder are coupled, the tapered surface of the inner projection and the tapered surface of the outer projection are firmly coupled to the upper and lower cylinders.
  • the rotation-inhibiting key groove part forming part of the male cylinder and the rotation-inhibiting key groove part forming part of the female cylinder coincide with each other in the axial direction.
  • the rotation suppression structure for steel pipe piles disclosed in Patent Document 1 includes a tapped hole formed in a rotation suppression key groove forming portion of the male cylinder, and a bolt hole formed in the rotation suppression key member.
  • the rotation suppression key member is fitted from the outer surface of the cylinder in a state where the rotation suppression key groove portion forming portion and the rotation suppression key groove portion forming portion of the female cylinder coincide with each other in the axial direction.
  • the first columnar body having the first joint portion and the second columnar body having the second joint portion are fitted to each other, and between the first columnar body and the second columnar body.
  • a joint structure for inhibiting relative rotation is disclosed.
  • the first joint has a first engaging projection that projects inward in a direction orthogonal to the axial direction
  • the second joint projects outward in a direction orthogonal to the axial direction. It has a 2nd engagement convex part.
  • the inner surface of the 1st joined part and the outer surface of the 2nd joined part A restricting member is inserted between the two. When this regulating member abuts on the side surface of the first engaging convex portion and the side surface of the second engaging convex portion, the relative rotation between the first columnar body and the second columnar body is suppressed.
  • the rotation inhibition key groove portion forming portion of the female cylinder is formed by cutting out the circumferential center portion of the outer surface projection of the female cylinder.
  • a cross-sectional defect is caused in the outer protrusion that resists the tensile force and compressive force.
  • the steel pipe pile rotation restraint structure disclosed in Patent Document 1 has a cross-sectional defect in the outer protrusion that bears the tensile strength and compression strength, which may reduce the tensile strength and compression strength of the entire joint. There was a problem.
  • the rotation restraint key groove part of the female cylinder is formed by cutting out the circumferential center part of the outer surface projection of the female cylinder, so that the rotation of the female cylinder It is necessary to make the size of the inhibiting key groove forming portion smaller than the size of the outer protrusion. For this reason, the rotation suppression structure of the steel pipe pile disclosed in Patent Document 1 cannot increase the rotation suppression key member. Therefore, the rigidity and strength of the rotation inhibiting key member cannot be sufficiently improved, and the rotational resistance force that inhibits the relative rotation between the female cylinder and the male cylinder may be insufficient. It was.
  • a regulating member is inserted between the inner surface of the first joint and the outer surface of the second joint from the opening formed in the first joint. Therefore, when a slight deformation occurs in the joint, or when a slight shift occurs in the circumferential direction or the axis orthogonal direction when the first steel pipe and the second steel pipe are relatively rotated and fitted. This makes it difficult to install the regulating member. Furthermore, since the space between the inner surface of the first joint and the outer surface of the second joint cannot be seen from the outer surface side, foreign matter such as soil or stone adheres to the space when the first steel pipe is installed. However, it becomes more difficult to install the regulating member. Furthermore, after installing the regulating member, it is necessary to install a lid member that closes the opening formed in the first joint portion. Thus, the joint structure disclosed in Patent Document 2 has a problem in workability.
  • the present invention has been devised in view of the above-described problems, and the object of the present invention is to (1) prevent a decrease in tensile strength and compression strength of the entire joint, and (2) first An object of the present invention is to provide a steel pipe pile rotation restraining structure that can improve the rotational resistance of the steel pipe pile and the second steel pipe pile, and (3) is excellent in workability.
  • a first aspect of the present invention is a rotation deterrent structure for a steel pipe pile that inhibits relative rotation between a first steel pipe pile and a second steel pipe pile connected to have a common axis.
  • the rotation suppression structure includes an outer fitting end provided in the first steel pipe pile, an inner fitting end provided in the second steel pipe pile, and between the outer fitting end and the inner fitting end.
  • a rotation inhibiting key member that inhibits relative rotation of the outer fitting end portion, and the outer fitting end portion protrudes in a direction toward the axis and is formed in a plurality in a circumferential direction around the axis.
  • an external fitting groove formed between the external fitting mountain parts adjacent to each other, and an external fitting valley formed on the proximal end side adjacent to the external fitting mountain parts and close to the first steel pipe pile.
  • an outer fitting distal end portion having an outer fitting distal end surface formed on the distal end side along the axis, and the inner fitting end protrudes in a direction away from the axis and A plurality of internal fitting mountain portions formed in the circumferential direction around the axis, internal fitting groove portions formed between the internal fitting mountain portions adjacent to each other, An inner fitting having an inner fitting valley portion formed on the proximal end side adjacent to the fitting mountain portion and close to the second steel pipe pile, and an inner fitting proximal end surface facing the outer fitting distal end surface of the outer fitting end portion.
  • a proximal end portion A predetermined length along the extending direction of the shaft center from the outer fitting tip surface at a circumferential angle position where the outer fitting tip portion does not overlap with the outer fitting mountain portion when viewed from the axial direction. A circumferential angle at which the inner fitting base end portion does not overlap the inner fitting mountain portion when viewed from the axial direction. In the position, the inner fitting end portion side rotation suppression key groove portion formed in the inner fitting base end portion with a predetermined length along the extending direction of the shaft center from the inner fitting base end surface.
  • the rotation inhibition key The member is fitted between the outer fitting end portion side rotation inhibition key groove portion and the inner fitting end portion side rotation inhibition key groove portion.
  • the inner surface of the outer fitting end portion side rotation suppression key groove portion and the outer surface of the outer fitting mountain portion may be flush with each other.
  • the external fitting has an outer side surface in which the axial length of the external fitting end portion side rotation suppression key groove is formed on the same plane. It may be shorter than the axial length of the peak.
  • the inner fitting end portion side rotation restraining key groove portion can be cut and formed continuously with the cutting step of forming the inner fitting groove portion. Therefore, it is possible to efficiently cut and form the rotation-inhibiting key groove and reduce the processing cost of the internal fitting end.
  • the inner side surface of the outer fitting end portion side rotation suppression key groove portion and the outer side surface of the outer fitting mountain portion are formed flush with each other.
  • the inner side surface of the outer fitting end portion side rotation suppression key groove portion and the outer side surface of the outer fitting mountain portion can be reliably brought into contact with each other. Therefore, it becomes possible to further improve the rotational resistance force that suppresses the relative rotation between the first steel pipe pile and the second steel pipe pile.
  • the loss of the stress transmission function can be prevented more reliably because the cross-sectional defect portion can be set to the extra length portion (outside the stress design range) in the steel pipe axis direction.
  • FIG. 1 It is a perspective view which shows the rotation suppression structure of the steel pipe pile which concerns on one Embodiment of this invention. It is a figure which shows the external fitting end part of the said rotation suppression structure, Comprising: It is sectional drawing at the time of seeing in the cross section containing an axial center. It is sectional drawing which shows the principal part of the external fitting end part of the said rotation suppression structure. It is a front view which shows the internal fitting end part of the said rotation suppression structure. It is sectional drawing which shows the principal part of the internal fitting end part of the said rotation suppression structure. It is a perspective view which shows the state which inserts an internal fitting end part in the external fitting end part of the said rotation suppression structure.
  • FIG. 11B is a cross-sectional view taken along line AA in FIG. 11A.
  • a steel pipe pile rotation suppression structure 7 according to an embodiment of the present invention (hereinafter, sometimes referred to as a rotation suppression structure 7 according to the present embodiment or simply as a rotation suppression structure 7) will be described with reference to the drawings. This will be described in detail.
  • the axial direction of the steel pipe pile is defined as the axial direction Y
  • the direction orthogonal to the axial direction Y is the axial orthogonal direction X
  • the direction around the axial center of the steel pipe pile is the circumferential direction W.
  • the rotation suppression structure 7 is applied to a joint such as a foundation pile of a structure constructed on the ground. As shown in FIG. 1, the rotation suppression structure 7 suppresses relative rotation in the circumferential direction W between the first steel pipe pile 1 and the second steel pipe pile 2 having a substantially circular cross section.
  • the rotation suppression structure 7 includes a pair of external fitting end portions 3 and an internal fitting end portion 5 that connect the first steel pipe pile 1 and the second steel pipe pile 2 in the axial direction Y so as to have a common axis.
  • the outer fitting end 3 is joined to the upper end of the first steel pipe pile 1 by welding or the like.
  • the inner fitting end portion 5 is joined to the lower end portion of the second steel pipe pile 2 by welding or the like.
  • the outer fitting end portion 3 and the inner fitting end portion 5 have a structure that can be fitted to each other.
  • the outer fitting end portion 3 is formed between the outer fitting mountain portions 31 protruding in the direction toward the axis and formed in the circumferential direction W, and the outer fitting mountain portions 31 adjacent to each other in the circumferential direction W.
  • the external fitting end 3 includes an external fitting distal end portion 34 provided on the distal end side in the axial direction Y and an external fitting proximal end portion 35 provided on the proximal end side in the axial direction Y.
  • the outer fitting distal end portion 34 has an outer fitting distal end surface 34 a on the distal end side in the axial direction Y.
  • the inner fitting end portion 5 is formed between the inner fitting mountain portions 51 that protrude in a direction away from the axis and are formed in the circumferential direction W, and the inner fitting mountain portions 51 that are adjacent to each other in the circumferential direction W.
  • the inner fitting end portion 5 includes an inner fitting distal end portion 54 provided on the distal end side in the axial direction Y and an inner fitting proximal end portion 55 provided on the proximal end side in the axial direction Y.
  • the inner fitting base end portion 55 has an inner fitting base end surface 55a provided to face the outer fitting front end surface 34a in the axial direction Y.
  • the outer fitting end portion 3 is provided with an outer fitting mountain portion 31 forming a plurality of outer fitting step portions 4 (step row) in the axial direction Y of the outer fitting end portion 3.
  • the outer fitting step portion 4 is formed so that the number of steps is four in the axial direction Y of the outer fitting end portion 3, and from the distal end side to the proximal end side in the axial direction Y of the outer fitting end portion 3,
  • the first outer fitting step portion 41, the second outer fitting step portion 42, the third outer fitting step portion 43, and the fourth outer fitting step portion 44 are sequentially provided.
  • each outer fitting step part 4 the thickness of the outer fitting groove part 32 is made smaller than the thickness of the outer fitting mountain part 31, and the outer fitting mountain part 31 and the outer fitting groove part 32 are alternately formed in the circumferential direction W.
  • the And the external fitting peak part 31 of the some external fitting step part 4 is arrange
  • the plate thickness of the external fitting valley part 33 is made smaller than the plate thickness of the external fitting mountain part 31, and the external fitting mountain part 31 and the external fitting valley part 33 are axial directions. Alternatingly formed with Y.
  • the plate thickness of the external fitting valley portion 33 is formed to be larger as the external fitting step portion 4 is closer to the proximal end side of the external fitting end portion 3. That is, the plate thickness of the external fitting valley portion 33 of the first external fitting step portion 41 is smaller than the plate thickness of the external fitting valley portion 33 of the second external fitting step portion 42, and the external fitting of the second external fitting step portion 42 is performed.
  • the plate thickness of the valley portion 33 is smaller than the plate thickness of the external fitting valley portion 33 of the third external fitting step portion 43, and the plate thickness of the external fitting valley portion 33 of the third external fitting step portion 43 is the fourth external fitting. It is formed to be smaller than the plate thickness of the outer fitting valley portion 33 of the step portion 44.
  • the inner fitting end portion 5 is provided with an inner fitting mountain portion 51 forming a plurality of inner fitting step portions 6 (step portion rows) in the axial direction Y of the inner fitting end portion 5.
  • the inner fitting step portion 6 is formed, for example, so that the number of steps is four in the axial direction Y of the inner fitting end portion 5, and from the distal end side to the proximal end side in the axial direction Y of the inner fitting end portion 5, It has the 1st internal fitting step part 61, the 2nd internal fitting step part 62, the 3rd internal fitting step part 63, and the 4th internal fitting step part 64 in order.
  • each internal fitting step portion 6 the thickness of the internal fitting groove portion 52 is made smaller than the thickness of the internal fitting mountain portion 51, and the internal fitting mountain portions 51 and the internal fitting groove portions 52 are alternately formed in the circumferential direction W.
  • the And the internal fitting mountain part 51 of the some internal fitting step part 6 is arrange
  • the plate thickness of the internal fitting valley part 53 is made smaller than the plate thickness of the internal fitting mountain part 51, and the internal fitting mountain part 51 and the internal fitting valley part 53 are axial direction. Alternatingly formed with Y.
  • the plate thickness of the internal fitting valley portion 53 is formed to be larger as the internal fitting step portion closer to the proximal end side of the internal fitting end portion 5. That is, the plate thickness of the internal fitting valley portion 53 of the first internal fitting step portion 61 is smaller than the plate thickness of the internal fitting valley portion 53 of the second internal fitting step portion 62, and the internal fitting of the second internal fitting step portion 62.
  • the plate thickness of the valley portion 53 is smaller than the plate thickness of the internal fitting valley portion 53 of the third internal fitting step portion 63, and the plate thickness of the internal fitting valley portion 53 of the third internal fitting step portion 63 is the fourth internal fitting. It is formed smaller than the plate thickness of the internal fitting valley portion 53 of the step portion 64.
  • FIG. 7 is a perspective view showing a state in which a part of the external fitting end 3 is cut.
  • the inner fitting end portion 5 attached to the second steel pipe pile 2 is inserted into the outer fitting end portion 3 attached to the first steel pipe pile 1.
  • the height of the inner fitting mountain part 51 in the axial center orthogonal direction X is set to be equal to or less than the depth of the outer fitting groove part 32 corresponding to the fitting time in the axial center orthogonal direction X.
  • the inner fitting mountain portion 51 can pass through the outer fitting groove portion 32.
  • the height of the outer fitting mountain part 31 in the axial center orthogonal direction X is set to be equal to or less than the depth of the corresponding inner fitting groove part 52 in the axial center orthogonal direction X during fitting.
  • the outer fitting mountain portion 31 can pass through the inner fitting groove portion 52.
  • the first steel pipe pile 1 and the second steel pipe pile 2 are relatively rotated in the circumferential direction W around the axis center with the inner fitting end 5 inserted into the outer fitting end 3.
  • the depth of the inner fitting valley portion 53 in the axial center orthogonal direction X is set to be equal to or higher than the height of the outer fitting mountain portion 31 corresponding to the fitting in the axial center orthogonal direction X.
  • each outer fitting step part 4 the depth of the outer fitting valley part 33 in the axial center orthogonal direction X is set to be equal to or higher than the height of the inner fitting mountain part 51 corresponding to the fitting in the axial center orthogonal direction X. Thereby, it becomes a structure which can fit the internal fitting mountain part 51 to the external fitting valley part 33.
  • FIG. 1 the depth of the outer fitting valley part 33 in the axial center orthogonal direction X is set to be equal to or higher than the height of the inner fitting mountain part 51 corresponding to the fitting in the axial center orthogonal direction X.
  • the length in the axial direction Y of the inner fitting mountain portion 51 is the length in the axial direction Y of the outer fitting valley portion 33.
  • the length in the axial direction Y of the outer fitting mountain portion 31 is set to be equal to or less than the length in the axial direction Y of the inner fitting valley portion 53.
  • a tensile force is applied in the axial direction Y from the first steel pipe pile 1 and the second steel pipe pile 2 to the outer fitting end 3 and the inner fitting end 5.
  • the compression force acts, the outer fitting mountain portion 31 and the inner fitting mountain portion 51 abut against each other in the axial direction Y and resist the tensile force and the compression force acting in the axial direction Y.
  • the rotation restraining structure 7 is configured such that the outer fitting front end 34 and the inner fitting base end 55 are brought into contact with each other on the distal end side of the outer fitting end portion 3, and the inner fitting distal end portion 54 on the distal end side of the inner fitting end portion 5.
  • the outer fitting base end portion 35 is brought into contact with the outer fitting base end portion 35.
  • the present invention is not limited to this rotation suppression structure 7, and the outer fitting distal end portion 34 and the inner fitting proximal end portion 55 are separated from each other on the distal end side of the outer fitting end portion 3 and / or the distal end of the inner fitting end portion 5.
  • tip part 54 and the external fitting base end part 35 may be spaced apart by the side.
  • a substantially rectangular rotation suppression key groove portion 72 that is continuous with the outer fitting distal end portion 34 and the inner fitting proximal end portion 55 is formed. Is done.
  • the rotation-inhibiting key groove 72 is formed in a shape that penetrates or is recessed in the direction orthogonal to the axial center X, with the outer surface of the outer fitting distal end portion 34 and the outer surface of the inner fitting base end portion 55 cut away.
  • the rotation suppression key groove portion 72 includes an outer fitting end portion side rotation suppression key groove portion 73 formed at the outer fitting distal end portion 34 and an inner fitting end portion side rotation suppression formed at the inner fitting base end portion 55. And a key groove portion 74.
  • the external fitting end side rotation suppression key groove 73 is a predetermined along the extending direction of the axial center from the external fitting distal end surface 34a at a circumferential angle position that does not overlap the external fitting mountain portion 31 when viewed from the axial direction.
  • the outer fitting groove 32 is formed with a length of.
  • the inner fitting end side rotation suppression key groove portion 74 has a predetermined axial direction extending from the inner fitting base end surface 55a at a circumferential angle position that does not overlap with the inner fitting mountain portion when viewed from the axial direction. A length is formed on the outer surface of the inner fitting base end portion 55.
  • the outer fitting end portion side rotation suppression key groove portion 73 is a part between a plurality of outer fitting mountain portions 31 adjacent in the circumferential direction W, and penetrates from the outer surface to the inner surface of the outer fitting end portion 3 in the axial center orthogonal direction X.
  • the outer fitting groove 32 is formed to have a width equal to or smaller than the width in the circumferential direction W.
  • a portion of the distal end side of the outer fitting groove portion 32 is cut away to form an outer fitting end portion side rotation suppression key groove portion 73.
  • the present invention is not limited only to this configuration, and is alternately formed with the outer fitting mountain portions 31 in the circumferential direction W of the outer fitting end portion 3 as in the rotation restraining structure 107 according to the first modification shown in FIG.
  • a part of the distal end sides of all the external fitting groove portions 32 may be cut out to form a large number of external fitting end portion side rotation suppression key groove portions 73.
  • the internal fitting end portion side rotation suppression key groove portion 74 is a position between a plurality of internal fitting mountain portions 51 adjacent in the circumferential direction W, and the outer surface of the internal fitting end portion 5 has a predetermined depth in the axial orthogonal direction X. By being cut away, the inner fitting groove 52 is formed to have a width equal to or smaller than the width in the circumferential direction W.
  • the outer fitting end side rotation suppression key groove 73 and the inner fitting end formed to have the same width (circumferential length).
  • the part-side rotation suppression key groove part 74 is arranged to face.
  • a portion of the base end side of the inner fitting groove 52 is cut away, and an inner fitting end side rotation suppression key groove 74 is formed on the outer surface of the inner fitting end 5.
  • the present invention is not limited only to this configuration, and is alternately formed with the inner fitting mountain portions 51 in the circumferential direction W of the inner fitting end portion 5 as in the rotation restraining structure 107 according to the first modification shown in FIG.
  • the plurality of internally fitted groove portions 52 a part of the proximal end sides of all the internally fitted groove portions 52 are notched, and a large number of internally fitted end portion side rotation suppression key groove portions 74 are formed on the outer surface of the internally fitted end portion 5. It may be formed.
  • the external fitting end side rotation restraining key groove part 73 As shown in FIG. 10 in a state where the first steel pipe pile 1 and the second steel pipe pile 2 are connected, the external fitting end side rotation restraining key groove part 73. And the inner fitting end portion side rotation suppression key groove portion 74 are arranged to face each other in the axial direction Y, so that the rotation suppression key groove portion 72 is continuously connected to the outer fitting distal end portion 34 and the inner fitting base end portion 55. It is formed.
  • a rotation inhibition key member 71 made of steel or the like having a substantially rectangular shape is fitted into the rotation inhibition key groove portion 72 from the outside of the outer fitting distal end portion 34 and the inner fitting base end portion 55.
  • the rotation suppression key member 71 is fitted and installed in the rotation suppression key groove 72 in order to suppress the relative rotation in the circumferential direction W between the first steel pipe pile 1 and the second steel pipe pile 2.
  • the lower portion of the rotation suppression key member 71 is disposed in the outer fitting end portion rotation suppression key groove portion 73 of the rotation suppression key groove portion 72.
  • the lower portion of the rotation suppression key member 71 is disposed in the outer fitting end portion side rotation suppression key groove portion 73, so that the rotation suppression key member 71 is fitted on the outer fitting end portion side rotation suppression key groove portion 73. Installed in the groove 32.
  • the rotation inhibition key member 71 is installed from the outer fitting distal end portion 34 to the inner fitting proximal end portion 55 by installing the rotation inhibition key member 71 in the rotation inhibition key groove portion 72.
  • the rotation restraining structure 7 is provided on one or both of the outer fitting distal end 34 and the inner fitting proximal end 55 in a state where the rotation inhibiting key member 71 is installed from the outer fitting distal end 34 to the inner fitting proximal end 55.
  • the rotation inhibiting key member 71 is fixed by the pin member 75 or the like.
  • the pin member 75 restricts movement of the rotation suppression key member 71 in the direction orthogonal to the axial center X, but preferably does not restrict movement in the circumferential direction W or the axial direction Y.
  • the rotation suppression structure 7 is on the proximal end side of the inner fitting end portion 5 and on the proximal end side of the inner fitting end portion 5, as shown in FIGS. 11A and 11B.
  • the inner fitting end portion side rotation suppression key groove portion 74 is formed in the inner fitting base end portion 55 by cutting out the outer surface of the inner fitting end portion 5 so as to be shallower than the depth in the orthogonal direction X.
  • the inner fitting end portion side rotation inhibiting key groove portion 74 is formed on the proximal end side of the inner fitting groove portion 52 of the inner fitting end portion 5, so that the cutting step for forming the inner fitting groove portion 52 is performed.
  • the inner fitting end side rotation suppression key groove 74 can be formed by cutting. Thereby, in the rotation suppression structure 7, it is possible to efficiently cut and form the internal fitting end side rotation suppression key groove 74 and reduce the processing cost of the internal fitting end 5.
  • the present invention is not limited only to this configuration, and the depth of the internal fitting groove 52 in the direction orthogonal to the axial center X as in the rotation suppression structure 207 according to the second modification shown in FIGS. 12, 13A, and 13B.
  • the inner fitting end portion side rotation suppression key groove portion 74 may be formed in the inner fitting base end portion 55 by cutting out the outer surface of the inner fitting end portion 5 to a substantially equal depth. That is, the bottom surface of the inner fitting end portion side rotation suppression key groove portion 74 and the peripheral surface of the inner fitting groove portion 52 may be formed flush with each other.
  • the inner fitting end portion 5 is made deeper at the base end side than the depth of the inner fitting groove portion 52 in the direction orthogonal to the axial center X so that the inner fitting end portion 5 is cut off from the outer surface.
  • An inner fitting end portion side rotation suppression key groove portion 74 may be formed on the base end portion 55.
  • the rotation suppression key member 71 which concerns on this embodiment is shown in FIG.
  • the upper side of the one side surface 71 a is brought into contact with the groove side surface 74 a of the inner fitting end portion side rotation restraining key groove portion 74, and the lower portion of the other side surface 71 b of the rotation restraining key member 71 is fitted to the outer fitting mountain portion 31. It abuts on the mountain side surface 31a.
  • the one side surface 71 a and the other side surface 71 b of the rotation suppression key member 71 are sandwiched between the rotation suppression key groove portions 72 from both sides in the circumferential direction W, and the first steel pipe pile 1 and the second steel pipe pile 2 The relative rotation between is regulated.
  • the rotation suppression structure 7 rotates between the plurality of external fitting mountain portions 31 adjacent in the circumferential direction W so as to have substantially the same width as the width in the circumferential direction W of the external fitting groove portion 32.
  • An outer fitting end side rotation suppression key groove 73 of the suppression key groove 72 is formed. Therefore, compared with the case where the rotation suppression key groove part 72 is formed in the center part of the outer fitting mountain part 31, the width
  • the inner fitting end portion side rotation inhibiting key groove portion 74 is formed at an arbitrary depth in the axial center orthogonal direction X on the proximal end side of the inner fitting end portion 5. Compared with the case where the rotation inhibition key groove portion 72 is formed in the fitting mountain portion 31, the depth of the rotation inhibition key groove portion 72 in the direction orthogonal to the axial center X can be ensured.
  • the circumferential width W of the rotation suppression key groove 72 and the depth in the direction orthogonal to the axis X can be secured large, so that the rotation suppression key groove 72 is fitted.
  • the member width in the circumferential direction W of the rotation inhibiting key member 71 and the member height in the axial center orthogonal direction X can be increased.
  • the rotation suppression key member 71 can enlarge the size of the rotation suppression key member 71, compared with the case where the rotation suppression key groove part 72 is formed in the external fitting mountain part 31, the rotation suppression key member 71 of FIG. It becomes possible to improve the rotation resistance force which suppresses the relative rotation between the 1st steel pipe pile 1 and the 2nd steel pipe pile 2 by improving rigidity and intensity
  • the rotation suppression key member 71 is installed in the external fitting groove portion 32 between a plurality of external fitting mountain portions 31 adjacent in the circumferential direction W.
  • the one side surface 71a or the other side surface 71b of the rotation suppression key member 71 can be brought into contact with the entire surface of the outer fitting mountain portion side surface 31a of the outer fitting mountain portion 31 with a large contact surface. It becomes possible to remarkably improve the rotational resistance force that inhibits the relative rotation between the first steel pipe pile 1 and the second steel pipe pile 2.
  • the steel pipe pile rotation restraint structure 7 includes an outer fitting end portion of the rotation restraining key groove portion 72 on the distal end side of the outer fitting groove portion 32 between the plurality of outer fitting mountain portions 31 adjacent in the circumferential direction W. Since the side rotation inhibiting key groove portion 73 is formed, a cross-sectional defect is not generated in the outer fitting mountain portion 31 that resists the tensile force and the compressive force in the axial direction Y. Thereby, compared with the case where the rotation suppression key groove part 72 is formed in the external fitting peak part 31, the rotation suppression structure 7 does not produce a cross-sectional defect in the external fitting peak part 31 which mainly bears tensile strength and compression strength. As a thing, it becomes possible to prevent the fall of the tensile proof strength and the compression proof strength of the whole joint by forming the rotation suppression keyway part 72.
  • the rotation suppression structure 7 does not need to temporarily fix the rotation suppression key member 71 on the inner side of the outer fitting end portion 3 or the inner fitting end portion 5.
  • the rotation inhibiting key member 71 is fitted and installed in the rotation inhibiting key groove 72.
  • the rotation suppression structure 7 which concerns on this embodiment is between the 1st steel pipe pile 1 and the 2nd steel pipe pile 2, without implementing a complicated process etc. to the outer fitting end part 3 and the inner fitting end part 5.
  • a rotation restraining key member 71 is installed from the outer fitting distal end portion 34 to the inner fitting proximal end portion 55, and rotational resistance is provided between the outer fitting distal end portion 34 and the inner fitting proximal end portion 55. It becomes possible to share power.
  • the rotation restraining structure 7 according to the present embodiment has a large number of outer fitting end side rotation restraining key groove portions 73 and inner portions on the outer surface of the outer fitting end portion 3 and the outer surface of the inner fitting end portion 5.
  • the inner side surface of the outer fitting end portion side rotation suppression key groove portion 73 and the outer side surface of the outer fitting mountain portion 31 may be formed flush with each other.
  • the side surface of the rotation inhibition key member can be reliably brought into contact with the inner side surface of the outer fitting end portion side rotation inhibition key groove portion 73 and the outer side surface of the outer fitting mountain portion 31. Therefore, it becomes possible to further improve the rotational resistance force that suppresses the relative rotation between the first steel pipe pile and the second steel pipe pile.
  • the axial length of the outer fitting end portion side rotation suppression key groove portion 73 is further increased.
  • the structure which is shorter than the axial direction length of the said external fitting mountain part 31 which has the said outer side surface formed in the same surface may be sufficient.
  • only the axial length of the external fitting mountain portion 31 adjacent to the circumferential direction W of the external fitting end portion rotation suppression key groove portion 73 is longer than the axial length of the other external fitting mountain portion 31. It is obtained by setting. According to this configuration, since the cross-sectional defect portion can be set to the extra length portion (outside the stress design range) in the steel pipe axial direction, loss of the stress transmission function can be avoided.
  • the inner fitting end 5 may be attached to the first steel pipe pile 1 and the outer fitting end 3 may be attached to the second steel pipe pile 2.
  • the outer fitting step portion 4 and the inner fitting step portion 6 may be formed in any number of steps of one or more in the axial direction Y of the outer fitting end portion 3 and the inner fitting end portion 5.
  • the edge part of the 1st steel pipe pile 1 or the 2nd steel pipe pile 2 is cut, and the outer fitting end part 3 or the inner fitting end part 5 is provided in the 1st steel pipe pile 1 or the 2nd steel pipe pile 2 itself. May be.
  • outer fitting mountain portions 31 of the plurality of outer fitting step portions 4 and the inner fitting mountain portions 51 of the plurality of inner fitting step portions 6 may be arranged in a substantially staggered manner in the axial direction Y. Further, in each of the outer fitting stepped portions 4 and the inner fitting stepped portions 6, the outer fitting valley portion 33 and the inner fitting valley portion 53 have substantially the same thickness, and a plurality of outer fitting stepped portions 4 and inner fitting stepped portions are provided. 6 may be formed in a straight shape.
  • a deterrent structure can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

 この鋼管杭の回転抑止構造は、共通の軸心を持つように連結された第1鋼管杭と第2鋼管杭との間の相対回転を抑止する、鋼管杭の回転抑止構造であって、外嵌先端部が、外嵌先端面から前記軸心の延在方向に沿った所定の長さをもって外嵌溝部に形成された外嵌端部側回転抑止キー溝部を有し、内嵌基端部が、内嵌基端面から前記軸心の延在方向に沿った所定の長さをもって内嵌基端部に形成された内嵌端部側回転抑止キー溝部を有し、前記外嵌端部側回転抑止キー溝部と前記内嵌端部側回転抑止キー溝部とが対向するように外嵌端部と内嵌端部とが嵌合した状態で、回転抑止キー部材が、前記外嵌端部側回転抑止キー溝部と前記内嵌端部側回転抑止キー溝部との間に嵌め込まれる。

Description

鋼管杭の回転抑止構造
 本発明は、共通の軸心を持つように連結された第1鋼管杭と第2鋼管杭との間の相対回転を抑止する、鋼管杭の回転抑止構造に関する。
 従来より、鋼管杭は、回転させながら地中に沈設する場合が多く、回転方向を変更することもある。
 特許文献1には、鋼管杭を逆回転させる場合に、継手がゆるんだり、外れたりするのを好適に防止することを目的とする鋼管杭の回転抑止構造が開示されている。
 特許文献1に開示された鋼管杭の回転抑止構造では、雌円筒と雄円筒とが結合された状態で、内面突起のテーパ面と外面突起のテーパ面とが強固に上下円筒を結合したとき、雄円筒の回転抑止キー溝部形成部と雌円筒の回転抑止キー溝部形成部とが軸心方向に一致する。
 特許文献1に開示された鋼管杭の回転抑止構造は、雄円筒の回転抑止キー溝部形成部にタップ孔部が形成されるとともに、回転抑止キー部材にボルト孔部が設けられて、雄円筒の回転抑止キー溝部形成部と雌円筒の回転抑止キー溝部形成部とが軸心方向に一致した状態で、円筒の外面から回転抑止キー部材が嵌め込まれる。
 特許文献2には、第1接合部を有する第1柱状体と第2接合部を有する第2柱状体とを互いに嵌合させた状態で、第1柱状体と第2柱状体との間の相対回転を抑止するための接合部構造が開示されている。
 この接合部構造では、第1接合部が軸心方向に直交する方向で内側に突出する第1係合凸部を有し、第2接合部が軸心方向に直交する方向で外側に突出する第2係合凸部を有する。そして、第1係合凸部と第2係合凸部とを互いに嵌合させた状態で、第1接合部に形成された開口部から、第1接合部の内面と第2接合部の外面との間に規制部材が挿入される。この規制部材が第1係合凸部の側面と第2の係合凸部の側面とに当接することにより、第1柱状体と第2柱状体との間の相対回転が抑制される。
日本国特開2004-92291号公報 日本国特開2011-179285号公報
 しかし、特許文献1に開示された鋼管杭の回転抑止構造では、雌円筒の回転抑止キー溝部形成部が雌円筒の外面突起の周方向中央部を切り欠いて形成されるため、軸心方向の引張力及び圧縮力に抵抗させる外面突起に断面欠損を生じさせる。
このため、特許文献1に開示された鋼管杭の回転抑止構造は、引張耐力及び圧縮耐力を負担する外面突起に断面欠損が生じることから、継手全体の引張耐力及び圧縮耐力が低下するおそれがあるという問題点があった。
 また、特許文献1に開示された鋼管杭の回転抑止構造は、雌円筒の回転抑止キー溝部形成部が雌円筒の外面突起の周方向中央部を切り欠いて形成されるため、雌円筒の回転抑止キー溝部形成部の大きさを外面突起の大きさよりも小さくする必要がある。このため、特許文献1に開示された鋼管杭の回転抑止構造は、回転抑止キー部材を大きくすることができない。従って、回転抑止キー部材の剛性及び強度を十分に向上させることができず、雌円筒と雄円筒との間の相対回転を抑止する回転抵抗力が不十分となるおそれがあるという問題点があった。
 更には、回転抑止キー溝部による断面欠損位置は、軸心方向から見た場合に軸力伝達する突起と重なる円周角度位置に存在するため、軸力伝達機能が損なわれるという問題点もあった。
 また、特許文献2に開示された接合部構造では、第1接合部に形成された開口部から、第1接合部の内面と第2接合部の外面との間に規制部材を挿入する。従って、接合部に僅かな変形が生じた場合、或いは、第1鋼管と第2鋼管とを相対回転させて嵌合させた際に周方向又は軸心直交方向に僅かなずれが生じた場合には、規制部材の設置が困難となる。
 更には、第1接合部の内面と第2接合部の外面との間のスペースは外面側から目視出来ないことから、第1鋼管の設置時に土や石などの異物が当該スペースに付着した場合には規制部材の設置が更に困難となる。
 更には、規制部材の設置後には、第1接合部に形成された開口部を閉塞する蓋部材を設置する必要がある。
 このように、特許文献2に開示された接合部構造では、施工性に問題点があった。
 そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、(1)継手全体の引張耐力及び圧縮耐力の低下を防止し、(2)第1鋼管杭と第2鋼管杭との回転抵抗力を向上させることができ、(3)施工性に優れる、鋼管杭の回転抑止構造を提供することにある。
 本発明の態様は下記の通りである。
(1)本発明の第一の態様は、共通の軸心を持つように連結された第1鋼管杭と第2鋼管杭との間の相対回転を抑止する、鋼管杭の回転抑止構造である。
 この回転抑止構造は、前記第1鋼管杭に設けられた外嵌端部と、前記第2鋼管杭に設けられた内嵌端部と、前記外嵌端部と前記内嵌端部との間の相対回転を抑止する回転抑止キー部材と、を備え、前記外嵌端部が、前記軸心に向かう方向に突出するとともに前記軸心を中心とする周方向に複数形成された外嵌山部と、互いに隣り合う前記各外嵌山部の間に形成された外嵌溝部と、前記各外嵌山部に隣接してかつ前記第1鋼管杭に近い基端側に形成された外嵌谷部と、前記軸心に沿った先端側に形成された外嵌先端面を有する外嵌先端部と、を有し、前記内嵌端部が、前記軸心から離間する方向に突出するとともに前記軸心を中心とする周方向に複数形成された内嵌山部と、互いに隣り合う前記各内嵌山部の間に形成された内嵌溝部と、前記各内嵌山部に隣接してかつ前記第2鋼管杭に近い基端側に形成された内嵌谷部と、前記外嵌端部の前記外嵌先端面に対向する内嵌基端面を有する内嵌基端部と、を有する。
 前記外嵌先端部が、前記軸心方向から見た場合に前記外嵌山部と重ならない円周角度位置において、前記外嵌先端面から前記軸心の延在方向に沿った所定の長さをもって前記外嵌溝部に形成された外嵌端部側回転抑止キー溝部を有し、前記内嵌基端部が、前記軸心方向から見た場合に前記内嵌山部と重ならない円周角度位置において、前記内嵌基端面から前記軸心の延在方向に沿った所定の長さをもって前記内嵌基端部に形成された内嵌端部側回転抑止キー溝部を有する。
 前記外嵌端部側回転抑止キー溝部と前記内嵌端部側回転抑止キー溝部とが対向するように前記外嵌端部と前記内嵌端部とが嵌合した状態で、前記回転抑止キー部材は、前記外嵌端部側回転抑止キー溝部と前記内嵌端部側回転抑止キー溝部との間に嵌め込まれている。
(2)上記(1)に記載の鋼管杭の回転抑止構造では、前記外嵌端部側回転抑止キー溝部の内側面と、前記外嵌山部の外側面とが面一であってもよい。
(3)上記(2)に記載の鋼管杭の回転抑止構造では、前記外嵌端部側回転抑止キー溝部の軸方向長さが、前記面一に形成された前記外側面を有する前記外嵌山部の軸方向長さよりも短くてもよい。
 上記(1)に記載の構成によれば、下記の効果が得られる。
(A)外嵌山部の周方向中央部に外嵌端部側回転抑止キー溝部を形成させる場合と比較して、外嵌端部側回転抑止キー溝部及び回転抑止キー部材のサイズを大きくすることができる。従って、回転抑止キー部材の剛性及び強度を向上させて、第1鋼管杭と第2鋼管杭との間の相対回転を抑止する回転抵抗力を向上させることが可能となる。
(B)外嵌端部側回転抑止キー溝部が、外嵌先端面から軸心の延在方向に沿った所定の長さをもって外嵌溝部に形成されることから、回転抑止キー部材の側面を、外嵌山部の側面に大きな接触面で当接させることができる。従って、第1鋼管杭と第2鋼管杭との間の相対回転を抑止する回転抵抗力を著しく向上させることが可能となる。
(C)外嵌山部の周方向中央部に外嵌端部側回転抑止キー溝部を形成させる場合と比較して、軸心方向の引張力及び圧縮力に抵抗させる外嵌山部に断面欠損を生じさせない。従って、継手全体の引張耐力及び圧縮耐力の低下を防止することが可能となる。
(D)あらかじめ外嵌端部と内嵌端部との間に回転抑止用の仮止め部材を利用することを必要としないで、外嵌先端部及び内嵌基端部の外面側から回転抑止キー部材を設置することが可能である。従って、外嵌端部及び内嵌端部に複雑な加工等を実施することなく、第1鋼管杭と第2鋼管杭との間の相対回転を抑止するための構造を簡易に導入することが可能となるため、優れた施工性を得ることができる。
(E)外嵌先端部から内嵌基端部まで回転抑止キー部材が架設されるため、外嵌先端部と内嵌基端部とに回転抵抗力を分担させることが可能となる。
(F)軸心方向から見た場合に外嵌山部又は内嵌山部と重ならない円周角度位置において、キー溝が形成される。図15に示すように、外面突起に引張力が作用した場合の軸力は段部列の延長方向に沿って伝達されるが、この段部列の延長線上に回転抑止キー溝部が形成されないことになるため、軸力伝達機能の損失を防ぐことが可能となる。
(G)内嵌溝部を形成させる切削工程と連続させて、内嵌端部側回転抑止キー溝部を切削形成することができる。従って、回転抑止キー溝部の切削形成を効率的に実施して、内嵌端部の加工費を低減させることが可能となる。
 上記(2)に記載の構成によれば、外嵌端部側回転抑止キー溝部の内側面と、外嵌山部の外側面とが面一に形成されるため、回転抑止キー部材の側面を、外嵌端部側回転抑止キー溝部の内側面と、外嵌山部の外側面とで確実に当接させることができる。従って、第1鋼管杭と第2鋼管杭との間の相対回転を抑止する回転抵抗力を更に著しく向上させることが可能となる。
 上記(3)に記載の構成によれば、断面欠損部位を鋼管軸方向の余長部分(応力設計する範囲外)に設定できるため、応力伝達機能の損失をより確実に防ぐことが出来る。
本発明の一実施形態に係る鋼管杭の回転抑止構造を示す斜視図である。 上記回転抑止構造の外嵌端部を示す図であって、軸心を含む断面で見た場合の断面図である。 上記回転抑止構造の外嵌端部の要部を示す断面図である。 上記回転抑止構造の内嵌端部を示す正面図である。 上記回転抑止構造の内嵌端部の要部を示す断面図である。 上記回転抑止構造の外嵌端部に内嵌端部を挿入する状態を示す斜視図である。 上記回転抑止構造の外嵌端部に内嵌端部を挿入して相対回転させた後の状態を示す図であって、一部が断面視された斜視図である。 上記回転抑止構造の外嵌端部及び内嵌端部に作用する引張力及び圧縮力を示す要部断面図である。 上記回転抑止構造の第1変形例を示す斜視図である。 上記回転抑止構造の第1鋼管杭と第2鋼管杭とを連結させた後の状態を示す斜視図である。 上記回転抑止構造における回転抑止キー溝部を示す断面図である。 図11AにおけるA-A線に沿って得られる断面図である。 上記回転抑止構造の第2変形例を示す斜視図である。 上記回転抑止構造の第2変形例における回転抑止キー溝部を示す断面図である。 図13AにおけるB-B線に沿って得られる断面図である。 上記回転抑止構造の回転抑止キー溝部と回転抑止キー部材とを示す拡大正面図である。 回転抑止構造に引張力が作用した場合の軸力伝達イメージを示す概略図である。
 以下、本発明の一実施形態に係る鋼管杭の回転抑止構造7(以下、本実施形態に係る回転抑止構造7、或いは、単に回転抑止構造7と呼ぶ場合がある)について、図面を参照しながら詳細に説明する。
 尚、以下の説明においては、鋼管杭の軸心延在方向を軸心方向Y、軸心方向Yに直交する方向を軸心直交方向X、鋼管杭の軸心回りの方向を周方向Wと呼称する場合がある。
 本実施形態に係る回転抑止構造7は、地盤上に構築される構造物の基礎杭等の継手に適用される。回転抑止構造7は、図1に示すように、断面が略円形状の第1鋼管杭1と第2鋼管杭2との周方向Wの相対回転を抑止する。
 回転抑止構造7は、共通の軸心を持つように第1鋼管杭1と第2鋼管杭2とを軸心方向Yに連結させる一対の外嵌端部3と内嵌端部5とを備える。第1鋼管杭1の上端部には外嵌端部3が溶接等で接合される。第2鋼管杭2の下端部には内嵌端部5が溶接等で接合される。外嵌端部3と内嵌端部5とは互いに嵌合自在な構造を有する。
 外嵌端部3は、軸心に向かう方向に突出するとともに周方向Wに複数形成された外嵌山部31と、周方向Wに互いに隣り合う各々の外嵌山部31の間に形成された外嵌溝部32と、各々の外嵌山部31に隣接して第1鋼管杭1に近い基端側に形成された外嵌谷部33と、を有する。
 更に、外嵌端部3は、軸心方向Yの先端側に設けられる外嵌先端部34と、軸心方向Yの基端側に設けられる外嵌基端部35とを有する。外嵌先端部34は、軸心方向Yの先端側に外嵌先端面34aを有する。
 内嵌端部5は、軸心から離間する方向に突出するとともに周方向Wに複数形成された内嵌山部51と、周方向Wに互いに隣り合う各々の内嵌山部51の間に形成された内嵌溝部52と、各々の内嵌山部51に隣接して第2鋼管杭2に近い基端側に形成された内嵌谷部53と、を有する。
 更に、内嵌端部5は、軸心方向Yの先端側に設けられる内嵌先端部54と、軸心方向Yの基端側に設けられる内嵌基端部55とを有する。内嵌基端部55は、外嵌先端面34aに軸心方向Yで対向するように設けられる内嵌基端面55aを有する。
 外嵌端部3は、図2に示すように、外嵌端部3の軸心方向Yで、外嵌山部31が複数の外嵌段部4(段部列)を形成して設けられる。外嵌段部4は、例えば、外嵌端部3の軸心方向Yで段数が4箇となるように形成され、外嵌端部3の軸心方向Yで先端側から基端側まで、順番に第1外嵌段部41、第2外嵌段部42、第3外嵌段部43及び第4外嵌段部44を有する。
 各々の外嵌段部4では、外嵌山部31の板厚よりも外嵌溝部32の板厚が小さくされ、外嵌山部31と外嵌溝部32とが周方向Wで交互に形成される。そして、複数の外嵌段部4の外嵌山部31が軸心方向Yで略一列に配置される。
 同様に、各々の外嵌段部4では、外嵌山部31の板厚よりも外嵌谷部33の板厚が小さくされ、外嵌山部31と外嵌谷部33とが軸心方向Yで交互に形成される。
 図3に示すように、外嵌谷部33の板厚は、外嵌端部3の基端側に近い外嵌段部4ほど大きく形成される。
 すなわち、第1外嵌段部41の外嵌谷部33の板厚は、第2外嵌段部42の外嵌谷部33の板厚よりも小さく、第2外嵌段部42の外嵌谷部33の板厚は、第3外嵌段部43の外嵌谷部33の板厚よりも小さく、第3外嵌段部43の外嵌谷部33の板厚は、第4外嵌段部44の外嵌谷部33の板厚よりも小さく形成される。
 内嵌端部5は、図4に示すように、内嵌端部5の軸心方向Yで、内嵌山部51が複数の内嵌段部6(段部列)を形成して設けられる。内嵌段部6は、例えば、内嵌端部5の軸心方向Yで段数が4箇となるように形成され、内嵌端部5の軸心方向Yで先端側から基端側まで、順番に第1内嵌段部61、第2内嵌段部62、第3内嵌段部63及び第4内嵌段部64を有する。
 各々の内嵌段部6では、内嵌山部51の板厚よりも内嵌溝部52の板厚が小さくされ、内嵌山部51と内嵌溝部52とが周方向Wで交互に形成される。そして、複数の内嵌段部6の内嵌山部51が軸心方向Yで略一列に配置される。
 同様に、各々の内嵌段部6では、内嵌山部51の板厚よりも内嵌谷部53の板厚が小さくされ、内嵌山部51と内嵌谷部53とが軸心方向Yで交互に形成される。
 図5に示すように、内嵌谷部53の板厚は、内嵌端部5の基端側に近い内嵌段部ほど大きく形成される。
 すなわち、第1内嵌段部61の内嵌谷部53の板厚は、第2内嵌段部62の内嵌谷部53の板厚よりも小さく、第2内嵌段部62の内嵌谷部53の板厚は、第3内嵌段部63の内嵌谷部53の板厚よりも小さく、第3内嵌段部63の内嵌谷部53の板厚は、第4内嵌段部64の内嵌谷部53の板厚よりも小さく形成される。
 本実施形態に係る回転抑止構造7では、第1鋼管杭1と第2鋼管杭2とを軸心方向Yに連結するために、図6、図7に示すように、外嵌端部3と内嵌端部5とを互いに嵌合させる。尚、図7は外嵌端部3の一部を切断した状態を示す斜視図である。
 具体的には、まず、図6に示すように、第2鋼管杭2に取り付けられた内嵌端部5を第1鋼管杭1に取り付けられた外嵌端部3に挿入する。
 各々の内嵌段部6において、内嵌山部51の軸心直交方向Xの高さは、嵌合時に対応する外嵌溝部32の軸心直交方向Xの深さ以下に設定される。これにより、内嵌山部51を外嵌溝部32に通過可能な構造となる。
 各々の外嵌段部4において、外嵌山部31の軸心直交方向Xの高さは、嵌合時に対応する内嵌溝部52の軸心直交方向Xの深さ以下に設定される。これにより、外嵌山部31を内嵌溝部52に通過可能な構造となる。
 次に、図7に示すように、内嵌端部5を外嵌端部3に挿入した状態で、第1鋼管杭1と第2鋼管杭2とを軸心回りの周方向Wに相対回転させる。
 各々の内嵌段部6において、内嵌谷部53の軸心直交方向Xの深さは、嵌合時に対応する外嵌山部31の軸心直交方向Xの高さ以上に設定する。これにより、外嵌山部31を内嵌谷部53に嵌合可能な構造となる。
 各々の外嵌段部4において、外嵌谷部33の軸心直交方向Xの深さは、嵌合時に対応する内嵌山部51の軸心直交方向Xの高さ以上に設定する。これにより、内嵌山部51を外嵌谷部33に嵌合可能な構造となる。
 各々の外嵌段部4及び内嵌段部6においては、図8に示すように、内嵌山部51の軸心方向Yの長さを外嵌谷部33の軸心方向Yの長さ以下とするとともに、外嵌山部31の軸心方向Yの長さを内嵌谷部53の軸心方向Yの長さ以下とする。この構成により、回転抑止構造7では、各々の外嵌段部4及び内嵌段部6において、軸心方向Yで外嵌山部31と内嵌山部51とを互いに係合させることが可能となる。
 第1鋼管杭1と第2鋼管杭2とが連結された状態では、第1鋼管杭1及び第2鋼管杭2から外嵌端部3及び内嵌端部5に軸心方向Yで引張力及び圧縮力が作用する際、軸心方向Yに作用する引張力及び圧縮力に対して、外嵌山部31と内嵌山部51とが軸心方向Yで互いに当接して抵抗する。
 本実施形態に係る回転抑止構造7では、第1鋼管杭1と第2鋼管杭2とを連結させることによって、外嵌端部3の外嵌先端部34と内嵌端部5の内嵌基端部55とが、軸心方向Yで互いに対向して配置される。
 回転抑止構造7は、外嵌端部3の先端側で外嵌先端部34と内嵌基端部55とが当接されるとともに、内嵌端部5の先端側で内嵌先端部54と外嵌基端部35とが当接される。本発明はこの回転抑止構造7に限らず、外嵌端部3の先端側で外嵌先端部34と内嵌基端部55とが離間されて、及び/又は、内嵌端部5の先端側で内嵌先端部54と外嵌基端部35とが離間される構成であってもよい。
 本実施形態に係る回転抑止構造7では、図1に示すように、嵌合した状態で外嵌先端部34と内嵌基端部55とに連続する略矩形状の回転抑止キー溝部72が形成される。回転抑止キー溝部72は、外嵌先端部34の外面及び内嵌基端部55の外面が切り欠かれて、軸心直交方向Xに貫通又は凹状に形成される。
 より詳細には、回転抑止キー溝部72は、外嵌先端部34に形成された外嵌端部側回転抑止キー溝部73と、内嵌基端部55に形成された内嵌端部側回転抑止キー溝部74と、により構成される。
 外嵌端部側回転抑止キー溝部73は、軸心方向から見た場合に外嵌山部31と重ならない円周角度位置において、外嵌先端面34aから軸心の延在方向に沿った所定の長さをもって外嵌溝部32に形成される。
 内嵌端部側回転抑止キー溝部74は、軸心方向から見た場合に内嵌山部と重ならない円周角度位置において、内嵌基端面55aから軸心の延在方向に沿った所定の長さをもって内嵌基端部55の外面に形成される。
 外嵌端部側回転抑止キー溝部73は、周方向Wで隣り合った複数の外嵌山部31の間の一部で、外嵌端部3の外面から内面まで軸心直交方向Xに貫通させて、外嵌溝部32の周方向Wの幅以下の幅となるように形成される。
 本実施形態に係る回転抑止構造7では、図1に示すように、外嵌端部3の周方向Wで外嵌山部31と交互に形成された複数の外嵌溝部32のうち、一か所の外嵌溝部32の一部の先端側が切り欠かれて、外嵌端部側回転抑止キー溝部73が形成される。
 ただし、本発明はこの構成のみに限定されず、図9に示す第1変形例に係る回転抑止構造107のように、外嵌端部3の周方向Wで外嵌山部31と交互に形成された複数の外嵌溝部32のうち、全ての外嵌溝部32の一部の先端側が切り欠かれて、多数の外嵌端部側回転抑止キー溝部73が形成されてもよい。
 内嵌端部側回転抑止キー溝部74は、周方向Wで隣り合った複数の内嵌山部51の間となる位置で、内嵌端部5の外面を軸心直交方向Xに所定の深さで切り欠くことによって、内嵌溝部52の周方向Wの幅以下の幅となるように形成される。
 すなわち、外嵌端部3と内嵌端部5とが嵌合した状態では、同じ幅(周方向長さ)を有するように形成された外嵌端部側回転抑止キー溝部73と内嵌端部側回転抑止キー溝部74とが対向して配置される。
 本実施形態に係る回転抑止構造7では、図1に示すように、内嵌端部5の周方向Wで内嵌山部51と交互に形成された複数の内嵌溝部52のうち、一か所の内嵌溝部52の一部の基端側が切り欠かれて、内嵌端部5の外面に内嵌端部側回転抑止キー溝部74が形成される。
 ただし、本発明はこの構成のみに限定されず、図9に示す第1変形例に係る回転抑止構造107のように、内嵌端部5の周方向Wで内嵌山部51と交互に形成された複数の内嵌溝部52のうち、全ての内嵌溝部52の一部の基端側が切り欠かれて、内嵌端部5の外面に多数の内嵌端部側回転抑止キー溝部74が形成されてもよい。
 本実施形態に係る鋼管杭の回転抑止構造7では、第1鋼管杭1と第2鋼管杭2とを連結させた状態で、図10に示すように、外嵌端部側回転抑止キー溝部73と内嵌端部側回転抑止キー溝部74とが軸心方向Yに対向して配置されることで、外嵌先端部34と内嵌基端部55とに連続して回転抑止キー溝部72が形成される。回転抑止構造7では、外嵌先端部34及び内嵌基端部55の外側から回転抑止キー溝部72に、鋼製等で略矩形状等の回転抑止キー部材71が嵌め込まれる。
 回転抑止構造7では、第1鋼管杭1と第2鋼管杭2との間の周方向Wの相対回転を抑止するために、回転抑止キー溝部72に回転抑止キー部材71が嵌め込まれて設置されて、図10に示すように、回転抑止キー部材71の下部が回転抑止キー溝部72の外嵌端部側回転抑止キー溝部73に配置される。回転抑止構造7では、回転抑止キー部材71の下部が外嵌端部側回転抑止キー溝部73に配置されることで、回転抑止キー部材71が外嵌端部側回転抑止キー溝部73で外嵌溝部32に設置される。
 回転抑止構造7では、回転抑止キー溝部72に回転抑止キー部材71が嵌め込まれて設置されることで、外嵌先端部34から内嵌基端部55まで回転抑止キー部材71が架設される。
 回転抑止構造7は、外嵌先端部34から内嵌基端部55まで回転抑止キー部材71が架設された状態で、外嵌先端部34及び内嵌基端部55の何れか一方又は両方に、ピン部材75等で回転抑止キー部材71が固定される。
 尚、ピン部材75は、回転抑止キー部材71の軸心直交方向Xへの移動を制限するが、周方向W又は軸心方向Yへの移動は制限しないことが好ましい。
 本実施形態に係る回転抑止構造7は、内嵌端部5の基端側で、図11A、図11Bに示すように、内嵌端部5の基端側で、内嵌溝部52の軸心直交方向Xの深さよりも浅くして、内嵌端部5の外面を切り欠いて内嵌基端部55に内嵌端部側回転抑止キー溝部74が形成される。
 このとき、回転抑止構造7では、内嵌端部5の内嵌溝部52の基端側で、内嵌端部側回転抑止キー溝部74が形成されるため、内嵌溝部52を形成させる切削工程と連続させて、内嵌端部側回転抑止キー溝部74を切削形成することができる。これにより、回転抑止構造7では、内嵌端部側回転抑止キー溝部74の切削形成を効率的に実施して、内嵌端部5の加工費を低減させることが可能となる。
 ただし、本発明はこの構成のみに限定されず、図12、図13A、図13Bに示す第2変形例に係る回転抑止構造207のように、内嵌溝部52の軸心直交方向Xの深さと略同一となる深さまで、内嵌端部5の外面を切り欠いて内嵌基端部55に内嵌端部側回転抑止キー溝部74が形成されてもよい。すなわち、内嵌端部側回転抑止キー溝部74の底面と、内嵌溝部52の周面とが面一に形成されてもよい。
 また、回転抑止構造7では、内嵌端部5の基端側で、内嵌溝部52の軸心直交方向Xの深さよりも深くして、内嵌端部5の外面を切り欠いて内嵌基端部55に内嵌端部側回転抑止キー溝部74が形成されてもよい。
 本実施形態に係る回転抑止構造7は、第1鋼管杭1と第2鋼管杭2とが周方向Wで互いに逆方向に回転しようとしたとき、図14に示すように、回転抑止キー部材71の一方側面71aの上部が、内嵌端部側回転抑止キー溝部74の溝側面74aに当接されるとともに、回転抑止キー部材71の他方側面71bの下部が、外嵌山部31の外嵌山部側面31aに当接される。回転抑止構造7では、回転抑止キー部材71の一方側面71aと他方側面71bとが周方向Wの両側から回転抑止キー溝部72に挟み込まれて、第1鋼管杭1と第2鋼管杭2との間の相対回転が規制される。
 本実施形態に係る回転抑止構造7は、周方向Wで隣り合った複数の外嵌山部31の間で、外嵌溝部32の周方向Wの幅と略同一の幅となるように、回転抑止キー溝部72の外嵌端部側回転抑止キー溝部73が形成される。従って、外嵌山部31の中央部に回転抑止キー溝部72を形成させる場合と比較して、回転抑止キー溝部72の周方向Wの幅を大きく確保することができる。
 本実施形態に係る回転抑止構造7では、内嵌端部5の基端側で、軸心直交方向Xに任意の深さで内嵌端部側回転抑止キー溝部74が形成されるため、外嵌山部31に回転抑止キー溝部72を形成させる場合と比較して、回転抑止キー溝部72の軸心直交方向Xの深さを大きく確保することができる。
 また、本実施形態に係る回転抑止構造7では、回転抑止キー溝部72の周方向Wの幅と軸心直交方向Xの深さとを大きく確保することができるため、回転抑止キー溝部72に嵌め込まれる回転抑止キー部材71の周方向Wの部材幅と軸心直交方向Xの部材高さとを大きくすることができる。
 これにより、回転抑止構造7は、回転抑止キー部材71のサイズを大きくすることができるため、外嵌山部31に回転抑止キー溝部72を形成させる場合と比較して、回転抑止キー部材71の剛性及び強度を向上させて、第1鋼管杭1と第2鋼管杭2との間の相対回転を抑止する回転抵抗力を向上させることが可能となる。
 回転抑止構造7は、周方向Wで隣り合った複数の外嵌山部31の間で、回転抑止キー部材71が外嵌溝部32に設置される。これにより、回転抑止構造7では、回転抑止キー部材71の一方側面71a又は他方側面71bを、外嵌山部31の外嵌山部側面31aの全面に大きな接触面で当接させることができるため、第1鋼管杭1と第2鋼管杭2との間の相対回転を抑止する回転抵抗力を著しく向上させることが可能となる。
 本実施形態に係る鋼管杭の回転抑止構造7は、周方向Wで隣り合った複数の外嵌山部31の間で、外嵌溝部32の先端側に回転抑止キー溝部72の外嵌端部側回転抑止キー溝部73が形成されるため、軸心方向Yの引張力及び圧縮力に抵抗させる外嵌山部31に断面欠損を生じさせないものとなる。これにより、回転抑止構造7は、外嵌山部31に回転抑止キー溝部72を形成させる場合と比較して、引張耐力及び圧縮耐力を主に負担する外嵌山部31に断面欠損を生じさせないものとして、回転抑止キー溝部72が形成されることによる継手全体の引張耐力及び圧縮耐力の低下を防止することが可能となる。
 本実施形態に係る回転抑止構造7は、図10に示すように、あらかじめ外嵌端部3又は内嵌端部5の内側に回転抑止キー部材71を仮止め等することを必要としないで、外嵌先端部34及び内嵌基端部55の外側から、回転抑止キー部材71が回転抑止キー溝部72に嵌め込まれて設置される。これにより、本実施形態に係る回転抑止構造7は、外嵌端部3及び内嵌端部5に複雑な加工等を実施することなく、第1鋼管杭1と第2鋼管杭2との間の相対回転を抑止するための構造を簡易に導入することが可能となる。
 本実施形態に係る回転抑止構造7は、外嵌先端部34から内嵌基端部55まで回転抑止キー部材71が架設されて、外嵌先端部34と内嵌基端部55とに回転抵抗力を分担させることが可能となる。なお、本実施形態に係る回転抑止構造7は、図9に示すように、外嵌端部3の外面及び内嵌端部5の外面に多数の外嵌端部側回転抑止キー溝部73及び内嵌端部側回転抑止キー溝部74が形成されることで、多数の回転抑止キー溝部72に多数の回転抑止キー部材71を設置することができるため、第1鋼管杭1と第2鋼管杭2との間の相対回転を抑止する回転抵抗力を著しく向上させることが可能となる。
 本実施形態に係る回転抑止構造7では、外嵌端部側回転抑止キー溝部73の内側面と、外嵌山部31の外側面とが面一に形成されてもよい。この場合、回転抑止キー部材の側面を、外嵌端部側回転抑止キー溝部73の内側面と、外嵌山部31の外側面とで確実に当接させることができる。従って、第1鋼管杭と第2鋼管杭との間の相対回転を抑止する回転抵抗力を更に著しく向上させることが可能となる。
 外嵌端部側回転抑止キー溝部73の内側面と、外嵌山部31の外側面とが面一に形成される場合、更に、外嵌端部側回転抑止キー溝部73の軸方向長さが、面一に形成された前記外側面を有する前記外嵌山部31の軸方向長さよりも短い構成であってもよい。
 この構成は、例えば、外嵌端部側回転抑止キー溝部73の周方向Wに隣接する外嵌山部31の軸方向長さのみを、他の外嵌山部31の軸方向長さよりも長く設定することで得られる。
 この構成によれば、断面欠損部位を鋼管軸方向の余長部分(応力設計する範囲外)に設定できるため、応力伝達機能の損失を回避することが出来る。
 以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。
 例えば、第1鋼管杭1に内嵌端部5が取り付けられるとともに、第2鋼管杭2に外嵌端部3が取り付けられるものとされてもよい。
 また、外嵌端部3及び内嵌端部5の軸心方向Yで外嵌段部4及び内嵌段部6が1段以上の如何なる段数で形成されてもよい。
 また、第1鋼管杭1又は第2鋼管杭2の端部が切削されることで、第1鋼管杭1又は第2鋼管杭2そのものに外嵌端部3又は内嵌端部5が設けられてもよい。
 また、複数の外嵌段部4の外嵌山部31や、複数の内嵌段部6の内嵌山部51が、軸心方向Yで略千鳥状に配置されてもよい。
 また、各々の外嵌段部4や内嵌段部6で、外嵌谷部33や内嵌谷部53の板厚を略同一のものとして、複数の外嵌段部4や内嵌段部6がストレート状に形成されてもよい。
 本発明によれば、継手全体の引張耐力及び圧縮耐力の低下を防止し、第1鋼管杭と第2鋼管杭との回転抵抗力を向上させることができ、施工性に優れる、鋼管杭の回転抑止構造を提供することが出来る。
1    :第1鋼管杭
2    :第2鋼管杭
3    :外嵌端部
31   :外嵌山部
31a  :外嵌山部側面
32   :外嵌溝部
33   :外嵌谷部
34   :外嵌先端部
34a  :外嵌先端面
35   :外嵌基端部
4    :外嵌段部
41   :第1外嵌段部
42   :第2外嵌段部
43   :第3外嵌段部
44   :第4外嵌段部
5    :内嵌端部
51   :内嵌山部
51a  :内嵌山部側面
52   :内嵌溝部
53   :内嵌谷部
54   :内嵌先端部
55   :内嵌基端部
55a  :内嵌基端面
6    :内嵌段部
61   :第1内嵌段部
62   :第2内嵌段部
63   :第3内嵌段部
64   :第4内嵌段部
7    :鋼管杭の回転抑止構造
71   :回転抑止キー部材
71a  :一方側面
71b  :他方側面
72   :回転抑止キー溝部
73   :外嵌端部側回転抑止キー溝部
74   :内嵌端部側回転抑止キー溝部
74a  :溝側面
75   :ピン部材
W    :周方向
X    :軸心直交方向
Y    :軸心方向

Claims (3)

  1.  共通の軸心を持つように連結された第1鋼管杭と第2鋼管杭との間の相対回転を抑止する、鋼管杭の回転抑止構造であって、
     前記第1鋼管杭に設けられた外嵌端部と、
     前記第2鋼管杭に設けられた内嵌端部と、
     前記外嵌端部と前記内嵌端部との間の相対回転を抑止する回転抑止キー部材と、
    を備え、
     前記外嵌端部が、
      前記軸心に向かう方向に突出するとともに前記軸心を中心とする周方向に複数形成された外嵌山部と、
      互いに隣り合う前記各外嵌山部の間に形成された外嵌溝部と、
      前記各外嵌山部に隣接してかつ前記第1鋼管杭に近い基端側に形成された外嵌谷部と、
      前記軸心に沿った先端側に形成された外嵌先端面を有する外嵌先端部と、
    を有し、
     前記内嵌端部が、
      前記軸心から離間する方向に突出するとともに前記軸心を中心とする周方向に複数形成された内嵌山部と、
      互いに隣り合う前記各内嵌山部の間に形成された内嵌溝部と、
      前記各内嵌山部に隣接してかつ前記第2鋼管杭に近い基端側に形成された内嵌谷部と、
      前記外嵌端部の前記外嵌先端面に対向する内嵌基端面を有する内嵌基端部と、
    を有し、
     前記外嵌先端部が、前記軸心方向から見た場合に前記外嵌山部と重ならない円周角度位置において、前記外嵌先端面から前記軸心の延在方向に沿った所定の長さをもって前記外嵌溝部に形成された外嵌端部側回転抑止キー溝部を有し、
     前記内嵌基端部が、前記軸心方向から見た場合に前記内嵌山部と重ならない円周角度位置において、前記内嵌基端面から前記軸心の延在方向に沿った所定の長さをもって前記内嵌基端部に形成された内嵌端部側回転抑止キー溝部を有し、
     前記外嵌端部側回転抑止キー溝部と前記内嵌端部側回転抑止キー溝部とが対向するように前記外嵌端部と前記内嵌端部とが嵌合した状態で、前記回転抑止キー部材が、前記外嵌端部側回転抑止キー溝部と前記内嵌端部側回転抑止キー溝部との間に嵌め込まれている
    ことを特徴とする鋼管杭の回転抑止構造。
  2.  前記外嵌端部側回転抑止キー溝部の内側面と、前記外嵌山部の外側面とが面一である
    ことを特徴とする請求項1に記載の鋼管杭の回転抑止構造。
  3.  前記外嵌端部側回転抑止キー溝部の軸方向長さが、前記面一に形成された前記外側面を有する前記外嵌山部の軸方向長さよりも短い
    ことを特徴とする請求項2に記載の鋼管杭の回転抑止構造。
PCT/JP2014/083867 2014-12-22 2014-12-22 鋼管杭の回転抑止構造 WO2016103313A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565612A JP6344487B2 (ja) 2014-12-22 2014-12-22 鋼管杭の回転抑止構造
PCT/JP2014/083867 WO2016103313A1 (ja) 2014-12-22 2014-12-22 鋼管杭の回転抑止構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083867 WO2016103313A1 (ja) 2014-12-22 2014-12-22 鋼管杭の回転抑止構造

Publications (1)

Publication Number Publication Date
WO2016103313A1 true WO2016103313A1 (ja) 2016-06-30

Family

ID=56149417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083867 WO2016103313A1 (ja) 2014-12-22 2014-12-22 鋼管杭の回転抑止構造

Country Status (2)

Country Link
JP (1) JP6344487B2 (ja)
WO (1) WO2016103313A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158177A (ja) * 1995-12-07 1997-06-17 Nkk Corp 杭の継手構造
JPH1143936A (ja) * 1997-07-29 1999-02-16 Kubota Corp 杭の継手部構造
JP2001279666A (ja) * 2000-03-30 2001-10-10 Kubota Corp 鋼管建込み用治具および鋼管建込み・沈設方法
JP2005282356A (ja) * 2005-06-17 2005-10-13 Kubota Corp 杭の継手部構造
JP2006112225A (ja) * 2004-09-16 2006-04-27 Kubota Corp 柱状体の接合構造
JP2009035931A (ja) * 2007-08-01 2009-02-19 Kubota Corp 柱状体の接続工法と柱状体セットとキー部材
WO2011049174A1 (ja) * 2009-10-21 2011-04-28 新日本製鐵株式会社 せん断キー構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158177A (ja) * 1995-12-07 1997-06-17 Nkk Corp 杭の継手構造
JPH1143936A (ja) * 1997-07-29 1999-02-16 Kubota Corp 杭の継手部構造
JP2001279666A (ja) * 2000-03-30 2001-10-10 Kubota Corp 鋼管建込み用治具および鋼管建込み・沈設方法
JP2006112225A (ja) * 2004-09-16 2006-04-27 Kubota Corp 柱状体の接合構造
JP2005282356A (ja) * 2005-06-17 2005-10-13 Kubota Corp 杭の継手部構造
JP2009035931A (ja) * 2007-08-01 2009-02-19 Kubota Corp 柱状体の接続工法と柱状体セットとキー部材
WO2011049174A1 (ja) * 2009-10-21 2011-04-28 新日本製鐵株式会社 せん断キー構造

Also Published As

Publication number Publication date
JPWO2016103313A1 (ja) 2017-06-08
JP6344487B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
JP5811289B2 (ja) 鋼管杭の継手構造、及び鋼管杭
WO2016132650A1 (ja) 鋼管の継手機構及び連結方法
JP6202102B2 (ja) 鋼管杭の継手構造
JP5413678B2 (ja) ケーブル保護管接続用ブロック体及びケーブル保護管の接続構造
JP4906629B2 (ja) 柱状体セットとその使用方法
US20100003074A1 (en) Connecting structure of steel bar
KR102065742B1 (ko) 강관 파일 연결구
JP2011032783A (ja) 杭継手構造及び連結部材
JP3877746B2 (ja) 杭の継手部構造
JP6405631B2 (ja) 鋼管杭の回転抑止構造
KR102104021B1 (ko) 강관 연결장치
JP2016023520A (ja) 杭継手の回転抑止構造
JP5916780B2 (ja) 鋼管連結構造及び鋼管連結方法
JP6344487B2 (ja) 鋼管杭の回転抑止構造
JP6497116B2 (ja) 鋼管杭の回転抑止構造
JP5538244B2 (ja) 鋼管の連結構造
TWI576488B (zh) 鋼管樁之制止旋轉構造
JP5782729B2 (ja) Z形鋼矢板、該z形鋼矢板で形成された鋼矢板壁
JP6477335B2 (ja) 鋼管杭継手の回転抑止構造
KR102081651B1 (ko) 강관 연결장치
JP5759046B1 (ja) 鋼管杭の接続構造
JP6344225B2 (ja) 鋼管杭の継手構造
JP7484869B2 (ja) 多段差込継手、継手付き鋼管、構造体、構造体の施工方法、多段差込継手の設計方法及び製造方法
JP2017044008A (ja) 鋼管杭継手の回転抑止構造
GB2477757A (en) Bayonet coupling for tubular sections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908924

Country of ref document: EP

Kind code of ref document: A1