WO2016103291A1 - 免震支持装置 - Google Patents

免震支持装置 Download PDF

Info

Publication number
WO2016103291A1
WO2016103291A1 PCT/JP2014/006375 JP2014006375W WO2016103291A1 WO 2016103291 A1 WO2016103291 A1 WO 2016103291A1 JP 2014006375 W JP2014006375 W JP 2014006375W WO 2016103291 A1 WO2016103291 A1 WO 2016103291A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
rotating body
seismic isolation
arc
curvature
Prior art date
Application number
PCT/JP2014/006375
Other languages
English (en)
French (fr)
Inventor
下田 郁夫
鈴木 清春
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to PCT/JP2014/006375 priority Critical patent/WO2016103291A1/ja
Priority to CN201480084275.6A priority patent/CN107110280A/zh
Priority to KR1020177016167A priority patent/KR20170100504A/ko
Priority to US15/538,093 priority patent/US20170342734A1/en
Priority to JP2016565591A priority patent/JPWO2016103291A1/ja
Priority to EP14908902.1A priority patent/EP3239557A4/en
Publication of WO2016103291A1 publication Critical patent/WO2016103291A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/021Decoupling of vibrations by means of point-of-contact supports, e.g. ball bearings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/027Preventive constructional measures against earthquake damage in existing buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping

Definitions

  • the present invention relates to an eccentric rolling pendulum type seismic isolation support device.
  • a seismic isolation support device using a sliding plate or a sliding surface or a rolling seismic isolation support device using a rolling member is used.
  • the sliding seismic isolation support device and the rolling seismic isolation support device have no restoring force, and after the vibration, it is necessary to manually return the furniture and the bookshelf to the original position.
  • the pendulum type seismic isolation device described in Patent Document 1 has been proposed. Is formed with a gentler curvature than the curved surface of the lower surface of the rotating body, and the period of the seismic isolation device is determined by the radius of curvature of the curved surface of the lower surface.
  • the present invention has been made in view of the above-mentioned points, the purpose of which can be installed as it is, such as fixtures such as display stands, building floors on which seismic isolation support objects such as bookshelves are installed,
  • An object of the present invention is to provide a seismic isolation support device that can easily increase the period.
  • the seismic isolation support device is fixed to one of the ground or base and the base isolation support object so as to receive the load of the base isolation support object to be supported on the ground or base.
  • a support body having a cross-section arc outer surface, a cross-section arc outer face having a shape complementary to the cross-section arc outer face of the support body, and a cross-section arc outer face having a shape complementary to the cross-section arc outer face of the support body. While being slidably in contact with the outer surface of the arc of the cross section of the support, it is configured to come into contact with the outer surface of the arc of the cross section so that it can freely roll to the flat surface on the other of the ground or base and the base isolation support object.
  • the section of the rotating body The center of curvature of Kototsu outer surface is positioned eccentrically to one side of one of the ground or base and seismic isolation support object in the vertical direction relative to the center of curvature of arcuate cross-sectional outer surface of the rotating body.
  • the rotating body comes into contact with the convex outer surface of the cross-section arc so that it can freely roll to the flat surface of the other of the ground or the base and the base isolation support object.
  • the center of curvature of the convex outer surface of the circular arc of the rotating body is eccentric to one side of the ground or the base and the base isolation support object in the vertical direction with respect to the center of curvature of the outer circular arc surface of the rotating body.
  • the vibration cycle is the center of curvature of the convex outer surface of the circular arc of the rotating body in a stationary state.
  • the center of curvature of the outer surface of the circular arc of the rotating body can be determined by the amount of eccentricity in the vertical direction.
  • the cross-sectional arc outer surface of the support body may be a cross-section arc convex surface
  • the cross-section arc outer surface of the rotating body may be a cross-section arc concave surface. It is a concave surface
  • the cross-sectional arc outer surface of the rotating body may be a cross-section arc convex surface.
  • the rotating body only needs to be rotatable about the center of curvature of the outer surface of the cross-section arc of the support.
  • the seismic isolation support device is stationary (the seismic isolation support object to be supported is the ground or the base.
  • the center is preferably located on the same vertical line.
  • the entire rotating body may be made of a rigid member.
  • the rotating body includes a rigid body having a cross-section arc outer surface and an elastic body fixed to the rigid body and having a cross-section arc convex outer surface.
  • an elastic body having a cross-section arc outer surface and a rigid body fixed to the elastic body and having a cross-section arc convex outer surface may be provided.
  • the elastic body can absorb the vertical vibration of the ground or the base, and the elastic body in the stationary state of the seismic isolation support device
  • the rotating body has an elastic body having a cross-sectional arc convex outer surface, an unintended flat surface on the cross-section arc convex outer surface that comes into contact with the flat surface can be obtained.
  • it is possible to perform rolling, and such an elastic body may be applied to the support so that the elastic deformation of the elastic body of the support can absorb the vibration in the vertical direction of the ground or the base. .
  • the support body may be fixed to the seismic isolation support object, and in this case, the rotating body is able to freely roll on the ground surface or the flat surface of the base at the convex outer surface of the cross-section arc.
  • the support may be fixed to the ground or the base, and in this case, the rotating body can freely roll on the flat surface of the seismic isolation support object at its convex arc outer surface.
  • the center of curvature of the convex outer surface of the circular arc of the rotating body only needs to be located eccentrically downward in the vertical direction with respect to the center of curvature of the outer surface of the circular arc of the rotating body.
  • Another seismic isolation support device is fixed to one of the ground or base and the base isolation support object so as to receive the load of the base isolation support object to be supported on the ground or base.
  • a support body having a convex outer surface with a first cross-section arc, and a ground or base having a cross-section arc concave outer surface slidably contacting the first cross-section arc convex outer surface of the support body
  • a rotating body that receives the load of the seismic isolation support object together with the support body, and a flat surface on the other of the seismic isolation support objects so as to freely roll on the convex outer surface of the second cross section.
  • the rotating body is rotatable about the center of curvature of the concave outer surface of the cross section of the rotating body relative to the support, and the second outer surface of the rotating arc of the rotating body is a cross section of the rotating body. It has a radius of curvature larger than the radius of curvature of the concave outer surface of the arc.
  • the center of curvature of the convex outer surface of the second cross-section arc of the rotating body is perpendicular to the center of curvature of the concave outer surface of the cross-section arc of the rotating body in one of the ground or base and the seismic isolation support object. It is located eccentric to the side.
  • the rotating body has a circular arc convex outer surface adapted to roll freely in contact with the flat surface of the other of the ground or the base and the seismic isolation support object. And the rotating body is rotatable with respect to the support body around the center of curvature of the outer surface of the circular arc concave section of the rotating body.
  • the curvature center of the convex outer surface of the second cross-section arc of the rotating body is in the vertical direction with respect to the center of curvature of the concave outer surface of the cross-section arc of the rotating body in a stationary state.
  • the vibration period of the rotating body in a stationary state To be determined by the eccentricity of the vertical direction between the center of curvature of the arcuate sectional ⁇ surface between the center of curvature of the surface arc convex outer surface rotating body, may work to readily long period of.
  • the first cross-section arc convex outer surface of the support body has the same radius of curvature as that of the cross-section arc concave outer surface of the rotating body,
  • the center of curvature of the first cross-section arc convex outer surface of the support and the cross-section arc concave outer surface of the rotating body may be located at the same position, and in another example, the first cross-section arc convex outer surface of the support Has a radius of curvature smaller than the radius of curvature of the concave outer surface of the circular arc of the rotating body.
  • the center of curvature of the first cross-section arc convex outer surface of the support and the cross-section arc concave outer surface and the second cross-section arc convex outer surface of the rotating body are on the same vertical line in the stationary state. It is good to be located.
  • the rotating body may consist entirely of a rigid member, but a rigid body having a cross-section arc concave outer surface and a second cross section fixed to the rigid body.
  • An elastic body having an arc convex outer surface and conversely, an elastic body having a cross-section arc concave outer surface, and a second cross-section arc convex outer surface fixed to the elastic body If the elastic body is interposed between the support body and the flat surface in this way, the elastic body can also absorb the vertical vibration of the ground or the base.
  • a trigger action can be obtained by some elastic deformation of the elastic body in a stationary state, and if the rotating body has an elastic body having a convex outer surface with a second cross-section, a flat surface Sliding against an unintended flat surface on the convex outer surface of the second cross-section arc in contact with
  • the rotating body can be reliably rotated and rolled, and the elastic body is applied to at least one of the main body portion and the sliding portion of the supporting body, thereby supporting the supporting body.
  • the elastic deformation of the elastic body may absorb vibrations in the vertical direction of the ground or base.
  • the support may be fixed to the seismic isolation support object.
  • the rotating body has a ground surface or a base with a second cross-section arc convex outer surface.
  • the center of curvature of the convex outer surface of the second cross-sectional arc of the rotator is offset upward in the vertical direction with respect to the center of curvature of the concave outer surface of the cross-section arc of the rotator.
  • the support body may be fixed to the ground or the base instead, as long as the support body is positioned at the center.
  • the rotating body is a convex outer surface of the second cross-section arc.
  • the center of curvature of the outer surface of the second circular arc of the rotating body is perpendicular to the center of curvature of the outer surface of the concave arc of the rotating body. What is necessary is just to be eccentrically located below.
  • the seismic isolation support object to be supported includes furniture such as a display stand such as a store, a book shelf such as an office, a library or a general house, office equipment, a factory machine and a machine bed. , Hospital examinations, diagnostic equipment, small warehouses, etc., but the present invention is not limited to these, and the base is a foundation floor built in the ground, a store, an office, a library, etc. Or the floor of structures, such as a general house, a hospital, a warehouse, etc. can be mentioned, but this invention is not limited to these.
  • the cross-section arc outer surface of the support and the cross-section arc outer surface of the rotating body, or the first cross-section arc convex outer surface of the rotating body and the cross-section arc concave outer surface of the rotating body, which become the sliding surface, are triggered by a trigger function (sliding occurs at vibration acceleration below a certain level. If the vibration acceleration of a certain level or more does not require a function that causes the sliding) and a vibration damping function (a function that dissipates vibration as heat and dissipates vibration energy that causes sliding), On the other hand, it is preferable to have a surface with an extremely small friction coefficient. When a trigger function and a vibration damping function are obtained, it is preferable to have a surface having a moderate friction coefficient.
  • Having a trigger function can avoid unnecessary and sensitive relative vibrations of the base-isolated support object by applying a small vibration acceleration of the ground or base and applying a small vibration acceleration to the base-isolated support object. If it has a vibration damping function, the base-isolated support object that once vibrates relative to the ground or the base can be quickly returned to a stationary state.
  • the convex outer surface of the circular arc of the rotating body that serves as the rolling surface is moderate in order not to slip easily against the ground or the base or the flat surface of the base-isolated support object in a horizontal earthquake vibration. It preferably has a magnitude coefficient of friction.
  • the cross-sectional arc outer surface of the support body and the cross-section arc outer surface and cross-section arc convex outer surface of the rotating body or the first cross-section arc convex outer surface of the support body and the cross-section arc concave outer surface and the second cross-section arc convex outer surface of the rotating body are: It may consist of a part of a cylindrical surface or a part of a spherical surface. If it consists of a part of a cylindrical surface, the seismic isolation effect can be given directionality. If it consists of a part of, the seismic isolation effect can be exhibited against vibrations in all directions on the horizontal plane.
  • Any elastic body may be made of natural rubber, synthetic rubber, or a synthetic resin material having elasticity.
  • the elastic body is bonded to a rigid body by vulcanization adhesion. Although it may be fixed, it may be fixed to a rigid body using other adhesives.
  • the seismic isolation support device rotates in the rotation of the rotating body around the center of curvature of the outer surface of the circular arc of the support or in the rotation of the center of curvature of the concave outer surface of the circular arc of the rotating body relative to the support. It may further comprise a detachment prevention mechanism that prevents the rotation of the rotating body from the support body by prohibiting rotation beyond a certain level due to a body collision, and the detachment prevention mechanism is attached to the support body. And an enclosure surrounding the rotating body. In this case, the surrounding body is rotated at a certain rotation of the rotating body around the center of curvature of the outer surface of the cross-section arc of the supporting body or with respect to the supporting body.
  • the rotating body may have an inner surface with which the rotating body comes into contact in a rotation of a certain level or more around the center of curvature of the concave outer surface of the circular arc of the rotating body.
  • the rotating body is prohibited from rotating beyond a certain level to prevent the rotating body from being detached from the support body. As a result, it is possible to prevent the seismic isolation support object from falling, and to minimize damage caused by the earthquake.
  • a seismic isolation support device that can be used as it is by installing a floor such as a display stand, a building floor on which a seismic isolation support target such as a book shelf is installed, and can easily increase the period. Can be offered.
  • FIG. 1 is a side view illustrating an example of a preferred embodiment according to the present invention.
  • FIG. 2 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 3 is a side view of another example of a preferred embodiment according to the present invention.
  • FIG. 4 is a side view of still another example of a preferred embodiment according to the present invention.
  • FIG. 5 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 6 is a side view of another example of a preferred embodiment according to the present invention.
  • FIG. 7 is an operation explanatory diagram of the example shown in FIG.
  • FIG. 8 is a side view illustrating still another example of the preferred embodiment according to the present invention.
  • FIG. 9 is a side view illustrating still another example of the preferred embodiment according to the present invention.
  • FIG. 10 is a side view illustrating still another example of a preferred embodiment according to the present invention.
  • FIG. 11 is an operation explanatory diagram of the example shown in FIG.
  • the seismic isolation support device 1 of this example is a load in the vertical direction V of a fixture 3 such as a store display stand that is a base isolation support object to be supported on the floor 2 of the store which is the ground or base.
  • a fixture 3 such as a store display stand that is a base isolation support object to be supported on the floor 2 of the store which is the ground or base.
  • it has a cross-section arc convex outer surface 7 having a center O1 which is a center of curvature, and is fixed to the lower portion of the outer box 4 of the fixture 3 through a fixture 6 by a screw 5 or the like.
  • the support 8 has a cross-sectional arc concave outer surface 9 which is complementary to the cross-sectional arc convex outer surface 7 of the support 8 and has a center of curvature at the same position as the center O1.
  • a circular arc convex outer surface 11 having a center O2 which is a center of curvature and a flat surface 10 of the floor 2 is slidable in the R direction around the center O1 and rotatably contacted with the convex outer surface 7 of the circular arc.
  • Centering on the center O2 is rotatable in the R direction, that is, the center O2 is And it comprises a rotating body 12 receives a load in the vertical direction V of furniture 3 through the support 8 together are adapted to freely rolling contact with the heart with the support 8.
  • the support 8 has a cylindrical main body 23 having a screw portion 21 at the upper portion and a constricted portion 22 at the lower portion, and a partial circular sphere portion 24 provided integrally with the constricted portion 22 of the main body 23.
  • the nut portion 25 screwed into the screw portion 21 is fixed to the fixture 6 at the screw portion 21 so that the position thereof can be adjusted in the vertical direction V, and the cross-section arc convex outer surface 7 is a partial circle as a part of a spherical surface. It consists of a partially spherical convex surface 26 of the sphere portion 24.
  • the rotating body 12 includes a cross-section arc concave outer surface 9 formed of a partial spherical concave surface 31 as a part of a spherical surface, and a cross-section arc convex outer surface 11 formed of a partial spherical convex surface 32 as a part of a spherical surface.
  • a frustoconical outer surface including a frustoconical outer surface or a frustoquad pyramid outer surface connected to the arcuate convex outer surface 11 on the cross section, and on the other hand, an outer surface of the truncated polygonal pyramid, etc.
  • the center O2 that is freely rotatable in the R direction around a certain center O1 and that is the center of curvature of the cross-section arc convex outer surface 11 of the rotating body 12 is in a stationary state (state shown in FIG. 1) of the seismic isolation support device 1.
  • the center O1 which is the center of curvature of the concave outer surface 9 of the circular arc of the rotating body 12
  • the center O1 which is the center of curvature of the cross-section arc convex outer surface 7 of the support 8 and the cross section of the rotating body 12.
  • the center O2 which is the center of curvature of the arc convex outer surface 11 is located on the same vertical line 35 in the stationary state of the seismic isolation support device 1, and the cross-section arc convex outer surface 11 of the rotating body 12 is seismically isolated.
  • the cross-section arc convex outer surface 11 has a radius of curvature r2 that is larger than the distance d between the position P where the flat surface 10 of the floor 2 contacts the center O1, and thus the eccentricity.
  • the core amount ⁇ is r2-d.
  • Each of the above-mentioned seismic isolation support devices 1 arranged in the lower part of the outer box 4 of the fixture 3 has a stationary state shown in FIG. 1 when the horizontal vibration H caused by the earthquake is not applied to the floor 2.
  • the load of the fixture 3 is shared on the floor 2 to support the fixture 3, and when the horizontal vibration H due to the earthquake is applied to the floor 2, the rotating body 12 of each seismic isolation support device 1.
  • the seismic isolation support device 1 rotates in the R direction around the center O 1 with respect to the partial spherical portion 24.
  • the period T of the pendulum motion of the rotator 12 is expressed by the equation (1).
  • is small, ⁇ / sin ⁇ 1.
  • the period T is expressed by the equation (2) and is a cross-sectional arc.
  • g is a gravitational acceleration
  • the rotating body 12 is configured to come into contact with the flat surface 10 of the floor 2 so as to roll and rotate freely at the cross-section arc convex outer surface 11, and in the stationary state, the cross-section arc convex outer surface 11.
  • the center O2 which is the center of curvature, is eccentric with respect to the center O1, which is the center of curvature of the concave arcuate outer surface 9 in the vertical direction V by the amount of eccentricity ⁇ .
  • the flat surface 10 of the floor 2 is used as it is.
  • the period T of the pendulum motion of the rotating body 12 can be determined by the eccentricity ⁇ which is the difference between the distance d and the radius of curvature r2 of the convex outer surface 11 of the cross-section arc.
  • the cross-section arc convex outer surface 7 is composed of a partial spherical convex surface 26
  • the cross-section arc convex outer surface 9 is composed of a partial spherical concave surface 31
  • the cross-section arc convex outer surface 11 is formed from the partial spherical convex surface 32. That is, each is a spherical surface Therefore, the fixture 3 can be isolated from the vibrations in all directions with respect to the horizontal direction H.
  • the mounting position of the support 8 on the fixture 6 by the screw portion 21 and the nut 25 is provided. Therefore, the fixture 3 can be seismically isolated at an arbitrary position in the vertical direction V.
  • the rotating body 12 is formed as an integral body from a rigid body, but instead, for example, as shown in FIG. A rigid body 42 having an outer surface 9, a frustoconical outer surface 33 and a partial spherical convex surface 41, and a natural rubber which is fixed to the partial spherical convex surface 41 of the rigid body 42 by vulcanization and has a cross-sectional arc convex outer surface 11. If the rotating body 12 is provided with the elastic body 43 as a covering layer for the rigid body 42 as described above, it is possible to prevent earthquakes in all directions with respect to the horizontal direction H.
  • the elastic body 43 can also support the isolation of the fixture 3 against the vibration caused by the earthquake in the vertical direction V applied to the floor 2 due to the elastic deformation of the elastic body 43. It can also protect the goods, and in addition, it can be So that it is possible to obtain a trigger action in flattening of the cross-sectional arc convex outer surface 11 due to the recess of the partial by partial elastic deformation of the portion of the elastic body 43 for receiving a load of direction V.
  • the seismic isolation support device 1 shown in FIG. 1 and FIG. 3 there is a possibility that the rotating body 12 may be detached from the supporting body 8 in the earthquake vibration with the large rotation angle ⁇ of the rotating body 12, but as shown in FIG. 4. Furthermore, the seismic isolation support device 1 rotates more than a certain amount due to the collision of the rotating body 12 in the R direction rotation of the rotating body 12 around the center O1 that is the center of curvature of the convex outer surface 7 of the cross section of the support 8. And a detachment prevention mechanism 51 for preventing the rotator 12 from being detached from the support 8.
  • the detachment prevention mechanism 51 is attached to the support 8 and surrounds the rotator 12.
  • the surrounding body 52 is provided.
  • the surrounding body 52 is sandwiched between the fixture 6 and the nut 25 and fixed to the screw portion 21 of the support body 8, and the rotating body 12 is integrated with the outer peripheral edge of the ceiling portion 55 at the upper end.
  • a cylindrical portion 56 that surrounds the lower portion of the cylindrical portion 56, projecting outward in the horizontal direction H from the lower end of the cylindrical portion 56, and contacting the flat surface 10 of the floor 2 at the annular lower surface 57.
  • the annular outer flange 58 and the annular outer flange 58 are integrally formed with the cylindrical portion 56 at the upper portion thereof, projecting inward in the horizontal direction H from the cylindrical inner surface 59 of the cylindrical portion 56, and the rotating body 12 can rotate.
  • an annular inner flange 62 having a cylindrical inner peripheral surface 61 defining an opening 60.
  • the above rotation is prohibited, and therefore, in the rotation of the rotating body 12 around the center O1 that is the center of curvature of the cross-section arc convex outer surface 7 of the support 8, the rotating body
  • the surrounding body 52 having the lower surface 63 of the ceiling portion 55, which is the inner surface that the 12 contacts, prevents the rotator 12 from being detached from the partial spherical portion 24 of the support 8.
  • the seismic isolation support device 1 provided with the separation preventing mechanism 51, even if the rotating body 12 is largely rotated by an unintended large horizontal H vibration, the rotating body 12 is prohibited from rotating beyond a certain level. As a result of preventing the detachment of the rotating body 12 from 8, the fall of the fixture 3 can be prevented, and damage caused by the earthquake can be minimized.
  • the seismic isolation support device 1 includes the annular outer flange portion 58 that is in contact with the flat surface 10 at the annular lower surface 57 in the stationary state of the seismic isolation support device 1.
  • the inside 65 of the enclosure 52 in a stationary state can be sealed with respect to the outside, dust can be prevented from entering the inside 65, and malfunction of the seismic isolation support device 1 due to dust can be avoided.
  • an elastic plate similar to the elastic body 43 on the annular lower surface 57 by sticking or the like, or by providing a gap about the thickness of the elastic body 43 between the annular lower surface 57 and the flat surface 10.
  • the support 8 is fixed to the outer box 4 of the fixture 3, and the rotating body 12 is brought into rolling contact with the flat surface 10 of the floor 2 with its circular arc convex outer surface 11.
  • the support 8 may be fixed to the floor 2 with the screw portion 21, and the cross-section arc convex outer surface 11 of the rotating body 12 may be rotatably contacted with the flat surface 71 which is the lower surface of the outer box 4 of the fixture 3.
  • the combination of the support body 8 and the rotating body 12 may be reversed upside down, and in such a seismic isolation support device that is upside down, the center of curvature of the cross-section arc convex outer surface 11 of the rotating body 12 is obtained.
  • the center O2 is deviated from the center O1, which is the center of curvature of the cross-section arc concave outer surface 9 of the rotator 12, with a decentering amount ⁇ below the floor 2 in the vertical direction V when the seismic isolation support device is stationary. It is good to be positioned in the center.
  • a fixture 5 is attached to the lower portion of the outer box 4 of the fixture 3 by a screw 5 or the like so as to receive a load in the vertical direction V of the fixture 3 to be supported on the floor 2.
  • a support body 8a having a cross-section arc convex outer surface 7a having a center O1 which is the center of curvature, and a shape complementary to the cross-section arc convex outer face 7a of the support body 8a.
  • the circular arc concave outer surface 9a having the center of curvature at the same position as the center O1, and the cross-sectional arc concave outer surface 9a is slidable in the R direction around the center O1 on the circular arc convex outer surface 7a and is rotatable.
  • the flat surface 10 of the floor 2 is in contact with the flat arc surface 11a having the center of curvature O2 in a circular arc convex outer surface 11a so as to be rotatable in the R direction around the center O2, that is, freely rolling around the center O2.
  • the support 8a is a circular arc having a cylindrical main body 23a having a screw portion 21a at the upper part and a partially spherical convex surface 26a formed integrally with the lower part of the main body 23a and part of a spherical surface.
  • the main body 23a has a convex outer surface 7a and includes a sliding portion 27a disposed between the main body 23a and the rotating body 12a.
  • the main body 23a is positioned with respect to the vertical direction V by a nut 25 screwed into the screw portion 21a.
  • the screw portion 21a is adjustably fixed to the fixture 6 and is fixed to the lower portion of the outer casing 4 of the fixture 3 via the fixture 6.
  • the sliding portion 27a is formed of the main body 23a.
  • the disk part 22a formed integrally in the lower part of this part and the partial sphere part 24a which was formed integrally in the disk part 22a and had the partial sphere convex surface 26a were comprised.
  • the rotating body 12a includes a cross-section arc concave outer surface 9a composed of a partial spherical concave surface 31a as a part of a spherical surface, and a cross-section arc convex outer surface 11a composed of a partial spherical convex surface 32a as a part of a spherical surface. And an annular end face 33 connected to the cross-sectional arc convex outer surface 11a at the inner peripheral edge and connected to the cross-sectional arc convex outer surface 11a at the outer peripheral edge, and a rotating body with respect to the cross-section arc convex outer surface 7a of the support 8a.
  • the circular arc concave outer surface 9a of 12a is slidably rotatable in the R direction around the center O1 which is also the center of curvature of the circular arc concave outer surface 9a.
  • the convex outer surface 11a of the circular arc is larger than the radius of curvature r1 of the concave outer surface 9a of the circular arc of the rotating body 12a.
  • the center O2 which has a large radius of curvature r2 and is the center of curvature of the cross-section arc convex outer surface 11a of the rotator 12a is a cross section of the rotator 12a in the stationary state of the seismic isolation support device 1a (the state shown in FIG.
  • the center O1 which is the center of curvature of the convex outer surface 7a and the cross-section arc concave outer surface 9a of the rotating body 12a and the center O2 which is the center of curvature of the cross-section arc convex outer surface 11a of the rotating body 12a are in the stationary state of the seismic isolation support device 1a.
  • the cross-section arc convex outer surface 7a of the support 8a has the same radius of curvature r1 as that of the cross-section arc concave outer surface 9a of the rotating body 12a.
  • the center O1 which is the center of curvature of the cross-section arc convex outer surface 7a of the support 8a and the cross-section arc concave outer surface 9a of the rotating body 12a, is located at the same position.
  • Each of the above-described seismic isolation support devices 1a arranged at the bottom of the outer box 4 of the fixture 3 has a stationary state as shown in FIG. 6 when the horizontal vibration H is not applied to the floor 2 due to the earthquake.
  • the load of the fixture 3 is shared on the floor 2 to support the fixture 3, and when a horizontal vibration H is applied to the floor 2 due to an earthquake, the rotating body 12a of each seismic isolation support device 1a 7 is centered with respect to the partial circular sphere portion 24a at the cross-section arc convex outer surface 11a on the flat surface 10 of the floor 2 with the sliding of the cross-section arc concave outer surface 9a with respect to the cross-section arc convex outer surface 7a as shown in FIG.
  • the seismic isolation supporting device 1a prevents the horizontal H vibration applied to the floor 2 from being transmitted to the fixture 3, thus causing the fixture 3 to move.
  • Cross section due to eccentricity ⁇ between center O1 and center O2 while supporting seismic isolation Due to the difference between the radius of curvature r2 of the arc convex outer surface 11a and the radius of curvature r1 of the cross-section arc concave outer surface 9a, the rotating body 12a is adapted to lift the fixture 3 in the vertical direction V along with the rotation in the R direction.
  • the period T of the pendulum motion of the rotating body 12a is expressed by the equation (1).
  • is small, ⁇ / sin ⁇ 1
  • the period T is expressed by the equation (2).
  • the rotating body 12a has the cross-section arc convex outer surface 11a adapted to roll and rotate in contact with the flat surface 10 of the floor 2, and in the stationary state, the cross-section arc convex outer surface 11a.
  • the center O2 which is the center of curvature, is eccentric with respect to the center O1, which is the center of curvature of the concave arcuate outer surface 9a, by the amount of eccentricity ⁇ above the vertical direction V.
  • the flat surface 10 of the floor 2 is used as it is.
  • the period T of the pendulum motion of the rotating body 12a can be determined by the eccentricity ⁇ , which is the difference between the radius of curvature r1 of the cross-section arc concave outer surface 9a and the radius of curvature r2 of the cross-section arc convex outer surface 11a.
  • is the difference between the radius of curvature r1 of the cross-section arc concave outer surface 9a and the radius of curvature r2 of the cross-section arc convex outer surface 11a.
  • is the difference between the radius of curvature r1 of the cross-section arc concave outer surface 9a and the radius of curvature r2 of the cross-section arc convex outer surface 11a.
  • is the difference between the radius of curvature r1 of the cross-section arc concave outer surface 9a and the radius of curvature r2 of the cross-section arc convex outer surface 11a.
  • the fixture 3 can be isolated from the vibrations of the omnidirectional earthquake with respect to the horizontal direction H. Since the attachment position of the support 8a to the fixture 6 can be adjusted by the portion 21a and the nut 25, the fixture 3 can be seismically isolated at an arbitrary position in the vertical direction V.
  • the rotating body 12a is formed as an integral body from a rigid body, but instead, for example, as shown in FIG. A rigid body 42a having a partial spherical concave surface 31a, an annular end surface 33a and a partial circular convex surface 41a formed of the outer surface 9a, and a cross-sectional arc convex fixed to the partial spherical convex surface 41a of the rigid body 42a by vulcanization adhesion
  • the elastic body 43a made of natural rubber having a partially spherical convex surface 32a made of the outer surface 11a may be provided.
  • the rotating body 12a includes the elastic body 43a as a covering layer for the rigid body 42a.
  • the fixture 3 can be isolated and supported against earthquake vibrations in all directions with respect to the horizontal direction H, and also due to elastic deformation of the elastic body 43a against vibrations caused by an earthquake in the vertical direction V applied to the floor 2. ⁇ 3 is seismically isolated and can protect the fixture 3 itself and the articles in the fixture 3, and in addition, the portion of the elastic body 43 a that receives the load in the vertical direction V in a stationary state is partially recessed due to elastic deformation.
  • the triggering action can be obtained by flattening the cross-section arc convex outer surface 11a caused by the above.
  • the cross-sectional arc convex outer surface 7a of the support 8a has the center O1 at the same position as the center O1 of the cross-sectional arc concave outer surface 9a of the rotating body 12a, and although the radius of curvature r1 is the same as the radius of curvature r1 of the circular arc concave outer surface 9a of the rotating body 12a, instead of this, for example, as shown in FIG.
  • the device 1a supports the rotation of the rotating body 12a in the R direction around the center O1, which is the center of curvature of the circular arc concave outer surface 9a with respect to the support 8a, by preventing the rotation of the rotating body 12a from exceeding a certain amount.
  • the above-described detachment preventing mechanism 51 for preventing the rotator 12a from being detached from the body 8a may be further provided.
  • the surrounding body 52 surrounds the rotating body 12a, and the cylindrical portion 56 is provided. Encloses the rotating body 12a from the periphery, and the rotating body 12a can be rotated by the opening 60.
  • a large rotation angle of the rotating body 12a around the center O1 that is the center of curvature of the cross-section arc convex outer surface 7a of the support 8a In the rotation of the rotating body 12a in the R direction more than a certain level due to the vibration of the horizontal H earthquake with ⁇ , the rotating body 12a collides with and comes into contact with the lower surface 63 of the ceiling portion 55, and further rotation in the R direction occurs.
  • the rotating body 12a comes into contact with the rotating body 12a when the rotating body 12a rotates about a center O1 that is the center of curvature of the cross-section arc convex outer surface 7a of the supporting body 8a.
  • the surrounding body 52 having the lower surface 63 of the ceiling portion 55 which is the inner surface prevents the rotator 12a from being detached from the sliding portion 27a of the support 8a in the same manner as described above.
  • the seismic isolation support device 1a provided with the separation preventing mechanism 51, as described above, even if the rotating body 12a is to be rotated greatly by an unintended large horizontal H vibration, the rotating body 12a is rotated more than a certain amount. As a result of prohibition and prevention of detachment of the rotating body 12a from the support body 8a, it is possible to prevent the fixture 3 from falling down and to minimize damage caused by an earthquake.
  • the separation preventing mechanism 51 with respect to the seismic isolation support device 1a also includes the annular outer flange 58 that contacts the flat surface 10 with the annular lower surface 57 in the stationary state of the seismic isolation support device 1a.
  • the inside 65 of the surrounding body 52 in the stationary state can be sealed from the outside, dust can be prevented from entering the inside 65, and malfunction of the seismic isolation support device 1a due to dust can be avoided.
  • an elastic plate may be provided on the annular lower surface 57, or a gap may be provided between the annular lower surface 57 and the flat surface 10.
  • the support 8a is fixed to the outer box 4 of the fixture 3, and the cross-section arc convex outer surface 11a of the rotating body 12a is brought into rolling contact with the flat surface 10 of the floor 2,
  • the support body 8 a is fixed to the floor 2 with the screw portion 21 a, and the cross-section arc convex outer surface 11 a of the rotating body 12 a is placed on the flat surface 71 that is the lower surface of the outer box 4 of the fixture 3.
  • the combination of the support body 8a and the rotating body 12a may be turned upside down.

Abstract

免震支持装置1は、床2上で支持すべき什器3の鉛直方向Vの荷重を受けるべく、什器3の外函4に固定されるようになっていると共に断面円弧凸外面7を有した支持体8と、断面円弧外面9で支持体8の断面円弧凸外面7に中心O1を中心としてR方向に摺動自在であって回転自在に接触する一方、床2の平坦面10に中心O2を中心として断面円弧凸外面11で転がり自在に接触するようになっていると共に支持体8を介する什器3の鉛直方向Vの荷重を支持体8と共に受ける回転体12とを具備している。

Description

免震支持装置
 本発明は、偏芯転がり振り子型の免震支持装置に関する。
 陳列台等の什器、書棚等を免震支持するには、滑り板若しくは滑り面を用いた滑り免震支持装置又は転がり部材を用いた転がり免震支持装置等が用いられている。
特開平7-310459号公報
 ところで、滑り免震支持装置及び転がり免震支持装置等には、復元力がなく、震動後においては、什器、書棚等を人手により押して元の位置に戻す復帰作業が必要となる。
 斯かる煩雑であって力の掛かる復帰作業をなくすべく、例えば、特許文献1に記載の振り子型の免震装置が提案されているが、本提案の免震装置では、凹部の中心部の周囲の周辺部が回転体の下面の曲面より緩やかな曲率に形成されて、この下面の曲面の曲率半径により免震装置の周期が決定されるようになっている。
 しかしながら、特許文献1に記載の振り子型の免震装置では、凹部をもった支持基盤を必要とするために、陳列台等の什器、書棚等が設置される建物床等を免震装置に直接利用し難く、しかも、長周期地震に対応すべく、斯かる振り子型の免震装置の長周期化を図るには、大きな支持基盤を必要する結果、設置対象が限定されることになる。
 本発明は、前記諸点に鑑みてなされたものであり、その目的は、陳列台等の什器、書棚等の免震支持対象物が設置される建物床等をそのまま利用して設置でき、しかも、容易に長周期化を図り得る免震支持装置を提供すことにある。
 本発明による免震支持装置は、地盤又は基台上で支持すべき免震支持対象物の荷重を受けるべく、当該地盤又は基台及び免震支持対象物のうちの一方に固定されるようになっていると共に断面円弧外面を有した支持体と、この支持体の断面円弧外面に相補的な形状の断面円弧外面を有すると共に当該支持体の断面円弧外面に相補的な形状の断面円弧外面で支持体の断面円弧外面に摺動自在に接触する一方、地盤又は基台及び免震支持対象物のうちの他方における平坦面に転がり自在に断面円弧凸外面で接触するようになっていると共に支持体と共に免震支持対象物の荷重を受ける回転体とを具備しており、回転体の断面円弧凸外面は、回転体の断面円弧外面の曲率半径よりも大きな曲率半径を有しており、静止状態において、回転体の断面円弧凸外面の曲率中心は、回転体の断面円弧外面の曲率中心に対して鉛直方向において地盤又は基台及び免震支持対象物のうちの一方の側に偏芯して位置している。
 本発明による免震支持装置によれば、回転体が地盤又は基台及び免震支持対象物のうちの他方における平坦面に転がり自在にその断面円弧凸外面で接触するようになっていると共に、静止状態において、回転体の断面円弧凸外面の曲率中心が回転体の断面円弧外面の曲率中心に対して鉛直方向において地盤又は基台及び免震支持対象物のうちの一方の側に偏芯して位置している結果、陳列台等の什器、書棚等が設置される建物床等をそのまま利用して設置できて、しかも、振動周期を、静止状態における回転体の断面円弧凸外面の曲率中心と回転体の断面円弧外面の曲率中心との鉛直方向の偏芯量で決定できるために、容易に長周期化を図り得る。
 本発明では、支持体の断面円弧外面は、断面円弧凸面であり、回転体の断面円弧外面は、断面円弧凹面であってもよく、これに代えて、支持体の断面円弧外面は、断面円弧凹面であり、回転体の断面円弧外面は、断面円弧凸面であってもよい。
 本発明では、回転体は、支持体の断面円弧外面の曲率中心を中心として回転自在であればよく、この場合、免震支持装置の静止状態(支持する免震支持対象物が地盤又は基台に対して水平方向に相対的に振動していなく、免震支持装置が免震機能を発揮していない状態)では、支持体の断面円弧外面の曲率中心と回転体の断面円弧凸外面の曲率中心とは、同一の鉛直線上に位置しているとよい。
 回転体は、本発明では、その全体が剛性部材からなっていてもよいが、断面円弧外面を有した剛体と、この剛体に固着されていると共に断面円弧凸外面を有した弾性体とを具備していてもよく、これとは反対に、断面円弧外面を有した弾性体と、この弾性体に固着されていると共に断面円弧凸外面を有した剛体とを具備していてもよく、このように支持体と平坦面との間に弾性体が介在するようにすると、弾性体により地盤又は基台の鉛直方向の振動をも吸収できる上に、免震支持装置の静止状態における弾性体の多少の弾性変形でトリガ作用を得ることができ、更に、断面円弧凸外面を有した弾性体を回転体が具備している場合には、平坦面と接触する断面円弧凸外面での意図しない平坦面に対する滑りを防止し得て、確実に回転体の回転、転動を行うことができ、また、斯かる弾性体を支持体に適用して、支持体の弾性体の弾性変形で地盤又は基台の鉛直方向の振動をも吸収できるようにしてもよい。
 本発明では、支持体は、免震支持対象物に固定されるようになっていてもよく、この場合、回転体は、その断面円弧凸外面で地盤又は基台の平坦面に転がり自在に接触するようになっており、回転体の断面円弧凸外面の曲率中心は、回転体の断面円弧外面の曲率中心に対して鉛直方向の上方に偏芯して位置していればよく、これとは逆に、支持体は、地盤又は基台に固定されるようになっていてもよく、この場合には、回転体は、その断面円弧凸外面で免震支持対象物の平坦面に転がり自在に接触するようになっており、回転体の断面円弧凸外面の曲率中心は、回転体の断面円弧外面の曲率中心に対して鉛直方向の下方に偏芯して位置していればよい。
 本発明による他の免震支持装置は、地盤又は基台上で支持すべき免震支持対象物の荷重を受けるべく、当該地盤又は基台及び免震支持対象物のうちの一方に固定されるようになっていると共に第一の断面円弧凸外面を有した支持体と、この支持体の第一の断面円弧凸外面に摺動自在に接触する断面円弧凹外面を有する一方、地盤又は基台及び免震支持対象物のうちの他方における平坦面に第二の断面円弧凸外面で転がり自在に接触するようになっていると共に、支持体と共に免震支持対象物の荷重を受ける回転体とを具備しており、回転体は、支持体に対して、回転体の断面円弧凹外面の曲率中心を中心として回転自在であり、回転体の第二の断面円弧凸外面は、当該回転体の断面円弧凹外面の曲率半径よりも大きな曲率半径を有しており、静止状態において、回転体の第二の断面円弧凸外面の曲率中心は、回転体の断面円弧凹外面の曲率中心に対して鉛直方向において地盤又は基台及び免震支持対象物のうちの一方の側に偏芯して位置している。
 斯かる本発明による他の免震支持装置によれば、地盤又は基台及び免震支持対象物のうちの他方における平坦面に転がり自在に接触するようになっている断面円弧凸外面を回転体が有すると共に、回転体が支持体に対して、回転体の断面円弧凹外面の曲率中心を中心として回転自在であり、回転体の第二の断面円弧凸外面が当該回転体の断面円弧凹外面の曲率半径よりも大きな曲率半径を有しており、静止状態において、回転体の第二の断面円弧凸外面の曲率中心が回転体の断面円弧凹外面の曲率中心に対して鉛直方向において地盤又は基台及び免震支持対象物のうちの一方の側に偏芯して位置している結果、陳列台等の什器、書棚等が設置される建物床等をそのまま利用して設置できて、しかも、振動周期を、静止状態における回転体の断面円弧凸外面の曲率中心と回転体の断面円弧凹外面の曲率中心との鉛直方向の偏芯量で決定できるために、容易に長周期化を図り得る。
 本発明の他の免震支持装置の好ましい例では、支持体の第一の断面円弧凸外面は、回転体の断面円弧凹外面の曲率半径と同一の曲率半径を有しており、この場合、支持体の第一の断面円弧凸外面と回転体の断面円弧凹外面との曲率中心は、同一の位置に位置しているとよく、他の例では、支持体の第一の断面円弧凸外面は、回転体の断面円弧凹外面の曲率半径よりも小さな曲率半径を有している。
 斯かる他の免震装置では、その静止状態において、支持体の第一の断面円弧凸外面並びに回転体の断面円弧凹外面及び第二の断面円弧凸外面の曲率中心は、同一の鉛直線上に位置しているとよい。
 本発明の他の免震支持装置では、回転体は、その全体が剛性部材からなっていてもよいが、断面円弧凹外面を有した剛体と、この剛体に固着されていると共に第二の断面円弧凸外面を有した弾性体とを具備していてもよく、これとは反対に、断面円弧凹外面を有した弾性体と、この弾性体に固着されていると共に第二の断面円弧凸外面を有した剛体とを具備していてもよく、このように支持体と平坦面との間に弾性体が介在するようにすると、弾性体により地盤又は基台の鉛直方向の振動をも吸収できる上に、静止状態における弾性体の多少の弾性変形でトリガ作用を得ることができ、更に、第二の断面円弧凸外面を有した弾性体を回転体が具備している場合には、平坦面と接触する第二の断面円弧凸外面での意図しない平坦面に対する滑りを防止し得て、確実に回転体の回転、転動を行うことができ、また、斯かる弾性体を支持体の本体部と摺動部とのうちの少なくとも一方に適用して、支持体の弾性体の弾性変形で地盤又は基台の鉛直方向の振動をも吸収できるようにしてもよい。
 本発明の他の免震支持装置では、支持体は、免震支持対象物に固定されるようになっていてもよく、この場合、回転体は、第二の断面円弧凸外面で地盤又は基台の平坦面に転がり自在に接触するようになっており、回転体の第二の断面円弧凸外面の曲率中心は、回転体の断面円弧凹外面の曲率中心に対して鉛直方向の上方に偏芯して位置していればよく、これに代えて、支持体は、地盤又は基台に固定されるようになっていてもよく、この場合、回転体は、第二の断面円弧凸外面で免震支持対象物の平坦面に回転自在に接触するようになっており、回転体の第二の断面円弧凸外面の曲率中心は、回転体の断面円弧凹外面の曲率中心に対して鉛直方向の下方に偏芯して位置していればよい。
 本発明において、支持すべき免震支持対象物としては、商店等の陳列台等の什器、事務所、図書館若しくは一般家屋等の書棚、事務機器、工場の機械類及び機械類が搭載されたベッド、病院の検査、診断機器、小型の倉庫等を挙げることができるが、本発明は、これらに限定されなく、また、基台としては、地盤に構築された基礎床、商店、事務所、図書館若しくは一般家屋、病院、倉庫等の構造物の床等を挙げることができるが、本発明は、これらに限定されない。
 摺動面となる支持体の断面円弧外面及び回転体の断面円弧外面は又は第一の断面円弧凸外面及び回転体の断面円弧凹外面は、トリガ機能(一定以下の振動加速度では摺動が生じなく、一定以上の振動加速度では当該摺動が生じる機能)及び振動減衰機能(摺動において振動を熱とし放散して摺動の起因となる振動エネルギーを吸収する機能)を求めない場合には、摩擦係数の極めて小さい面からなっているとよく、これに対して、トリガ機能及び振動減衰機能を求める場合には、適度の大きさの摩擦係数をもった面からなっているとよい。トリガ機能を有していると、地盤又は基台の小さな振動加速度及び免震支持対象物への小さな振動加速度の付与による免震支持対象物の不必要であって過敏な相対振動を避けることができ、振動減衰機能を有していると、地盤又は基台に対して一旦相対振動した免震支持対象物を早期に静止状態に復帰させることができる。
 一方、転がり面となる回転体の断面円弧凸外面は、水平方向の地震の震動において、地盤若しくは基台又は免震支持対象物の平坦面に対して容易に滑らないで転がるように、適度の大きさの摩擦係数を有しているのが好ましい。
 本発明における支持体の断面円弧外面並びに回転体の断面円弧外面及び断面円弧凸外面又は支持体の第一の断面円弧凸外面並びに回転体の断面円弧凹外面及び第二の断面円弧凸外面は、円筒面の一部からなっていても、円球面の一部からなっていてもよく、円筒面の一部からなっている場合には、免震効果に方向性をもたせることができ、円球面の一部からなっている場合には、水平面の全方向の振動に対して免震効果を発揮できる。免震効果に方向性をもたせる場合、支持体の断面円弧外面並びに回転体の断面円弧外面及び断面円弧凸外面の全て又は支持体の第一の断面円弧凸外面並びに回転体の断面円弧凹外面及び第二の断面円弧凸外面の全てを円筒面の一部から構成する必要はなく、いずれかを円筒面の一部から構成すればよい。
 いずれの弾性体も、天然ゴム、合成ゴム又は弾性を有する合成樹脂材料からなっていてもよく、斯かる弾性体は、それが天然ゴム又は合成ゴムからなる場合には、剛体に加硫接着により固着されていてもよいが、その他の接着剤を用いて剛体に固着されてもよい。
 本発明による免震支持装置は、支持体の断面円弧外面の曲率中心を中心とした回転体の回転において又は支持体に対する回転体の断面円弧凹外面の曲率中心を中心とした回転において、当該回転体の衝突でその一定以上の回転を禁止して支持体からの回転体の離脱を防止する離脱防止機構を更に具備していてもよく、斯かる離脱防止機構は、支持体に取付けられていると共に回転体を囲繞している囲繞体を具備していてもよく、この場合、囲繞体は、支持体の断面円弧外面の曲率中心を中心とした回転体の一定以上の回転において又は支持体に対する回転体の断面円弧凹外面の曲率中心を中心とした一定以上の回転において、当該回転体が接触する内面を有していてもよい。
 離脱防止機構を具備している免震支持装置では、意図しない大きな震動で回転体が大きく回転されようとしても、回転体の一定以上の回転を禁止して支持体からの回転体の離脱を防止し得る結果、免震支持対象物の転倒等を防ぐことができ、地震による被害を最小限にし得る。
 本発明によれば、陳列台等の什器、書棚等の免震支持対象物が設置される建物床等をそのまま利用できて設置でき、しかも、容易に長周期化を図り得る免震支持装置を提供すことができる。
図1は、本発明による好ましい実施態様の一例の側面説明図である。 図2は、図1に示す例の動作説明図である。 図3は、本発明による好ましい実施態様の他の例の側面説明図である。 図4は、本発明による好ましい実施態様の更に他の例の側面説明図である。 図5は、図4に示す例の動作説明図である。 図6は、本発明による好ましい実施態様の他の例の側面説明図である。 図7は、図6に示す例の動作説明図である。 図8は、本発明による好ましい実施態様の更に他の例の側面説明図である。 図9は、本発明による好ましい実施態様の更に他の例の側面説明図である。 図10は、本発明による好ましい実施態様の更に他の例の側面説明図である。 図11は、図10に示す例の動作説明図である。
 次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。
 図1において、本例の免震支持装置1は、地盤又は基台である商店の床2上で支持すべき免震支持対象物である商店の陳列台等の什器3の鉛直方向Vの荷重を受けるべく、当該什器3の外函4の下部に螺子5等により取付具6を介して固定されるようになっていると共に曲率中心である中心O1をもった断面円弧凸外面7を有した支持体8と、支持体8の断面円弧凸外面7に相補的な形状であって中心O1と同一の位置に曲率中心をもつ断面円弧凹外面9を有すると共に断面円弧凹外面9で支持体8の断面円弧凸外面7に中心O1を中心としてR方向に摺動自在であって回転自在に接触する一方、床2の平坦面10に曲率中心である中心O2をもった断面円弧凸外面11で中心O2を中心としてR方向に回転自在に接触、即ち、中心O2を中心として転がり自在に接触するようになっていると共に支持体8を介する什器3の鉛直方向Vの荷重を支持体8と共に受ける回転体12とを具備している。
 支持体8は、上部に螺子部21を下部に括れ部22を夫々有する円柱状の本体23と、本体23の括れ部22に一体的に設けられた部分円球部24とを有しており、螺子部21に螺合されたナット25により鉛直方向Vに関して位置調整可能に当該螺子部21において取付具6に固定されており、断面円弧凸外面7は、円球面の一部としての部分円球部24の部分円球凸面26からなっている。
 回転体12は、円球面の一部としての部分円球凹面31からなっている断面円弧凹外面9と、円球面の一部としての部分円球凸面32からなっている断面円弧凸外面11と、一方では、断面円弧凹外面9に連接し、他方では、断面円弧凸外面11に連接した截頭円錐外面又は截頭四角錐外面等を含む截頭多角錐外面、本例では、截頭円錐外面33とを具備しており、支持体8の断面円弧凸外面7に対して、支持体8の断面円弧凸外面7の曲率中心であって回転体12の断面円弧凹外面9の曲率中心でもある中心O1を中心として、R方向に回転自在であり、回転体12の断面円弧凸外面11の曲率中心である中心O2は、免震支持装置1の静止状態(図1に示す状態)において、回転体12の断面円弧凹外面9の曲率中心である中心O1に対して鉛直方向Vにおいて什器3の側である上方に偏芯量δをもって偏芯して位置しており、支持体8の断面円弧凸外面7の曲率中心である中心O1と回転体12の断面円弧凸外面11の曲率中心である中心O2とは、免震支持装置1の静止状態において、同一の鉛直線35上に位置しており、回転体12の断面円弧凸外面11は、免震支持装置1の静止状態において当該断面円弧凸外面11が床2の平坦面10に接触する位置Pと中心O1との間の距離dよりも大きな曲率半径r2を有しており、而して、偏芯量δは、r2-dとなっている。
 什器3の外函4の下部に複数個、少なくとも3個配される前述の免震支持装置1の夫々は、地震による水平方向Hの震動が床2に加わらない場合は、図1に示す静止状態にあって、床2上で什器3の荷重を分担して当該什器3を支持しており、地震による水平方向Hの震動が床2に加わると、各免震支持装置1の回転体12は、図2に示すように、床2の平坦面10上で部分円球部24に対して中心O1を中心としてR方向に転がって回転し、この回転により各免震支持装置1は、床2に加わる水平方向Hの震動の什器3への伝達を阻止して、而して、什器3を免震支持する一方、中心O1と中心O2との偏芯量δに起因する断面円弧凸外面11の曲率半径r2と距離dとの相違により、R方向の回転と共に什器3を鉛直方向Vに持ち上げるようになっている回転体12には、回転体12の各回転位置で静止状態への復帰モーメントM=W・δ・sinθ(但し、Wは、回転体12に加わる荷重、δは、偏芯量δ=(r2-d)、θは、回転体12の回転角である)が生じ、この復帰モーメントMにより、所謂、周期Tをもった振り子運動を行う回転体12は、地震による水平方向Hの床2の震動の消滅後、断面円弧凸外面7に対する断面円弧凹外面9の滑り摩擦及び床2の平坦面10に対する回転体12の転がり摩擦による震動エネルギーの消散による振り子運動の収斂と共に静止状態における回転位置に復帰されて、什器3を地震震動前の元の位置に戻すようになっている。
 回転体12の振り子運動の周期Tは、式(1)で表され、θが小さい場合には、θ/sinθ≒1となる結果、周期Tは、式(2)で表されて、断面円弧凸外面11の曲率半径r2と距離dとの差である偏芯量δ(=r2-d)が小さければ小さい程、長くなり、逆に、偏芯量δ(=r2-d)が大きければ大きい程、短くなる。
Figure JPOXMLDOC01-appb-M000001
ここで、gは、重力加速度である。
Figure JPOXMLDOC01-appb-M000002
 以上の免震支持装置1では、回転体12が床2の平坦面10にその断面円弧凸外面11で転がり回転自在に接触するようになっていると共に、静止状態において、断面円弧凸外面11の曲率中心である中心O2が断面円弧凹外面9の曲率中心である中心O1に対して鉛直方向Vの上方に偏芯量δだけ偏芯している結果、床2の平坦面10をそのまま利用して設置できて、しかも、回転体12の振り子運動の周期Tを距離dと断面円弧凸外面11の曲率半径r2との差である偏芯量δで決定できるために、容易に長周期化を図り得る上に、断面円弧凸外面7が部分円球凸面26からなっていると共に断面円弧凹外面9が部分円球凹面31からなって、しかも、断面円弧凸外面11が部分円球凸面32からなっているために、即ち、夫々が円球面からなっているために、水平方向Hに関しての全方向の地震の震動に対して什器3を免震支持でき、加えて、螺子部21及びナット25により支持体8の取付具6への取付位置を調整できるようになっているために、鉛直方向Vに関する任意の位置で什器3を免震支持できる。
 ところで、図1に示す免震支持装置1では、回転体12を剛性体からの一体物で形成したが、これに代えて、例えば、図3に示すように、回転体12は、断面円弧凹外面9、截頭円錐外面33及び部分円球凸面41を有した剛体42と、剛体42の部分円球凸面41に加硫接着により固着されていると共に断面円弧凸外面11を有した天然ゴム製の弾性体43とを具備していてもよく、このように回転体12が剛体42に対する被覆層として弾性体43を具備していると、水平方向Hに関しての全方向の地震の震動に対して什器3を免震支持できる上に、弾性体43の弾性変形で、床2に加わる鉛直方向Vの地震による震動に対しても什器3を免震支持できて、什器3自体及び什器3内の物品をも保護でき、加えて、静止状態において鉛直方向Vの荷重を受ける弾性体43の部分の部分的弾性変形による当該部分の凹みに起因する断面円弧凸外面11の平坦化でトリガ作用を得ることができることになる。
 図1及び図3に示す免震支持装置1では、回転体12の大きな回転角θを伴う地震の震動において、回転体12が支持体8から外れる虞れが生じ得るが、図4に示すように、免震支持装置1は、支持体8の断面円弧凸外面7の曲率中心である中心O1を中心とした回転体12のR方向の回転において当該回転体12の衝突でその一定以上の回転を禁止して支持体8からの回転体12の離脱を防止する離脱防止機構51を更に具備していてもよく、離脱防止機構51は、支持体8に取付けられていると共に回転体12を囲繞している囲繞体52を具備している。
 囲繞体52は、取付具6及びナット25に挟持されて支持体8の螺子部21に固着された円盤状の天井部55と、天井部55の外周縁に上端で一体となって回転体12を周りから取り囲んだ円筒部56と、円筒部56の下端に一体となって当該円筒部56の下端から水平方向H外方に突出していると共に環状下面57で床2の平坦面10に接触した環状外側鍔部58と、環状外側鍔部58に上方において円筒部56に一体となって当該円筒部56の円筒内面59から水平方向Hの内方に突出していると共に回転体12が回転し得る開口60を規定した円筒状の内周面61を有した環状内側鍔部62とを具備している。
 斯かる離脱防止機構51を具備した免震支持装置1では、図5に示すように、支持体8の断面円弧凸外面7の曲率中心である中心O1を中心とした回転体12の大きな回転角θを伴う水平方向Hの地震の震動による回転体12の一定以上のR方向の回転において、回転体12は、囲繞体52の内面である天井部55の下面63に衝突して接触し、それ以上の回転が禁止されるようになっており、而して、支持体8の断面円弧凸外面7の曲率中心である中心O1を中心とした回転体12の一定以上の回転において、当該回転体12が接触する内面である天井部55の下面63を有している囲繞体52は、支持体8の部分円球部24からの回転体12の離脱を防止するようになっている。
 離脱防止機構51を具備した免震支持装置1によれば、意図しない大きな水平方向Hの震動で回転体12が大きく回転されようとしても、回転体12の一定以上の回転を禁止して支持体8からの回転体12の離脱を防止し得る結果、什器3の転倒等を防ぐことができ、地震による被害を最小限にし得る。
 囲繞体52を有した離脱防止機構51では、免震支持装置1の静止状態で、環状下面57で平坦面10に接触した環状外側鍔部58を具備しているために、免震支持装置1の静止状態での囲繞体52の内部65を外部に対して密閉でき当該内部65への塵埃の侵入を防ぐこともでき、塵埃による免震支持装置1の動作不良を回避できる。尚、環状下面57に、弾性体43と同様の弾性板を貼着等により設けることにより、又は環状下面57と平坦面10との間に弾性体43の厚み程度の隙間を設けることにより、図3に示す回転体12の弾性体43の機能を好ましく得ることができる。
 以上の免震支持装置1では、支持体8を什器3の外函4に固定し、回転体12をその断面円弧凸外面11で床2の平坦面10に転がり自在に接触させたが、これに代えて、支持体8を螺子部21で床2に固定し、回転体12の断面円弧凸外面11を什器3の外函4の下面である平坦面71に回転自在に接触させてもよく、換言すれば、支持体8と回転体12との組み合わせ体を天地逆にしてもよく、斯かる天地逆にした免震支持装置では、回転体12の断面円弧凸外面11の曲率中心である中心O2は、免震支持装置の静止状態において、回転体12の断面円弧凹外面9の曲率中心である中心O1に対して鉛直方向Vにおいて床2の側である下方に偏芯量δをもって偏芯して位置されるとよい。
 図6に示す他の例の免震支持装置1aは、床2上で支持すべき什器3の鉛直方向Vの荷重を受けるべく、当該什器3の外函4の下部に螺子5等により取付具6を介して固定されるようになっていると共に曲率中心である中心O1をもった断面円弧凸外面7aを有した支持体8aと、支持体8aの断面円弧凸外面7aに相補的な形状であって中心O1と同一の位置に曲率中心をもつ断面円弧凹外面9aを有すると共に断面円弧凹外面9aで断面円弧凸外面7aに中心O1を中心としてR方向に摺動自在であって回転自在に接触する一方、床2における平坦面10に曲率中心である中心O2をもった断面円弧凸外面11aで中心O2を中心としてR方向に回転自在に接触、即ち、中心O2を中心として転がり自在に接触するようになっていると共に支持体8aと共に什器3の支持体8aを介する鉛直方向Vの荷重を受ける回転体12aとを具備している。
 支持体8aは、上部に螺子部21aを有する円柱状の本体23aと、本体23aの下部に一体的に形成されていると共に円球面の一部としての部分円球凸面26aからなっている断面円弧凸外面7aを有して、本体23a及び回転体12a間に配された摺動部27aとを具備しており、本体23aは、螺子部21aに螺合されたナット25により鉛直方向Vに関して位置調整可能に当該螺子部21aにおいて取付具6に固定されて、斯かる取付具6を介して什器3の外函4の下部に固定されるようになっており、摺動部27aは、本体23aの下部に一体的に形成されている円盤部22aと、円盤部22aに一体的に形成されていると共に部分円球凸面26aを有した部分円球部24aとを具備している。
 回転体12aは、円球面の一部としての部分円球凹面31aからなっている断面円弧凹外面9aと、円球面の一部としての部分円球凸面32aからなっている断面円弧凸外面11aと、内周縁では断面円弧凹外面9aに連接し、外周縁では断面円弧凸外面11aに連接した円環状端面33とを具備しており、支持体8aの断面円弧凸外面7aに対して、回転体12aの断面円弧凹外面9aの曲率中心でもある中心O1を中心として、R方向に摺動回転自在であり、断面円弧凸外面11aは、回転体12aの断面円弧凹外面9aの曲率半径r1よりも大きな曲率半径r2を有しており、回転体12aの断面円弧凸外面11aの曲率中心である中心O2は、免震支持装置1aの静止状態(図6に示す状態)において、回転体12aの断面円弧凹外面9aの曲率中心である中心O1に対して鉛直方向Vにおいて什器3の側である上方に偏芯量δ(=r2-r1)をもって偏芯して位置しており、支持体8aの断面円弧凸外面7a及び回転体12aの断面円弧凹外面9aの曲率中心である中心O1と回転体12aの断面円弧凸外面11aの曲率中心である中心O2とは、免震支持装置1aの静止状態において、同一の鉛直線35上に位置しており、而して、支持体8aの断面円弧凸外面7aは、回転体12aの断面円弧凹外面9aの曲率半径r1と同一の曲率半径r1を有しており、支持体8aの断面円弧凸外面7aと回転体12aの断面円弧凹外面9aとの曲率中心である中心O1は、同一の位置に位置している。
 什器3の外函4の下部に複数個、少なくとも3個配される前述の免震支持装置1aの夫々は、地震による水平方向Hの震動が床2に加わらない場合は、図6に示す静止状態にあって、床2上で什器3の荷重を分担して当該什器3を支持しており、地震による水平方向Hの震動が床2に加わると、各免震支持装置1aの回転体12aは、図7に示すように、断面円弧凸外面7aに対する断面円弧凹外面9aの摺動を伴って、床2の平坦面10上において断面円弧凸外面11aで部分円球部24aに対して中心O1を中心としてR方向に転がって回転し、この回転により各免震支持装置1aは、床2に加わる水平方向Hの震動の什器3への伝達を阻止して、而して、什器3を免震支持する一方、中心O1と中心O2との偏芯量δに起因する断面円弧凸外面11aの曲率半径r2と断面円弧凹外面9aの曲率半径r1との相違により、R方向の回転と共に什器3を鉛直方向Vに持ち上げるようになっている回転体12aには、回転体12aの各回転位置で静止状態への復帰モーメントM=W・δ・sinθ(但し、Wは、回転体12aに加わる荷重、δは、偏芯量δ=(r2-r1)、θは、鉛直線35に対する回転体12aの回転角である)が生じ、この復帰モーメントMにより、所謂、周期Tをもった振り子運動を行う回転体12aは、地震による水平方向Hの床2の震動の消滅後、断面円弧凸外面7aに対する断面円弧凹外面9aの滑り摩擦及び床2の平坦面10に対する回転体12aの断面円弧凸外面11aでの転がり摩擦による震動エネルギーの消散による振り子運動の収斂と共に静止状態における回転位置に復帰されて、什器3を地震震動前の元の位置に戻すようになっている。
 回転体12aの振り子運動の周期Tは、式(1)で表され、θが小さい場合には、θ/sinθ≒1となる結果、周期Tは、式(2)で表されて、断面円弧凸外面11aの曲率半径r2と断面円弧凹外面9aの曲率半径r1との差である偏芯量δ(=r2-r1)が小さければ小さい程、長くなり、逆に、偏芯量δ(=r2-r1)が大きければ大きい程、短くなる。
 以上の免震支持装置1aでも、床2の平坦面10に転がり回転自在に接触するようになっている断面円弧凸外面11aを回転体12aが有すると共に、静止状態において、断面円弧凸外面11aの曲率中心である中心O2が断面円弧凹外面9aの曲率中心である中心O1に対して鉛直方向Vの上方に偏芯量δだけ偏芯している結果、床2の平坦面10をそのまま利用して設置できて、しかも、回転体12aの振り子運動の周期Tを断面円弧凹外面9aの曲率半径r1と断面円弧凸外面11aの曲率半径r2との差である偏芯量δで決定できるために、容易に長周期化を図り得る上に、断面円弧凸外面7aが部分円球凸面26aからなっていると共に断面円弧凹外面9aが部分円球凹面31aからなって、しかも、断面円弧凸外面11aが部分円球凸面32aからなっているために、即ち、夫々が円球面からなっているために、水平方向Hに関しての全方向の地震の震動に対して什器3を免震支持でき、加えて、螺子部21a及びナット25により支持体8aの取付具6への取付位置を調整できるようになっているために、鉛直方向Vに関する任意の位置で什器3を免震支持できる。
 ところで、図6に示す免震支持装置1aでは、回転体12aを剛性体からの一体物で形成したが、これに代えて、例えば、図8に示すように、回転体12aは、断面円弧凹外面9aからなっている部分円球凹面31a、円環状端面33a及び部分円球凸面41aを有した剛体42aと、剛体42aの部分円球凸面41aに加硫接着により固着されていると共に断面円弧凸外面11aからなっている部分円球凸面32aを有した天然ゴム製の弾性体43aとを具備していてもよく、このように回転体12aが剛体42aに対する被覆層として弾性体43aを具備していると、水平方向Hに関しての全方向の地震の震動に対して什器3を免震支持できる上に、弾性体43aの弾性変形で、床2に加わる鉛直方向Vの地震による震動に対しても什器3を免震支持できて、什器3自体及び什器3内の物品をも保護でき、加えて、静止状態において鉛直方向Vの荷重を受ける弾性体43aの部分の部分的弾性変形による当該部分の凹みに起因する断面円弧凸外面11aの平坦化でトリガ作用を得ることができることになる。
 図6及び図8に示す免震支持装置1aでは、支持体8aの断面円弧凸外面7aは、回転体12aの断面円弧凹外面9aの中心O1の位置と同一の位置に中心O1をもって、しかも、回転体12aの断面円弧凹外面9aの曲率半径r1と同一の曲率半径r1を有しているが、これに代えて、例えば、図9に示すように、支持体8aの断面円弧凸外面7aは、回転体12aの断面円弧凹外面9aの中心O1の位置と鉛直方向Vに関して異なる位置であって同一の鉛直線35上に中心O3をもって、回転体12aの断面円弧凹外面9aの曲率半径r1よりも小さな曲率半径r3を有していてもよく、この場合には、図6及び図8に示す免震支持装置1aの断面円弧凸外面7aと断面円弧凹外面9aとの摺動自在な面接触と比較して、断面円弧凸外面7aと断面円弧凹外面9aとの摺動自在な略点接触となる。
 以上の免震支持装置1aでは、回転体12aの大きな回転角θを伴う地震の震動において、回転体12aが支持体8aから外れる虞れが生じ得るが、図10に示すように、免震支持装置1aは、支持体8aに対する断面円弧凹外面9aの曲率中心である中心O1を中心とした回転体12aのR方向の回転において当該回転体12aの衝突でその一定以上の回転を禁止して支持体8aからの回転体12aの離脱を防止する上記の離脱防止機構51を更に具備していてもよく、離脱防止機構51において、囲繞体52は、回転体12aを囲繞しており、円筒部56は、回転体12aを周りから取り囲んでおり、開口60で回転体12aが回転し得るなっている。
 斯かる離脱防止機構51を具備した免震支持装置1aでは、図11に示すように、支持体8aの断面円弧凸外面7aの曲率中心である中心O1を中心とした回転体12aの大きな回転角θを伴う水平方向Hの地震の震動による回転体12aの一定以上のR方向の回転において、回転体12aは、天井部55の下面63に衝突して接触し、それ以上のR方向の回転が禁止されるようになっており、而して、支持体8aの断面円弧凸外面7aの曲率中心である中心O1を中心とした回転体12aの一定以上の回転において、当該回転体12aが接触する内面である天井部55の下面63を有している囲繞体52は、前記と同様に、支持体8aの摺動部27aからの回転体12aの離脱を防止するようになっている。
 離脱防止機構51を具備した免震支持装置1aによれば、上記と同様に、意図しない大きな水平方向Hの震動で回転体12aが大きく回転されようとしても、回転体12aの一定以上の回転を禁止して支持体8aからの回転体12aの離脱を防止し得る結果、什器3の転倒等を防ぐことができ、地震による被害を最小限にし得る。
 免震支持装置1aに対する離脱防止機構51でも、免震支持装置1aの静止状態で、環状下面57で平坦面10に接触した環状外側鍔部58を具備しているために、免震支持装置1aの静止状態での囲繞体52の内部65を外部に対して密閉でき当該内部65への塵埃の侵入を防ぐこともでき、塵埃による免震支持装置1aの動作不良を回避できる。本例の免震支持装置1aでも、環状下面57に弾性板を設け、又は環状下面57と平坦面10との間に隙間を設けてもよい。
 以上の免震支持装置1aでは、支持体8aを什器3の外函4に固定し、回転体12aの断面円弧凸外面11aを床2の平坦面10に転がり自在に接触させたが、これに代えて、免震支持装置1と同様に、支持体8aを螺子部21aで床2に固定し、回転体12aの断面円弧凸外面11aを什器3の外函4の下面である平坦面71に回転自在に接触させてもよく、換言すれば、支持体8aと回転体12aとの組み合わせ体を天地逆にしてもよく、斯かる天地逆にした免震支持装置では、回転体12aの断面円弧凸外面11aの曲率中心である中心O2は、免震支持装置の静止状態において、回転体12aの断面円弧凹外面9aの曲率中心である中心O1に対して鉛直方向Vにおいて床2の側である下方に偏芯量δをもって偏芯して位置されるとよい。
 1、1a 免震支持装置
 2 床
 3 什器
 4 外函
 5 螺子
 6 取付具
 7、7a、11、11a 断面円弧凸外面
 8、8a 支持体
 9、9a 断面円弧凹外面
 10 平坦面
 12、12a 回転体
 O1、O2 中心
 d 距離
 r1 曲率半径
 r2 曲率半径

Claims (28)

  1.  地盤又は基台上で支持すべき免震支持対象物の荷重を受けるべく、当該地盤又は基台及び免震支持対象物のうちの一方に固定されるようになっていると共に断面円弧外面を有した支持体と、この支持体の断面円弧外面に相補的な形状の断面円弧外面を有すると共に当該支持体の断面円弧外面に相補的な形状の断面円弧外面で支持体の断面円弧外面に摺動自在に接触する一方、地盤又は基台及び免震支持対象物のうちの他方における平坦面に転がり自在に断面円弧凸外面で接触するようになっていると共に支持体と共に免震支持対象物の荷重を受ける回転体とを具備しており、回転体の断面円弧凸外面は、回転体の断面円弧外面の曲率半径よりも大きな曲率半径を有しており、静止状態において、回転体の断面円弧凸外面の曲率中心は、回転体の断面円弧外面の曲率中心に対して鉛直方向において地盤又は基台及び免震支持対象物のうちの一方の側に偏芯して位置している免震支持装置。
  2.  支持体の断面円弧外面は、断面円弧凸面であり、回転体の断面円弧外面は、断面円弧凹面である請求項1に記載の免震支持装置。
  3.  支持体の断面円弧外面は、断面円弧凹面であり、回転体の断面円弧外面は、断面円弧凸面である請求項1に記載の免震支持装置。
  4.  支持体の断面円弧外面並びに回転体の断面円弧外面及び断面円弧凸外面は、円筒面の一部からなる請求項1から3のいずれか一項に記載の免震支持装置。
  5.  支持体の断面円弧外面並びに回転体の断面円弧外面及び断面円弧凸外面は、円球面の一部からなる請求項1から3のいずれか一項に記載の免震支持装置。
  6.  回転体は、支持体に対して、支持体の断面円弧外面の曲率中心を中心として、回転自在である請求項1から5のいずれか一項に記載の免震支持装置。
  7.  静止状態において、支持体の断面円弧外面の曲率中心と回転体の断面円弧凸外面の曲率中心とは、同一の鉛直線上に位置している請求項6に記載の免震支持装置。
  8.  回転体は、断面円弧外面を有した剛体と、この剛体に固着されていると共に断面円弧凸外面を有した弾性体とを具備している請求項1から7のいずれか一項に記載の免震支持装置。
  9.  回転体は、断面円弧外面を有した弾性体と、この弾性体に固着されていると共に断面円弧凸外面を有した剛体とを具備している請求項1から7のいずれか一項に記載の免震支持装置。
  10.  支持体は、免震支持対象物に固定されるようになっており、回転体は、その断面円弧凸外面で地盤又は基台の平坦面に転がり自在に接触するようになっており、回転体の断面円弧凸外面の曲率中心は、回転体の断面円弧外面の曲率中心に対して鉛直方向の上方に偏芯して位置している請求項1から9のいずれか一項に記載の免震支持装置。
  11.  支持体は、地盤又は基台に固定されるようになっており、回転体は、その断面円弧凸外面で免震支持対象物の平坦面に転がり自在に接触するようになっており、回転体の断面円弧凸外面の曲率中心は、回転体の断面円弧外面の曲率中心に対して鉛直方向の下方に偏芯して位置している請求項1から9のいずれか一項に記載の免震支持装置。
  12.  支持体の断面円弧外面の曲率中心を中心とした回転体の回転において当該回転体の衝突でその一定以上の回転を禁止して支持体からの回転体の離脱を防止する離脱防止機構を更に具備している請求項1から11のいずれか一項に記載の免震支持装置。
  13.  離脱防止機構は、支持体に取付けられていると共に回転体を囲繞している囲繞体を具備しており、囲繞体は、支持体の断面円弧外面の曲率中心を中心とした回転体の一定以上の回転において、当該回転体が接触する内面を有している請求項12に記載の免震支持装置。
  14.  地盤又は基台上で支持すべき免震支持対象物の荷重を受けるべく、当該地盤又は基台及び免震支持対象物のうちの一方に固定されるようになっていると共に第一の断面円弧凸外面を有した支持体と、この支持体の第一の断面円弧凸外面に摺動自在に接触する断面円弧凹外面を有する一方、地盤又は基台及び免震支持対象物のうちの他方における平坦面に第二の断面円弧凸外面で転がり自在に接触するようになっていると共に、支持体と共に免震支持対象物の荷重を受ける回転体とを具備しており、回転体は、支持体に対して、回転体の断面円弧凹外面の曲率中心を中心として回転自在であり、回転体の第二の断面円弧凸外面は、当該回転体の断面円弧凹外面の曲率半径よりも大きな曲率半径を有しており、静止状態において、回転体の第二の断面円弧凸外面の曲率中心は、回転体の断面円弧凹外面の曲率中心に対して鉛直方向において地盤又は基台及び免震支持対象物のうちの一方の側に偏芯して位置している免震支持装置。
  15.  支持体の第一の断面円弧凸外面及び回転体の断面円弧凹外面は、円筒面の一部からなる請求項14に記載の免震支持装置。
  16.  支持体の第一の断面円弧凸外面及び回転体の断面円弧凹外面は、円球面の一部からなる請求項14に記載の免震支持装置。
  17.  支持体は、地盤又は基台及び免震支持対象物のうちの一方に固定されるようになっている本体部と、この本体部に一体的に形成されていると共に前記第一の断面円弧凸外面を有して、本体部及び回転体間に配された摺動部とを具備している請求項14から16のいずれか一項に記載の免震支持装置。
  18.  支持体の第一の断面円弧凸外面は、回転体の断面円弧凹外面の曲率半径と同一の曲率半径を有している請求項14から17のいずれか一項に記載の免震支持装置。
  19.  支持体の第一の断面円弧凸外面と回転体の断面円弧凹外面との曲率中心は、同一の位置に位置している請求項18に記載の免震支持装置。
  20.  支持体の第一の断面円弧凸外面は、回転体の断面円弧凹外面の曲率半径よりも小さな曲率半径を有している請求項14から17のいずれか一項に記載の免震支持装置。
  21.  静止状態において、回転体の断面円弧凹外面及び第二の断面円弧凸外面の曲率中心は、同一の鉛直線上に位置している請求項14から20のいずれか一項に記載の免震支持装置。
  22.  静止状態において、支持体の第一の断面円弧凸外面並びに回転体の断面円弧凹外面及び第二の断面円弧凸外面の曲率中心は、同一の鉛直線上に位置している請求項14から21のいずれか一項に記載の免震支持装置。
  23.  回転体は、断面円弧凹外面を有した剛体と、この剛体に固着されていると共に第二の断面円弧凸外面を有した弾性体とを具備している請求項14から22のいずれか一項に記載の免震支持装置。
  24.  回転体は、断面円弧凹外面を有した弾性体と、この弾性体に固着されていると共に第二の断面円弧凸外面を有した剛体とを具備している請求項14から23のいずれか一項に記載の免震支持装置。
  25.  支持体は、免震支持対象物に固定されるようになっており、回転体は、第二の断面円弧凸外面で地盤又は基台の平坦面に転がり自在に接触するようになっており、回転体の第二の断面円弧凸外面の曲率中心は、回転体の断面円弧凹外面の曲率中心に対して鉛直方向の上方に偏芯して位置している請求項14から24のいずれか一項に記載の免震支持装置。
  26.  支持体は、地盤又は基台に固定されるようになっており、回転体は、第二の断面円弧凸外面で免震支持対象物の平坦面に回転自在に接触するようになっており、回転体の第二の断面円弧凸外面の曲率中心は、回転体の断面円弧凹外面の曲率中心に対して鉛直方向の下方に偏芯して位置している請求項14から25のいずれか一項に記載の免震支持装置。
  27.  支持体に対する回転体の断面円弧凹外面の曲率中心を中心とした回転において当該回転体の衝突でその一定以上の回転を禁止して支持体からの回転体の離脱を防止する離脱防止機構を更に具備している請求項14から26のいずれか一項に記載の免震支持装置。
  28.  離脱防止機構は、支持体に取付けられていると共に回転体を囲繞している囲繞体を具備しており、囲繞体は、支持体に対する回転体の断面円弧凹外面の曲率中心を中心とした一定以上の回転において、当該回転体が接触する内面を有している請求項27に記載の免震支持装置。
     
PCT/JP2014/006375 2014-12-22 2014-12-22 免震支持装置 WO2016103291A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/006375 WO2016103291A1 (ja) 2014-12-22 2014-12-22 免震支持装置
CN201480084275.6A CN107110280A (zh) 2014-12-22 2014-12-22 免震支撑装置
KR1020177016167A KR20170100504A (ko) 2014-12-22 2014-12-22 면진 지지 장치
US15/538,093 US20170342734A1 (en) 2014-12-22 2014-12-22 Base isolation supporting device
JP2016565591A JPWO2016103291A1 (ja) 2014-12-22 2014-12-22 免震支持装置
EP14908902.1A EP3239557A4 (en) 2014-12-22 2014-12-22 Seismic isolation support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006375 WO2016103291A1 (ja) 2014-12-22 2014-12-22 免震支持装置

Publications (1)

Publication Number Publication Date
WO2016103291A1 true WO2016103291A1 (ja) 2016-06-30

Family

ID=56149395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006375 WO2016103291A1 (ja) 2014-12-22 2014-12-22 免震支持装置

Country Status (6)

Country Link
US (1) US20170342734A1 (ja)
EP (1) EP3239557A4 (ja)
JP (1) JPWO2016103291A1 (ja)
KR (1) KR20170100504A (ja)
CN (1) CN107110280A (ja)
WO (1) WO2016103291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338882A (zh) * 2017-07-28 2017-11-10 华侨大学 一种局部可侧滑的摇晃结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108221874B (zh) * 2017-12-25 2020-10-16 洛阳水利勘测设计有限责任公司 一种利用惯性补偿系统抗震的大型渡槽及施工方法
US11078890B2 (en) * 2018-05-22 2021-08-03 Engiso Aps Oscillating damper for damping tower harmonics
WO2020121029A1 (es) * 2018-12-12 2020-06-18 Universidad Católica De La Santísima Concepción Dispositivo cinemático de aislamiento sísmico

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452822A (en) * 1977-10-03 1979-04-25 Obayashi Gumi Kk Vibration preventing floor
JPH0599273A (ja) * 1991-10-03 1993-04-20 Fujitsu Ltd 電子機器の台足構造
JPH07310459A (ja) * 1994-05-17 1995-11-28 Toyo Constr Co Ltd 免震装置
JP3028407U (ja) * 1996-02-10 1996-09-03 三郎 狩野 耐震安全支持装置
JPH09158984A (ja) * 1995-12-06 1997-06-17 Fujitsu Ltd 免震装置
US20020166301A1 (en) * 2000-07-03 2002-11-14 Kim Jae Kwan Directional sliding pendulum seismic isolation systems and articulated sliding assemblies therefor
JP2003120748A (ja) * 2001-08-03 2003-04-23 Tokkyokiki Corp 振動制御ユニット及び振動制御体
JP3123586U (ja) * 2005-05-17 2006-07-20 偉亮 李 構造物免震不倒基部
JP2009519387A (ja) * 2005-12-16 2009-05-14 マウアー ゾーネ エンジニアリング ゲーエムベーハー ウント コー カーゲー すべり調心支承

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2542185B2 (de) * 1975-09-22 1979-01-18 Geraetewerk Lahr Gmbh, 7630 Lahr Vorrichtung zur Aufhängung bzw. Abstützung eines Chassis eines Aufzeichnungs- und/oder Wiedergabegerätes
JPH033729Y2 (ja) * 1985-03-05 1991-01-30
US4974378A (en) * 1989-12-29 1990-12-04 Shustov Valentin N Seismic-isolator
US5056280A (en) * 1990-09-12 1991-10-15 Shustov Valentin N Multi-step base isolator
EP0816571A4 (en) * 1995-03-17 1998-12-23 Kuninori Mori FOUNDATION
US6115972A (en) * 1996-04-09 2000-09-12 Tamez; Federico Garza Structure stabilization system
JP3409611B2 (ja) * 1996-10-04 2003-05-26 良三 米田 物体の耐震支持装置
US6324795B1 (en) * 1999-11-24 2001-12-04 Ever-Level Foundation Systems, Inc. Seismic isolation system between floor and foundation comprising a ball and socket joint and elastic or elastomeric element
US7278623B2 (en) * 2001-08-03 2007-10-09 Tokkyokiki Corporation Vibration control unit and vibration control body
JP2003328373A (ja) * 2002-05-13 2003-11-19 Masaharu Ota 免震独立基礎
US20100083591A1 (en) * 2008-10-03 2010-04-08 Yoshioki Tomoyasu Billiard mode aseismatic architecture
JP5382207B2 (ja) * 2010-04-14 2014-01-08 トヨタ自動車株式会社 ダイナミックダンパ
US20130145703A1 (en) * 2011-12-12 2013-06-13 Yutaka Tomoyasu Seismological Engineering
US9926972B2 (en) * 2015-10-16 2018-03-27 Roller Bearing Company Of America, Inc. Spheroidial joint for column support in a tuned mass damper system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452822A (en) * 1977-10-03 1979-04-25 Obayashi Gumi Kk Vibration preventing floor
JPH0599273A (ja) * 1991-10-03 1993-04-20 Fujitsu Ltd 電子機器の台足構造
JPH07310459A (ja) * 1994-05-17 1995-11-28 Toyo Constr Co Ltd 免震装置
JPH09158984A (ja) * 1995-12-06 1997-06-17 Fujitsu Ltd 免震装置
JP3028407U (ja) * 1996-02-10 1996-09-03 三郎 狩野 耐震安全支持装置
US20020166301A1 (en) * 2000-07-03 2002-11-14 Kim Jae Kwan Directional sliding pendulum seismic isolation systems and articulated sliding assemblies therefor
JP2003120748A (ja) * 2001-08-03 2003-04-23 Tokkyokiki Corp 振動制御ユニット及び振動制御体
JP3123586U (ja) * 2005-05-17 2006-07-20 偉亮 李 構造物免震不倒基部
JP2009519387A (ja) * 2005-12-16 2009-05-14 マウアー ゾーネ エンジニアリング ゲーエムベーハー ウント コー カーゲー すべり調心支承

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239557A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338882A (zh) * 2017-07-28 2017-11-10 华侨大学 一种局部可侧滑的摇晃结构
CN107338882B (zh) * 2017-07-28 2023-05-26 华侨大学 一种局部可侧滑的摇晃结构

Also Published As

Publication number Publication date
CN107110280A (zh) 2017-08-29
JPWO2016103291A1 (ja) 2017-11-02
EP3239557A1 (en) 2017-11-01
US20170342734A1 (en) 2017-11-30
EP3239557A4 (en) 2018-08-01
KR20170100504A (ko) 2017-09-04

Similar Documents

Publication Publication Date Title
WO2016103291A1 (ja) 免震支持装置
JP6871417B2 (ja) 免震装置
JP2007333145A (ja) 構造体用免震システム及びこのシステムに利用可能な免震装置
JP6199632B2 (ja) 免震支持装置
JP2010002047A5 (ja)
JP6199634B2 (ja) 免震支持装置
KR100635478B1 (ko) 저 마찰 구름운동 진자받침
JP6354133B2 (ja) 免震支持装置
TWI572768B (zh) 防震支撐裝置
JP2008032178A (ja) 免震装置および免震台
JP6836481B2 (ja) 滑り振子型免震装置
JP2003269532A (ja) 免震装置
JP2013234485A (ja) 足部材及び免震二重床
JP2007177947A (ja) 免震装置
JP2018084129A (ja) 免震具
JP6267516B2 (ja) 滑り支承具
JP2018017359A (ja) 免震装置
JP2007078012A (ja) 免震装置
JP3183475U (ja) スライドフロアー
JP2005249210A (ja) 減衰装置
JP2012021638A (ja) 免震装置
JP2014162368A (ja) キャスター装置
JP5801977B1 (ja) 免震装置
JP6690223B2 (ja) 免震構造
JP2005337283A (ja) 支承及び免震装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908902

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014908902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016167

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016565591

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE