WO2016098814A1 - ロボットアーム機構 - Google Patents

ロボットアーム機構 Download PDF

Info

Publication number
WO2016098814A1
WO2016098814A1 PCT/JP2015/085235 JP2015085235W WO2016098814A1 WO 2016098814 A1 WO2016098814 A1 WO 2016098814A1 JP 2015085235 W JP2015085235 W JP 2015085235W WO 2016098814 A1 WO2016098814 A1 WO 2016098814A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
guide
connecting piece
roller
guide roller
Prior art date
Application number
PCT/JP2015/085235
Other languages
English (en)
French (fr)
Inventor
尹 祐根
光 佐野
順央 川口
眞二 栗原
宗祐 ▲高▼▲瀬▼
摩美 前田
Original Assignee
ライフロボティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライフロボティクス株式会社 filed Critical ライフロボティクス株式会社
Priority to EP15870016.1A priority Critical patent/EP3235608B1/en
Priority to CN201580069355.9A priority patent/CN107107345B/zh
Publication of WO2016098814A1 publication Critical patent/WO2016098814A1/ja
Priority to US15/627,111 priority patent/US10406697B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/18Chains having special overall characteristics
    • F16G13/20Chains having special overall characteristics stiff; Push-pull chains

Definitions

  • the embodiment of the present invention relates to a robot arm mechanism.
  • articulated robot arm mechanisms have been used in various fields such as industrial robots.
  • Such an articulated robot arm mechanism is equipped with a combination of, for example, a linear motion telescopic joint.
  • the arm part which comprises a linear motion expansion-contraction joint is comprised by the connection top row
  • a columnar body having a certain rigidity is configured by joining the connecting frame rows.
  • the linear motion expansion / contraction joint is driven, the arm portion expands and contracts. Specifically, when the motor rotates, the stored connected top row is guided to the joining mechanism, and the arm portion joined into the columnar body by the joining mechanism is extended. Therefore, if the connected frame row moves away from the designed path, the expansion / contraction operation of the robot arm mechanism may not be stable.
  • the objective is to achieve stable expansion and contraction in a robot arm mechanism with a linear motion expansion and contraction joint.
  • the robot arm mechanism includes a linear motion telescopic joint, the linear motion telescopic joint includes an arm portion and an ejection portion that supports the arm portion.
  • the first connection piece row is composed of a plurality of first connection pieces having a U-shaped cross-section, an arc shape, or a rectangular shape, and the second connection piece row has a plurality of substantially flat plate shapes.
  • the second connection piece row is joined to the first connection piece row to form a columnar body, and the second connection piece row is joined to the first connection piece row.
  • a linear gear and a drive gear that are fed forward from the injection unit together with the first connection piece row in a state of being guided, guide the second connection piece row to the injection unit, and are provided in the second connection piece; Guide roller that maintains the engaged state It is provided.
  • FIG. 1 is an external perspective view of a robot arm mechanism according to the present embodiment.
  • FIG. 2 is a perspective view showing the internal structure of the robot arm mechanism of FIG.
  • FIG. 3 is a view of the internal structure of the robot arm mechanism of FIG. 1 as viewed from the cross-sectional direction.
  • FIG. 4 is a diagram showing a positional relationship between the guide portion and the drive gear in FIG.
  • FIG. 5 is a view of the guide portion of FIG. 3 as viewed from above, from the side, and from below.
  • FIG. 6 is a supplementary explanatory diagram for explaining a method of arranging a plurality of guide rollers constituting the guide portion of the robot arm mechanism according to the present embodiment.
  • FIG. 7 is a supplementary explanatory diagram for explaining the function of the guide portion of the robot arm mechanism according to the present embodiment.
  • FIG. 8 is a diagram illustrating another configuration example of the guide portion of the robot arm mechanism according to the present embodiment.
  • FIG. 1 is an external perspective view of the robot arm mechanism according to the present embodiment. 2 and 3 show the internal structure of the robot arm mechanism of FIG.
  • the robot arm mechanism has a substantially cylindrical base 1 and an arm 2 connected to the base 1.
  • a hand effector 3 called an end effector is attached to the tip of the arm unit 2.
  • a hand unit capable of gripping an object is illustrated as the hand effector 3.
  • the hand effector 3 is not limited to the hand unit, and may be another tool, a camera, or a display.
  • An adapter that can be replaced with any kind of hand effector 3 may be provided at the tip of the arm portion 2.
  • the arm portion 2 has a plurality of, here six joint portions J1, J2, J3, J4, J5 and J6.
  • the plurality of joint portions J1, J2, J3, J4, J5, and J6 are sequentially arranged from the base portion 1.
  • the first, second, and third axes RA1, RA2, and RA3 are referred to as root three axes
  • the fourth, fifth, and sixth axes RA4, RA5, and RA6 are wrists that change the posture of the hand unit 3. Called three axes.
  • At least one of the joint portions J1, J2, and J3 constituting the base three axes is a linear motion joint.
  • the third joint portion J3 is configured as a linear motion joint, particularly a joint portion having a relatively long expansion / contraction distance.
  • the first joint portion J1 is a torsional joint centered on a first rotation axis RA1 that is supported, for example, perpendicularly to the pedestal surface.
  • the second joint portion J2 is a bending joint centered on the second rotation axis RA2 arranged perpendicular to the first rotation axis RA1.
  • the third joint portion J3 is a joint that linearly expands and contracts around a third axis (moving axis) RA3 arranged perpendicular to the second rotation axis RA2.
  • the fourth joint portion J4 is a torsion joint centered on the fourth rotation axis RA4 that coincides with the third movement axis RA3, and the fifth joint portion J5 is a fifth rotation axis RA5 orthogonal to the fourth rotation axis RA4. It is a bending joint centered around.
  • the sixth joint portion J6 is a bending joint centered on the sixth rotation axis RA6 that is perpendicular to the fourth rotation axis RA4 and perpendicular to the fifth rotation axis RA5.
  • the arm part 2 turns together with the hand part 3 by the torsional rotation of the first joint part J1.
  • the arm portion 2 moves up and down around the second rotation axis RA2 of the second joint portion J2 together with the hand portion 3.
  • the arm support body (first support body) 11a forming the base portion 1 has a cylindrical hollow structure formed around the rotation axis RA1 of the first joint portion J1.
  • the first joint portion J1 is attached to a fixed base (not shown).
  • the first support 11 a rotates along with the turning of the arm portion 2.
  • the first support 11a may be fixed to the ground plane. In that case, the arm part 2 is provided in a structure that turns independently of the first support 11a.
  • a second support part 11b is connected to the upper part of the first support 11a.
  • the second support portion 11b has a hollow structure that is continuous with the first support portion 11a.
  • One end of the second support portion 11b is attached to the rotating portion of the first joint portion J1.
  • the other end of the second support portion 11b is opened, and the third support portion 11c is rotatably fitted on the rotation axis RA2 of the second joint portion J2.
  • the 3rd support part 11c has a scale-like hollow structure connected to the 1st support part 11a and the 2nd support part.
  • the third support portion 11c is accommodated in the second support portion 11b and sent out as the second joint portion J2 is bent and rotated.
  • the rear part of the third joint part J3 that constitutes the linear motion joint part of the arm part 2 is housed in the hollow structure in which the first support part 11a and the second support part 11b are continuous by contraction.
  • the first joint portion J1 includes an annular fixed portion and a rotating portion, and is fixed to the pedestal at the fixed portion.
  • a first support portion 11a and a second support portion 11b are attached to the rotating portion.
  • the first, second, and third supports 11a, 11b, and 11c rotate together with the arm portion 2 and the hand portion 3 about the first rotation axis RA1.
  • the third support portion 11c is fitted to the lower end portion of the second support portion 11b so as to be rotatable about the rotation axis RA2 at the lower end portion of the second support portion 11b.
  • a second joint portion J2 is formed as a bending joint portion around the rotation axis RA2.
  • the arm portion 2 rotates in a vertical direction around the rotation axis RA2 of the second joint portion J2 together with the hand portion 3, that is, performs a undulation operation.
  • the rotation axis RA2 of the second joint portion J2 is provided perpendicular to the first rotation axis RA1 of the first joint portion J1 as a torsion joint portion.
  • the third joint portion J3 as the joint portion constitutes a main component of the arm portion 2.
  • the hand portion 3 described above is provided at the tip of the arm portion 2.
  • the hand unit 3 is provided at the tip of the arm unit 2.
  • the hand portion 3 includes first, second, and third joint portions J1. J2. It is moved to an arbitrary position by J3, and is arranged in an arbitrary posture by the fourth, fifth, and sixth joint portions J4, J5, and J6.
  • the hand portion 3 has two finger portions 16a and 16b that are opened and closed.
  • the fourth joint portion J4 is a torsional joint having a rotation axis RA4 that typically coincides with the arm central axis along the expansion / contraction direction of the arm portion 2, that is, the movement axis RA3 of the third joint portion J3.
  • the hand portion 3 rotates about the rotation axis RA4 from the fourth joint portion J4 to the tip.
  • the fifth joint J5 is a bending joint having a rotation axis RA5 orthogonal to the movement axis RA4 of the fourth joint J4.
  • the sixth joint portion J6 is a bending joint having a rotation axis RA6 perpendicular to the rotation axis RA4 of the fourth joint portion J4 and perpendicular to the rotation axis RA5 of the fifth joint portion J5.
  • the hand 16 turns left and right.
  • the two-finger hand 16 of the hand part 3 is placed in an arbitrary position and posture by rotating, bending, and extending / contracting the first to sixth joint parts J1-J6.
  • the length of the linear motion expansion / contraction distance of the third joint portion J3 enables the hand portion 3 to act on a wide range of objects from the proximity position of the base 1 to the remote position.
  • the third joint portion J3 is characterized by the length of the linear motion expansion / contraction distance realized by the linear motion expansion / contraction arm mechanism constituting the third joint portion J3.
  • the length of the linear expansion / contraction distance is achieved by the structure shown in FIGS.
  • the direct acting telescopic arm mechanism has a first connecting frame row 21 and a second connecting frame row 20. In the reference posture in which the arm unit 2 is horizontally disposed, the first connection frame row 21 is positioned below the second connection frame row 20, and the second connection frame row 20 is positioned above the first connection frame row 21. .
  • the first connecting piece row 21 has the same U-shaped cross section, and includes a plurality of first connecting pieces 23 connected in a row at the surface portion by pins. Depending on the cross-sectional shape of the first connecting piece 23 and the connecting position by the pin, the first connecting piece row 21 can be bent in the back direction, but conversely has the property that it cannot be bent in the surface direction.
  • the cross-sectional shape of the first connecting piece 23 is not limited to a U-shape, but may be a cross-sectional shape, an arc shape, or the like.
  • the second connecting piece row 20 has a substantially flat plate shape having a width substantially equivalent to that of the first connecting piece 23, and includes a plurality of second connecting pieces 22 connected in a row by pins.
  • the second connecting piece row 20 has a property that it can be bent in the surface direction but cannot be bent in the back direction depending on the shape of the connecting portion or the connecting position by the pin.
  • the first connection frame row 21 is connected to the second connection frame row 20 by a connection piece 26 at the tip.
  • the connecting piece 26 has a shape in which the first connecting piece 23 and the second connecting piece 22 are integrated.
  • linear gears 22 a are individually formed on the back side of the second connecting pieces 22. The linear gear 22a is connected when the second connecting piece 22 becomes linear, and forms a continuous linear gear (rack).
  • a guide portion 40 is provided between the drive gear 24a and the injection portion 30.
  • the engagement state between the linear gear 22 a formed on the back surface of the second connecting piece 22 and the drive gear 24 a is maintained by the guide portion 40.
  • FIG. 4 is a diagram showing a positional relationship between the guide portion 40 and the drive gear 24a of FIG.
  • FIG. 5 is a view of the guide portion 40 of FIG. 3 as viewed from above, from the side, and from below.
  • the guide unit 40 has a function of guiding the second connecting top row 20 to the joining mechanism.
  • a joining mechanism is a mechanism for joining the 1st connection top row
  • the joining mechanism is configured in the injection unit 30. Therefore, hereinafter, the joining mechanism is the injection unit 30.
  • the guide part 40 forms a movement path of the second connecting piece row 20 from the drive gear 24 a to the injection part 30.
  • the movement path is a path for the second connecting frame row 20 to enter the injection unit 30 at an appropriate angle.
  • the guide portion 40 has a function of maintaining the engagement state between the linear gear 22a provided on the second connecting piece 22 and the drive gear 24a. Details of these functions will be described later.
  • the guide unit 40 is typically configured as follows.
  • the guide part 40 has a U-shaped appearance.
  • the guide unit 40 includes a pair of side wall plates 321 and 322, a lower wall plate 323 and an upper wall plate 324.
  • the side wall plate 321 is a rectangular flat plate.
  • the short side of the side wall plate 321 is longer than the thickness of the arm portion 2, and the long side has a length of about the distance from the injection port 33 to the rear of the drive gear 24 a.
  • the side wall plate 322 and the upper wall plate 324 have the same shape as the side wall plate 321.
  • the pair of side wall plates 321 and 322 are fixed to the first support body 11a or the second support body 11b.
  • the pair of side wall plates 321 and 322 are arranged equidistant from the injection center axis in the left-right direction (in the drawing, + Y direction and -Y direction), respectively.
  • the pair of side wall plates 321 and 322 are arranged at a distance longer than the width of the columnar body.
  • the lower wall plate 323 is fixed between the lower end portions of the pair of side wall plates 321 and 322.
  • the upper wall plate 324 is fixed between the upper end portions of the pair of side wall plates 321 and 322.
  • the distance between the pair of side wall plates 321 and 322 is kept constant by the lower wall plate 323 and the upper wall plate 324.
  • the injection center axis is the center axis of the injection unit 30.
  • the injection center axis coincides with the center axis of the arm unit 2 when the arm unit 2 is supported by the injection unit 30.
  • a guide roller is rotatably fixed between the upper end portions of the side wall plates 321 and 322.
  • the guide roller includes a shaft and a roller. Both ends of the shaft are fixed to the side wall plates 321 and 322, respectively. Two rollers are rotatably attached to the shaft.
  • the guide unit 40 includes a plurality of, here, three guide rollers 411, 412, and 413.
  • the plurality of guide rollers 411, 412, and 413 have a rotation axis that is parallel to the width direction of the second connecting piece 22.
  • the plurality of guide rollers 411, 412, and 413 are arranged between the vicinity of the drive gear 24 a and the injection unit 30.
  • the rearmost guide roller 411 is disposed in the vicinity of the drive gear 24a at a position for maintaining the engagement between the drive gear 24a and the linear gear 22a.
  • the guide roller 411 is disposed such that a distance dx1 with respect to the injection center axis from the rotation shaft 24r of the drive gear 24a to the rotation shaft of the guide roller 411 is equal to or less than the radius of the drive gear 24a.
  • the guide roller 411 is disposed at the same position as the drive gear 24a with respect to the injection center axis, that is, the distance dx1 is zero.
  • the guide roller 411 is arranged at a distance longer than the predetermined distance dz1 from the rotation shaft 24r of the drive gear 24a in the radial direction of the drive gear 24a.
  • the predetermined distance dz1 has a distance necessary for the drive gear 24a and the linear gear 22a to engage with each other.
  • the predetermined distance dz1 corresponds to the total length of the radius 24d of the drive gear 24a and the thickness 22d of the second connecting piece 22.
  • the thickness 22d corresponds to the length from the surface of the second connecting piece 22 to the lower end of the linear gear 22a provided on the back surface.
  • the plurality of guide rollers 412 and 413 are arranged between the last guide roller 411 and the injection unit 30. A method for arranging the plurality of guide rollers 412 and 413 will be described later.
  • the injection unit 30 has a function of joining the first connection frame row 21 and the second connection frame row 20 and a function of supporting the arm unit 2. Therefore, the injection unit 30 is configured as follows.
  • the injection unit 30 has a substantially rectangular tube appearance.
  • the pair of side wall plates 321 and 322, the lower wall plate 323, and the upper wall plate 324 are common parts for the guide unit 40 and the injection unit 30. Therefore, the guide portion 40 and the injection portion 30 are configured on the pair of side wall plates 321 and 322. At this time, the guide part 40 is configured behind the injection part 30.
  • emission part 30 may be comprised in a pair of different side wall board, respectively.
  • the common pair of side wall plates 321 and 322 can reduce the number of parts by one pair of side wall plates. Further, the pair of common side wall plates 321 and 322 can prevent the second connecting piece row 20 from shifting in the width direction until the second connecting piece row 20 reaches the injection unit 30. In other words, the common pair of side wall plates 321 and 322 can fulfill a part of the function of guiding the second connecting top row 20.
  • the pair of side wall plates 321 and 322 are provided with a plurality of side rollers 313 and 314, respectively.
  • the plurality of side rollers 313 provided on the side wall plate 321 will be described.
  • a pair of bearing portions 325 and 326 are fixed at predetermined positions on the outer surface of the side wall plate 321.
  • the bearing portion 325 is an elongated prism and has a central axis parallel to the injection central axis.
  • the bearing portion 326 has the same shape as the bearing portion 325.
  • the positions at which the pair of bearing portions 325 and 326 are fixed correspond to positions spaced equidistant from the injection center axis in the vertical direction (+ Z direction and ⁇ Z direction in the figure), respectively.
  • a plurality of side rollers 313 are rotatably fixed between the bearing portions 325 and 326.
  • the plurality of side rollers 313 are arranged in parallel to each other and along the injection center axis.
  • the plurality of side rollers 313 have a rotation axis in the vertical direction (Z direction in the drawing).
  • the side roller 313 has a radius longer than the distance from the rotation shaft of the side roller 313 fixed to the bearing portions 325 and 326 to the inner surface of the side wall plate 321.
  • a projecting hole 329 for projecting the side roller 313 from the inner surface of the side wall plate 321 is formed at a predetermined position of the side wall plate 321.
  • the position where the protruding hole 329 is formed in the side wall plate 321 corresponds to the position of the side roller 313 fixed between the bearing portions 323 and 324.
  • the side roller 313 fixed to the bearing portions 325 and 326 protrudes from the inner surface of the side wall plate 321.
  • a support surface for supporting the columnar body is defined by the protruding ends of the plurality of side rollers 313 protruding from the inner surface of the side wall plate 321.
  • a pair of bearing portions 327 and 328 are fixed to the side wall plate 322. Similar to the pair of bearing portions 325 and 326, a plurality of side rollers 314 are rotatably fixed between the pair of bearing portions 327 and 328.
  • the side roller 314 has the same shape as the side roller 313.
  • the plurality of side rollers 314 protrude from the inner surface of the side wall plate 322 in the same manner as the plurality of side rollers 313.
  • a support surface for supporting the columnar body is defined by the protruding ends of the plurality of side rollers 314 protruding from the inner surface of the side wall plate 322.
  • the distance from the support surface defined by the plurality of side rollers 313 to the support surface defined by the plurality of side rollers 314 corresponds to the width of the cylindrical portion of the injection unit 30.
  • the support surface defined by the plurality of side rollers 313 and the support surface defined by the plurality of side rollers 314 are such that the width of the cylindrical portion of the injection unit 30 is less than the width of the columnar body.
  • the protruding lengths of the side rollers 313 and 314 from the inner surfaces of the side wall plates 321 and 322 are supported by the plurality of side rollers 314 from the support surface defined by the plurality of side rollers 313.
  • the distance to the surface is adjusted so that the length is equal to or less than the width of the columnar body.
  • the plurality of side rollers 313, 314 When the distance from the support surface defined by the plurality of side rollers 313 to the support surface defined by the plurality of side rollers 314 is shorter than the width of the columnar body, the plurality of side rollers 313, 314 The columnar body is supported in a state in which a preload is applied between them.
  • a plurality of upper rollers 312 are rotatably fixed between the upper portions of the side wall plates 321 and 322.
  • the plurality of upper rollers 312 are arranged in parallel to each other and along the injection center axis. Accordingly, the plurality of upper rollers 312 have rotation axes in the left-right direction (Y direction in the figure).
  • a support surface for supporting the columnar body is defined by lower portions of the plurality of upper rollers 312.
  • a plurality of lower rollers 311 are rotatably fixed between the lower portions of the side wall plates 321 and 322.
  • the plurality of lower rollers 311 are arranged parallel to each other and along the injection center axis. Accordingly, the plurality of lower rollers 311 have a rotation axis in the left-right direction (Y direction in the figure).
  • a support surface for supporting the columnar body is defined by the upper portions of the plurality of lower rollers 311.
  • the distance from the support surface defined by the plurality of upper rollers 312 to the support surface defined by the plurality of lower rollers 311 corresponds to the thickness of the cylindrical portion of the injection unit 30.
  • the support surface defined by the plurality of upper rollers 312 and the support surface defined by the plurality of lower rollers 311 are designed such that the thickness of the cylindrical portion of the injection unit 30 is equal to or less than the thickness of the columnar body.
  • the Specifically, the fixed positions of the plurality of upper rollers 312 and the plurality of lower rollers 311 are such that the distance from the support surface defined by the plurality of upper rollers 312 to the support surface defined by the plurality of lower rollers 311 is columnar.
  • the length is determined to be equal to or less than the thickness of the body.
  • the plurality of upper rollers 312 and the plurality of lower rollers are columnar
  • the columnar body is supported in a state where a preload is applied between the body and the body.
  • the width and thickness of the cylindrical portion of the injection portion 30 are designed to be shorter than the width and thickness of the columnar body, respectively.
  • a preload is applied between the injection portion 30 and the columnar body.
  • the rigidity of the injection unit 30 can be increased. That is, the deformation amount of the injection unit 30 can be reduced with respect to the external force applied with the movement of the arm unit 2 and the hand effector 3 and the external force according to the weight of the arm unit 2 and the hand effector 3.
  • fixed position preload is adopted as a method of applying preload.
  • the fixed position preload is a method of applying a preload between the columnar body and the injection unit 30 according to the positional relationship between the roller and the columnar body. At this time, the roller is slightly shorter than the width (thickness) of the columnar body so that a preload is applied between the columnar body and the injection portion 30.
  • the method of applying a preload between the columnar body and the injection part 30 is not limited to this.
  • a preload may be applied between the columnar body and the injection unit 30 by a constant pressure preload using a coil spring or a disc spring. In the present embodiment, it is possible to apply a preload between the columnar body and the injection unit 30 by pushing the roller toward the columnar body using these springs.
  • the second connected top row 20 is guided to the injection unit 30 together with the first connected top row 21.
  • the first connecting pieces 23 guided to the injection unit 30 are aligned on a straight line parallel to the injection central axis while rotating along the bottom lower roller 311.
  • the second connecting piece 22 guided to the injection unit 30 is aligned on a straight line parallel to the injection center axis along the rotation axis of the rearmost upper roller 312.
  • the thickness of the cylindrical portion of the injection portion 30 is slightly shorter than the thickness of the arm portion 2. Therefore, the second connected frame row 20 is sandwiched between the upper roller 312 and the lower roller 311 behind the injection unit 30 together with the first connected frame row 21.
  • column 20 are mutually pressed and joined.
  • the joined first connected top row 21 and the second connected top row 20 are supported by a plurality of rollers of the injection unit 30, thereby maintaining the joined state.
  • the joining state of the first connection top row 21 and the second connection top row 20 is maintained, the bending of the first connection top row 21 and the second connection top row 20 is limited, thereby the first connection top row 21.
  • the second connecting piece row 20 constitute a columnar body having a certain rigidity. And the joined arm part 2 is sent out from the injection
  • FIG. 6 is a supplementary explanatory diagram for explaining a method of arranging a plurality of guide rollers 411, 412, and 413 constituting the guide unit 40 according to the present embodiment.
  • FIG. 6A is a view of a range including the guide unit 40 and the injection unit 30 of the robot arm mechanism as viewed from the cross-sectional direction.
  • FIG. 6B is a supplementary explanatory diagram for explaining the length of the second connecting piece 22. As shown in FIG.
  • the distance L2 from the front end to the rear end of the second connection piece 22 in the direction (length direction) in which the second connection pieces 22 are continuous is defined as the second connection piece 22 length L2.
  • the distance between the rotation shafts between the guide roller 411 and the guide roller 412 is L41 (hereinafter referred to as roller interval L41)
  • the distance between the rotation shafts between the guide roller 412 and the guide roller 413 is defined as L42 (hereinafter referred to as roller).
  • the distance between the rotation axis of the guide roller 413 and the rear end of the injection unit 30, here the rotation axis of the upper roller 312 at the tail of the injection unit 30, is referred to as L43 (hereinafter referred to as the roller interval L43).
  • the plurality of guide rollers 411, 412, and 413 are arranged in parallel to each other from the vicinity of the drive gear 24 a to the injection unit 30.
  • the guide roller 413 (leading guide roller 413) is arranged with a roller interval L43 from the rear end of the injection unit 30 (from the rearmost upper roller 312) with respect to the injection center axis.
  • the roller interval L43 has a length equal to or shorter than the second connecting frame length L2.
  • the leading guide roller 413 is arranged at the same position as the rearmost upper roller 312 in the thickness direction of the injection unit 30.
  • the guide roller 412 is disposed between the guide rollers 411 and 413. Specifically, the guide roller 412 is disposed at a position that is spaced from the guide roller 411 by the roller interval L41 with respect to the injection center axis and at a position that is spaced from the guide roller 413 by the roller interval L42.
  • the roller intervals L41 and L42 have a length equal to or shorter than the second connecting frame length L2. Thereby, the second connecting piece 22 is supported by at least one guide roller.
  • the guide roller 412 is disposed between the first guide roller 413 and the last guide roller 411 in the thickness direction of the injection unit 30.
  • the lower and last of the plurality of guide rollers 411, 412, and 413 The surface defined by the tail upper roller 312 is parallel to the injection center axis.
  • the guide roller 412 may be omitted if the total length of the roller intervals L41 and L42 is equal to or shorter than the second connecting frame length L2. Further, when the total length of the roller intervals L41 and L42 is longer than twice the second connecting frame length L2, two or more guide rollers are provided between the leading guide roller 413 and the trailing guide roller 411. May be arranged such that the roller interval is equal to or shorter than the second connecting frame length L2.
  • FIG. 7 is a supplementary explanatory diagram for explaining the function of the guide unit 40 of the robot arm mechanism according to the present embodiment.
  • FIG. 7 is a view of a range including the guide unit 40 and the injection unit 30 of the robot arm mechanism as seen from the cross-sectional direction.
  • FIG. 7 shows a state where the arm unit 2 is sent out.
  • FIG. 7B shows a state after a predetermined time has elapsed from FIG.
  • the function of the last guide roller 411 will be described.
  • the drive gear 24 a is rotated forward, the second connected top row 20 is guided to the injection unit 30.
  • the direction of the top of the second connecting piece 22 changes greatly immediately after engaging the drive gear 24a. Therefore, especially when the arm portion 2 is extended at a high speed, the second connecting piece 22 immediately after engaging the drive gear 24a has the front connecting portion as the center of rotation and the rear portion thereof is indicated by an arrow UD in the figure. It is rotated vigorously in the direction.
  • the last guide roller 411 locks the rotated second connecting piece 22 immediately after being engaged with the drive gear 24a.
  • the rearmost guide roller 411 is disposed at the same position as the drive gear 24a or near the rear of the drive gear 24a with respect to the injection center axis.
  • the rearmost guide roller 411 has a lower hardness than the second connecting piece 22.
  • the last guide roller 411 is covered with an elastic body such as rubber. Thereby, since the force when the second connecting piece 22 collides with the guide roller 411 can be absorbed by the elastic body, the second connecting piece 22 can be prevented from being damaged.
  • the last guide roller 411 has a larger diameter than the other guide rollers. Thereby, the possibility that the rotated second connecting piece 22 can be locked can be increased.
  • the rearmost guide roller 411 is disposed at a position for sandwiching the second connecting piece 22 with the drive gear 24a, so that the rearmost guide roller 411 is engaged with the linear gear 22a and the drive gear 24a. The state can be maintained. Therefore, since the last guide roller 411 can prevent the linear gear 22a from being detached from the drive gear 24a, the contraction operation of the arm portion 2 can be stabilized.
  • the plurality of guide rollers 412 and 413 are arranged such that the roller interval is equal to or shorter than the second connecting frame length L2. Accordingly, at least one guide roller is disposed between the second connection frame lengths L2.
  • column 20 has a property which can be bent in the surface direction. Therefore, there is a possibility that the second connecting frame row 20 is curved in the surface direction.
  • the second connecting piece 22 is supported by at least one guide roller in the surface direction, even if a force that bends in the surface direction acts on the second connecting piece row 20 for some reason, the second connecting piece 22 The curvature of the top row 20 toward the surface can be suppressed.
  • the plurality of guide rollers 412 and 413 have a lower hardness than the second connecting piece 22. As a result, even when a strong force is applied to the plurality of guide rollers 412 and 413 by the second connecting piece 22, the plurality of guide rollers 412 and 413 are broken before the second connecting piece 22, so that the second connecting piece The damage of 22 can be suppressed.
  • the leading guide roller 413 has the following functions.
  • the leading guide roller 413 is arranged at the same position as the rearmost upper roller 312 in the thickness direction of the injection unit 30.
  • the leading guide roller 413 is disposed at the same position as the rearmost upper roller 311 in the thickness direction of the injection unit 30, so that the angle at which the second connecting top row 20 enters the rearmost upper roller 312 is made zero. be able to. That is, the leading guide roller 413 can cause the second connected top row 20 to enter the injection unit 30 along a direction parallel to the injection center axis. Accordingly, since the direction of the second connecting piece 22 is not greatly changed by the rearmost upper roller 312, the possibility of occurrence of a joint failure between the first connecting piece 23 and the second connecting piece 22 at the injection unit 30 is reduced. can do.
  • FIG. 8 is a diagram illustrating another configuration example of the guide unit 40 of the robot arm mechanism according to the present embodiment.
  • the distance between the drive gear 24a and the injection unit 30 is long, the distance between the rollers between the last guide roller 411 and the injection unit 30 is the second connecting frame length L2.
  • a plurality of guide rollers 412, 413, 414, 415, and 416 may be arranged along the injection center axis so as to be as follows. Further, when the second connecting piece row 20 can be bent in the back direction, a plurality of guide rollers 412, 413, 414, 415, 416 are sandwiched between the second connecting piece rows 20 as shown in FIG.
  • a plurality of guide rollers 417 and 418 may be arranged at positions facing each other. At this time, the plurality of guide rollers 417 and 418 are arranged at a distance equal to or slightly longer than the thickness of the second connecting piece 22 from the plurality of guide rollers 412 to 416. Accordingly, the plurality of guide rollers 412 to 418 can prevent the second connecting frame row 20 from being bent in the front surface direction and the back surface direction.
  • the guide unit 40 may be configured by only the guide roller 411. That is, the second connecting frame row 20 is not bent greatly in the surface direction because the angle of bending in the surface direction is limited. Therefore, it is less necessary to prevent the second connecting frame row 20 from being bent in the surface direction. Further, as in the present embodiment, when the rearmost upper roller 312 and the guide roller 411 are arranged at the same position in the thickness direction of the injection unit 30, the injection roller 30 is sandwiched between the guide roller 411 and the drive gear 24 a. The second connecting piece 22 is already parallel to the injection center axis.
  • the leading guide roller 413 for allowing the second connecting piece row 20 to enter the injection unit 30 along a direction parallel to the injection central axis.
  • the plurality of guide rollers 412 and 413 are not necessary when the bending of the second connecting frame row 20 in the back direction is a load and the bending angle in the surface direction is limited.
  • the guide roller 411 is largely separated from the rearmost upper roller 312 with respect to the thickness direction of the injection unit 30, the injection unit 30 is arranged along the direction parallel to the injection center axis with respect to the second connecting piece row 20. Need to enter. Therefore, the leading guide roller 413 may be arranged. Since the guide part 40 is configured in this way, the number of parts can be reduced, and thus there is an effect of cost reduction.
  • the guide unit 40 may function as a part of the injection unit 30.
  • the guide roller 411 constitutes the injection unit 30 together with the lower roller 311.
  • the gravity direction is the ⁇ Z direction.
  • a moment of force is generated in the columnar body due to gravity acting according to the weight of the arm portion 2 and the hand effector 3.
  • the columnar body is supported by the guide roller 411, the columnar body that is about to rotate due to the moment can be suppressed.
  • the function of supporting the columnar body by the injection part 30 configured by the guide roller 411 and the lower roller 311 can be achieved. Since the injection unit 30 is configured in this manner, the number of parts of the injection unit 30 can be reduced, which has an effect of cost reduction.
  • the guide part 40 can guide the second connecting piece 22 immediately after being engaged with the drive gear 24a to the injection part 30 without colliding with another mechanism when the arm is extended.
  • the second connecting piece 22 that jumps up immediately after engaging with the drive gear 24 a can be suppressed by the rearmost guide roller 411.
  • the rearmost guide roller 411 can maintain the engagement state between the linear gear 22a provided on the back surface of the second connecting piece 22 and the drive gear 24a. That is, the last guide roller 411 guides the second connecting piece row 20 to the injection unit 30 and maintains the engagement state between the linear gear 22a provided on the back surface of the second connecting piece 22 and the drive gear 24a.
  • the leading guide roller 413 is disposed at the same position as the rearmost upper roller 312 with respect to the injection center axis.
  • the leading guide roller 413 can cause the second connecting piece row 20 to enter the injection unit 30 in parallel with the injection center axis. Thereby, the malfunction of joining with the 1st connection top row
  • the plurality of guide rollers 411, 412, and 413 are arranged so that the distance between the rotation axes is equal to or less than the length of the second connecting piece 22. Thereby, it can prevent that the 2nd connection top row

Abstract

直動伸縮関節を有するロボットアーム機構において、安定した伸縮動作を実現すること。直動伸縮関節を有するロボットアーム機構において、直動伸縮関節はアーム部(2)とアーム部(2)を支持する射出部(30)とを有する。アーム部(2)は、第1連結コマ列(21)と第2連結コマ列(20)とを有する。第1連結コマ列(21)は複数の第1連結コマ(23)から構成される。第2連結コマ列(20)は、略平板形状を有する複数の第2連結コマ(22)から構成される。第1連結コマ列(21)が第2連結コマ列(20)に接合されることにより柱状体が構成される。柱状体は射出部(30)から前方に向かって送り出される。射出部(30)の後方には第2連結コマ列(20)を射出部(30)に誘導し且つ第2連結コマ(22)に設けられたリニアギア(22a)とドライブギア(24a)との係合状態を維持するガイドローラ(411)が設けられる。

Description

ロボットアーム機構
 本発明の実施形態はロボットアーム機構に関する。
 従来より、多関節ロボットアーム機構が産業用ロボットなどさまざまな分野で用いられている。このような多関節ロボットアーム機構には、例えば、直動伸縮関節が組み合わされて装備されている。直動伸縮関節を構成するアーム部は、例えば、同一形状を有する複数のコマを列状に連結した連結コマ列で構成される。連結コマ列が接合されることで一定の剛性を有する柱状体が構成される。直動伸縮関節が駆動されるとアーム部が伸縮する。具体的には、モータが回転すると、格納されていた連結コマ列が接合機構まで誘導され、接合機構で接合され柱状体となったアーム部が伸長される。したがって、連結コマ列が設計した経路からはずれて移動されてしまうと、ロボットアーム機構の伸縮動作が安定しない可能性がある。
 直動伸縮関節を有するロボットアーム機構において、安定した伸縮動作を実現することを目的とする。
 本実施形態に係るロボットアーム機構は直動伸縮関節を有し、前記直動伸縮関節はアーム部と前記アーム部を支持する射出部とを有し、前記アーム部は第1連結コマ列と第2連結コマ列とを有し、前記第1連結コマ列は断面コ字、円弧またはロ字形状を有する複数の第1連結コマから構成され、前記第2連結コマ列は略平板形状を有する複数の第2連結コマから構成され、前記第2連結コマ列は前記第1連結コマ列と接合されることにより柱状体を構成し、前記第2連結コマ列は前記第1連結コマ列に対し接合された状態で前記第1連結コマ列とともに前記射出部から前方に向かって送り出され、前記第2連結コマ列を前記射出部に誘導し且つ前記第2連結コマに設けられたリニアギアとドライブギアとの係合状態を維持するガイドローラが設けられる。
図1は、本実施形態に係るロボットアーム機構の外観斜視図である。 図2は、図1のロボットアーム機構の内部構造を示す斜視図である。 図3は、図1のロボットアーム機構の内部構造を断面方向から見た図である。 図4は、図3のガイド部とドライブギアとの間の位置関係を示す図である。 図5は、図3のガイド部を上方、側方及び下方から見た図である。 図6は、本実施形態に係るロボットアーム機構のガイド部を構成する複数のガイドローラの配置方法を説明するための補足説明図である。 図7は、本実施形態に係るロボットアーム機構のガイド部の機能を説明するための補足説明図である。 図8は、本実施形態に係るロボットアーム機構のガイド部の他の構成例を示す図である。
 以下、図面を参照しながら本実施形態に係るロボットアーム機構を説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
 図1は、本実施形態に係るロボットアーム機構の外観斜視図である。図2、図3は図1のロボットアーム機構の内部構造を示している。ロボットアーム機構は、略円筒形状の基部1と基部1に接続するアーム部2とを有する。アーム部2の先端にはエンドエフェクタと呼ばれる手先効果器3が取り付けられる。図1では手先効果器3として対象物を把持可能なハンド部を図示している。手先効果器3としてはハンド部に限定されず、他のツール、またはカメラ、ディスプレイであってもよい。アーム部2の先端には任意の種類の手先効果器3に交換することができるアダプタが設けられていてもよい。
 アーム部2は、複数、ここでは6つの関節部J1,J2,J3,J4,J5,J6を有する。複数の関節部J1,J2,J3,J4,J5,J6は基部1から順番に配設される。一般的に、第1、第2、第3軸RA1,RA2,RA3は根元3軸と呼ばれ、第4、第5、第6軸RA4,RA5,RA6はハンド部3の姿勢を変化させる手首3軸と呼ばれる。根元3軸を構成する関節部J1,J2,J3の少なくとも一つは直動関節である。ここでは第3関節部J3が直動関節、特に伸縮距離の比較的長い関節部として構成される。第1関節部J1は台座面に対して例えば垂直に支持される第1回転軸RA1を中心としたねじり関節である。第2関節部J2は第1回転軸RA1に対して垂直に配置される第2回転軸RA2を中心とした曲げ関節である。第3関節部J3は、第2回転軸RA2に対して垂直に配置される第3軸(移動軸)RA3を中心として直線的に伸縮する関節である。第4関節部J4は、第3移動軸RA3に一致する第4回転軸RA4を中心としたねじり関節であり、第5関節部J5は第4回転軸RA4に対して直交する第5回転軸RA5を中心とした曲げ関節である。第6関節部J6は第4回転軸RA4に対して直交し、第5回転軸RA5に対して垂直に配置される第6回転軸RA6を中心とした曲げ関節である。
 第1関節部J1のねじり回転によりアーム部2がハンド部3とともに旋回する。第2関節部J2の曲げ回転によりアーム部2がハンド部3とともに第2関節部J2の第2回転軸RA2を中心に起伏動をする。基部1を成すアーム支持体(第1支持体)11aは、第1関節部J1の回転軸RA1を中心に形成される円筒形状の中空構造を有する。第1関節部J1は図示しない固定台に取り付けられる。第1関節部J1が回転するとき、第1支持体11aはアーム部2の旋回とともに軸回転する。なお、第1支持体11aが接地面に固定されていてもよい。その場合、第1支持体11aとは独立してアーム部2が旋回する構造に設けられる。第1支持体11aの上部には第2支持部11bが接続される。
 第2支持部11bは第1支持部11aに連続する中空構造を有する。第2支持部11bの一端は第1関節部J1の回転部に取り付けられる。第2支持部11bの他端は開放され、第3支持部11cが第2関節部J2の回転軸RA2において回動自在に嵌め込まれる。第3支持部11cは第1支持部11a及び第2支持部に連通する鱗状の中空構造を有する。第3支持部11cは、第2関節部J2の曲げ回転に伴ってその後部が第2支持部11bに収容され、また送出される。アーム部2の直動関節部を構成する第3関節部J3の後部はその収縮により第1支持部11aと第2支持部11bの連続する中空構造の内部に収納される。
 第1関節部J1は円環形状の固定部と回転部とからなり、固定部において台座に固定される。回転部には第1支持部11aと第2支持部11bとが取り付けられる。第1関節部J1が回転するとき、第1、第2、第3支持体11a、11b、11cが第1回転軸RA1を中心としてアーム部2とハンド部3と共に旋回する。
 第3支持部11cはその後端下部において第2支持部11bの開放端下部に対して回転軸RA2を中心として回動自在に嵌め込まれる。それにより回転軸RA2を中心とした曲げ関節部としての第2関節部J2が構成される。第2関節部J2が回動すると、アーム部2がハンド部3とともに第2関節部J2の回転軸RA2を中心に垂直方向に回動、つまり起伏動作をする。第2関節部J2の回転軸RA2は、ねじり関節部としての第1関節部J1の第1回転軸RA1に垂直に設けられる。
 上記の通り関節部としての第3関節部J3はアーム部2の主要構成物を構成する。アーム部2の先端に上述のハンド部3が設けられる。ハンド部3は、図1に示すようにアーム部2の先に装備されている。ハンド部3は、第1、第2、第3関節部J1.J2.J3により任意位置に移動され、第4、第5、第6関節部J4、J5、J6により任意姿勢に配置される。ハンド部3は、開閉される2つの指部16a、16bを有している。第4関節部J4は、アーム部2の伸縮方向に沿ったアーム中心軸、つまり第3関節部J3の移動軸RA3に典型的には一致する回転軸RA4を有するねじり関節である。第4関節部J4が回転すると、第4関節部J4から先端にかけてハンド部3が回転軸RA4を中心に回転する。
 第5関節部J5は、第4関節部J4の移動軸RA4に対して直交する回転軸RA5を有する曲げ関節部である。第5関節部が回転すると、第5関節部J5から先端にかけてハンド部16とともに上下に回動する。第6関節部J6は、第4関節部J4の回転軸RA4に直交し、第5関節部J5の回転軸RA5に垂直な回転軸RA6を有する曲げ関節である。第6関節部J6が回転するとハンド16が左右に旋回する。
 第1乃至第6関節部J1-J6の回転、曲げ、伸縮によりハンド部3の2指ハンド16を任意の位置・姿勢に配置することが可能である。特に第3関節部J3の直動伸縮距離の長さは、基部1の近接位置から遠隔位置までの広範囲の対象にハンド部3で作用することを可能にする。
 第3関節部J3はそれを構成する直動伸縮アーム機構により実現される直動伸縮距離の長さが特徴的である。直動伸縮距離の長さは、図2、図3に示す構造により達成される。直動伸縮アーム機構は第1連結コマ列21と第2連結コマ列20とを有する。アーム部2が水平に配置される基準姿勢では、第1連結コマ列21は第2連結コマ列20の下部に位置し、第2連結コマ列20は第1連結コマ列21の上部に位置する。
 第1連結コマ列21は、同一の断面コ字形状を有し、ピンにより表面箇所において列状に連結される複数の第1連結コマ23からなる。第1連結コマ23の断面形状及びピンによる連結位置により第1連結コマ列21はその背面方向に屈曲可能であるが逆に表面方向には屈曲不可な性質を備える。第1連結コマ23の断面形状は、コ字形状だけでなく、断面ロ字形状、円弧形状等であってもよい。
 第2連結コマ列20は、第1連結コマ23と略等価な幅を有する略平板形状を有し、ピンにより列状に連結される複数の第2連結コマ22からなる。第2連結コマ列20は連結部分の形状またはピンによる連結位置により、その表面方向に屈曲可能であるが逆に背面方向には屈曲不可な性質を備える。第1連結コマ列21は第2連結コマ列20と先端部おいて結合コマ26により結合される。結合コマ26は、第1連結コマ23と第2連結コマ22とが一体的になった形状を有している。図2に示すように第2連結コマ22の背面側には個々にリニアギア22aが形成されている。リニアギア22aは第2連結コマ22が直線状になったときに連結され、連続的なリニアギア(ラック)を構成する。
 図3に示すように、ドライブギア24aと射出部30との間にはガイド部40が設けらえる。ガイド部40により第2連結コマ22の背面に形成されたリニアギア22aとドライブギア24aとの係合状態が維持される。アーム伸長時、モータM1が駆動し、ドライブギア24aが順回転することにより、第2連結コマ列20は第1連結コマ列21と接合され、柱状体となって射出部30から前方に向かって送り出される。このとき、第1連結コマ列21と第2連結コマ列20との背面同士が接合されることにより柱状体は構成される。アーム収縮時、モータM1が駆動し、ドライブギア24aが逆回転することにより柱状体は射出部30よりも後方で接合状態が解除され、互いに離反される。離反された第2連結コマ列20と第1連結コマ列21とはそれぞれ屈曲可能な状態になり、第1回転軸RA1に沿う方向に屈曲され、第1支持体11aの内部に格納される。
 以下、ガイド部40の構造について図4、5を参照して説明する。図4は、図3のガイド部40とドライブギア24aとの間の位置関係を示す図である。図5は、図3のガイド部40を上方、側方及び下方から見た図である。
 ガイド部40は第2連結コマ列20を接合機構に誘導する機能を有する。接合機構とは、第1連結コマ列21と第2連結コマ列20とを接合し、柱状体を構成するための機構である。本実施形態において、接合機構は射出部30に構成される。したがって、以下、接合機構は射出部30とする。ガイド部40はドライブギア24aから射出部30までの第2連結コマ列20の移動経路を形成する。移動経路は第2連結コマ列20が射出部30に適切な角度で進入するための経路である。適切な角度で第2連結コマ列20を射出部30に進入させることで、射出部30で第2連結コマ列20に対して第1連結コマ列21を接合できない等の不具合の発生を少なくすることができる。また、ガイド部40は第2連結コマ22に設けられたリニアギア22aとドライブギア24aとの係合状態を維持する機能を有する。これらの機能の詳細は後述する。
 ガイド部40は、典型的には以下のように構成される。ガイド部40はコの字形状の外観を有する。ガイド部40は一対の側壁板321,322、下壁板323及び上壁板324を備える。側壁板321は長方形状の平板である。側壁板321の短辺はアーム部2の厚みよりも長く、長辺は射出口33からドライブギア24aの後方までの距離程度の長さを有する。側壁板322及び上壁板324は側壁板321と同一の形状を有する。一対の側壁板321,322は第1支持体11aまたは第2支持体11bに対して固定される。
 一対の側壁板321,322は射出中心軸からそれぞれ左右方向(図中、+Y方向と-Y方向と)に等距離を隔てて配置される。一対の側壁板321,322は、柱状体の幅よりも長い距離を隔てて配置される。一対の側壁板321,322の下端部の間は下壁板323により固定される。一対の側壁板321,322の上端部の間は上壁板324により固定される。下壁板323及び上壁板324により、一対の側壁板321,322の間隔は一定に保持される。なお、射出中心軸は射出部30の中心軸である。射出中心軸は射出部30によりアーム部2が支持されているとき、アーム部2の中心軸に一致する。
 側壁板321、322の上端部間にはガイドローラが回転可能に固定される。ガイドローラはシャフトとローラとを備える。シャフトの両端は側壁板321,322にそれぞれ固定される。シャフトには2つのローラが回転自在に取り付けられている。本実施形態に係るガイド部40は複数、ここでは3つのガイドローラ411,412,413を備える。複数のガイドローラ411,412,413は第2連結コマ22の幅方向に平行な回転軸を有する。複数のガイドローラ411,412,413はドライブギア24a付近から射出部30までの間に配列される。
 まず、複数のガイドローラ411,412,413のうち最後尾のガイドローラ411の配置について説明する。最後尾のガイドローラ411はドライブギア24aの近傍に、ドライブギア24aとリニアギア22aとの係合を維持するための位置に配置される。具体的には、ガイドローラ411はドライブギア24aの回転軸24rからガイドローラ411の回転軸までの射出中心軸に関する距離dx1が、ドライブギア24aの半径以下となるように配置される。好適には、ガイドローラ411は距離dx1がゼロ、つまり、射出中心軸に関してドライブギア24aと同位置に配置される。また、ガイドローラ411は、ドライブギア24aの半径方向に関して、ドライブギア24aの回転軸24rから所定距離dz1よりも長い距離を隔てて配置される。所定距離dz1はドライブギア24aとリニアギア22aとが係合するために必要な距離を有する。すなわち、所定距離dz1はドライブギア24aの半径24dと第2連結コマ22の厚み22dとを合算した長さに対応する。厚み22dは、第2連結コマ22の表面から背面に設けられたリニアギア22aの下端までの長さに対応する。それにより、第2連結コマ列20は、ドライブギア24aに係合した後、ガイドローラ411とドライブギア24aとの間に挟まれ、リニアギア22aとドライブギア24aとの係合状態が維持される。複数のガイドローラ412、413は、最後尾のガイドローラ411と射出部30との間に配列される。複数のガイドローラ412,413の配置方法については後述する。
 射出部30は第1連結コマ列21と第2連結コマ列20とを接合する機能とアーム部2を支持する機能とを有する。そのために、射出部30は以下のように構成される。射出部30は略角筒形状の外観を有する。本実施形態において、一対の側壁板321,322、下壁板323、上壁板324はガイド部40と射出部30との共通部品である。したがって、一対の側壁板321,322にガイド部40と射出部30とが構成される。このときガイド部40は射出部30よりも後方に構成される。なお、ガイド部40と射出部30とは、それぞれ異なる一対の側壁板に構成されてもよい。しかしながら、本実施形態のように、共通の一対の側壁板321,322にガイド部40と射出部30とを構成することで以下のような効果を得ることができる。つまり、共通の一対の側壁板321,322により、一方の一対の側壁板分、部品点数を少なくすることができる。また、共通の一対の側壁板321,322により、第2連結コマ列20が射出部30に到達するまでの間、第2連結コマ列20が幅方向にずれるのを防ぐことができる。言い換えると、共通の一対の側壁板321,322が第2連結コマ列20を誘導する機能の一部を果たすことができる。
 一対の側壁板321,322には、それぞれ複数の側部ローラ313,314が設けられる。以下、側壁板321に設けられる複数の側部ローラ313について説明する。 
 側壁板321の外側面の所定位置には、一対の軸受け部325,326が固定される。軸受け部325は細長い角柱であり、射出中心軸に平行な中心軸を有する。軸受け部326は軸受け部325と同一の形状を有する。一対の軸受け部325,326が固定される位置は、射出中心軸から上下方向(図中+Z方向と-Z方向と)に等距離を隔てた位置にそれぞれ対応する。
 軸受け部325,326の間には複数の側部ローラ313が回転可能に固定される。複数の側部ローラ313は互いに平行に且つ射出中心軸に沿って配列される。複数の側部ローラ313は、上下方向(図中Z方向)の回転軸を有する。側部ローラ313は軸受け部325,326に固定された側部ローラ313の回転軸から側壁板321の内側面までの距離よりも長い半径を有する。側壁板321の所定位置には、側部ローラ313を側壁板321の内側面から突出させるための突出穴329が形成されている。側壁板321において突出穴329が形成される位置は、軸受け部323と324との間に固定される側部ローラ313の位置に対応する。側壁板321に突出穴329が形成されていることで、軸受け部325,326に固定された側部ローラ313が側壁板321の内側面から突出する。側壁板321の内側面から突出した複数の側部ローラ313の突出端により柱状体を支持する支持面が規定される。
 側壁板321と同様に、側壁板322には一対の軸受け部327,328が固定される。一対の軸受け部325,326と同様に、一対の軸受け部327,328の間には複数の側部ローラ314が回転可能に固定される。側部ローラ314は、側部ローラ313と同一の形状を有する。複数の側部ローラ314は、複数の側部ローラ313と同様に、側壁板322の内側面から突出する。側壁板322の内側面から突出した複数の側部ローラ314の突出端により柱状体を支持する支持面が規定される。
 複数の側部ローラ313により規定される支持面から複数の側部ローラ314により規定される支持面までの距離は、射出部30の筒状部分の幅に対応する。複数の側部ローラ313により規定される支持面と複数の側部ローラ314により規定される支持面とは、射出部30の筒状部分の幅が柱状体の幅以下の長さになるように設計される。具体的には、側部ローラ313,314の側壁板321,322の内側面からの突出長が、複数の側部ローラ313により規定される支持面から複数の側部ローラ314により規定される支持面までの距離が柱状体の幅以下の長さになるように調整される。複数の側部ローラ313により規定された支持面から複数の側部ローラ314により規定された支持面までの距離が柱状体の幅よりも短いとき、複数の側部ローラ313,314は、柱状体との間で予圧がかけられた状態で柱状体を支持する。
 側壁板321、322の上部間には複数の上部ローラ312が回転可能に固定される。複数の上部ローラ312は互いに平行に且つ射出中心軸に沿って配列される。したがって、複数の上部ローラ312は、左右方向(図中Y方向)の回転軸を有する。複数の上部ローラ312の下部により柱状体を支持する支持面が規定される。側壁板321、322の下部間には複数の下部ローラ311が回転可能に固定される。複数の下部ローラ311は互いに平行に且つ射出中心軸に沿って配列される。したがって、複数の下部ローラ311は、左右方向(図中Y方向)の回転軸を有する。複数の下部ローラ311の上部により柱状体を支持する支持面が規定される。
 複数の上部ローラ312により規定される支持面から複数の下部ローラ311により規定される支持面までの距離は射出部30の筒状部分の厚みに対応する。複数の上部ローラ312により規定される支持面と複数の下部ローラ311により規定される支持面とは、射出部30の筒状部分の厚みが柱状体の厚み以下の長さになるように設計される。具体的には、複数の上部ローラ312と複数の下部ローラ311との固定位置が、複数の上部ローラ312により規定される支持面から複数の下部ローラ311により規定される支持面までの距離が柱状体の厚み以下の長さになるように決定される。複数の上部ローラ312により規定される支持面から複数の下部ローラ311により規定される支持面までの距離が柱状体の厚みよりも短いとき、複数の上部ローラ312と複数の下部ローラとは、柱状体との間に予圧がかけられた状態で柱状体を支持する。
 以上説明したように、射出部30の筒状部分の幅及び厚みは、それぞれ柱状体の幅及び厚みよりも短くなるように設計される。それにより、射出部30と柱状体との間に予圧がかけられた状態となる。射出部30と柱状体との間に適切な予圧がかけられることで、アーム収縮時のガタツキが減り、ガタツキが減ることにより異音を防止することができる。また、射出部30の剛性を高めることができる。すなわち、アーム部2及び手先効果器3の移動に伴ってかかる外力やアーム部2及び手先効果器3の重量に応じた外力に対して射出部30の変形量を小さくすることができる。それにより、射出部30によるアーム部2の位置を保持する精度を高くすることができる。なお、本実施形態では予圧をかける方法として定位置予圧を採用している。本実施形態において、定位置予圧はローラと柱状体との間の位置関係によって、柱状体と射出部30との間に予圧をかける方法である。このとき、ローラの間隔は柱状体の幅(厚み)よりもわずかに短くすることで柱状体と射出部30との間に予圧がかかる。しかしながら、柱状体と射出部30との間に予圧をかける方法はこれに限定されない。コイルバネや皿バネなどを利用した定圧予圧により、柱状体と射出部30との間に予圧をかけてもよい。本実施形態では、これらのバネを利用してローラを柱状体に向かって押し込むことにより柱状体と射出部30との間に予圧をかけることができる。
 なお、射出部30にはアーム部2及び手先効果器3の重量に応じた外力(重力)が常に働く。したがって、柱状体との間に予圧がかけられる効果は、特に射出部30の上部ローラ312と下部ローラ311に関して顕著である。一方、側部ローラ313、314には、上部ローラ312及び下部ローラ311に比べて大きな外力が働かない。したがって、側部ローラ313,314と柱状体との間には予圧がかけられなくてもよい。つまり、射出部30の筒状部分の幅は柱状体の幅に等価であればよい。また、柱状体と線で接触する側部ローラ313,314に代わって、柱状体と点で接触するボールベアリングが用いられてもよい。
 ドライブギア24aが順回転すると、第2連結コマ列20が第1連結コマ列21とともに射出部30に誘導される。射出部30に誘導された第1連結コマ23は、最後尾の下部ローラ311に沿って回転しながら射出中心軸に平行な直線上に整列される。同様に、射出部30に誘導された第2連結コマ22は、最後尾の上部ローラ312の回転軸に沿って射出中心軸に平行な直線上に整列される。既述のとおり、射出部30の筒状部分の厚みはアーム部2の厚みよりもわずかに短い。そのため、第2連結コマ列20は第1連結コマ列21とともに、射出部30の後方の上部ローラ312と下部ローラ311とにより挟まれる。それにより、第1連結コマ列21と第2連結コマ列20とは相互に押圧され、接合される。接合された第1連結コマ列21と第2連結コマ列20とは射出部30の複数のローラにより支持されることにより接合状態が保持される。第1連結コマ列21と第2連結コマ列20との接合状態が保持されたとき、第1連結コマ列21と第2連結コマ列20の屈曲は制限され、それにより第1連結コマ列21と第2連結コマ列20とにより一定の剛性を備えた柱状体が構成される。そして、接合されたアーム部2が射出部30から前方に向かって送り出される。
 次に、複数のガイドローラ411,412,413の配置方法について図6を参照して説明する。図6は、本実施形態に係るガイド部40を構成する複数のガイドローラ411,412,413の配置方法を説明するための補足説明図である。図6(a)は、ロボットアーム機構のガイド部40と射出部30とを含む範囲を断面方向から見た図である。図6(b)は第2連結コマ22の長さを説明するための補足説明図である。図6(b)に示すように、第2連結コマ22が連なっている方向(長さ方向)において、第2連結コマ22の先端から後端までの距離L2を第2連結コマ22長L2とする。また、ガイドローラ411とガイドローラ412との間の回転軸間距離をL41(以下、ローラ間隔L41と称す)、ガイドローラ412とガイドローラ413との間の回転軸間距離をL42(以下、ローラ間隔L42と称す)、ガイドローラ413の回転軸と射出部30の後端、ここでは射出部30の最後尾の上部ローラ312の回転軸との間の距離をL43(以下、ローラ間隔L43と称す)とする。
 図6に示すように、複数のガイドローラ411,412,413は互いに平行にドライブギア24a付近から射出部30にかけてそれぞれ配置される。具体的には、ガイドローラ413(先頭のガイドローラ413)は、射出中心軸に関して、射出部30の後端から(最後尾の上部ローラ312から)ローラ間隔L43を隔てて配置される。ローラ間隔L43は第2連結コマ長L2以下の長さを有する。先頭のガイドローラ413は、射出部30の厚み方向に関して、最後尾の上部ローラ312と同位置に配置される。
 ガイドローラ412は、ガイドローラ411と413との間に配置される。具体的には、ガイドローラ412は、射出中心軸に関して、ガイドローラ411からローラ間隔L41を隔てた位置であって、ガイドローラ413からローラ間隔L42を隔てた位置に配置される。ローラ間隔L41、L42は、第2連結コマ長L2以下の長さを有する。それにより、第2連結コマ22は少なくとも1つのガイドローラにより支持される。ガイドローラ412は、射出部30の厚み方向に関して、先頭のガイドローラ413と最後尾のガイドローラ411との間に配置される。本実施形態のように、最後尾のガイドローラ411が射出部30の厚み方向に関して最後尾の上部ローラ312と同位置に配置されているとき、複数のガイドローラ411,412,413の下部と最後尾の上部ローラ312とで規定される面は、射出中心軸に平行となる。
 なお、ローラ間隔L41とL42とを合算した長さが第2連結コマ長L2以下であれば、ガイドローラ412はなくてもよい。また、ローラ間隔L41とL42とを合算した長さが第2連結コマ長L2の2倍よりも長い場合、先頭のガイドローラ413と最後尾のガイドローラ411との間に2つ以上のガイドローラを、ローラ間隔が第2連結コマ長L2以下になるように配置すればよい。
 次に、複数のガイドローラ411,412,413が図6で説明した条件に従って配置されたときの機能について図7を参照して説明する。 
 図7は、本実施形態に係るロボットアーム機構のガイド部40の機能を説明するための補足説明図である。図7は、ロボットアーム機構のガイド部40と射出部30とを含む範囲を断面方向から見た図である。図7はアーム部2が送り出される様子を示している。図7(b)は図7(a)から所定時間経過後の状態を示している。
 まず、最後尾のガイドローラ411の機能について説明する。ドライブギア24aが順回転されると、第2連結コマ列20が射出部30に誘導される。図6に示すように、第2連結コマ22はドライブギア24aに係合した直後にコマの向きが大きく変化する。したがって、特にアーム部2が高速に伸長されているとき、ドライブギア24aに係合した直後の第2連結コマ22は、その前方の連結部分を回転の中心としてその後方部分が図中矢印UDの方向に勢いよく回転される。最後尾のガイドローラ411はドライブギア24aに係合した直後の、回転された第2連結コマ22を係止する。そのために、最後尾のガイドローラ411は射出中心軸に関して、ドライブギア24aと同位置またはドライブギア24aの後方近傍に配置される。それにより最後尾のガイドローラ411により、第2連結コマ22が第2支持体11b及びそのカバー等に衝突する可能性を低減することができ、第2連結コマ22の損傷や衝突で発生する音を抑止することができる。
 なお、最後尾のガイドローラ411は第2連結コマ22よりも低い硬度を有する。具体的には、最後尾のガイドローラ411は弾性体、例えばゴム等でそのローラ部分が覆われている。それにより第2連結コマ22がガイドローラ411に衝突するときの力を弾性体で吸収することができるため、第2連結コマ22の損傷を防止することができる。また、例えば、最後尾のガイドローラ411は他のガイドローラに比べて大きな径を有する。それにより、回転した第2連結コマ22を係止できる可能性を高くすることができる。
 また、最後尾のガイドローラ411がドライブギア24aとの間で第2連結コマ22を挟むための位置に配置されることで、最後尾のガイドローラ411はリニアギア22aとドライブギア24aとの係合状態を維持することができる。したがって、最後尾のガイドローラ411により、ドライブギア24aからリニアギア22aが外れてしまうのを防ぐことができるため、アーム部2の収縮動作が安定させることができる。
 次に、複数のガイドローラ412,413の機能について説明する。複数のガイドローラ412、413は、ローラ間隔が第2連結コマ長L2以下の長さになるように配置される。それにより、第2連結コマ長L2の間に少なくとも1つのガイドローラが配置される。第2連結コマ列20は表面方向に屈曲可能な性質を有する。したがって、第2連結コマ列20は表面方向に湾曲する可能性がある。しかしながら、第2連結コマ22は表面方向で少なくとも1つのガイドローラにより支持されるため、何らかの要因で第2連結コマ列20に対してその表面方向に屈曲する力が作用した場合でも、第2連結コマ列20の表面方向への湾曲を抑えることができる。複数のガイドローラ412、413は第2連結コマ22よりも低い硬度を有する。それにより複数のガイドローラ412,413に対して第2連結コマ22により強い力が作用した場合でも、第2連結コマ22よりも先に複数のガイドローラ412,413が壊れるため、第2連結コマ22の損傷を抑えることができる。
 さらに、先頭のガイドローラ413には以下の機能がある。先頭のガイドローラ413は、射出部30の厚み方向に関して、最後尾の上部ローラ312と同位置に配置される。先頭のガイドローラ413が射出部30の厚み方向に関して最後尾の上部ローラ311と同位置に配置されることで、第2連結コマ列20を最後尾の上部ローラ312に進入する角度をゼロにすることができる。つまり、先頭のガイドローラ413により、第2連結コマ列20を射出中心軸に平行な方向に沿って射出部30に進入させることができる。したがって、第2連結コマ22が最後尾の上部ローラ312で大きく向きが変化しないため、射出部30での第1連結コマ23と第2連結コマ22との接合の不具合が発生する可能性を小さくすることができる。
 なお、ガイド部40の構成は本実施形態に限定されない。 
 図8は、本実施形態に係るロボットアーム機構のガイド部40の他の構成例を示す図である。図8(a)に示すように、ドライブギア24aと射出部30との間が距離が長い場合、最後尾のガイドローラ411と射出部30までの間に、ローラ間隔が第2連結コマ長L2以下になるように、複数のガイドローラ412,413,414,415,416を射出中心軸に沿って配置すればよい。さらに、第2連結コマ列20が背面方向にも屈曲可能な場合、図8(a)に示すように、第2連結コマ列20を挟んで複数のガイドローラ412,413,414,415,416と対向する位置に複数のガイドローラ417,418を配置してもよい。このとき、複数のガイドローラ417,418は、複数のガイドローラ412-416から、第2連結コマ22の厚みと同じまたはわずかに長い距離を隔てて配置されている。それにより、複数のガイドローラ412-418は、第2連結コマ列20の表面方向と背面方向とに湾曲を防止することができる。
 また、第2連結コマ列20の表面方向に屈曲する角度がピン等により制限されている場合を想定する。このような場合、図8(b)に示すように、ガイド部40はガイドローラ411だけで構成されてもよい。それは、第2連結コマ列20は表面方向に屈曲する角度が制限されているため、表面方向に大きく湾曲することがない。したがって、第2連結コマ列20の表面方向への湾曲を防止する必要性が低い。また、本実施形態のように、射出部30の厚み方向に関して、最後尾の上部ローラ312とガイドローラ411とが同位置に配置されている場合、ガイドローラ411とドライブギア24aとに挟まれた第2連結コマ22は、既に射出中心軸に平行となっている。したがって、第2連結コマ列20を射出中心軸に平行な方向に沿って射出部30に進入させるための先頭のガイドローラ413を配置する必要がない。これらの理由から、第2連結コマ列20の背面方向への屈曲が負荷であって、表面方向への屈曲角度が制限されている場合において、複数のガイドローラ412,413は不要である。もちろん、射出部30の厚み方向に関して、最後尾の上部ローラ312に対してガイドローラ411が大きく隔てられている場合、第2連結コマ列20を射出中心軸に平行な方向に沿って射出部30に進入させる必要がある。したがって、先頭のガイドローラ413は配置されてもよい。ガイド部40がこのように構成されることで、部品点数も少なくすることができるため、コスト削減の効果がある。
 また、ガイド部40は射出部30の一部として機能してもよい。具体的には、図8(c)に示すように、ガイドローラ411は、下部ローラ311とともに射出部30を構成する。このとき、重力方向は-Z方向とする。このとき、柱状体にはアーム部2及び手先効果器3の重量に応じて働く重力により力のモーメントが発生する。しかしながら、ガイドローラ411により柱状体が支持されていることで、モーメントにより回転しようとする柱状体を抑えることができる。例えば、アーム部2及び手先効果器3の重力が軽い等の場合において、ガイドローラ411と下部ローラ311とにより構成された射出部30で柱状体を支持する機能を果たすことができる。射出部30がこのように構成されることで、射出部30の部品点数も少なくすることができるため、コスト削減の効果がある。
 以上説明した本実施形態に係るロボットアーム機構のガイド部40によれば以下のような効果を得られる。つまり、ガイド部40により、アーム伸長時において、ドライブギア24aに係合した直後の第2連結コマ22を他の機構に衝突させることなく、射出部30まで誘導することができる。具体的には、ドライブギア24aに係合した直後に跳ね上がる第2連結コマ22を、最後尾のガイドローラ411により抑えることができる。また、最後尾のガイドローラ411は第2連結コマ22の背面に設けられたリニアギア22aとドライブギア24aとの係合状態を維持することができる。つまり、最後尾のガイドローラ411は、第2連結コマ列20を射出部30にガイドし且つ第2連結コマ22の背面に設けられたリニアギア22aとドライブギア24aとの係合状態を維持することができる。また、先頭のガイドローラ413は射出中心軸に関して最後尾の上部ローラ312と同位置に配置される。先頭のガイドローラ413は第2連結コマ列20を射出中心軸に平行に射出部30に進入させることができる。それにより射出部30での第1連結コマ列21との接合の不具合を少なくすることができる。また、複数のガイドローラ411,412,413は回転軸間距離が第2連結コマ22の長さ以下になるように配列される。それにより、第2連結コマ列20が表面方向に湾曲するのを防ぐことができる。したがって、本実施形態に係るロボットアーム機構のガイド部40は、アーム部2の収縮動作を安定させることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1…基部、2…アーム部、3…手先効果器、J1,J2,J4,J5,J6…回転関節部、J3…直動関節部、11a…第1支持体、11b…第2支持体、11c…第3支持体、20…第2連結コマ列、21…第1連結コマ列、22…第2連結コマ、23…第1連結コマ、26…結合コマ、30…射出部、311…下部ローラ、312…上部ローラ、313,314…側部ローラ、321,322…側壁板、323…下壁板,324…上壁板,325,326,327,328…軸受け部、40…ガイド部、411、412,413…ガイドローラ

Claims (3)

  1.  直動伸縮関節を有するロボットアーム機構において、
     前記直動伸縮関節はアーム部と前記アーム部を支持する射出部とを有し、
     前記アーム部は第1連結コマ列と第2連結コマ列とを有し、
     前記第1連結コマ列は断面コ字、円弧またはロ字形状を有する複数の第1連結コマから構成され、前記第2連結コマ列は略平板形状を有する複数の第2連結コマから構成され、前記第2連結コマ列は前記第1連結コマ列と接合されることにより柱状体を構成し、
     前記第2連結コマ列は前記第1連結コマ列に対し接合された状態で前記第1連結コマ列とともに前記射出部から前方に向かって送り出され、
     前記第2連結コマ列を前記射出部に誘導し且つ前記第2連結コマに設けられたリニアギアとドライブギアとの係合状態を維持するガイドローラが設けられる、ロボットアーム機構。
  2.  前記ガイドローラは前記アーム部の中心軸に関して前記ドライブギアと同位置または前記ドライブギアよりも後方に設けられる、請求項1記載のロボットアーム機構。
  3.  前記ガイドローラの表面は前記第2連結コマよりも低い硬度を有している、請求項1記載のロボットアーム機構。
PCT/JP2015/085235 2014-12-20 2015-12-16 ロボットアーム機構 WO2016098814A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15870016.1A EP3235608B1 (en) 2014-12-20 2015-12-16 Robot arm mechanism
CN201580069355.9A CN107107345B (zh) 2014-12-20 2015-12-16 机械臂机构
US15/627,111 US10406697B2 (en) 2014-12-20 2017-06-19 Robot arm mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-258148 2014-12-20
JP2014258148A JP2016117127A (ja) 2014-12-20 2014-12-20 ロボットアーム機構

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/627,111 Continuation US10406697B2 (en) 2014-12-20 2017-06-19 Robot arm mechanism

Publications (1)

Publication Number Publication Date
WO2016098814A1 true WO2016098814A1 (ja) 2016-06-23

Family

ID=56126698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085235 WO2016098814A1 (ja) 2014-12-20 2015-12-16 ロボットアーム機構

Country Status (6)

Country Link
US (1) US10406697B2 (ja)
EP (1) EP3235608B1 (ja)
JP (1) JP2016117127A (ja)
CN (1) CN107107345B (ja)
TW (1) TW201632322A (ja)
WO (1) WO2016098814A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195105A1 (ja) * 2015-06-05 2016-12-08 ライフロボティクス株式会社 ロボットアーム機構
WO2018025726A1 (ja) * 2016-07-30 2018-02-08 ライフロボティクス株式会社 ロボットアーム機構
CN111823269A (zh) * 2020-06-23 2020-10-27 北京航空航天大学 一种卷尺拉链型伸缩机械臂及其设计方法
EP3750675A3 (de) * 2019-05-20 2021-03-17 Gerhard Schubert GmbH Roboterarm
DE112017003832B4 (de) 2016-07-30 2023-05-17 Life Robotics Inc. Roboterarmmechanismus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468804B2 (ja) * 2014-10-30 2019-02-13 ライフロボティクス株式会社 ロボットアーム機構
CN108698236A (zh) * 2016-02-29 2018-10-23 生活机器人学股份有限公司 机械臂机构及直动伸缩机构
CN109571527B (zh) * 2018-12-28 2021-10-29 北京信息科技大学 一种仓储拣货机器人的末端执行器
JP7359638B2 (ja) * 2019-10-23 2023-10-11 ファナック株式会社 直動伸縮機構
JP7359648B2 (ja) * 2019-10-31 2023-10-11 ファナック株式会社 ロボット装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120770A (ja) * 1997-07-01 1999-01-26 Honda Motor Co Ltd チェーン駆動車両のチェーンローラ構造
WO2011152265A1 (ja) * 2010-05-31 2011-12-08 独立行政法人産業技術総合研究所 直動伸縮アーム機構および当該直動伸縮アーム機構を備えたロボットアーム
JP2014139482A (ja) * 2014-04-22 2014-07-31 Ntn Corp チェーンガイド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2574657A (en) * 1945-10-23 1951-11-13 Harold C Pierce Flexible power transmitting mechanism
US5139464A (en) * 1991-06-19 1992-08-18 The Will-Burt Company Telescoping mast assembly
US5355643A (en) * 1991-10-04 1994-10-18 Alain Burri Sa Transformable structural element
DE29706739U1 (de) * 1997-04-15 1997-06-12 Grasl Andreas Ing Einrichtung zur Übertragung einer Kraft, insbesondere Druckkraft, längs einer im wesentlichen geraden Strecke
EP2740967A1 (en) * 2012-12-06 2014-06-11 Serapid SAS Operating device
JP6508704B2 (ja) 2014-11-29 2019-05-08 ライフロボティクス株式会社 ロボットアーム機構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120770A (ja) * 1997-07-01 1999-01-26 Honda Motor Co Ltd チェーン駆動車両のチェーンローラ構造
WO2011152265A1 (ja) * 2010-05-31 2011-12-08 独立行政法人産業技術総合研究所 直動伸縮アーム機構および当該直動伸縮アーム機構を備えたロボットアーム
JP2014139482A (ja) * 2014-04-22 2014-07-31 Ntn Corp チェーンガイド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3235608A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195105A1 (ja) * 2015-06-05 2016-12-08 ライフロボティクス株式会社 ロボットアーム機構
WO2018025726A1 (ja) * 2016-07-30 2018-02-08 ライフロボティクス株式会社 ロボットアーム機構
DE112017003832B4 (de) 2016-07-30 2023-05-17 Life Robotics Inc. Roboterarmmechanismus
EP3750675A3 (de) * 2019-05-20 2021-03-17 Gerhard Schubert GmbH Roboterarm
CN111823269A (zh) * 2020-06-23 2020-10-27 北京航空航天大学 一种卷尺拉链型伸缩机械臂及其设计方法

Also Published As

Publication number Publication date
TW201632322A (zh) 2016-09-16
EP3235608B1 (en) 2021-05-19
JP2016117127A (ja) 2016-06-30
US10406697B2 (en) 2019-09-10
EP3235608A1 (en) 2017-10-25
CN107107345B (zh) 2020-08-04
US20170297209A1 (en) 2017-10-19
CN107107345A (zh) 2017-08-29
EP3235608A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2016098814A1 (ja) ロボットアーム機構
WO2016084943A1 (ja) ロボットアーム機構
WO2016098815A1 (ja) ロボットアーム機構
WO2017043582A1 (ja) 直動伸縮機構
WO2016104807A1 (ja) ロボットアーム機構及び直動伸縮機構
WO2016117626A1 (ja) 連結コマ、直動伸縮機構及びロボットアーム機構
WO2016063992A1 (ja) ロボットアーム機構
JP6725645B2 (ja) ロボットアーム機構
WO2017170306A1 (ja) 直動伸縮機構及びロボットアーム機構
WO2018025725A1 (ja) ロボットアーム機構
JP6711911B2 (ja) 直動伸縮機構
JP6605847B2 (ja) ロボットアーム機構
JP6514024B2 (ja) ロボットアーム機構
WO2016108281A1 (ja) 直動伸縮機構及びロボットアーム機構
JP6662581B2 (ja) ロボットアーム機構
JP2016160963A (ja) 曲動伸縮機構及びロボットアーム機構
JP2016160962A (ja) 曲動伸縮機構及びロボットアーム機構
JP2016160964A (ja) 直動伸縮機構及びロボットアーム機構
WO2018025726A1 (ja) ロボットアーム機構
WO2017030104A1 (ja) 回転関節部のカバー装置
JP2018071704A (ja) 直動伸縮機構及びそれを備えたロボットアーム機構
JP2016101645A (ja) ロボットアーム機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015870016

Country of ref document: EP