WO2016093353A1 - デュアルクラッチ装置 - Google Patents

デュアルクラッチ装置 Download PDF

Info

Publication number
WO2016093353A1
WO2016093353A1 PCT/JP2015/084836 JP2015084836W WO2016093353A1 WO 2016093353 A1 WO2016093353 A1 WO 2016093353A1 JP 2015084836 W JP2015084836 W JP 2015084836W WO 2016093353 A1 WO2016093353 A1 WO 2016093353A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
valve
hydraulic
chamber
hydraulic pressure
Prior art date
Application number
PCT/JP2015/084836
Other languages
English (en)
French (fr)
Inventor
智啓 下沢
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to EP15866493.8A priority Critical patent/EP3232077B1/en
Priority to CN201580067152.6A priority patent/CN107110243B/zh
Priority to US15/535,003 priority patent/US10274024B2/en
Publication of WO2016093353A1 publication Critical patent/WO2016093353A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/0206Control by fluid pressure in a system with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0653Hydraulic arrangements for clutch control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0661Hydraulically actuated multiple lamellae clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0269Single valve for switching between fluid supply to actuation cylinder or draining to the sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1026Hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1026Hydraulic
    • F16D2500/1027Details about the hydraulic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • F16D2500/30816Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure

Definitions

  • the present invention relates to a dual clutch device.
  • one clutch corresponds to an odd-numbered gear train
  • the other clutch corresponds to an even-numbered gear train. For this reason, for example, when shifting up from the second speed to the third speed, the even-speed clutch is connected, and the second-speed sync mechanism is engaged, and the third-speed sync mechanism is engaged. Then, by shifting the clutch for the odd-numbered stage while disconnecting the clutch for the even-numbered stage, it is possible to realize a shift that does not cause torque loss.
  • each clutch is held in a connected state, which may cause double engagement of the transmission.
  • An object of the present invention is to provide a dual clutch device capable of effectively preventing double engagement of a transmission.
  • a dual clutch device includes a first clutch having a first plate for connecting and disconnecting power transmission from an engine to a transmission first input shaft, A dual clutch device comprising a second clutch having a second plate for connecting and disconnecting power transmission to a two-input shaft, wherein the first piston, the second piston, the first supply line, the second supply line, and the first on-off valve And a second on-off valve and an on-off valve control means.
  • the first piston presses the first plate by the hydraulic pressure supplied into the first hydraulic chamber to bring the first clutch into contact, and is separated from the first plate by the first spring housed in the first hydraulic pressure cancellation chamber. To disengage the first clutch.
  • the second piston presses the second plate by the hydraulic pressure supplied into the second hydraulic chamber to bring the second clutch into contact, and is separated from the second plate by the second spring housed in the second hydraulic pressure cancel chamber.
  • the first supply line supplies hydraulic pressure to the first hydraulic chamber and the second hydraulic cancel chamber.
  • the second supply line supplies hydraulic pressure to the second hydraulic chamber and the first hydraulic cancel chamber.
  • the first on-off valve is provided in the first supply line, and permits or blocks the supply of hydraulic pressure to the first hydraulic pressure chamber and the second hydraulic pressure cancellation chamber.
  • the second on-off valve is provided in the second supply line and permits or blocks the supply of hydraulic pressure to the second hydraulic chamber and the first hydraulic cancel chamber.
  • the on-off valve control means controls opening and closing of the first on-off valve and the second on-off valve.
  • the on-off valve control means opens and closes the clutch connection state in which one of the on-off valves is opened to engage one clutch, and the other on-off valve is closed to disengage the other clutch.
  • one open / close valve is closed and the other open / close valve is opened before the other clutch is in contact. Close the valve.
  • the second piston can be reliably separated from the second plate, and double engagement of the transmission can be reliably prevented. it can. Further, when the second on-off valve is opened, the hydraulic pressure is supplied to the first hydraulic pressure cancellation chamber, so that the first piston can be reliably separated from the first plate, and the double engagement of the transmission can be ensured. Can be prevented.
  • the on-off valve control means closes one of the on-off valves and opens the other on-off valve.
  • the on-off valve control means closes the second on-off valve. And the first on-off valve is opened. Since the second on-off valve is closed, the supply of hydraulic pressure to the second hydraulic chamber is shut off, and the second piston is separated from the second plate by the urging force of the second spring.
  • the second piston is connected to the second hydraulic pressure cancellation chamber side. Separated from the second plate by the oil pressure. That is, since the second piston is separated from the second plate by the hydraulic pressure from the second hydraulic pressure cancellation chamber side in addition to the urging force of the second spring, the response of the second piston when disengaging the second clutch Can be improved.
  • the on-off valve control means closes one on-off valve and opens the other on-off valve, and then closes the other on-off valve before the other clutch is engaged.
  • the on-off valve control means closes the second on-off valve and opens the first on-off valve, and then closes the first on-off valve before the first clutch comes into contact. For this reason, since the hydraulic pressure supplied to the first hydraulic chamber is shut off before the first clutch is engaged, both clutches can be reliably disconnected.
  • the on-off valve control means opens the other on-off valve and closes the other on-off valve before the other clutch is engaged.
  • the on-off valve control means closes the first on-off valve after opening the first (other) on-off valve and before the first clutch is engaged.
  • the hydraulic pressure is supplied to the first hydraulic chamber, so that the first piston moves in the direction of pressing the first plate.
  • the first on-off valve is closed before the first clutch comes into contact, the first piston that has moved in the direction of pressing the first plate is separated from the first plate by the urging force of the first spring. And both clutches are disengaged.
  • the first piston may not be completely moved (returned) away from the first plate by the urging force of the first spring.
  • the first piston since the first piston is moved in advance in the direction of pressing the first plate, the responsiveness when the first clutch is engaged is enhanced.
  • the dual clutch device is the dual clutch device according to the first aspect, wherein an elapsed time since one of the on-off valves is closed or the other on-off valve is opened.
  • a time measuring means for measuring at least one of the elapsed time from.
  • the on / off valve control means changes the clutch engaged state to the disengaged state of both clutches
  • the on / off valve control means determines whether or not the other clutch is in contact after closing one on / off valve and opening the other on / off valve. The determination is made based on the time measured by the time measuring means.
  • the on-off valve control means closes one on-off valve and opens the other on-off valve and then determines whether or not the other clutch is in contact based on the elapsed time measured by the time measuring means. Judgment. For example, when changing the clutch engaged state where the first (other) clutch is disengaged and the second (one) clutch is engaged to the both clutch disengaged state, the first clutch is engaged after the first on-off valve is opened. The time until the first clutch engagement time (first clutch engagement time) is obtained in advance by experiments or simulations, and a time shorter than the obtained first clutch engagement time is set as a predetermined time.
  • the on-off valve control means closes the second on-off valve and opens the first on-off valve, and then when the elapsed time from the opening of the first on-off valve timed by the time measuring means reaches the predetermined time, The first on-off valve is closed by determining that the clutch is not yet engaged.
  • the on-off valve control means can close the other on-off valve before the other clutch comes into contact by closing the other on-off valve when the one clutch is disengaged.
  • the second clutch engaged state where the first (other) clutch is disengaged and the second (one) clutch is engaged
  • the second clutch is closed after the second on-off valve is closed.
  • the time until the clutch is disconnected (second clutch disconnection time) is obtained in advance through experiments, simulations, etc., and the obtained second clutch disconnection time is set to a predetermined time.
  • the on-off valve control means disconnects the second clutch when the elapsed time from the closing of the second on-off valve timed by the time measuring means reaches the predetermined time (before the first clutch is engaged). And the first on-off valve is closed.
  • the other on-off valve when the other on-off valve is closed between the time when one clutch is disconnected and the time when the other clutch is engaged, the other on-off valve is opened until at least one of the clutches is disconnected. Since the hydraulic pressure is supplied to the one hydraulic pressure canceling chamber, the responsiveness of the one piston when the one clutch is disengaged can be reliably improved.
  • the closing of the second on-off valve and the first on-off valve Is released at substantially the same time the second clutch disengagement time and the first clutch engagement time described above are obtained in advance through experiments, simulations, etc., and are longer than the obtained second clutch disengagement time and longer than the first clutch engagement time.
  • a short time is set as a predetermined time.
  • the on-off valve control means closes the first on-off valve when the elapsed time after the second on-off valve timed by the time measuring means is closed (the first on-off valve is opened) reaches the predetermined time.
  • a dual clutch device is the dual clutch device according to the first aspect described above, wherein the rotation of one transmission input shaft to which power from the engine is transmitted via one clutch.
  • a rotation speed detecting means for detecting the number is provided.
  • the on-off valve control means closes one on-off valve and opens the other on-off valve, and then opens the other clutch based on the number of revolutions of one transmission input shaft detected by the revolution number detecting means. It is determined whether or not the clutch is disconnected. When it is determined that one clutch is disconnected, the other on-off valve is closed. For example, when the second clutch engaged state where the first (other) clutch is disengaged and the second (one) clutch is engaged is changed to the both clutch disengaged state, the second clutch is disengaged from the engaged state.
  • the rate of decrease in the rotational speed of the transmission second input shaft is obtained by experiment or simulation and set as a predetermined rate of decrease, and the rotational speed of the transmission second input shaft per unit time after the first on-off valve is opened. It is determined that the second clutch has been disengaged when the decrease ratio of the second clutch becomes equal to or greater than the predetermined decrease ratio. As described above, when the first on-off valve is opened while the second on-off valve is closed, the first clutch comes into contact after the second clutch is disengaged. By determining that the clutch is disengaged, it is determined that the first clutch is before being engaged.
  • a dual clutch device includes a first clutch having a first plate for connecting and disconnecting power transmission from the engine to the transmission first input shaft, and from the engine to the transmission second input shaft.
  • a dual clutch device including a second clutch having a second plate for connecting and disconnecting power transmission, the first piston, the second piston, the first supply line, the second supply line, the first on-off valve, and the second on-off valve. And on-off valve control means.
  • the first piston presses the first plate by the hydraulic pressure supplied into the first hydraulic chamber to bring the first clutch into contact, and is separated from the first plate by the first spring housed in the first hydraulic pressure cancellation chamber. To disengage the first clutch.
  • the second piston presses the second plate by the hydraulic pressure supplied into the second hydraulic chamber to bring the second clutch into contact, and is separated from the second plate by the second spring housed in the second hydraulic pressure cancel chamber.
  • the first supply line supplies hydraulic pressure to the first hydraulic chamber and the second hydraulic cancel chamber.
  • the second supply line supplies hydraulic pressure to the second hydraulic chamber and the first hydraulic cancel chamber.
  • the first on-off valve is provided in the first supply line and can adjust the hydraulic pressure supplied to the first hydraulic pressure chamber and the second hydraulic pressure cancellation chamber.
  • the second on-off valve is provided in the second supply line and can adjust the hydraulic pressure supplied to the second hydraulic chamber and the first hydraulic cancel chamber.
  • the on-off valve control means controls opening and closing of the first on-off valve and the second on-off valve.
  • the on-off valve control means is configured to change the clutch connection state in which one of the on-off valves is opened to engage one clutch, and the other on-off valve is closed to disengage the other clutch.
  • the clutch is changed to the disengaged state of both clutches, the hydraulic pressure smaller than the urging force of the other spring disengaging the other clutch is applied to the other hydraulic chamber with respect to the other piston connecting / disconnecting the other clutch. While opening the other on-off valve so as to act from the side, one on-off valve is closed.
  • the dual clutch device of the first aspect when the first on-off valve is opened, the supply of hydraulic pressure to the first hydraulic pressure chamber and the second hydraulic pressure cancellation chamber is permitted. For this reason, for example, even if a failure such as disconnection or sticking occurs in the second on-off valve, the second piston can be reliably separated from the second plate, and double engagement of the transmission can be reliably prevented. it can. Further, when the second on-off valve is opened, the hydraulic pressure is supplied to the first hydraulic pressure cancellation chamber, so that the first piston can be reliably separated from the first plate, and the double engagement of the transmission can be ensured. Can be prevented.
  • the on-off valve control means opens the other on-off valve so that an oil pressure smaller than the biasing force of the other spring acts on the other piston from the other hydraulic chamber side.
  • an oil pressure smaller than the urging force of the second spring is applied.
  • the second on-off valve is opened so as to act on the second piston from the second hydraulic chamber side. For this reason, even if the second on-off valve is opened, the second piston does not move in the direction of pressing the second plate due to the oil pressure from the second hydraulic chamber side, and the second clutch is not engaged. That is, the on-off valve control means opens the second on-off valve and supplies the oil pressure to the first oil pressure cancel chamber to disengage the first clutch without engaging the second clutch. Responsiveness can be improved.
  • the double meshing of the transmission can be effectively prevented.
  • FIG. 1 is a gear arrangement diagram of a dual clutch transmission that is connected to a dual clutch device according to a first embodiment of the present invention. It is a figure which shows the operating state according to the shift position of the dual clutch transmission of FIG. It is a typical longitudinal section showing the upper half of the dual clutch device concerning a 1st embodiment. It is a figure explaining the state which contacted the 1st wet clutch and cut off the 2nd wet clutch in the dual clutch apparatus concerning a 1st embodiment.
  • the first wet clutch is disconnected and the second wet clutch is in contact.
  • the hydraulic pressure acting on each piston and the urging force of each return spring will be described.
  • the dual clutch device 10 As shown in FIG. 1, the dual clutch device 10 according to the present embodiment is connected to the dual clutch transmission 1 and transmits the rotational force from the engine E to the dual clutch transmission 1.
  • the dual clutch device 10 includes a first wet clutch C1 and a second wet clutch C2.
  • Reference numeral 11 denotes a clutch input shaft to which the power of the engine E is transmitted.
  • the dual clutch transmission 1 includes a transmission first input shaft 12A, a transmission second input shaft 12B, an output shaft 2, and a counter shaft 3.
  • the transmission first input shaft 12A is an outer shaft formed in a cylindrical shape, and is used, for example, in an odd-numbered stage of the dual clutch transmission 1 (see FIG. 2).
  • the transmission second input shaft 12B is an inner shaft that is rotatably supported through a bearing 13 in the hollow shaft of the transmission first input shaft 12A.
  • the transmission second input shaft 12B is an even-numbered stage of the dual clutch transmission 1. (See FIG. 2).
  • the output shaft 2 is disposed coaxially with the rotation axes of the transmission first input shaft 12A and the transmission second input shaft 12B.
  • the counter shaft 3 is disposed in parallel with the transmission first input shaft 12 ⁇ / b> A, the transmission second input shaft 12 ⁇ / b> B, and the rotation shaft of the output shaft 2.
  • Each shaft 12A, 12B, 2, 3 is provided with a plurality of gears, and each gear constitutes a plurality of gear trains 4-9.
  • the plurality of gear trains 4 to 9 include a first reduction gear train 4, a second reduction gear train 5, a third speed fourth gear train 6, a first speed second gear train 7, a reverse gear train 8, and a seventh speed eighth gear. They are arranged in the order of row 9 in order from the engine E side.
  • the first reduction gear train 4 includes a first input gear 4 a of the transmission first input shaft 12 ⁇ / b> A and a first intermediate gear 4 b of the counter shaft 3.
  • the second reduction gear train 5 is constituted by a second input gear 5a and a second intermediate gear 5b of the transmission second input shaft 12B.
  • the third and fourth gear train 6 is constituted by a first output gear 6 a of the output shaft 2 and a third intermediate gear 6 b of the counter shaft 3.
  • the first speed gear train 7 is constituted by a second output gear 7 a of the output shaft 2 and a fourth intermediate gear 7 b of the counter shaft 3.
  • the reverse gear train 8 includes a third output gear 8a of the output shaft 2, a fifth intermediate gear 8b of the counter shaft 3, and an idler gear 8c.
  • the seventh and eighth gear train 9 is constituted by a fourth output gear 9 a of the output shaft 2 and a sixth intermediate gear 9 b of the counter shaft 3.
  • the first output gear 6a, the second output gear 7a, and the third output gear 8a of the output shaft 2 are rotatably provided with respect to the output shaft 2, and the fourth output gear 9a is fixed to the output shaft 2.
  • the first output gear 6 a can be connected to and disconnected from the output shaft 2 by the movement of the first sleeve 70, and the second output gear 7 a and the third output gear 8 a are output shaft 2 by the movement of the second sleeve 71.
  • the first intermediate gear 4b, the second intermediate gear 5b, the third intermediate gear 6b, the fourth intermediate gear 7b, and the fifth intermediate gear 8b of the countershaft 3 are fixedly provided on the countershaft 3, and the sixth intermediate gear.
  • 9b is rotatably provided with respect to the countershaft 3.
  • the sixth intermediate gear 9 b can be connected to and disconnected from the counter shaft 3 by the movement of the third sleeve 72.
  • the power of the engine E is transmitted from the clutch input shaft 11 to the transmission while the output shaft 2 and the second output gear 7 a are connected by the movement of the second sleeve 71.
  • the first input shaft 12A it becomes the first speed
  • the transmission second input shaft 12B it becomes the second speed.
  • the output shaft 2 and the first output gear 6a are connected by the movement of the first sleeve 70
  • the power of the engine E is transmitted from the clutch input shaft 11 to the transmission first input shaft 12A
  • the third speed is obtained.
  • the fourth speed is achieved.
  • the dual clutch device 10 includes a first wet clutch C1, a first piston 23, a second wet clutch C2, a second piston 33, a hydraulic circuit 40, a first electromagnetic valve (first electromagnetic valve). 1 on-off valve) 60, a second electromagnetic valve (second on-off valve) 65, and an electronic control unit (on-off valve control means, time measuring means) 80 (hereinafter referred to as an ECU (Electric Control Unit)).
  • a first electromagnetic valve first electromagnetic valve
  • first electromagnetic valve first electromagnetic valve
  • second electromagnetic valve second on-off valve
  • ECU Electronic Control Unit
  • the first wet clutch C1 includes a clutch hub 20 that rotates integrally with the clutch input shaft 11, a plurality of first inner plates 21A that are spline-fitted to the clutch hub 20, and a first rotation that rotates integrally with the transmission first input shaft 12A.
  • One clutch drum 22 and a plurality of first outer plates 21B that are alternately arranged between the first inner plates 21A and are spline-fitted to the first clutch drum 22 are provided.
  • the first piston 23 is formed in a cylindrical shape, can press the first plates 21 ⁇ / b> A and 21 ⁇ / b> B in the axial direction, and is slidably accommodated in an annular first piston chamber 24 formed in the clutch hub 20.
  • a first hydraulic chamber 25A and a first centrifugal hydraulic cancel chamber (first hydraulic cancel chamber) 25B are defined by the first piston 23.
  • a first return spring (first spring) 26 that urges the first piston 23 in a direction away from each of the first plates 21A and 21B is accommodated in the first centrifugal hydraulic pressure cancel chamber 25B.
  • Reference numeral S denotes a seal member that seals the gap between the first piston 23 and the first piston chamber 24.
  • the first piston 23 moves in the axial direction to press the first plates 21A and 21B together (first wet clutch C1: contact).
  • first wet clutch C1 contact
  • the first piston 23 cancels the urging force of the first return spring 26 and the first centrifugal hydraulic pressure cancellation.
  • the pressure state is released by separating from the first plates 21A and 21B by the oil pressure in the chamber 25B (first wet clutch C1: disengaged).
  • the hydraulic pressure is a force acting on the unit area of the object by the pressure oil.
  • the oil pressure is a force acting on the object by the pressure oil, and is a value obtained by multiplying the oil pressure and the area.
  • the second wet clutch C2 includes a plurality of second outer plates 31A that are spline-fitted to the clutch hub 20, a second clutch drum 32 that rotates integrally with the transmission second input shaft 12B, and a second outer plate 31A.
  • a plurality of second inner plates 31B that are alternately arranged and are spline-fitted to the second clutch drum 32 are provided.
  • the second piston 33 is formed in a cylindrical shape, can press-contact each of the second plates 31A and 31B in the axial direction, and is slidably received in an annular second piston chamber 34 formed in the clutch hub 20.
  • a second hydraulic chamber 35A and a second centrifugal hydraulic pressure cancellation chamber (second hydraulic pressure cancellation chamber) 35B are defined by the second piston 33.
  • a second return spring (second spring) 36 that urges the second piston 33 in a direction away from each of the second plates 31A, B is accommodated in the second centrifugal hydraulic pressure cancel chamber 35B.
  • Reference numeral S denotes a seal member that seals the gap between the second piston 33 and the second piston chamber 34.
  • the hydraulic circuit 40 branches from the first upstream supply line (first supply line) 43 connecting the oil pan 41 and the first electromagnetic valve 60 and the first upstream supply line 43 and is connected to the second electromagnetic valve 65. And a second upstream supply line (second supply line) 45.
  • An oil pump OP that is driven by the power of the engine E is provided in the first upstream supply line 43 upstream of the branch portion.
  • a lubricating oil supply line 46 provided with a throttle valve 47 is connected to the second upstream supply line 45.
  • a first downstream supply line (first supply line) 50 is connected to the first electromagnetic valve 60.
  • the first downstream supply line 50 is branched from the clutch hub 20 into a first hydraulic chamber line 50A and a second cancel chamber line 50B.
  • the downstream end of the first hydraulic chamber line 50A is connected to the first hydraulic chamber 25A, and the downstream end of the second cancellation chamber line 50B is connected to the second centrifugal hydraulic cancellation chamber 35B.
  • the first electromagnetic valve 60 is closed by the urging force of the spring 61 when not energized (OFF) and opened when energized (ON) by the ECU 80.
  • first electromagnetic valve 60 When the first electromagnetic valve 60 is opened (ON), pressure oil is supplied to the first hydraulic chamber 25A and the second centrifugal hydraulic cancel chamber 35B.
  • first electromagnetic valve 60 When the first electromagnetic valve 60 is closed (OFF), no pressure oil is supplied to the first hydraulic chamber 25A and the second centrifugal hydraulic pressure cancellation chamber 35B, and the first hydraulic chamber 25A and the second centrifugal hydraulic pressure cancellation chamber are not supplied.
  • the pressurized oil in 35B is returned to the oil pan 41 via the oil return line 62.
  • a second downstream supply line 51 (second supply line) is connected to the second electromagnetic valve 65.
  • the second downstream supply line 51 is branched from the clutch hub 20 into a second hydraulic chamber line 51A and a first cancel chamber line 51B.
  • the downstream end of the second hydraulic chamber line 51A is connected to the second hydraulic chamber 35A, and the downstream end of the first cancellation chamber line 51B is connected to the first centrifugal hydraulic cancellation chamber 25B.
  • the second electromagnetic valve 65 is closed by the urging force of the spring 66 when not energized (OFF) and opened when energized (ON) by the ECU 80.
  • the second electromagnetic valve 65 is opened (ON)
  • pressure oil is supplied to the second hydraulic chamber 35A and the first centrifugal hydraulic cancel chamber 25B.
  • the second electromagnetic valve 65 is closed (OFF)
  • no pressure oil is supplied to the second hydraulic chamber 35A and the first centrifugal hydraulic cancellation chamber 25B, and the second hydraulic chamber 35A and the first centrifugal hydraulic cancellation chamber are not supplied.
  • the pressure oil in 25 ⁇ / b> B is returned to the oil pan 41 via the oil return line 67.
  • ECU80 is comprised by CPU (Central Processing Unit), memory, etc. (illustration omitted), has the valve control part 81 and the time measuring part 82, and functions as an on-off valve control means and a time measuring means.
  • CPU Central Processing Unit
  • memory etc. (illustration omitted)
  • the time measuring unit 82 measures the elapsed time after the first electromagnetic valve 60 is turned on when both clutches described later are disengaged. Note that, as will be described later, since the first electromagnetic valve 60 is turned on and the second electromagnetic valve 65 is turned off substantially simultaneously, the time measuring unit 82 has elapsed time since the second electromagnetic valve 65 was turned off. May be timed.
  • the valve control unit 81 controls the opening and closing of the first electromagnetic valve 60 and the second electromagnetic valve 65 to thereby connect the first wet clutch C1 and disconnect the second wet clutch C2 (FIG. 1). 4), a second clutch engagement state (see FIG. 5) in which the first wet clutch C1 is disconnected and the second wet clutch C2 is in contact, and the first wet clutch C1 and the second wet clutch C2 are disconnected. Switches between both clutch disengaged states (see FIG. 3).
  • the valve control unit 81 turns on the first electromagnetic valve 60 and turns off the second electromagnetic valve 65 to bring the first clutch into a connected state.
  • the valve control unit 81 is connected to the first electromagnetic with the output shaft 2 and the second output gear 7 a connected by the movement of the second sleeve 71.
  • the valve 60 is turned on, the second electromagnetic valve 65 is turned off, and the first clutch is engaged.
  • the power of the engine E is input from the clutch input shaft 11 to the transmission first input shaft 12A, and the output shaft 2 via the first reduction gear train 4, the counter shaft 3, and the first speed second gear train 7. Is transmitted to.
  • the valve control unit 81 turns off the first electromagnetic valve 60 and turns on the second electromagnetic valve 65 to bring the second clutch into a connected state.
  • the valve is kept in a state where the output shaft 2 and the second output gear 7a are connected by the second sleeve 71 without moving the sleeves 70 to 72.
  • the controller 81 changes from the first clutch connected state to the second clutch connected state by turning off the first electromagnetic valve 60 and turning on the second electromagnetic valve 65.
  • the power of the engine E is input from the clutch input shaft 11 to the transmission second input shaft 12B, and the output shaft 2 via the second reduction gear train 5, the counter shaft 3, and the first speed second gear train 7. Is transmitted to.
  • the dual clutch transmission 1 when shifting up from an even number to an odd number (2nd to 3rd, 4th to 5th, or 6th to 7th) Since any one of the sleeves 70 to 72 moves, the first (other) electromagnetic valve 60 is turned off, the second (one) electromagnetic valve 65 is turned on, and the second wet clutch C2 is brought into contact. From the second clutch engaged state (clutch engaged state), the second wet clutch C2 is disengaged to change to the both clutch disengaged state, the sleeve is moved, and then the first wet clutch C1 is engaged from the disengaged state of both clutches. To change to the first clutch engaged state.
  • the valve control unit 81 turns on the first electromagnetic valve 60 substantially simultaneously with turning off the second electromagnetic valve 65, and the elapsed time that the time counting unit 82 keeps timing.
  • the (elapsed time since the first electromagnetic valve 60 is turned on) reaches a predetermined elapsed time, it is determined that the first wet clutch C1 is not in contact and the first electromagnetic The valve 60 is turned off.
  • the predetermined elapsed time includes the time from when the second electromagnetic valve 65 is turned OFF until the second wet clutch C2 is disconnected (second clutch disconnection time), and when the first electromagnetic valve 60 is turned ON. Until the first wet clutch C1 is engaged (first clutch engagement time) is obtained in advance through experiments, simulations, etc., and is longer than the obtained second clutch disengagement time and shorter than the first clutch engagement time. Time is set.
  • R A1 is the outer diameter of the first piston 23
  • R B1 is the outer diameter of the first centrifugal oil pressure canceling chamber 25B
  • R A2 is the outer diameter of the second piston 33
  • R B2 is the second centrifugal oil pressure canceling.
  • the outer diameter of the chamber 35B, P is the hydraulic pressure
  • F S1 is the urging force of the first return spring 26
  • FS2 is the urging force of the second return spring 36
  • CL is the rotation axis of the clutch input shaft 11.
  • the outer diameter represents a radius from the rotation axis CL.
  • the biasing force F S1 of the first return spring 26 is set so as to satisfy the following conditional expression (1), and the biasing force F S2 of the second return spring 36 is set so as to satisfy the following conditional expression (2). Is done.
  • the first wet clutch C1 is engaged (first Electromagnetic valve 60: ON), and second wet clutch C2 is disengaged (second electromagnetic valve 65: OFF).
  • first electromagnetic valve 60 When the first electromagnetic valve 60 is turned on, the hydraulic pressure is supplied not only to the first hydraulic chamber 25A but also to the second centrifugal hydraulic pressure cancel chamber 35B. Therefore, the urging force of the second return spring 36 is applied to the second piston 33. Both F S2 and the oil pressure in the second centrifugal hydraulic pressure cancel chamber 35B act.
  • the second piston 33 can be reliably separated from the plates 31A and 31B, and the double engagement of the transmission can be ensured. Can be prevented.
  • the first wet clutch C1 is disconnected (first electromagnetic valve 60: OFF), and the second wet clutch. C2 is brought into contact (second electromagnetic valve 65: ON).
  • second electromagnetic valve 65 ON
  • the hydraulic pressure is supplied not only to the second hydraulic chamber 35A but also to the first centrifugal hydraulic pressure cancel chamber 25B, so that the urging force of the first return spring 26 is applied to the first piston 23.
  • Both F S1 and the oil pressure in the first centrifugal oil pressure cancellation chamber 25B act.
  • the first piston 23 can be reliably separated from the plates 21A and 21B, and the double engagement of the transmission can be ensured. Can be prevented.
  • the urging force F S1 of the first return spring 26 is set larger than the oil pressure difference between the first hydraulic pressure chamber 25A and the first centrifugal hydraulic pressure cancellation chamber 25B acting on the first piston 23, and the second return spring 36 is set.
  • the valve control unit 81 turns on the first electromagnetic valve 60 substantially simultaneously with turning off the second electromagnetic valve 65. Since the second electromagnetic valve 65 is turned off, the supply of hydraulic pressure to the second hydraulic chamber 35A is cut off, and the second piston 33 is moved to the second plates 31A, B by the urging force F S2 of the second return spring 36. It is separated from. In addition, since the first electromagnetic valve 60 is opened, the supply of hydraulic pressure to the second centrifugal hydraulic pressure cancellation chamber 35B is permitted, and hydraulic pressure is supplied to the second centrifugal hydraulic pressure cancellation chamber 35B. The second plates 31A and 31B are separated from each other by the hydraulic pressure from the centrifugal hydraulic pressure cancellation chamber 35B side.
  • the second piston 33 in addition to the biasing force F S2 of the second return spring 36, the second plate 31A by the hydraulic force from the second centrifugal-pressure canceling chamber 35B side, since it is separated from B, second wet The response of the second piston 33 when disengaging the clutch C2 can be improved.
  • the valve control unit 81 turns on the first electromagnetic valve 60 substantially simultaneously with turning off the second electromagnetic valve 65, and then turns on the first wet clutch C1.
  • the first electromagnetic valve 60 is turned off before the contact.
  • the valve control unit 81 turns on the first electromagnetic valve 60, the hydraulic pressure is supplied to the first hydraulic chamber 25A, so that the first piston 23 moves in the direction of pressing the first plates 21A, 21B. .
  • the hydraulic pressure supplied to the first hydraulic chamber 25A is cut off, so that the first plates 21A and 21B are pressed.
  • the first piston 23 that has moved to the position is moved away from the first plates 21A and 21B by the urging force F S1 of the first return spring 26, and both clutches are disengaged.
  • F S1 of the first return spring 26 By turning off the first electromagnetic valve 60 before the first wet clutch C1 is brought into contact, the both clutches can be reliably disconnected.
  • the valve control unit 81 when changing the second clutch engaged state to the both clutch disengaged state, the valve control unit 81 turns on the first electromagnetic valve 60 substantially simultaneously when the second electromagnetic valve 65 is turned off, and the timer 82 keeps timing. When the time reaches the predetermined elapsed time, the first electromagnetic valve 60 is turned off.
  • the predetermined elapsed time is set longer than the second clutch disengagement time and shorter than the first clutch engagement time. That is, the valve control unit 81 turns off the first electromagnetic valve 60 after the second wet clutch C2 is disconnected and before the first wet clutch C1 is engaged.
  • the first electromagnetic valve 60 is opened and the hydraulic pressure is supplied to the second centrifugal hydraulic pressure cancel chamber 35B at least until the second wet clutch C2 is disconnected, the second wet clutch C2 is disconnected.
  • the responsiveness of the second piston 33 can be reliably improved.
  • the second clutch when shifting up from the second speed to the third speed, the second clutch is changed from the second clutch connected state to the both clutch disengaged state in order to move the sleeves 70 and 71, and after the sleeves 70 and 71 are moved, Change to the first clutch engaged state.
  • the first piston that has moved in the direction of pressing the first plates 21A and 21B when the second clutch engaged state is changed to the both clutch disengaged state 23 may not have moved completely (not returned) in a direction away from each of the first plates 21A, B due to the urging force F S1 of the first return spring 26.
  • the 1st piston 23 since the 1st piston 23 has moved beforehand to the direction which presses each 1st plates 21A and B, the responsiveness at the time of making the 1st wet clutch C1 contact is improved.
  • the predetermined time is set to a time longer than the second clutch disengagement time and shorter than the first clutch engagement time.
  • the present invention is not limited to this, and the first clutch engagement time is not limited to this. It is sufficient if the time is shorter.
  • the second clutch disengagement time may be set to the predetermined time, and the valve control unit 81 has a second elapsed time (elapsed time since the first electromagnetic valve 60 was turned on) that the time measuring unit 82 measures.
  • the clutch disengagement time it may be determined that the second wet clutch C2 is disengaged (before the first wet clutch C1 is brought into contact), and the first electromagnetic valve 60 may be turned off.
  • a time shorter than the second clutch disengagement time may be set as the predetermined time.
  • both clutches are disengaged from the second clutch engaged state when shifting up from an even number to an odd number (2nd to 3rd, 4th to 5th, or 6th to 7th).
  • the present invention can also be applied to a change from the first clutch engaged state to the disengaged state of both clutches performed when shifting down from an odd number to an even number.
  • the second (other) electromagnetic valve 65 is turned ON substantially simultaneously, and then the second electromagnetic valve 65 is turned on before the second wet clutch C2 is brought into contact. Turn off.
  • the valve controller 81 turns on the first electromagnetic valve 60 substantially simultaneously with turning off the second electromagnetic valve 65 when changing the second clutch engaged state to the both clutch disengaged state.
  • the second electromagnetic valve 65 and the first electromagnetic valve 60 may not be turned off substantially simultaneously. Even when the second electromagnetic valve 65 is turned off and the first electromagnetic valve 60 is turned on at different timings, the first electromagnetic valve 60 is turned on after the second electromagnetic valve 65 is turned off (or the first electromagnetic valve is turned on). If the time from when the valve 60 is turned on to when the second electromagnetic valve 65 is turned off is constant, the time measuring unit 82 may be the elapsed time from when the first electromagnetic valve 60 is turned on, or the second electromagnetic valve. Any elapsed time from when the valve 65 is turned off may be measured.
  • the ECU 80 has the valve control unit 81 and the time measuring unit 82 and functions as the on-off valve control means and the time measuring means, but is not limited thereto.
  • the ECU 80 may have the valve control unit 81 and function as an on-off valve control unit, and may acquire an elapsed time measured by a time measuring unit (time measuring unit) provided separately from the ECU 80.
  • the dual clutch device 90 determines whether or not the first wet clutch C1 is in contact when the both clutches are disengaged, based on the rotational speed of the transmission second input shaft 12B.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the dual clutch device 90 includes a rotation speed sensor (rotation speed detection means) 91 that detects the rotation speed of the transmission second input shaft 12B.
  • Rotational speed sensor 91 detects the rotational speed of transmission second input shaft 12B and sequentially outputs it to ECU 80.
  • the valve control unit 81 of the ECU 80 turns the first electromagnetic valve 60 substantially simultaneously when the second electromagnetic valve 65 is turned off. Set to ON. Thereafter, the valve control unit 81 obtains a reduction rate of the rotation speed of the transmission second input shaft 12B per unit time from the rotation speed of the transmission second input shaft 12B detected by the rotation speed sensor 91, and obtains the calculated reduction rate. Is determined to be greater than or equal to a predetermined reduction rate determined in advance, the second wet clutch C2 is determined to be disconnected.
  • the valve control unit 81 determines that it is before the first wet clutch C1 is engaged, and turns off the first electromagnetic valve 60. It should be noted that the reduction rate of the rotation speed of the transmission second input shaft 12B when the second wet clutch C2 is disconnected from the contact is determined in advance by experiments, simulations, and the like, and the obtained reduction rate is set to the predetermined reduction rate. Set.
  • valve control unit 81 determines whether or not the second wet clutch C2 is disconnected based on the rotational speed of the transmission second input shaft 12B, so that the first wet clutch C1 is engaged. It can be determined whether it is before.
  • whether or not the second wet clutch C2 is disengaged by comparing a reduction rate per unit time of the rotation speed of the transmission second input shaft 12B with a predetermined reduction rate set in advance.
  • the present invention is not limited to this. For example, it may be determined whether or not the second wet clutch C2 is disengaged using a difference in the number of revolutions per unit time of the transmission second input shaft 12B.
  • the dual clutch device 100 is provided with a first hydraulic control valve 101 and a second hydraulic control valve 102 in place of the first electromagnetic valve 60 and the second electromagnetic valve 65 of the first embodiment.
  • a first hydraulic control valve 101 and a second hydraulic control valve 102 in place of the first electromagnetic valve 60 and the second electromagnetic valve 65 of the first embodiment.
  • the dual clutch device 100 includes a first hydraulic control valve (first on-off valve) 101 connected to the first upstream supply line 43 and the first downstream supply line 50, and the first downstream supply line 50.
  • a first hydraulic pressure sensor 103 provided in the second upstream supply line 45, a second hydraulic pressure control valve (second on-off valve) 102 connected to the second downstream supply line 51, and a second downstream supply line 51.
  • a second hydraulic pressure sensor 104 is provided in the second upstream supply line 45, a second hydraulic pressure control valve (second on-off valve) 102 connected to the second downstream supply line 51, and a second downstream supply line 51.
  • the first hydraulic pressure control valve 101 is capable of adjusting the hydraulic pressure supplied to the first hydraulic chamber 25A and the second centrifugal hydraulic pressure cancel chamber 35B via the first downstream supply line 50.
  • first hydraulic pressure regulating valve 101 When the first hydraulic pressure regulating valve 101 is opened (ON), pressure oil is supplied to the first hydraulic pressure chamber 25A and the second centrifugal hydraulic pressure cancel chamber 35B.
  • first hydraulic pressure control valve 101 When the first hydraulic pressure control valve 101 is closed (OFF), no pressure oil is supplied to the first hydraulic chamber 25A and the second centrifugal hydraulic pressure cancel chamber 35B, and the first hydraulic chamber 25A and the second centrifugal hydraulic pressure cancel.
  • the pressure oil in the chamber 35 ⁇ / b> B is returned to the oil pan 41 via the oil return line 62.
  • the second hydraulic pressure adjustment valve 102 can adjust the hydraulic pressure supplied to the second hydraulic pressure chamber 35A and the first centrifugal hydraulic pressure cancellation chamber 25B via the second downstream supply line 51.
  • the second hydraulic pressure control valve 102 When the second hydraulic pressure control valve 102 is opened (ON), pressure oil is supplied to the second hydraulic pressure chamber 35A and the first centrifugal hydraulic pressure cancellation chamber 25B.
  • the second hydraulic control valve 102 is closed (OFF), no pressure oil is supplied to the second hydraulic chamber 35A and the first centrifugal hydraulic cancel chamber 25B, and the second hydraulic chamber 35A and the first centrifugal hydraulic cancel are canceled.
  • the pressure oil in the chamber 25 ⁇ / b> B is returned to the oil pan 41 via the oil return line 67.
  • the first hydraulic pressure sensor 103 detects the hydraulic pressure of the first downstream supply line 50 and sequentially outputs it to the ECU 80.
  • the second hydraulic pressure sensor 104 detects the hydraulic pressure of the second downstream supply line 51 and sequentially outputs it to the ECU 80.
  • the valve control unit 81 of the ECU 80 is in a second clutch engagement state in which the first (other) hydraulic pressure regulating valve 101 is turned off, the second (one) hydraulic pressure regulating valve 102 is turned on, and the second wet clutch C2 is brought into contact (
  • the first hydraulic pressure adjustment is performed substantially simultaneously when the second hydraulic pressure regulating valve 102 is turned OFF.
  • Turn valve 101 ON When the first hydraulic control valve 101 is turned ON, the valve control unit 81 controls the first hydraulic control valve 101 so that the hydraulic pressure of the first downstream supply line 50 detected by the first hydraulic sensor 103 becomes a predetermined hydraulic pressure. To do.
  • the predetermined hydraulic pressure is such that the hydraulic pressure acting on the first piston 23 from the first hydraulic chamber 25A side when the first hydraulic control valve 101 is opened is smaller than the urging force of the first return spring 26.
  • the predetermined hydraulic pressure is set to satisfy the following conditional expression (3).
  • R A1 indicates the outer diameter of the first piston 23
  • R C1 indicates the inner diameter of the first piston 23
  • P 1 indicates the hydraulic pressure
  • F S1 indicates the urging force of the first return spring 26.
  • both the said outer diameter and inner diameter represent the radius from the rotating shaft CL.
  • conditional expression for obtaining the predetermined hydraulic pressure is not limited to the conditional expression (3).
  • shape of the first piston is another shape, another conditional expression may be used.
  • the valve control unit 81 When the first wet clutch C1 is brought into contact after the sleeve is moved with both clutches disengaged, the valve control unit 81 is connected to the first hydraulic chamber 25A and the second hydraulic pressure via the first downstream supply line 50.
  • the first hydraulic pressure adjustment valve 101 may be controlled so that the hydraulic pressure supplied to the centrifugal hydraulic pressure cancellation chamber 35B is increased from the predetermined hydraulic pressure.
  • the dual clutch devices 10, 90, 100 are connected to the dual clutch transmission 1 shown in FIGS. 1 and 2, but may be connected to a dual clutch transmission of another structure.
  • a dual clutch transmission or the like in which the first wet clutch C1 corresponds to even stages and the second wet clutch C2 corresponds to odd stages may be used.
  • Dual clutch device 11 Clutch input shaft 12A: Transmission first input shaft 12B: Transmission second input shaft 20: Clutch hub 21A: First inner plate (first plate) 21B: First outer plate (first plate) 23: First piston 25A: First hydraulic chamber 25B: First centrifugal hydraulic cancel chamber (first hydraulic cancel chamber) 26: First return spring (first spring) 31A: second outer plate (second plate) 31B: Second inner plate (second plate) 33: Second piston 35A: Second hydraulic chamber 35B: Second centrifugal hydraulic cancel chamber (second hydraulic cancel chamber) 36: Second return spring (second spring) 40: Hydraulic circuit 43: First upstream supply line (first supply line) 45: Second upstream supply line (second supply line) 50: First downstream supply line (first supply line) 50A: first hydraulic chamber line 50B: second cancel chamber line 51: second downstream supply line (second supply line) 51A: Second hydraulic chamber line 51B: First cancel chamber line 60: First electromagnetic valve (first on-off valve) 65: Second electromagnetic valve (second on-off valve) 80:

Abstract

第1油圧室25Aに供給される油圧によって第1クラッチC1を接にすると共に第1スプリング26によって第1クラッチC1を断にする第1ピストン23と、第2油圧室35Aに供給される油圧によって第2クラッチC2を接にすると共に第2スプリング36によって第2クラッチC2を断にする第2ピストン33と、第1油圧室25A及び第2油圧キャンセル室35Bに油圧を供給する第1供給ライン43,50と、第2油圧室35A及び第1油圧キャンセル室25Bに油圧を供給する第2供給ライン45,51と、第1油圧室25A及び第2油圧キャンセル室35Bへの油圧供給を許可又は遮断する第1開閉弁60と、第2油圧室35A及び第1油圧キャンセル室25Bへの油圧供給を許可又は遮断する第2開閉弁65とを備えた。

Description

デュアルクラッチ装置
 本発明は、デュアルクラッチ装置に関する。
 従来、エンジンからの動力を断接する第1クラッチに接続された第1入力シャフトと、エンジンからの動力を断接する第2クラッチに接続された第2入力シャフトとを備え、第1クラッチ及び第2クラッチを交互に切り替えることで変速を行うデュアルクラッチ式変速機が知られている(例えば、特許文献1参照)。
 一般的なデュアルクラッチ式変速機は、一方のクラッチが奇数段のギヤ列に対応し、他方のクラッチが偶数段のギヤ列に対応している。このため、例えば、2速から3速にシフトアップする際は、偶数段用のクラッチを接続、2速用のシンクロ機構を係合した状態で、3速用のシンクロ機構を係合する。そして、偶数段用のクラッチを切り離しつつ、奇数段用のクラッチを接続することで、トルク抜けが生じない変速を実現することができる。
特表2010-531417号公報
 一般的なデュアルクラッチ装置では、クラッチを接続する場合は、油圧室内に油圧を供給すると共に、油圧キャンセル室内から油圧を開放し、ピストンをストローク移動させてクラッチプレートを互いに圧接することで実現される。また、クラッチを切断する場合は、油圧室内の油圧を開放すると、油圧キャンセル室内のリターンスプリングがピストンをクラッチプレートから離反することで実現される。各油圧室への油圧の供給又は油圧の開放は、各油圧室にそれぞれ対応して設けられた電磁バルブのON/OFFを切り替えることで制御される。
 このため、例えば、少なくとも一方の電磁バルブに断線や固着等の故障が生じると、各クラッチが接続状態で保持されて、変速機の二重噛み合いを引き起こす可能性がある。
 本発明の目的は、変速機の二重噛み合いを効果的に防止することができるデュアルクラッチ装置を提供することにある。
 上記課題を解決するため、本発明の第1の態様のデュアルクラッチ装置は、エンジンから変速機第1入力シャフトへの動力伝達を断接する第1プレートを有する第1クラッチと、エンジンから変速機第2入力シャフトへの動力伝達を断接する第2プレートを有する第2クラッチとを備えるデュアルクラッチ装置であって、第1ピストンと第2ピストンと第1供給ラインと第2供給ラインと第1開閉弁と第2開閉弁と開閉弁制御手段とを備える。第1ピストンは、第1油圧室内に供給される油圧によって第1プレートを押圧して第1クラッチを接にすると共に、第1油圧キャンセル室内に収容された第1スプリングによって第1プレートから離反されて第1クラッチを断にする。第2ピストンは、第2油圧室内に供給される油圧によって第2プレートを押圧して第2クラッチを接にすると共に、第2油圧キャンセル室内に収容された第2スプリングによって第2プレートから離反されて第2クラッチを断にする。第1供給ラインは、第1油圧室及び第2油圧キャンセル室に油圧を供給する。第2供給ラインは、第2油圧室及び第1油圧キャンセル室に油圧を供給する。第1開閉弁は、第1供給ラインに設けられて、第1油圧室及び第2油圧キャンセル室への油圧の供給を許可又は遮断する。第2開閉弁は、第2供給ラインに設けられて、第2油圧室及び第1油圧キャンセル室への油圧の供給を許可又は遮断する。開閉弁制御手段は、第1開閉弁及び第2開閉弁の開閉を制御する。開閉弁制御手段は、両開閉弁のうちの一方の開閉弁を開放して一方のクラッチを接にし、且つ他方の開閉弁を閉止して他方のクラッチを断にしたクラッチ接続状態を、両開閉弁を閉止して両クラッチを断にする両クラッチ切断状態に変更する場合、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、他方のクラッチが接になる前に、他方の開閉弁を閉止する。
 上記構成では、第1開閉弁を開放すると、第1油圧室及び第2油圧キャンセル室への油圧の供給が許可されるので、第1供給ラインを介して第1油圧室及び第2油圧キャンセル室へ油圧が供給される。第1油圧室に油圧が供給されると、第1ピストンが、第1油圧室側からの油圧力によって移動して、第1プレートを押圧して第1クラッチを接にする。また、第2油圧キャンセル室に油圧が供給されると、第2ピストンが、第2スプリングの付勢力に加え、第2油圧キャンセル室側からの油圧力によって第2プレートから離反される。このため、例えば、第2開閉弁に断線や固着等の故障が生じても、第2ピストンを確実に第2プレートから離反させることができ、変速機の二重噛み合いを確実に防止することができる。また、第2開閉弁を開放した場合には、第1油圧キャンセル室に油圧が供給されるので、第1ピストンを確実に第1プレートから離反させることができ、変速機の二重噛み合いを確実に防止することができる。
 また、クラッチ接続状態から両クラッチ切断状態に変更する場合、開閉弁制御手段は、両開閉弁のうちの一方の開閉弁を閉止するとともに他方の開閉弁を開放する。例えば、第1(他方の)クラッチが断、第2(一方の)クラッチが接である第2クラッチ接続状態を両クラッチ切断状態に変更する場合、開閉弁制御手段は、第2開閉弁を閉止するとともに第1開閉弁を開放する。第2開閉弁が閉止されるので、第2油圧室への油圧の供給が遮断され、第2ピストンは、第2スプリングの付勢力によって第2プレートから離反される。また、第1開閉弁が開放されるので、第2油圧キャンセル室への油圧の供給が許可されて第2油圧キャンセル室に油圧が供給され、第2ピストンは、第2油圧キャンセル室側からの油圧力によって第2プレートから離反される。すなわち、第2ピストンは、第2スプリングの付勢力に加え、第2油圧キャンセル室側からの油圧力によって第2プレートから離反されるので、第2クラッチを断にする際の第2ピストンの応答性を向上させることができる。
 また、開閉弁制御手段は、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、他方のクラッチが接になる前に他方の開閉弁を閉止する。例えば、開閉弁制御手段は、第2(一方の)開閉弁を閉止するとともに第1(他方の)開閉弁を開放した後、第1クラッチが接になる前に第1開閉弁を閉止する。このため、第1クラッチが接になる前に第1油圧室に供給される油圧が遮断されるので、確実に両クラッチ切断状態にすることができる。
 また、開閉弁制御手段は、他方の開閉弁を開放した後、他方のクラッチが接になる前に他方の開閉弁を閉止する。例えば、開閉弁制御手段は、第1(他方の)開閉弁を開放した後、第1クラッチが接になる前に第1開閉弁を閉止する。第1開閉弁を開放すると、第1油圧室に油圧が供給されるので、第1ピストンが第1プレートを押圧する方向へ移動する。また、第1クラッチが接になる前に第1開閉弁を閉止すると、第1プレートを押圧する方向へ移動していた第1ピストンが、第1スプリングの付勢力によって第1プレートから離反する方向へ移動して、両クラッチ切断状態になる。このため、両クラッチ切断状態から第1クラッチを接にする場合、第1ピストンが、第1スプリングの付勢力によって第1プレートから離反する方向へ完全に移動していない(戻っていない)場合があり、この場合、第1ピストンが第1プレートを押圧する方向へ予め移動しているので、第1クラッチを接にする際の応答性が高まる。
 また、本発明の第2の態様のデュアルクラッチ装置は、上記第1の態様のデュアルクラッチ装置であって、一方の開閉弁が閉止されてからの経過時間、又は他方の開閉弁が開放されてからの経過時間の少なくとも一方を計時する計時手段を備える。開閉弁制御手段は、クラッチ接続状態を両クラッチ切断状態に変更する場合、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、他方のクラッチが接になる前であるか否かを計時手段が計時する時間に基づいて判定する。
 上記構成では、開閉弁制御手段は、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、他方のクラッチが接になる前であるか否かを計時手段が計時する経過時間に基づいて判定する。例えば、第1(他方の)クラッチが断、第2(一方の)クラッチが接であるクラッチ接続状態を両クラッチ切断状態に変更する場合、第1開閉弁が開放されてから第1クラッチが接になるまでの時間(第1クラッチ接時間)を予め実験やシミュレーション等によって求め、求めた第1クラッチ接時間よりも短い時間を所定時間に設定する。開閉弁制御手段は、第2開閉弁を閉止するとともに第1開閉弁を開放した後、計時手段が計時する第1開閉弁が開放されてからの経過時間が上記所定時間に達した時に、第1クラッチが接になる前であると判定して第1開閉弁を閉止する。
 また、一方の開閉弁を閉止した状態で他方の開閉弁を開放すると、一方のピストンは、一方のスプリングの付勢力に加え、一方の油圧キャンセル室に供給される油圧によって一方のプレートから離反され、他方のピストンは、他方のスプリングの付勢力に抗して他方のプレート側への移動を開始する。すなわち、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、他方の開閉弁を閉止しない場合には、一方のクラッチが断になった後、他方のクラッチが接になる。このため、開閉弁制御手段は、一方のクラッチが断になったときに他方の開閉弁を閉止することにより、他方のクラッチが接になる前に他方の開閉弁を閉止することができる。例えば、第1(他方の)クラッチが断、第2(一方の)クラッチが接である第2クラッチ接続状態を両クラッチ切断状態に変更する場合、第2開閉弁が閉止されてから第2クラッチが断になるまでの時間(第2クラッチ断時間)を予め実験やシミュレーション等によって求め、求めた第2クラッチ断時間を所定時間に設定する。開閉弁制御手段は、計時手段が計時する第2開閉弁が閉止されてからの経過時間が上記所定時間に達した時に、第2クラッチが断になった(第1クラッチが接になる前である)と判定し、第1開閉弁を閉止する。
 また、一方のクラッチが断になってから他方のクラッチが接になるまでの間に他方の開閉弁を閉止した場合には、少なくとも一方のクラッチが断になるまでは他方の開閉弁が開放されて一方の油圧キャンセル室に油圧が供給されるので、一方のクラッチを断にする際の一方のピストンの応答性を確実に向上させることができる。例えば、第1(他方の)クラッチが断、第2(一方の)クラッチが接である第2クラッチ接続状態を両クラッチ切断状態に変更する際に、第2開閉弁の閉止と第1開閉弁の開放とが略同時に行われる場合、上述した第2クラッチ断時間と第1クラッチ接時間とを予め実験やシミュレーション等によって求め、求めた第2クラッチ断時間よりも長く且つ第1クラッチ接時間よりも短い時間を所定時間に設定する。開閉弁制御手段は、計時手段が計時する第2開閉弁が閉止(第1開閉弁が開放)されてからの経過時間が上記所定時間に達した時に第1開閉弁を閉止する。
 また、本発明の第3の態様のデュアルクラッチ装置は、上記第1の態様のデュアルクラッチ装置であって、一方のクラッチを介してエンジンからの動力が伝達される一方の変速機入力シャフトの回転数を検出する回転数検出手段を備える。開閉弁制御手段は、クラッチ接続状態を両クラッチ切断状態に変更する場合、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、回転数検出手段が検出する回転数に基づいて一方のクラッチが切断したか否かを判定し、一方のクラッチが切断したと判定したときに他方の開閉弁を閉止する。
 上記構成では、開閉弁制御手段は、一方の開閉弁を閉止するとともに他方の開閉弁を開放した後、回転数検出手段が検出する一方の変速機入力シャフトの回転数に基づいて一方のクラッチが切断したか否かを判定し、一方のクラッチが切断したと判定したときに他方の開閉弁を閉止する。例えば、第1(他方の)クラッチが断、第2(一方の)クラッチが接である第2クラッチ接続状態を両クラッチ切断状態に変更する場合、第2クラッチが接から断になったときの変速機第2入力シャフトの回転数の低下割合を実験やシミュレーション等によって求めて所定の低下割合として設定し、第1開閉弁を開放した後の単位時間当たりの変速機第2入力シャフトの回転数の低下割合が、上記所定の低下割合以上になったときに第2クラッチが切断したと判定する。上述したように、第2開閉弁が閉止された状態で第1開閉弁を開放すると、第2クラッチが断になった後、第1クラッチが接になるので、開閉弁制御手段は、第2クラッチが断になったことを判定することにより、第1クラッチが接になる前であることを判定する。
 また、本発明の第4の態様のデュアルクラッチ装置は、エンジンから変速機第1入力シャフトへの動力伝達を断接する第1プレートを有する第1クラッチと、エンジンから変速機第2入力シャフトへの動力伝達を断接する第2プレートを有する第2クラッチとを備えるデュアルクラッチ装置であって、第1ピストンと第2ピストンと第1供給ラインと第2供給ラインと第1開閉弁と第2開閉弁と開閉弁制御手段とを備える。第1ピストンは、第1油圧室内に供給される油圧によって第1プレートを押圧して第1クラッチを接にすると共に、第1油圧キャンセル室内に収容された第1スプリングによって第1プレートから離反されて第1クラッチを断にする。第2ピストンは、第2油圧室内に供給される油圧によって第2プレートを押圧して第2クラッチを接にすると共に、第2油圧キャンセル室内に収容された第2スプリングによって第2プレートから離反されて第2クラッチを断にする。第1供給ラインは、第1油圧室及び第2油圧キャンセル室に油圧を供給する。第2供給ラインは、第2油圧室及び第1油圧キャンセル室に油圧を供給する。第1開閉弁は、第1供給ラインに設けられて、第1油圧室及び第2油圧キャンセル室へ供給する油圧を調節可能である。第2開閉弁は、第2供給ラインに設けられて、第2油圧室及び第1油圧キャンセル室へ供給する油圧を調節可能である。開閉弁制御手段は、第1開閉弁及び第2開閉弁の開閉を制御する。開閉弁制御手段は、両開閉弁のうちの一方の開閉弁を開放して一方のクラッチを接にし、且つ他方の開閉弁を閉止して他方のクラッチを断にしたクラッチ接続状態を、両クラッチを断にする両クラッチ切断状態に変更する場合、他方のクラッチを断にしている他方のスプリングの付勢力よりも小さな油圧力が、他方のクラッチを断接する他方のピストンに対して他方の油圧室側から作用するように他方の開閉弁を開放するとともに、一方の開閉弁を閉止する。
 上記構成では、上記第1の態様のデュアルクラッチ装置と同様に、第1開閉弁を開放すると、第1油圧室及び第2油圧キャンセル室への油圧の供給が許可される。このため、例えば、第2開閉弁に断線や固着等の故障が生じても、第2ピストンを確実に第2プレートから離反させることができ、変速機の二重噛み合いを確実に防止することができる。また、第2開閉弁を開放した場合には、第1油圧キャンセル室に油圧が供給されるので、第1ピストンを確実に第1プレートから離反させることができ、変速機の二重噛み合いを確実に防止することができる。
 また、開閉弁制御手段が、他方のスプリングの付勢力よりも小さな油圧力が他方の油圧室側から他方のピストンに作用するように他方の開閉弁を開放する。例えば、第1(他方の)クラッチが断、第2(一方の)クラッチが接である第2クラッチ接続状態を両クラッチ切断状態に変更する場合、第2スプリングの付勢力よりも小さな油圧力が第2油圧室側から第2ピストンに作用するように第2開閉弁を開放する。このため、第2開閉弁を開放しても、第2油圧室側からの油圧力によって第2ピストンが第2プレートを押圧する方向へ移動せず、第2クラッチが接にならない。すなわち、開閉弁制御手段は、第2開閉弁を開放して、第2クラッチを接にすることなく、第1油圧キャンセル室に油圧を供給して第1クラッチを断にする際の第1ピストンの応答性を向上させることができる。
 本発明のデュアルクラッチ装置によれば、変速機の二重噛み合いを効果的に防止することができる。
本発明の第1実施形態に係るデュアルクラッチ装置と接続されるデュアルクラッチ式変速機のギヤ配置図である。 図1のデュアルクラッチ式変速機のシフト位置に応じた作動状態を示す図である。 第1実施形態に係るデュアルクラッチ装置の上半分を示す模式的な縦断面図である。 第1実施形態に係るデュアルクラッチ装置において、第1湿式クラッチを接、第2湿式クラッチを断にした状態を説明する図である。 第1実施形態に係るデュアルクラッチ装置において、第1湿式クラッチを断、第2湿式クラッチを接にした状態を説明する図である。 第1実施形態に係るデュアルクラッチ装置において、各ピストンに作用する油圧と各リターンスプリングの付勢力とを説明する図である。 第2実施形態に係るデュアルクラッチ装置の上半分を示す模式的な縦断面図である。 第3実施形態に係るデュアルクラッチ装置の上半分を示す模式的な縦断面図である。 第3実施形態に係るデュアルクラッチ装置において、第1ピストンに作用する油圧と第1リターンスプリングの付勢力とを説明する図である。
 以下、本発明の第1実施形態を図面に基づいて説明する。
 図1に示すように、本実施形態に係るデュアルクラッチ装置10は、デュアルクラッチ式変速機1に接続され、エンジンEからの回転力をデュアルクラッチ式変速機1に伝達する。デュアルクラッチ装置10は、第1湿式クラッチC1と、第2湿式クラッチC2とを備えている。なお、符号11はエンジンEの動力が伝達されるクラッチ入力シャフトを示している。
 デュアルクラッチ式変速機1は、変速機第1入力シャフト12A、変速機第2入力シャフト12B、出力シャフト2、及びカウンタシャフト3を有する。変速機第1入力シャフト12Aは、筒状に形成される外軸であって、例えば、デュアルクラッチ式変速機1の奇数段で使用される(図2参照)。変速機第2入力シャフト12Bは、変速機第1入力シャフト12Aの中空軸内に軸受け13を介して回転自在に軸支される内軸であって、例えば、デュアルクラッチ式変速機1の偶数段で使用される(図2参照)。出力シャフト2は、変速機第1入力シャフト12A及び変速機第2入力シャフト12Bの回転軸と同軸に配置される。カウンタシャフト3は、変速機第1入力シャフト12A、変速機第2入力シャフト12B、及び出力シャフト2の回転軸と平行に配置される。各シャフト12A,12B,2,3には、複数のギヤが設けられ、各ギヤによって複数のギヤ列4~9が構成される。
 複数のギヤ列4~9は、第1減速歯車列4、第2減速歯車列5、3速4速歯車列6、1速2速歯車列7、リバース歯車列8、及び7速8速歯車列9の順番でエンジンE側から順に配置される。第1減速歯車列4は、変速機第1入力シャフト12Aの第1入力ギヤ4aとカウンタシャフト3の第1中間ギヤ4bとによって構成される。第2減速歯車列5は、変速機第2入力シャフト12Bの第2入力ギヤ5aと第2中間ギヤ5bとによって構成される。3速4速歯車列6は、出力シャフト2の第1出力ギヤ6aとカウンタシャフト3の第3中間ギヤ6bとによって構成される。1速2速歯車列7は、出力シャフト2の第2出力ギヤ7aとカウンタシャフト3の第4中間ギヤ7bとによって構成される。リバース歯車列8は、出力シャフト2の第3出力ギヤ8aとカウンタシャフト3の第5中間ギヤ8bとアイドラーギヤ8cとによって構成される。7速8速歯車列9は、出力シャフト2の第4出力ギヤ9aとカウンタシャフト3の第6中間ギヤ9bとによって構成される。
 出力シャフト2の第1出力ギヤ6a、第2出力ギヤ7a、及び第3出力ギヤ8aは、出力シャフト2に対して回転自在に設けられ、第4出力ギヤ9aは、出力シャフト2に固定的に設けられる。第1出力ギヤ6aは、第1スリーブ70の移動によって出力シャフト2に対して断接可能であり、第2出力ギヤ7a、及び第3出力ギヤ8aは、第2スリーブ71の移動によって出力シャフト2に対して断接可能である。カウンタシャフト3の第1中間ギヤ4b、第2中間ギヤ5b、第3中間ギヤ6b、第4中間ギヤ7b、及び第5中間ギヤ8bは、カウンタシャフト3に固定的に設けられ、第6中間ギヤ9bは、カウンタシャフト3に対して回転自在に設けられる。第6中間ギヤ9bは、第3スリーブ72の移動によってカウンタシャフト3に対して断接可能である。
 図2に示すように、デュアルクラッチ式変速機1では、第2スリーブ71の移動によって出力シャフト2と第2出力ギヤ7aとを接続した状態で、エンジンEの動力をクラッチ入力シャフト11から変速機第1入力シャフト12Aに伝達すると1速となり、変速機第2入力シャフト12Bに伝達すると2速となる。また、第1スリーブ70の移動によって出力シャフト2と第1出力ギヤ6aとを接続した状態で、エンジンEの動力をクラッチ入力シャフト11から変速機第1入力シャフト12Aに伝達すると3速となり、変速機第2入力シャフト12Bに伝達すると4速となる。また、第1スリーブ70の移動によって変速機第2入力シャフト12Bと出力シャフト2とを接続した状態で、エンジンEの動力をクラッチ入力シャフト11から変速機第1入力シャフト12Aに伝達すると5速となり、変速機第2入力シャフト12Bに伝達すると6速となる。また、第3スリーブ72の移動によってカウンタシャフト3と第6中間ギヤ9bとを接続した状態で、エンジンEの動力をクラッチ入力シャフト11から変速機第1入力シャフト12Aに伝達すると7速となり、変速機第2入力シャフト12Bに伝達すると8速となる。
 図3に示すように、デュアルクラッチ装置10は、第1湿式クラッチC1と、第1ピストン23と、第2湿式クラッチC2と、第2ピストン33と、油圧回路40と、第1電磁バルブ(第1開閉弁)60と、第2電磁バルブ(第2開閉弁)65と、電子制御ユニット(開閉弁制御手段、計時手段)80(以下、ECU(Electric Control Unit)と称する)とを備える。
 第1湿式クラッチC1は、クラッチ入力シャフト11と一体回転するクラッチハブ20と、クラッチハブ20にスプライン嵌合する複数枚の第1内側プレート21Aと、変速機第1入力シャフト12Aと一体回転する第1クラッチドラム22と、第1内側プレート21A間に交互に配置されて第1クラッチドラム22にスプライン嵌合する複数枚の第1外側プレート21Bとを備えている。
 第1ピストン23は、円筒状に形成され、各第1プレート21A,Bを軸方向に押圧可能であり、クラッチハブ20に形成された円環状の第1ピストン室24内に摺動自在に収容されている。この第1ピストン室24内には、第1ピストン23によって第1油圧室25A及び、第1遠心油圧キャンセル室(第1油圧キャンセル室)25Bが区画形成されている。また、第1遠心油圧キャンセル室25B内には、第1ピストン23を各第1プレート21A,Bから離反する方向に付勢する第1リターンスプリング(第1スプリング)26が収容されている。なお、符号Sは、第1ピストン23と第1ピストン室24との隙間をシールするシール部材を示している。
 第1油圧室25Aに油圧が供給されると、第1ピストン23は、軸方向にストローク移動して各第1プレート21A,Bを互いに圧接させる(第1湿式クラッチC1:接)。一方、第1油圧室25Aの油圧が降下し、且つ第1遠心油圧キャンセル室25Bに油圧が供給されると、第1ピストン23は、第1リターンスプリング26の付勢力及び、第1遠心油圧キャンセル室25B内の油圧力によって各第1プレート21A,Bから離反して圧接状態を開放させる(第1湿式クラッチC1:断)。なお、本明細書において、油圧とは、圧油によって対象物の単位面積あたりに作用する力である。また、油圧力とは、圧油によって対象物に作用する力であり、油圧と面積とを乗じた値である。
 第2湿式クラッチC2は、クラッチハブ20にスプライン嵌合する複数枚の第2外側プレート31Aと、変速機第2入力シャフト12Bと一体回転する第2クラッチドラム32と、第2外側プレート31A間に交互に配置されて第2クラッチドラム32にスプライン嵌合する複数枚の第2内側プレート31Bとを備えている。
 第2ピストン33は、円筒状に形成され、各第2プレート31A,Bを軸方向に圧接可能であり、クラッチハブ20に形成された円環状の第2ピストン室34内に摺動自在に収容されている。この第2ピストン室34内には、第2ピストン33によって第2油圧室35A及び、第2遠心油圧キャンセル室(第2油圧キャンセル室)35Bが区画形成されている。また、第2遠心油圧キャンセル室35B内には、第2ピストン33を各第2プレート31A,Bから離反する方向に付勢する第2リターンスプリング(第2スプリング)36が収容されている。なお、符号Sは、第2ピストン33と第2ピストン室34との隙間をシールするシール部材を示している。
 第2油圧室35Aに油圧が供給されると、第2ピストン33は、軸方向にストローク移動して各第2プレート31A,Bを互いに圧接させる(第2湿式クラッチC2:接)。一方、第2油圧室35Aの油圧が降下し、且つ第2遠心油圧キャンセル室35Bに油圧が供給されると、第2ピストン33は、第2リターンスプリング36の付勢力及び、第2遠心油圧キャンセル室35B内の油圧力によって各第2プレート31A,Bから離反して圧接状態を開放させる(第2湿式クラッチC2:断)。
 油圧回路40は、オイルパン41と第1電磁バルブ60とを接続する第1上流供給ライン(第1供給ライン)43と、第1上流供給ライン43から分岐して第2電磁バルブ65に接続された第2上流供給ライン(第2供給ライン)45とを有する。分岐部よりも上流側の第1上流供給ライン43には、エンジンEの動力で駆動するオイルポンプOPが設けられている。第2上流供給ライン45には、絞り弁47が設けられた潤滑用油供給ライン46が接続されている。
 第1電磁バルブ60には、第1下流供給ライン(第1供給ライン)50が接続されている。この第1下流供給ライン50は、クラッチハブ20内で第1油圧室用ライン50Aと、第2キャンセル室用ライン50Bとに分岐形成されている。第1油圧室用ライン50Aの下流端は、第1油圧室25Aに接続され、第2キャンセル室用ライン50Bの下流端は、第2遠心油圧キャンセル室35Bに接続されている。
 第1電磁バルブ60は、非通電時(OFF)はスプリング61の付勢力によって閉止され、ECU80により通電(ON)されると開放される。第1電磁バルブ60が開放(ON)されたときは、第1油圧室25A及び第2遠心油圧キャンセル室35Bに圧油が供給される。一方、第1電磁バルブ60が閉止(OFF)されたときは、第1油圧室25A及び第2遠心油圧キャンセル室35Bに圧油が供給されず、第1油圧室25A及び第2遠心油圧キャンセル室35B内の圧油は、油戻しライン62を介してオイルパン41に戻される。
 第2電磁バルブ65には、第2下流供給ライン51(第2供給ライン)が接続されている。この第2下流供給ライン51は、クラッチハブ20内で第2油圧室用ライン51Aと、第1キャンセル室用ライン51Bとに分岐形成されている。第2油圧室用ライン51Aの下流端は、第2油圧室35Aに接続され、第1キャンセル室用ライン51Bの下流端は、第1遠心油圧キャンセル室25Bに接続されている。
 第2電磁バルブ65は、非通電時(OFF)はスプリング66の付勢力によって閉止され、ECU80により通電(ON)されると開放される。第2電磁バルブ65が開放(ON)されたときは、第2油圧室35A及び第1遠心油圧キャンセル室25Bに圧油が供給される。一方、第2電磁バルブ65が閉止(OFF)されたときは、第2油圧室35A及び第1遠心油圧キャンセル室25Bに圧油が供給されず、第2油圧室35A及び第1遠心油圧キャンセル室25B内の圧油は、油戻しライン67を介してオイルパン41に戻される。
 ECU80は、CPU(Central Processing Unit)やメモリ等(図示省略)によって構成され、弁制御部81と計時部82とを有し、開閉弁制御手段及び計時手段として機能する。
 計時部82は、後述する両クラッチ切断状態にする際に、第1電磁バルブ60がONにされてからの経過時間を計時する。なお、後述するように、第1電磁バルブ60のONと第2電磁バルブ65のOFFとは、略同時に行われるので、計時部82は、第2電磁バルブ65がOFFにされてからの経過時間を計時してもよい。
 弁制御部81は、第1電磁バルブ60及び第2電磁バルブ65の開閉を制御することにより、第1湿式クラッチC1を接にして第2湿式クラッチC2を断にする第1クラッチ接続状態(図4参照)と、第1湿式クラッチC1を断にして第2湿式クラッチC2を接にする第2クラッチ接続状態(図5参照)と、第1湿式クラッチC1及び第2湿式クラッチC2を断にする両クラッチ切断状態(図3参照)とを切り換える。
 図2に示すように、デュアルクラッチ式変速機1では、奇数段(1速、3速、5速、及び7速)のとき、エンジンEの動力は、クラッチ入力シャフト11から変速機第1入力シャフト12Aに伝達される。このため、弁制御部81は、図4に示すように、第1電磁バルブ60をON、第2電磁バルブ65をOFFにして第1クラッチ接続状態にする。例えば、デュアルクラッチ式変速機1が1速に設定される場合には、第2スリーブ71の移動によって出力シャフト2と第2出力ギヤ7aとを接続した状態で、弁制御部81が第1電磁バルブ60をON、第2電磁バルブ65をOFFにして第1クラッチ接続状態にする。これにより、エンジンEの動力は、クラッチ入力シャフト11から変速機第1入力シャフト12Aに入力され、第1減速歯車列4、カウンタシャフト3、及び1速2速歯車列7を介して出力シャフト2に伝達される。
 また、図2に示すように、デュアルクラッチ式変速機1では、偶数段(2速、4速、6速、及び8速)のとき、エンジンEの動力は、クラッチ入力シャフト11から変速機第2入力シャフト12Bに伝達される。このため、弁制御部81は、図5に示すように、第1電磁バルブ60をOFF、第2電磁バルブ65をONにして第2クラッチ接続状態にする。例えば、1速から2速へシフトアップする際には、各スリーブ70~72を移動することなく、出力シャフト2と第2出力ギヤ7aとを第2スリーブ71によって接続したままの状態で、弁制御部81が第1クラッチ接続状態から、第1電磁バルブ60をOFF、第2電磁バルブ65をONにして第2クラッチ接続状態に変更する。これにより、エンジンEの動力は、クラッチ入力シャフト11から変速機第2入力シャフト12Bに入力され、第2減速歯車列5、カウンタシャフト3、及び1速2速歯車列7を介して出力シャフト2に伝達される。
 また、図2に示すように、デュアルクラッチ式変速機1では、偶数段から奇数段(2速から3速、又は4速から5速、又は6速から7速)にシフトアップする場合、各スリーブ70~72のうちのいずれかのスリーブの移動が生じるので、第1(他方の)電磁バルブ60をOFF、第2(一方の)電磁バルブ65をONにして第2湿式クラッチC2を接にした第2クラッチ接続状態(クラッチ接続状態)から、第2湿式クラッチC2を断にして両クラッチ切断状態に変更し、スリーブを移動させた後、両クラッチ切断状態から第1湿式クラッチC1を接にして第1クラッチ接続状態に変更する。第2クラッチ接続状態を両クラッチ切断状態に変更する場合、弁制御部81は、第2電磁バルブ65をOFFにすると略同時に、第1電磁バルブ60をONにし、計時部82が計時する経過時間(第1電磁バルブ60をONにしてからの経過時間)が予め定められている所定の経過時間に達したときに、第1湿式クラッチC1が接になる前であると判定して第1電磁バルブ60をOFFにする。なお、上記所定の経過時間には、第2電磁バルブ65をOFFにしてから第2湿式クラッチC2が断になるまでの時間(第2クラッチ断時間)と、第1電磁バルブ60をONにしてから第1湿式クラッチC1が接になるまでの時間(第1クラッチ接時間)とを予め実験やシミュレーション等によって求め、求めた第2クラッチ断時間よりも長く、且つ第1クラッチ接時間よりも短い時間が設定される。
 次に、図6に基づいて、各リターンスプリング26,36の最適な付勢力の設定について説明する。なお、図6において、RA1は第1ピストン23の外径、RB1は第1遠心油圧キャンセル室25Bの外径、RA2は第2ピストン33の外径、RB2は第2遠心油圧キャンセル室35Bの外径、Pは油圧、FS1は第1リターンスプリング26の付勢力、FS2は第2リターンスプリング36の付勢力、CLはクラッチ入力シャフト11の回転軸をそれぞれ示している。また、上記外径とは、回転軸CLからの半径を表す。
 第1リターンスプリング26の付勢力FS1は、以下の条件式(1)を満たすように設定され、第2リターンスプリング36の付勢力FS2は、以下の条件式(2)を満たすように設定される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 上記のように構成されたデュアルクラッチ装置10では、クラッチ入力シャフト11から変速機第1入力シャフト12Aに動力を伝達する場合は、図4に示すように、第1湿式クラッチC1を接(第1電磁バルブ60:ON)、第2湿式クラッチC2を断(第2電磁バルブ65:OFF)にする。第1電磁バルブ60がONになると、第1油圧室25Aのみならず、第2遠心油圧キャンセル室35Bにも油圧が供給されるため、第2ピストン33には、第2リターンスプリング36の付勢力FS2、及び第2遠心油圧キャンセル室35B内の油圧力の双方が作用する。その結果、例えば、第2電磁バルブ65に断線や固着等の故障が生じても、第2ピストン33を確実に各プレート31A,Bから離反させることが可能となり、変速機の二重噛み合いを確実に防止することができる。
 また、クラッチ入力シャフト11から変速機第2入力シャフト12Bに動力を伝達する場合は、図5に示すように、第1湿式クラッチC1を断(第1電磁バルブ60:OFF)、第2湿式クラッチC2を接(第2電磁バルブ65:ON)にする。第2電磁バルブ65がONになると、第2油圧室35Aのみならず、第1遠心油圧キャンセル室25Bにも油圧が供給されるため、第1ピストン23には、第1リターンスプリング26の付勢力FS1、及び第1遠心油圧キャンセル室25B内の油圧力の双方が作用する。その結果、例えば、第1電磁バルブ60に断線や固着等の故障が生じても、第1ピストン23を確実に各プレート21A,Bから離反させることが可能となり、変速機の二重噛み合いを確実に防止することができる。
 また、第1リターンスプリング26の付勢力FS1を、第1ピストン23に作用する第1油圧室25Aと第1遠心油圧キャンセル室25Bとの油圧力差よりも大きく設定し、第2リターンスプリング36の付勢力FS2を、第2ピストン33に作用する第2油圧室35Aと第2遠心油圧キャンセル室35Bとの油圧力差よりも大きく設定するので、第1及び第2湿式クラッチC1,C2が確実に切断されることになり、変速機の二重噛み合いを効果的に防止することが可能になる。
 また、弁制御部81は、第2クラッチ接続状態を両クラッチ切断状態に変更する場合、第2電磁バルブ65をOFFにすると略同時に、第1電磁バルブ60をONにする。第2電磁バルブ65がOFFにされるので、第2油圧室35Aへの油圧の供給が遮断され、第2ピストン33は、第2リターンスプリング36の付勢力FS2によって各第2プレート31A,Bから離反される。また、第1電磁バルブ60が開放されるので、第2遠心油圧キャンセル室35Bへの油圧の供給が許可されて第2遠心油圧キャンセル室35Bに油圧が供給され、第2ピストン33は、第2遠心油圧キャンセル室35B側からの油圧力によって各第2プレート31A,Bから離反される。すなわち、第2ピストン33は、第2リターンスプリング36の付勢力FS2に加え、第2遠心油圧キャンセル室35B側からの油圧力によって各第2プレート31A,Bから離反されるので、第2湿式クラッチC2を断にする際の第2ピストン33の応答性を向上させることができる。
 また、弁制御部81は、第2クラッチ接続状態を両クラッチ切断状態に変更する場合、第2電磁バルブ65をOFFにすると略同時に第1電磁バルブ60をONにした後、第1湿式クラッチC1が接になる前に第1電磁バルブ60をOFFにする。弁制御部81が第1電磁バルブ60をONにした際には、第1油圧室25Aに油圧が供給されるので、第1ピストン23が各第1プレート21A,Bを押圧する方向へ移動する。その後、第1湿式クラッチC1が接になる前に第1電磁バルブ60をOFFにすると、第1油圧室25Aに供給される油圧が遮断されるので、各第1プレート21A,Bを押圧する方向へ移動していた第1ピストン23が、第1リターンスプリング26の付勢力FS1によって各第1プレート21A,Bから離反する方向へ移動して、両クラッチ切断状態になる。このように、第1湿式クラッチC1が接になる前に第1電磁バルブ60をOFFにすることにより、確実に両クラッチ切断状態にすることができる。
 また、弁制御部81は、第2クラッチ接続状態を両クラッチ切断状態に変更する場合、第2電磁バルブ65をOFFにすると略同時に第1電磁バルブ60をONにし、計時部82が計時する経過時間が上記所定の経過時間に達したときに、第1電磁バルブ60をOFFにする。上記所定の経過時間は、第2クラッチ断時間よりも長く、且つ第1クラッチ接時間よりも短い時間が設定される。すなわち、弁制御部81は、第2湿式クラッチC2が断になった後であって、且つ第1湿式クラッチC1が接になる前に第1電磁バルブ60をOFFにする。このように、少なくとも第2湿式クラッチC2が断になるまでは第1電磁バルブ60が開放されて、第2遠心油圧キャンセル室35Bに油圧が供給されているので、第2湿式クラッチC2を断にする際の第2ピストン33の応答性を確実に向上させることができる。
 また、例えば、2速から3速にシフトアップする際には、2速の第2クラッチ接続状態からスリーブ70,71を移動するために両クラッチ切断状態に変更し、スリーブ70,71の移動後に第1クラッチ接続状態に変更する。両クラッチ切断状態から第1クラッチ接続状態に変更する際には、第2クラッチ接続状態から両クラッチ切断状態への変更時に各第1プレート21A,Bを押圧する方向へ移動していた第1ピストン23が、第1リターンスプリング26の付勢力FS1によって各第1プレート21A,Bから離反する方向へ完全に移動していない(戻っていない)場合がある。この場合、第1ピストン23が各第1プレート21A,Bを押圧する方向へ予め移動しているので、第1湿式クラッチC1を接にする際の応答性が高まる。
 なお、本実施形態では、上記所定時間に、第2クラッチ断時間よりも長く、且つ第1クラッチ接時間よりも短い時間を設定したが、これに限定されるものではなく、第1クラッチ接時間よりも短い時間であればよい。例えば、第2クラッチ断時間を上記所定時間に設定してもよく、弁制御部81は、計時部82が計時する経過時間(第1電磁バルブ60をONにしてからの経過時間)が第2クラッチ断時間に達した時に、第2湿式クラッチC2が断になった(第1湿式クラッチC1を接になる前である)と判定し、第1電磁バルブ60をOFFにしてもよい。或いは、上記所定時間に、第2クラッチ断時間よりも短い時間を設定してもよい。
 また、本実施形態では、偶数段から奇数段(2速から3速、又は4速から5速、又は6速から7速)にシフトアップする際に行う第2クラッチ接続状態から両クラッチ切断状態への変更について説明したが、奇数段から偶数段へシフトダウンする際に行う第1クラッチ接続状態から両クラッチ切断状態への変更時にも適用することができる。この場合、第1(一方の)電磁バルブ60をOFFにすると略同時に第2(他方の)電磁バルブ65をONにした後、第2湿式クラッチC2が接になる前に第2電磁バルブ65をOFFにする。
 また、本実施形態では、弁制御部81は、第2クラッチ接続状態を両クラッチ切断状態に変更する際、第2電磁バルブ65をOFFにすると略同時に、第1電磁バルブ60をONにしたが、第2電磁バルブ65のOFFと第1電磁バルブ60のONとは略同時に行わなくてもよい。第2電磁バルブ65のOFFと第1電磁バルブ60のONとが異なるタイミングで行われる場合であっても、第2電磁バルブ65をOFFにしてから第1電磁バルブ60をON(又は第1電磁バルブ60をONにしてから第2電磁バルブ65をOFF)にするまでの時間が一定であれば、計時部82は、第1電磁バルブ60がONにされてからの経過時間、又は第2電磁バルブ65がOFFにされてからの経過時間のいずれの経過時間を計時してもよい。
 また、本実施形態では、ECU80が弁制御部81と計時部82とを有し、開閉弁制御手段及び計時手段として機能したが、これに限定されるものではない。例えば、ECU80は、弁制御部81を有して開閉弁制御手段として機能し、ECU80とは別に設けられた計時部(計時手段)が計時する経過時間を取得してもよい。
 次に、本発明の第2実施形態を図面に基づいて説明する。なお、本実施形態に係るデュアルクラッチ装置90は、両クラッチ切断状態にする際に第1湿式クラッチC1が接になる前であるか否かの判定を、変速機第2入力シャフト12Bの回転数に基づいて行う点が上記第1実施形態とは異なり、第1実施形態と同様の構成については、同一の符号を付してその説明を省略する。
 図7に示すように、デュアルクラッチ装置90は、変速機第2入力シャフト12Bの回転数を検出する回転数センサ(回転数検出手段)91を備える。
 回転数センサ91は、変速機第2入力シャフト12Bの回転数を検出してECU80へ逐次出力する。
 ECU80の弁制御部81は、第2クラッチ接続状態(図5参照)を両クラッチ切断状態(図7参照)に変更する場合、第2電磁バルブ65をOFFにすると略同時に、第1電磁バルブ60をONにする。その後、弁制御部81は、回転数センサ91が検出する変速機第2入力シャフト12Bの回転数から単位時間当たりの変速機第2入力シャフト12Bの回転数の低下割合を求め、求めた低下割合が予め定められている所定の低下割合以上になったときに第2湿式クラッチC2が断になったと判定する。すなわち、弁制御部81は、第2湿式クラッチC2が断になったと判定することにより、第1湿式クラッチC1が接になる前であると判定して第1電磁バルブ60をOFFにする。なお、実験やシミュレーション等によって、第2湿式クラッチC2が接から断になったときの変速機第2入力シャフト12Bの回転数の低下割合を予め求め、求めた低下割合を上記所定の低下割合に設定する。
 上記構成では、弁制御部81は、変速機第2入力シャフト12Bの回転数に基づいて第2湿式クラッチC2が断になったか否かを判定することにより、第1湿式クラッチC1が接になる前であるか否かを判定することができる。
 なお、本実施形態では、変速機第2入力シャフト12Bの回転数の単位時間当たりの低下割合と、予め定めた所定の低下割合と比較することにより、第2湿式クラッチC2が断になったか否かを判定したが、これに限定されるものではない。例えば、変速機第2入力シャフト12Bの単位時間当たりの回転数差等を用いて、第2湿式クラッチC2が断になったか否かを判定してもよい。
 次に、本発明の第3実施形態を図面に基づいて説明する。なお、本実施形態に係るデュアルクラッチ装置100は、第1実施形態の第1電磁バルブ60及び第2電磁バルブ65に替えて第1油圧調節弁101及び第2油圧調節弁102を設けたものであり、第1実施形態と同様の構成については、同一の符号を付してその説明を省略する。
 図8に示すように、デュアルクラッチ装置100は、第1上流供給ライン43及び第1下流供給ライン50に接続される第1油圧調節弁(第1開閉弁)101と、第1下流供給ライン50に設けられる第1油圧センサ103と、第2上流供給ライン45及び第2下流供給ライン51に接続される第2油圧調節弁(第2開閉弁)102と、第2下流供給ライン51に設けられる第2油圧センサ104とを備える。
 第1油圧調節弁101は、第1下流供給ライン50を介して第1油圧室25A及び第2遠心油圧キャンセル室35Bに供給される油圧を調節可能である。第1油圧調節弁101が開放(ON)されたときは、第1油圧室25A及び第2遠心油圧キャンセル室35Bに圧油が供給される。一方、第1油圧調節弁101が閉止(OFF)されたときは、第1油圧室25A及び第2遠心油圧キャンセル室35Bに圧油が供給されず、第1油圧室25A及び第2遠心油圧キャンセル室35B内の圧油は、油戻しライン62を介してオイルパン41に戻される。
 第2油圧調節弁102は、第2下流供給ライン51を介して第2油圧室35A及び第1遠心油圧キャンセル室25Bに供給される油圧を調節可能である。第2油圧調節弁102が開放(ON)されたときは、第2油圧室35A及び第1遠心油圧キャンセル室25Bに圧油が供給される。一方、第2油圧調節弁102が閉止(OFF)されたときは、第2油圧室35A及び第1遠心油圧キャンセル室25Bに圧油が供給されず、第2油圧室35A及び第1遠心油圧キャンセル室25B内の圧油は、油戻しライン67を介してオイルパン41に戻される。
 第1油圧センサ103は、第1下流供給ライン50の油圧を検出してECU80へ逐次出力する。第2油圧センサ104は、第2下流供給ライン51の油圧を検出してECU80へ逐次出力する。
 ECU80の弁制御部81は、第1(他方の)油圧調節弁101をOFF、第2(一方の)油圧調節弁102をONにして第2湿式クラッチC2を接にした第2クラッチ接続状態(クラッチ接続状態、図8参照)から、第2湿式クラッチC2を断にして両クラッチ切断状態(図9参照)に変更する場合、第2油圧調節弁102をOFFにすると略同時に、第1油圧調節弁101をONにする。弁制御部81は、第1油圧調節弁101をONにする際、第1油圧センサ103が検出する第1下流供給ライン50の油圧が所定の油圧となるように第1油圧調節弁101を制御する。
 上記所定の油圧には、第1油圧調節弁101が開放された際に第1油圧室25A側から第1ピストン23に作用する油圧力が、第1リターンスプリング26の付勢力よりも小さくなる値が設定される。例えば、図9のデュアルクラッチ装置100では、上記所定の油圧は、以下の条件式(3)を満たすように設定される。なお、図9において、RA1は第1ピストン23の外径、RC1は第1ピストン23の内径、Pは油圧、FS1は第1リターンスプリング26の付勢力をそれぞれ示している。また、上記外径及び内径の双方は、回転軸CLからの半径を表す。
Figure JPOXMLDOC01-appb-M000003
 なお、上記所定の油圧を求める条件式は、上記条件式(3)に限定されない。例えば、第1ピストンの形状が他の形状である場合には、他の条件式であってもよい。
 上記のように構成されたデュアルクラッチ装置100では、第2クラッチ接続状態(図8参照)を両クラッチ切断状態(図9参照)に変更する場合、第2油圧調節弁102をOFFにすると略同時に、第1油圧調節弁101をONにする。第1油圧調節弁101をONにすることにより第1油圧室25A(及び第2遠心油圧キャンセル室35B)に供給される油圧は、予め定められた上記所定の油圧であるので、第1ピストン23に作用する油圧力は、第1リターンスプリング26の付勢力よりも小さいので、第1油圧調節弁101をONにしても第1ピストン23が第1湿式クラッチC1を接にする方向に移動しない。また、第1油圧調節弁101をONにすることにより、第2遠心油圧キャンセル室35Bに油圧が供給されるので、第2リターンスプリング36の付勢力に加え、第2遠心油圧キャンセル室35B側から作用する油圧力によって、第2ピストン33が各第2プレート31A,Bから離反して圧接状態を開放させて、第2湿式クラッチC2が断となる。従って、確実に両クラッチ切断状態にすることができ、且つ第2湿式クラッチC2を断にする際の第2ピストン33の応答性を向上させることができる。
 なお、両クラッチ切断状態にしてスリーブを移動した後、第1湿式クラッチC1を接にする際には、弁制御部81は、第1下流供給ライン50を介して第1油圧室25A及び第2遠心油圧キャンセル室35Bに供給される油圧を上記所定の油圧から増大させるように第1油圧調節弁101を制御してもよい。
 以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、当然に本発明を逸脱しない範囲で適宜変更が可能である。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれることは勿論である。
 例えば、上記実施形態では、デュアルクラッチ装置10,90,100を、図1及び図2に示すデュアルクラッチ式変速機1に接続したが、他の構造のデュアルクラッチ式変速機に接続してもよい。例えば、第1湿式クラッチC1が偶数段に対応し、第2湿式クラッチC2が奇数段に対応するデュアルクラッチ式変速機等であってもよい。
10,90,100:デュアルクラッチ装置
11:クラッチ入力シャフト
12A:変速機第1入力シャフト
12B:変速機第2入力シャフト
20:クラッチハブ
21A:第1内側プレート(第1プレート)
21B:第1外側プレート(第1プレート)
23:第1ピストン
25A:第1油圧室
25B:第1遠心油圧キャンセル室(第1油圧キャンセル室)
26:第1リターンスプリング(第1スプリング)
31A:第2外側プレート(第2プレート)
31B:第2内側プレート(第2プレート)
33:第2ピストン
35A:第2油圧室
35B:第2遠心油圧キャンセル室(第2油圧キャンセル室)
36:第2リターンスプリング(第2スプリング)
40:油圧回路
43:第1上流供給ライン(第1供給ライン)
45:第2上流供給ライン(第2供給ライン)
50:第1下流供給ライン(第1供給ライン)
50A:第1油圧室用ライン
50B:第2キャンセル室用ライン
51:第2下流供給ライン(第2供給ライン)
51A:第2油圧室用ライン
51B:第1キャンセル室用ライン
60:第1電磁バルブ(第1開閉弁)
65:第2電磁バルブ(第2開閉弁)
80:電子制御ユニット(開閉弁制御手段、計時手段)
81:弁制御部(開閉弁制御手段)
82:計時部(計時手段)
91:回転数センサ(回転数検出手段)
101:第1油圧調節弁(第1開閉弁)
102:第2油圧調節弁(第2開閉弁)

Claims (4)

  1.  エンジンから変速機第1入力シャフトへの動力伝達を断接する第1プレートを有する第1クラッチと、前記エンジンから変速機第2入力シャフトへの動力伝達を断接する第2プレートを有する第2クラッチとを備えるデュアルクラッチ装置であって、
     第1油圧室内に供給される油圧によって前記第1プレートを押圧して前記第1クラッチを接にすると共に、第1油圧キャンセル室内に収容された第1スプリングによって前記第1プレートから離反されて前記第1クラッチを断にする第1ピストンと、
     第2油圧室内に供給される油圧によって前記第2プレートを押圧して前記第2クラッチを接にすると共に、第2油圧キャンセル室内に収容された第2スプリングによって前記第2プレートから離反されて前記第2クラッチを断にする第2ピストンと、
     前記第1油圧室及び前記第2油圧キャンセル室に油圧を供給する第1供給ラインと、
     前記第2油圧室及び前記第1油圧キャンセル室に油圧を供給する第2供給ラインと、
     前記第1供給ラインに設けられて、前記第1油圧室及び前記第2油圧キャンセル室への油圧の供給を許可又は遮断する第1開閉弁と、
     前記第2供給ラインに設けられて、前記第2油圧室及び前記第1油圧キャンセル室への油圧の供給を許可又は遮断する第2開閉弁と、
     前記第1開閉弁及び前記第2開閉弁の開閉を制御する開閉弁制御手段と、を備え、
     前記開閉弁制御手段は、前記両開閉弁のうちの一方の開閉弁を開放して一方のクラッチを接にし、且つ他方の開閉弁を閉止して他方のクラッチを断にしたクラッチ接続状態を、前記両開閉弁を閉止して両クラッチを断にする両クラッチ切断状態に変更する場合、前記一方の開閉弁を閉止するとともに前記他方の開閉弁を開放した後、前記他方のクラッチが接になる前に、前記他方の開閉弁を閉止する
     ことを特徴とするデュアルクラッチ装置。
  2.  請求項1に記載のデュアルクラッチ装置であって、
     前記一方の開閉弁が閉止されてからの経過時間、又は前記他方の開閉弁が開放されてからの経過時間の少なくとも一方を計時する計時手段を備え、
     前記開閉弁制御手段は、前記クラッチ接続状態を前記両クラッチ切断状態に変更する場合、前記一方の開閉弁を閉止するとともに前記他方の開閉弁を開放した後、前記他方のクラッチが接になる前であるか否かを前記計時手段が計時する時間に基づいて判定する
     ことを特徴とするデュアルクラッチ装置。
  3.  請求項1に記載のデュアルクラッチ装置であって、
     前記一方のクラッチを介して前記エンジンからの動力が伝達される一方の変速機入力シャフトの回転数を検出する回転数検出手段を備え、
     前記開閉弁制御手段は、前記クラッチ接続状態を前記両クラッチ切断状態に変更する場合、前記一方の開閉弁を閉止するとともに前記他方の開閉弁を開放した後、前記回転数検出手段が検出する回転数に基づいて前記一方のクラッチが切断したか否かを判定し、前記一方のクラッチが切断したと判定したときに前記他方の開閉弁を閉止する
     ことを特徴とするデュアルクラッチ装置。
  4.  エンジンから変速機第1入力シャフトへの動力伝達を断接する第1プレートを有する第1クラッチと、前記エンジンから変速機第2入力シャフトへの動力伝達を断接する第2プレートを有する第2クラッチとを備えるデュアルクラッチ装置であって、
     第1油圧室内に供給される油圧によって前記第1プレートを押圧して前記第1クラッチを接にすると共に、第1油圧キャンセル室内に収容された第1スプリングによって前記第1プレートから離反されて前記第1クラッチを断にする第1ピストンと、
     第2油圧室内に供給される油圧によって前記第2プレートを押圧して前記第2クラッチを接にすると共に、第2油圧キャンセル室内に収容された第2スプリングによって前記第2プレートから離反されて前記第2クラッチを断にする第2ピストンと、
     前記第1油圧室及び前記第2油圧キャンセル室に油圧を供給する第1供給ラインと、
     前記第2油圧室及び前記第1油圧キャンセル室に油圧を供給する第2供給ラインと、
     前記第1供給ラインに設けられて、前記第1油圧室及び前記第2油圧キャンセル室へ供給する油圧を調節可能な第1開閉弁と、
     前記第2供給ラインに設けられて、前記第2油圧室及び前記第1油圧キャンセル室へ供給する油圧を調節可能な第2開閉弁と、
     前記第1開閉弁及び前記第2開閉弁の開閉を制御する開閉弁制御手段と、を備え、
     前記開閉弁制御手段は、前記両開閉弁のうちの一方の開閉弁を開放して一方のクラッチを接にし、且つ他方の開閉弁を閉止して他方のクラッチを断にしたクラッチ接続状態を、前記両クラッチを断にする両クラッチ切断状態に変更する場合、前記他方のクラッチを断にしている他方のスプリングの付勢力よりも小さな油圧力が、前記他方のクラッチを断接する他方のピストンに対して他方の油圧室側から作用するように前記他方の開閉弁を開放するとともに、前記一方の開閉弁を閉止する
     ことを特徴とするデュアルクラッチ装置。
PCT/JP2015/084836 2014-12-11 2015-12-11 デュアルクラッチ装置 WO2016093353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15866493.8A EP3232077B1 (en) 2014-12-11 2015-12-11 Dual clutch device
CN201580067152.6A CN107110243B (zh) 2014-12-11 2015-12-11 双离合器装置
US15/535,003 US10274024B2 (en) 2014-12-11 2015-12-11 Dual clutch apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-250906 2014-12-11
JP2014250906A JP6384761B2 (ja) 2014-12-11 2014-12-11 デュアルクラッチ装置

Publications (1)

Publication Number Publication Date
WO2016093353A1 true WO2016093353A1 (ja) 2016-06-16

Family

ID=56107530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084836 WO2016093353A1 (ja) 2014-12-11 2015-12-11 デュアルクラッチ装置

Country Status (5)

Country Link
US (1) US10274024B2 (ja)
EP (1) EP3232077B1 (ja)
JP (1) JP6384761B2 (ja)
CN (1) CN107110243B (ja)
WO (1) WO2016093353A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016118423A1 (de) * 2016-09-07 2018-03-08 Lsp Innovative Automotive Systems Gmbh Elektrohydraulisches System für die Betätigung von Kupplung(en) und Gangsteller(n) von Schaltgetrieben
KR20200061854A (ko) * 2018-11-26 2020-06-03 현대자동차주식회사 Dct용 오일펌프 제어방법
US10914377B2 (en) * 2019-03-14 2021-02-09 Hamilton Sunstrand Corporation Coupled planetary gearbox
CN111720535B (zh) * 2020-06-29 2021-11-16 安徽江淮汽车集团股份有限公司 同步器控制方法、同步器控制装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036807A (ja) * 2002-07-05 2004-02-05 Aisin Aw Co Ltd 変速機の油圧制御装置
JP2013024331A (ja) * 2011-07-21 2013-02-04 Nsk Ltd 無段変速装置
WO2015159955A1 (ja) * 2014-04-18 2015-10-22 いすゞ自動車株式会社 デュアルクラッチ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779454B1 (en) * 1995-12-15 2002-04-17 Aisin Aw Co., Ltd. Continuously variable transmission
DE10163404B4 (de) * 2001-12-21 2009-06-04 Zf Sachs Ag Verfahren zur Steuerung eines Kupplungssystem mit wenigstens einer Lamellen-Kupplungsanordnung
DE102007029634A1 (de) 2007-06-26 2009-01-08 Daimler Ag Zahnräderwechselgetriebe
US8359941B2 (en) 2009-09-29 2013-01-29 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
DE102010041303A1 (de) * 2010-09-24 2012-03-29 Zf Friedrichshafen Ag Verfahren zur Kennlinienadaption von Kupplungen in einem Teildoppelkupplungsgetriebe eines Fahrzeugs
JP5901648B2 (ja) * 2010-12-09 2016-04-13 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG デュアルクラッチ伝動装置用の液圧システム
KR101305157B1 (ko) 2011-07-29 2013-09-12 현대 파워텍 주식회사 듀얼 클러치 장치
DE102012221958A1 (de) * 2011-12-15 2013-06-20 Schaeffler Technologies AG & Co. KG Doppelkupplung
EP2795150B1 (de) * 2011-12-22 2018-05-30 Schaeffler Technologies AG & Co. KG Doppelkupplung
DE102013012815A1 (de) * 2012-11-20 2014-05-22 Borgwarner Inc. Doppelkupplungseinrichtung und Verfahren zur Montage einer Doppelkupplungseinrichtung
CN105705837B (zh) * 2013-11-08 2019-04-16 舍弗勒技术股份两合公司 流体组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036807A (ja) * 2002-07-05 2004-02-05 Aisin Aw Co Ltd 変速機の油圧制御装置
JP2013024331A (ja) * 2011-07-21 2013-02-04 Nsk Ltd 無段変速装置
WO2015159955A1 (ja) * 2014-04-18 2015-10-22 いすゞ自動車株式会社 デュアルクラッチ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232077A4 *

Also Published As

Publication number Publication date
CN107110243B (zh) 2019-06-07
US20170321764A1 (en) 2017-11-09
JP6384761B2 (ja) 2018-09-05
US10274024B2 (en) 2019-04-30
JP2016114086A (ja) 2016-06-23
EP3232077A4 (en) 2018-08-29
CN107110243A (zh) 2017-08-29
EP3232077A1 (en) 2017-10-18
EP3232077B1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6384099B2 (ja) デュアルクラッチ装置
WO2016093353A1 (ja) デュアルクラッチ装置
JP5253068B2 (ja) 変速制御装置
US10252723B2 (en) Slip factor learning method of dual clutch transmission
TWI382132B (zh) 雙離合器式變速裝置
JP5162767B2 (ja) クラッチ制御装置
JP5153525B2 (ja) クラッチ制御装置
CA2678849C (en) Shift controller
US9556934B2 (en) Dual clutch transmission control method, dual clutch transmission, and vehicle mounted therewith
JP2008298167A (ja) ツインクラッチ装置
JP4934859B2 (ja) 変速機のクラッチ制御装置
JP5926222B2 (ja) 伝動装置
JP2010121699A (ja) 変速装置用油圧回路装置
JP5140533B2 (ja) 変速制御装置
KR20140025147A (ko) 더블클러치 변속기의 싱크 제어 방법
JP6011334B2 (ja) ツインクラッチ式変速機の制御装置
JP2010078118A (ja) 変速制御装置
EP1975441A3 (en) Vehicle having gear change control device, and method of controlling gearbox
JP2015048932A (ja) ツインクラッチ式変速機の制御装置
JP2015190491A (ja) 動力伝達装置の制御装置及び制御方法
JP2017040305A (ja) クラッチ制御装置
JP6326022B2 (ja) 自動二輪車の変速制御装置
JP2017003114A (ja) 変速機の制御装置
US10451173B2 (en) Control device for dual-clutch transmission
JP2017040306A (ja) クラッチ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866493

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015866493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15535003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE