WO2016090653A1 - 一种光配向特性检测方法、装置及系统 - Google Patents

一种光配向特性检测方法、装置及系统 Download PDF

Info

Publication number
WO2016090653A1
WO2016090653A1 PCT/CN2014/094058 CN2014094058W WO2016090653A1 WO 2016090653 A1 WO2016090653 A1 WO 2016090653A1 CN 2014094058 W CN2014094058 W CN 2014094058W WO 2016090653 A1 WO2016090653 A1 WO 2016090653A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical device
alignment
polarizers
Prior art date
Application number
PCT/CN2014/094058
Other languages
English (en)
French (fr)
Inventor
宋彦君
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/433,645 priority Critical patent/US20160169792A1/en
Publication of WO2016090653A1 publication Critical patent/WO2016090653A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent

Definitions

  • the present invention relates to the field of mobile terminal technologies, and in particular, to a method, device and system for detecting optical alignment characteristics.
  • aligning liquid crystal molecules which is an optical alignment, which is widely used for alignment of a liquid crystal alignment film of a liquid crystal display element of a liquid crystal display panel.
  • the existing optical alignment technology detection methods are generally divided into single film detection and box detection, wherein the single film detection generally includes a polarization absorption spectrum test, a phase delay measurement, and a box test includes an optical characteristic measurement.
  • on-line detection during panel generation is critical for panel production, but for optical alignment technology, existing on-line detection methods are generally phase delay measurements, which use materials to reflect light reflection characteristics in a timely manner. Orientation characteristics after illumination.
  • phase delay measurements which use materials to reflect light reflection characteristics in a timely manner. Orientation characteristics after illumination.
  • the application of this method is limited by the type of substrate and it is not possible to measure certain types.
  • the technical problem to be solved by the present invention is to provide a method, device and system for detecting optical alignment characteristics, and applying the polarized light test method to on-line detection in a panel production process to solve the technical problem that the test method is limited by the type of the substrate.
  • a technical solution adopted by the present invention is to provide a photo alignment characteristic detecting method, the method comprising: forming an optical combination having a first optical device and a second optical device, wherein the first optical device includes At least one polarizer, the second optical device is a material to be tested provided with a photocurable alignment film; transmitting light through the optical combination while changing an optical axis of the polarizer in the first optical device The angle between the optical axes of the alignment films in the second optical device; and measuring the light transmitted through the optical combination to obtain light intensities at different angles, thereby obtaining optical alignment of the alignment film characteristic.
  • the step of forming an optical combination having the first optical device and the second optical device is specific Determining, according to the type of the material to be tested, the number of polarizers included in the first optical device, the optical axis relationship between each of the polarizers, and between each of the polarizers and the second optical device. Optical positional relationship.
  • the determining, according to the type of the material to be tested, the number of polarizers included in the first optical device, the optical axis relationship between the polarizers, each of the polarizers and the second optical device includes: when the type of the material to be tested is a substrate provided with the photocurable alignment film, correspondingly determining that the first optical device comprises a piece of polarizer, and determining the polarizer Located in the direction of the substrate or facing away from the light.
  • the substrate provided with the photocurable alignment film is a plain glass substrate coated with a polyimide film PI, an array glass substrate or a color filter substrate.
  • the step of the positional relationship includes: the type of the material to be tested is a substrate provided with the photocurable alignment film, correspondingly determining that the first optical device comprises two polarizers, and determining that each of the polarizers is located on the substrate Oriented or facing away from the direction of the light, wherein the optical axes of the two polarizers are parallel to each other.
  • the substrate provided with the photocurable alignment film is a plain glass substrate coated with a polyimide film PI, an array glass substrate or a color filter substrate.
  • the step of the positional relationship includes: the type of the material to be tested is a substrate provided with the photocurable alignment film, correspondingly determining that the first optical device comprises two polarizers, and determining that each of the polarizers is located on the substrate Oriented or facing away from the direction of the light, wherein the optical axes of the two polarizers are perpendicular to each other.
  • the substrate provided with the photocurable alignment film is a liquid crystal substrate after being packaged.
  • a light alignment characteristic detecting device comprising: a first optical device including at least one polarizer; and a second optical device Light-curing the material to be tested of the alignment film; a light source for emitting light to an optical combination formed by the first optical device and the second optical device, wherein an optical axis of the polarizer and the second optical A simultaneous change in the angle between the optical axes of the alignment films in the device causes the light to pass through the optical combination; and a light detector for measuring the light transmitted through the optical combination to obtain different said clips The intensity of light in the case of an angle, which is used to determine the optical alignment characteristics of the alignment film.
  • the material to be tested is a substrate including a first region and a second region, wherein the first The region is a PI-coated glass substrate, and the second region is an array glass substrate or a color filter substrate provided with a photocurable alignment film.
  • a light alignment characteristic detecting system which includes a light alignment characteristic detecting device and a light alignment characteristic processing device; and the optical alignment characteristic detecting device includes: a first optical device comprising at least one polarizer; a second optical device being a material to be tested provided with a photocurable alignment film; and a light source for emitting an optical combination formed by the first optical device and the second optical device Light, the angle between the optical axis of the polarizer in the first optical device and the optical axis of the alignment film in the second optical device is simultaneously changed to allow the light to pass through the optical combination; and the light detector Means for measuring light transmitted through the optical combination to obtain light intensity in different angles; the optical alignment characteristic processing device is configured to obtain different angles according to the light detector The underlying light intensity determines the optical alignment characteristics of the alignment film.
  • the invention has the beneficial effects that the optical alignment characteristic detecting method, device and system provided by the present invention are different from the prior art, and the number of polarizers included in the first optical device is determined according to the type of the material to be tested, An optical axis relationship between the polarizers, an optical positional relationship between the polarizers and the second optical device, and changing an optical axis of the polarizer in the first optical device and an optical axis of the alignment film in the second optical device.
  • the angle between the light passes through the optical combination of the first optical device and the second optical device to calculate the optical alignment characteristics of the alignment film based on the light intensity transmitted through the optical combination and the corresponding included angle.
  • the optical device used for the test can be directly selected according to the material to be tested on the line, and the corresponding light alignment characteristic can be measured by measuring the polarization absorption of the light without being limited by the type of the substrate to be tested, and the test is improved. Efficiency and production efficiency.
  • FIG. 1 is a schematic flow chart of a method for detecting a light alignment characteristic in a first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for detecting a light alignment characteristic in a second embodiment of the present invention
  • FIG. 3 is a schematic view of an optical combination in an embodiment of the present invention.
  • FIG. 4 is a schematic view of an optical combination in another embodiment of the present invention.
  • Figure 5 is a schematic illustration of an optical combination in still another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a light alignment characteristic detecting device in an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a light alignment characteristic detecting system in an embodiment of the present invention.
  • FIG. 8 is an angle between an optical axis of a P-polarized sheet and an optical axis of an alignment film of PI in an embodiment of the present invention. Schematic diagram of the relationship between the amount of linearly polarized light absorption;
  • FIG. 9 is a schematic view showing alignment characteristics of a photo-aligned PI material at different anneal temperatures in an embodiment of the present invention.
  • Figure 10 is a view showing the relationship between the angle between the optical axis of the polarizer and the optical axis of the alignment film of the liquid crystal of the cartridge in accordance with the embodiment of the present invention
  • Figure 11 is a schematic illustration of the alignment characteristics of the photo-aligned PI material at different anneal temperatures in an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of a method for detecting optical alignment characteristics according to a first embodiment of the present invention.
  • the optical alignment characteristic detecting method shown in this embodiment includes the following steps:
  • Step S10 forming an optical combination having a first optical device and a second optical device, the first optical device comprising at least one polarizer, the second optical device being a material to be tested provided with a photocurable alignment film.
  • Step S11 the light is transmitted through the optical combination while changing the angle between the optical axis of the polarizer in the first optical device and the optical axis of the alignment film in the second optical device.
  • step S12 the light transmitted through the optical combination is measured to obtain the light intensity under different angles, thereby obtaining the optical alignment characteristics of the alignment film.
  • the material to be tested provided with the photocurable alignment film has anisotropic characteristics after photo-alignment, and has different absorption/transmission characteristics for linearly polarized light in different directions.
  • the polyimide film PI material is isotropic and has no direction selectivity for linearly polarized light absorption.
  • the photo-alignment is carried out, the PI material undergoes a photochemical reaction, and the molecules are in an orderly distribution and have an anisotropy. Only when the linearly polarized light direction is parallel to the long-axis direction of the molecule, the material will have maximum absorption. Therefore, the light alignment angle can be determined by confirming the angle of the polarizing plate corresponding to the absorption peak.
  • the light is transmitted by rotating the polarizer or the material to be tested, and the light transmitted through the optical combination is measured, and the maximum light intensity and the minimum light intensity are determined accordingly.
  • selecting a corresponding parameter from the maximum light intensity, the minimum light intensity, the angle corresponding to the maximum light intensity, the angle corresponding to the minimum light intensity, and the reference alignment angle to calculate a light alignment characteristic of the material to be tested The light alignment characteristics may include an alignment angle, a alignment strength, a film surface alignment uniformity, and the like.
  • the reference alignment angle is an alignment angle of the same qualified material as the material to be tested, and is a known value. For example, by calculating the dichroic ratio to determine the optical alignment Weak, calculate the optical alignment angle by the angle corresponding to the maximum light intensity or the minimum light intensity.
  • optical alignment characteristic detecting method shown in this embodiment includes the following steps:
  • Step S20 determining the number of polarizers included in the first optical device, the optical axis relationship between the polarizers, and the optical positional relationship between the polarizers and the second optical device according to the type of the material to be tested, so as to form the first An optical combination of an optical device and a second optical device.
  • the first optical device comprises at least one polarizer
  • the second optical device is a material to be tested provided with the photocurable alignment film.
  • the type of the material to be tested is a substrate provided with a photocurable alignment film.
  • Step S21 the light is transmitted through the optical combination while changing the angle between the optical axis of the polarizer in the first optical device and the optical axis of the alignment film in the second optical device.
  • step S22 the light transmitted through the optical combination is measured to obtain the light intensity under different angles, thereby obtaining the optical alignment characteristics of the alignment film.
  • the substrate provided with the photocurable alignment film is a plain glass substrate coated with a polyimide film PI, an array glass substrate or a color filter substrate, in one embodiment, according to the material to be tested The type accordingly determines that the first optical device includes a piece of polarizer, and determines the direction in which the polarizer is oriented or facing away from the light.
  • FIG. 3 is a schematic diagram of an optical combination in an embodiment of the present invention.
  • the polarizer 31 is located between the light source 30 and the material to be tested 32, and a light detector 33 is located on a side of the material 32 to be tested away from the polarizer 31.
  • the light source 30 emits light to illuminate the optical combination
  • the polarizer 31 is rotated to change the angle between the optical axis thereof and the optical axis of the alignment film of the material to be tested 32, and the light sequentially passes through the polarizer 31 and the material to be tested 32.
  • the light detector 33 to detect the light intensity of the light passing through the material to be tested 32 at different angles between the optical axis of the polarizer 31 and the optical axis of the alignment film of the material to be tested 32.
  • the first optical device includes two polarizers according to the type of the material to be tested, and determines whether the polarizers are located in the direction of the substrate or away from the light. Wherein, the optical axes of the two polarizers are parallel to each other.
  • FIG. 4 a schematic diagram of an optical combination in another embodiment of the present invention.
  • the material to be tested 42 is located between the polarizers 41, 43.
  • the light source 40 is located on a side of the polarizer 41 away from the material 42 to be tested, and the light detector 44 is located away from the material 42 to be tested. One side. Further, when the polarizers 41 and 43 are in the initial state, the optical axes of the polarizers 41 and 43 are parallel to each other.
  • the light source 40 emits light
  • the polarizers 41, 43 are simultaneously rotated to change the angle between the optical axis thereof and the optical axis of the alignment film of the material to be tested 42, and the light passes through the polarizer 41, the material to be tested 42 and
  • the polarizer 43 is received by the light detector 44 to detect that the light passing through the polarizer 43 is different between the optical axis of the polarizer 41, 43 and the optical axis of the alignment film of the material 42 to be tested.
  • the light intensity underneath. Among them, the polarizers 41, 43 are simultaneously rotated and the rotation angles are the same.
  • the first optical device includes two polarizers according to the type of the material to be tested. And determining the orientation of each of the polarizers on the substrate or facing away from the light, wherein the optical axes of the two polarizers are perpendicular to each other.
  • FIG. 5 a schematic diagram of an optical combination in still another embodiment of the present invention.
  • the material to be tested 52 is located between the polarizers 51, 53.
  • the light source 50 is located on the side of the polarizer 51 away from the material 52 to be tested, and the light detector 55 is located away from the material 52 to be tested. One side. Further, when the polarizers 51 and 53 are in the initial state, the optical axes of the polarizers 51 and 53 are perpendicular to each other.
  • the material to be tested 52 is rotated to change the angle between the optical axis of the alignment film and the optical axis of the polarizer 51, 53, and the light passes through the polarizer 51 in sequence.
  • the material 52 and the polarizer 53 are measured and received by the light detector 55 to detect a gap between the optical axis of the polarizer 51, 53 and the optical axis of the alignment film of the material 52 to be tested 52.
  • the intensity of the light in different situations.
  • the polarizers 51, 53 can also be rotated simultaneously to change the angle between the optical axis thereof and the optical axis of the alignment film of the material to be tested 52. Among them, the polarizers 51, 53 are simultaneously rotated and the rotation angles are the same.
  • FIG. 6 is a schematic structural diagram of a light alignment characteristic detecting apparatus according to an embodiment of the present invention.
  • the device 60 includes:
  • the first optical device 61 includes at least one polarizer.
  • the second optical device 62 is a material to be tested 64 provided with a photocurable alignment film.
  • a light source 63 for emitting light to the optical combination 66 formed by the first optical device 61 and the second optical device 62, the optical axis of the polarizer in the first optical device 61 and the light of the alignment film in the second optical device 62 The angle between the axes changes simultaneously to pass the light through the optical assembly 66.
  • the light detector 65 is configured to measure the light transmitted through the optical combination to obtain a light intensity under different angles, and the light intensity is used to determine the light alignment characteristic of the alignment film.
  • FIG. 7 is a schematic structural diagram of a photo alignment characteristic detecting system according to an embodiment of the present invention.
  • the system 70 includes a light alignment characteristic detecting device 71 and a light alignment characteristic processing device 72, wherein the light alignment characteristic detecting device 71 includes:
  • the first optical device 710 includes at least one polarizer.
  • the second optical device 711 is a material to be tested 714 provided with a photocurable alignment film.
  • a light source 712 for emitting light to the optical combination 715 formed by the first optical device 711 and the second optical device 712, the optical axis of the polarizer in the first optical device 711 and the light of the alignment film in the second optical device 712 The angle between the axes is simultaneously changed to allow the light to pass through the optical combination.
  • the light detector 713 is configured to measure the light transmitted through the optical combination 715 to obtain light intensity at different angles.
  • the optical alignment characteristic processing device 72 is configured to determine the optical alignment characteristics of the alignment film according to the light intensity at different angles obtained by the light detector 713.
  • the first optical device 710 determines the number of polarizers included therein according to the type of the material to be tested 714, and the optical axis relationship between the polarizers, and the optical between the polarizers and the second optical device 711. Positional relationship.
  • the type of the material to be tested 714 is a substrate provided with a photocurable alignment film.
  • the first optical device 710 is The type of material to be tested 714 is correspondingly determined to include a sheet of polarizer therein, and the direction in which the polarizer is oriented or facing away from the source 712 is determined.
  • the specific positional relationship is shown in Figure 3.
  • the first optical device 710 correspondingly determines that two polarizers are included according to the type of the material to be tested 714, and determines the orientation of each of the polarizers in the substrate or the direction away from the light source 712. Wherein, the optical axes of the two polarizers are parallel to each other.
  • the specific positional relationship is shown in Figure 4.
  • the first optical device 710 correspondingly determines that two polarizers are included according to the type of the material 714 to be tested. And determining the orientation of each of the polarizers on the substrate or facing away from the light source 712, wherein the optical axes of the two polarizers are perpendicular to each other. The specific positional relationship is shown in Figure 5.
  • the light detector 713 measures the light transmitted through the optical combination, and determines the maximum light intensity and the minimum light intensity accordingly.
  • the maximum light intensity, the minimum light intensity determined by the light alignment characteristic processing device 72 from the light detector 713, and the angle corresponding to the maximum light intensity, the angle corresponding to the minimum light intensity, and the reference alignment angle, and from these Corresponding parameters are selected in the parameters to calculate the light alignment characteristics of the material to be tested 714, and the light alignment characteristics may include an alignment angle, a distribution strength, a film surface alignment uniformity, and the like.
  • the reference alignment angle is an alignment angle of the same qualified material as the material to be tested, and is a known value.
  • the material to be tested 714 is a substrate including a first region and a second region, wherein the first region is a PI-coated glass substrate, and the second region is an array provided with a photocurable alignment film.
  • the array glass substrate may be a thin film transistor TFT glass substrate.
  • FIG. 8 is a schematic diagram showing the relationship between the angle between the optical axis of the P-polarizer and the optical axis of the PI alignment film and the amount of linearly polarized light absorption in the embodiment of the present invention
  • the alignment property of PI film is characterized by the dichromic ratio (DR), and the expression is:
  • the DR when the PI is dulled, the DR is close to 0; when the alignment is performed, the DR is increased to more than 40%; under different anneal temperature processes, the alignment characteristics are improved, and the DR value increases as the temperature increases. Large, when the anneal is 140 degrees Celsius, the DR reaches its maximum.
  • FIG. 10 is a relationship between the angle between the optical axis of the polarizer and the optical axis of the alignment film of the liquid crystal cell (Cell) in the embodiment of the present invention, and the amount of linearly polarized light absorption.
  • FIG. 11 is a schematic view showing the alignment characteristics of a photo-aligned PI material at different anneal temperatures in an embodiment of the present invention.
  • the cell alignment characteristic is characterized by a dichromic ratio (DR), and the expression is:
  • the Cell has a drop mura, DR ⁇ 85%; after the anneal process, the liquid crystal alignment characteristics are improved, and the DR value is increased to >99%. Therefore, the cell alignment characteristic can be determined by calculating DR.
  • the invention provides a method, device and system for detecting optical alignment characteristics, which determine the number of polarizers included in the first optical device, the optical axis relationship between the polarizers, and the polarizers and the first according to the type of the material to be tested.
  • An optical combination of two optical components to calculate the optical alignment characteristics of the alignment film based on the light intensity transmitted through the optical combination and the corresponding included angle.
  • the optical device used for the test can be directly selected according to the material to be tested on the line, and the corresponding light alignment characteristic can be measured by measuring the polarization absorption of the light without being limited by the type of the substrate to be tested, and the test is improved. Efficiency and production efficiency.

Abstract

提供了一种光配向特性检测方法、装置及系统,其中,检测方法包括:形成具有第一光学器件和第二光学器件的光学组合,第一光学器件包括至少一偏光片(31),第二光学器件是设置有已光固化配向膜的待测材料(32);使光线透过光学组合,同时改变第一光学器件中偏光片(31)的光轴与第二光学器件中配向膜的光轴之间的夹角;以及测量透过光学组合后的光线,以获得不同夹角情况下的光强,从而获得配向膜的光配向特性。通过这种方式,能够把偏振光测试法应用于面板生产过程中的线上检测,以解决测试方法受到基板类型局限的技术问题。

Description

一种光配向特性检测方法、装置及系统 【技术领域】
本发明涉及移动终端技术领域,特别是涉及一种光配向特性检测方法、装置及系统。
【背景技术】
现有技术中,通过向配向膜或配向层(以下称作“光配向膜)照射偏极化紫外光,与光极化方向平行的高分子发生光化学反应,使薄膜表面产生异向性分布,诱导液晶分子排列,以此进行配向的被称作光配向的技术,该光配向被广泛应用于液晶显示显示面板的液晶显示元件所具有的液晶配向膜的配向等。
现有的光配向技术检测方法通常分为单膜检测和成盒检测,其中,单膜检测一般包括偏振吸收谱测试、相位延迟量测,成盒测试包括光学特性量测。
通常,在面板生成过程中的线上检测对于面板生产至关重要,但对于光配向技术,现有的线上检测方法一般为相位延迟量测,其利用膜面对光的反射特性及时判定材料照光后的配向特性。但是,这种方法的应用会受到基板类型的局限,无法量测某些类型的。
【发明内容】
本发明主要解决的技术问题是提供一种光配向特性检测方法、装置及系统,把偏振光测试法应用于面板生产过程中的线上检测,以解决测试方法受到基板类型局限的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光配向特性检测方法,所方法包括:形成具有第一光学器件和第二光学器件的光学组合,所述第一光学器件包括至少一偏光片,所述第二光学器件是设置有已光固化配向膜的待测材料;使光线透过所述光学组合,同时改变所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角;以及测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光强,从而获得所述配向膜的光配向特性。
其中,所述形成具有第一光学器件和第二光学器件的光学组合的步骤具体 为:根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各所述偏光片与所述第二光学器件之间的光学位置关系。
其中,所述根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各所述偏光片与所述第二光学器件之间的光学位置关系的步骤包括:当所述待测材料类型为设置有已光固化配向膜的基板时,相应地确定所述第一光学器件中包含一片偏光片,以及确定所述偏光片位于所述基板的朝向或背对所述光线的方向。
其中,所述设置有已光固化配向膜的基板为涂有聚酰亚胺薄膜PI的素玻璃基板、阵列玻璃基板或彩色滤光片基板。
其中,所述根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系的步骤包括:所述待测材料类型为设置有已光固化配向膜的基板,相应地确定所述第一光学器件中包含两片偏光片,以及确定各所述偏光片位于所述基板的朝向或背对所述光线的方向,其中,所述两片偏光片的光轴相互平行。
其中,所述设置有已光固化配向膜的基板为涂有聚酰亚胺薄膜PI的素玻璃基板、阵列玻璃基板或彩色滤光片基板。
其中,所述根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系的步骤包括:所述待测材料类型为设置有已光固化配向膜的基板,相应地确定所述第一光学器件中包含两片偏光片,以及确定各所述偏光片位于所述基板的朝向或背对所述光线的方向,其中,所述两片偏光片的光轴相互垂直。
其中,所述设置有已光固化配向膜的基板为成盒后的液晶基板。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种光配向特性检测装置,所述装置包括:第一光学器件,包括至少一偏光片;第二光学器件,为设置有已光固化配向膜的待测材料;光源,用于向所述第一光学器件和第二光学器件形成的光学组合发出光线,所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角同时发生改变使所述光线透过所述光学组合;以及光线探测器,用于测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光强,所述光强用于确定所述配向膜的光配向特性。
其中,所述待测材料为包括第一区域和第二区域的基板,其中,所述第一 区域为涂有PI的素玻璃基板,所述第二区域为设置有已光固化配向膜的阵列玻璃基板或彩色滤光片基板。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种光配向特性检测系统,所述系统包括光配向特性检测装置以及光配向特性处理装置;所述光配向特性检测装置包括:第一光学器件,包括至少一偏光片;第二光学器件,为设置有已光固化配向膜的待测材料;光源,用于向所述第一光学器件和第二光学器件形成的光学组合发出光线,所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角同时发生改变使所述光线透过所述光学组合;以及光线探测器,用于测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光强;所述光配向特性处理装置用于根据所述光线探测器获得的不同所述夹角情况下的光强确定所述配向膜的光配向特性。
本发明的有益效果是:区别于现有技术的情况,本发明提供的一种光配向特性检测方法、装置及系统,根据待测材料的类型确定第一光学器件中包含的偏光片的数量、各偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系,并改变该第一光学器件中偏光片的光轴与该第二光学器件中配向膜的光轴之间的夹角使光线透过第一光学器件和第二光学器件组成的光学组合,从而根据透过该光学组合的光强及对应的夹角计算配向膜的光配向特性。利用本发明,能够在线上检测时直接根据待测材料选择测试所用的光学器件,并通过测量光线的偏振吸收以测量相应的光配向特性,而不会受到待测材料基板类型的局限,提高测试效率及生产效率。
【附图说明】
图1是本发明第一实施方式中的一种光配向特性检测方法的流程示意图;
图2是本发明第二实施方式中的一种光配向特性检测方法的流程示意图;
图3是本发明一实施方式中的光学组合的示意图;
图4是本发明另一实施方式中的光学组合的示意图;
图5是本发明再一实施方式中的光学组合的示意图;
图6是本发明实施方式中的光配向特性检测装置的结构示意图;
图7是本发明实施方式中的光配向特性检测系统的结构示意图;
图8是本发明实施方式中P偏光片的光轴与PI的配向膜的光轴之间的夹角与 线性偏振光吸收量的关系示意图;
图9是本发明实施方式中光配向PI材料在不同anneal温度下的配向特性示意图;
图10是本发明实施方式中偏光片的光轴与成盒的液晶的配向膜的光轴之间的夹角与线性偏振光吸收量的关系示意图;
图11是本发明实施方式中光配向PI材料在不同anneal温度下的配向特性示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
请参阅图1,为本发明第一实施方式中的一种光配向特性检测方法的流程示意图。该实施方式示出的一种光配向特性检测方法包括如下步骤:
步骤S10,形成具有第一光学器件和第二光学器件的光学组合,该第一光学器件包括至少一偏光片,该第二光学器件是设置有已光固化配向膜的待测材料。
步骤S11,使光线透过该光学组合,同时改变该第一光学器件中偏光片的光轴与该第二光学器件中配向膜的光轴之间的夹角。
步骤S12,测量透过该光学组合后的光线,以获得不同夹角情况下的光强,从而获得该配向膜的光配向特性。
设置有已光固化配向膜的待测材料经过光配向后具有各向异性特性,对不同方向的线性偏振光的吸收/透射特性不同。例如,聚酰亚胺薄膜PI材料为各向同性,对线性偏振光吸收无方向的选择性。当进行光配向后,PI材料发生光化学反应,分子呈有序性分布,具有各向异性,只有线性偏振光方向与分子长轴方向平行,材料才会产生最大吸收。因此,通过确认吸收峰值所对应的偏振片角度,即可确定光配向角度。
具体地,通过转动偏光片或该待测材料使光线透过,并测量透过该光学组合后的光线,相应地确定最大光强和最小光强。其中,从该最大光强、最小光强、该最大光强对应的夹角、该最小光强对应的夹角以及基准配向角度中选择相应的参数以计算该待测材料的光配向特性,该光配向特性可以包括配向角度、配向强弱、膜面配向均匀性等。其中,该基准配向角度为与该待测材料相同的合格材料的配向角度,为已知值。例如,通过计算二向色性比以确定光配向强 弱,通过最大光强或最小光强对应的夹角计算光配向角度。
请参阅图2,为本发明第二实施方式中的一种光配向特性检测方法的流程示意图。该实施方式示出的一种光配向特性检测方法包括如下步骤:
步骤S20,根据待测材料类型确定第一光学器件中包含的偏光片的数量、各偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系,以形成具有第一光学器件和第二光学器件的光学组合。
其中,该第一光学器件包括至少一偏光片,该第二光学器件是设置有已光固化配向膜的待测材料。
其中,该待测材料类型为设置有已光固化配向膜的基板。
步骤S21,使光线透过该光学组合,同时改变该第一光学器件中偏光片的光轴与该第二光学器件中配向膜的光轴之间的夹角。
步骤S22,测量透过该光学组合后的光线,以获得不同夹角情况下的光强,从而获得该配向膜的光配向特性。
进一步地,当该设置有已光固化配向膜的基板为涂有聚酰亚胺薄膜PI的素玻璃基板、阵列玻璃基板或彩色滤光片基板时,在一实施方式中,根据该待测材料类型相应地确定该第一光学器件中包含一片偏光片,以及确定该偏光片位于该基板的朝向或背对该光线的方向。
请同时参阅图3,为本发明一实施方式中的光学组合的示意图。在本实施方式中,该偏光片31位于光源30与待测材料32之间,一光线探测器33位于待测材料32远离偏光片31的一侧。该光源30发出光线照射该光学组合时,转动偏光片31以改变其光轴与该待测材料32配向膜的光轴之间的夹角,光线依次透过偏光片31和待测材料32,并被该光线探测器33接收以检测透出该待测材料32的光线在偏光片31的光轴与待测材料32的配向膜的光轴之间的夹角处于不同情况下的光强。
在另一实施方式中,根据该待测材料类型相应地确定该第一光学器件中包含两片偏光片,以及确定各偏光片位于该基板的朝向或背对该光线的方向。其中,该两片偏光片的光轴相互平行。
请同时参阅图4,为本发明另一实施方式中的光学组合的示意图。在另一实施方式中,该待测材料42位于偏光片41、43之间,光源40位于偏光片41远离待测材料42的一侧,光线探测器44位于偏光片43远离待测材料42的一侧。并且,偏光片41、43在初始状态时,二者的光轴相互平行。该光源40发出光 线照射该光学组合时,同时转动偏光片41、43以改变其光轴与该待测材料42配向膜的光轴之间的夹角,光线会依次透过偏光片41、待测材料42和偏光片43,并被该光线探测器44接收以检测透出该偏光片43的光线在偏光片41、43的光轴与待测材料42的配向膜的光轴之间的夹角处于不同情况下的光强。其中,偏光片41、43同时转动且转动角度是相同的。
进一步地,当该设置有已光固化配向膜的基板为成盒后的液晶基板时,在本实施方式中,根据该待测材料类型相应地确定该第一光学器件中包含两片偏光片,以及确定各偏光片位于该基板的朝向或背对该光线的方向,其中,该两片偏光片的光轴相互垂直。
请同时参阅图5,为本发明再一实施方式中的光学组合的示意图。在再一实施方式中,该待测材料52位于偏光片51、53之间,光源50位于偏光片51远离待测材料52的一侧,光线探测器55位于偏光片53远离待测材料52的一侧。并且,偏光片51、53在初始状态时,二者的光轴相互垂直。该光源50发出光线照射该光学组合时,转动待测材料52以改变其配向膜的光轴与该偏光片51、53的光轴之间的夹角,光线会依次透过偏光片51、待测材料52和偏光片53,并被该光线探测器55接收以检测透出该偏光片53的光线在偏光片51、53的光轴与待测材料52的配向膜的光轴之间的夹角处于不同情况下的光强。在其他实施方式中,还可以同时转动偏光片51、53以改变其光轴与该待测材料52配向膜的光轴之间的夹角。其中,偏光片51、53同时转动且转动角度是相同的。
请参阅图6,为本发明实施方式中的光配向特性检测装置的结构示意图。该装置60包括:
第一光学器件61,包括至少一偏光片。
第二光学器件62,为设置有已光固化配向膜的待测材料64。
光源63,用于向该第一光学器件61和第二光学器件62形成的光学组合66发出光线,该第一光学器件61中偏光片的光轴与该第二光学器件62中配向膜的光轴之间的夹角同时发生改变使该光线透过该光学组合66。
光线探测器65,用于测量透过该光学组合后的光线,以获得不同夹角情况下的光强,该光强用于确定该配向膜的光配向特性。
本发明的光配向特性检测装置所包括的各元器件及装置、单元的位置连接关系并不仅限于图中所示,该图仅为示意图,并不作为具体限定。
请参阅图7,为本发明实施方式中的光配向特性检测系统的结构示意图。该 系统70包括光配向特性检测装置71以及光配向特性处理装置72,其中,该光配向特性检测装置71包括:
第一光学器件710,包括至少一偏光片。
第二光学器件711,为设置有已光固化配向膜的待测材料714。
光源712,用于向该第一光学器件711和第二光学器件712形成的光学组合715发出光线,该第一光学器件711中偏光片的光轴与该第二光学器件712中配向膜的光轴之间的夹角同时发生改变使该光线透过该光学组合。
光线探测器713,用于测量透过该光学组合715后的光线,以获得不同该夹角情况下的光强。
该光配向特性处理装置72用于根据该光线探测器713获得的不同该夹角情况下的光强确定该配向膜的光配向特性。
其中,该第一光学器件710根据该待测材料714的类型确定其中包含的偏光片的数量,以及各偏光片之间的光轴关系、各偏光片与该第二光学器件711之间的光学位置关系。
该待测材料714的类型为设置有已光固化配向膜的基板。
当该设置有已光固化配向膜的基板为涂有聚酰亚胺薄膜PI的素玻璃基板、阵列玻璃基板或彩色滤光片基板时,在一实施方式中,该第一光学器件710根据该待测材料714的类型相应地确定其中包含一片偏光片,以及确定该偏光片位于该基板的朝向或背对该光源712的方向。具体的位置关系如图3所示。在另一实施方式中,该第一光学器件710根据该待测材料714的类型相应地确定其中包含两片偏光片,以及确定各偏光片位于该基板的朝向或背对该光源712的方向。其中,该两片偏光片的光轴相互平行。具体位置关系如图4所示。
当该设置有已光固化配向膜的基板为成盒后的液晶基板时,在本实施方式中,该第一光学器件710根据该待测材料714的类型相应地确定其中包含两片偏光片,以及确定各偏光片位于该基板的朝向或背对该光源712的方向,其中,该两片偏光片的光轴相互垂直。具体的位置关系如图5所示。
进一步地,该光线探测器713测量透过该光学组合后的光线,相应地确定最大光强和最小光强。该光配向特性处理装置72从该光线探测器713确定的最大光强、最小光强,以及获取该最大光强对应的夹角、该最小光强对应的夹角、基准配向角度,并从这些参数中选择相应的参数以计算该待测材料714的光配向特性,该光配向特性可以包括配向角度、配向强弱、膜面配向均匀性等。其 中,该基准配向角度为与该待测材料相同的合格材料的配向角度,为已知值。
进一步地,该待测材料714为一包括第一区域和第二区域的基板,其中,该第一区域为涂有PI的素玻璃基板,该第二区域为设置有已光固化配向膜的阵列玻璃基板或彩色滤光片基板。其中,该阵列玻璃基板可以是薄膜晶体管TFT玻璃基板。
请同时参阅图8、9,其中,图8为本发明实施方式中P偏光片的光轴与PI的配向膜的光轴之间的夹角与线性偏振光吸收量的关系示意图,图9为本发明实施方式中光配向PI材料在不同anneal(退火)温度下的配向特性示意图。
其中,PI膜配向特性以二向性比(Dichromic ratio,DR)来表征,表达式为:
Figure PCTCN2014094058-appb-000001
具体地,当PI无光配向时,DR接近0;当进行配向后,DR增大到大于40%;在经历不同的anneal温度制程下,配向特性得到改善,DR值随着温度升高而增大,当anneal为140摄氏度时,DR达到最大。
请同时参阅图10、11,其中,图10为本发明实施方式中偏光片的光轴与成盒的液晶(Cell)的配向膜的光轴之间的夹角与线性偏振光吸收量的关系示意图,图11为本发明实施方式中光配向PI材料在不同anneal(退火)温度下的配向特性示意图。
其中,Cell配向特性以二向性比(Dichromic ratio,DR)来表征,表达式为:
Figure PCTCN2014094058-appb-000002
具体地,Cell由于出现drop mura,DR<85%;在anneal制程后,液晶配向特性得到改善,DR值增加到>99%。因此通过计算DR可判定cell配向特性。
本发明提供的一种光配向特性检测方法、装置及系统,根据待测材料的类型确定第一光学器件中包含的偏光片的数量、各偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系,并改变该第一光学器件中偏光片的光轴与该第二光学器件中配向膜的光轴之间的夹角使光线透过第一光学器件和第二光学器件组成的光学组合,从而根据透过该光学组合的光强及对应的夹角计算配向膜的光配向特性。利用本发明,能够在线上检测时直接根据待测材料选择测试所用的光学器件,并通过测量光线的偏振吸收以测量相应的光配向特性,而不会受到待测材料基板类型的局限,提高测试效率及生产效率。
在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在 阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。

Claims (12)

  1. 一种光配向特性检测方法,其中,所方法包括:
    形成具有第一光学器件和第二光学器件的光学组合,所述第一光学器件包括至少一偏光片,所述第二光学器件是设置有已光固化配向膜的待测材料;
    使光线透过所述光学组合,同时改变所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角;以及
    测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光强,从而获得所述配向膜的光配向特性。
  2. 根据权利要求1所述的光配向特性检测方法,其中,所述形成具有第一光学器件和第二光学器件的光学组合的步骤具体为:
    根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各所述偏光片与所述第二光学器件之间的光学位置关系。
  3. 根据权利要求2所述的光配向特性检测方法,其中,所述根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各所述偏光片与所述第二光学器件之间的光学位置关系的步骤包括:
    当所述待测材料类型为设置有已光固化配向膜的基板时,相应地确定所述第一光学器件中包含一片偏光片,以及确定所述偏光片位于所述基板的朝向或背对所述光线的方向。
  4. 根据权利要求3所述的光配向特性检测方法,其中,所述设置有已光固化配向膜的基板为涂有聚酰亚胺薄膜PI的素玻璃基板、阵列玻璃基板或彩色滤光片基板。
  5. 根据权利要求2所述的光配向特性检测方法,其中,所述根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系的步骤包括:
    所述待测材料类型为设置有已光固化配向膜的基板,相应地确定所述第一光学器件中包含两片偏光片,以及确定各所述偏光片位于所述基板的朝向或背对所述光线的方向,其中,所述两片偏光片的光轴相互平行。
  6. 根据权利要求5所述的光配向特性检测方法,其中,所述设置有已光固化 配向膜的基板为涂有聚酰亚胺薄膜PI的素玻璃基板、阵列玻璃基板或彩色滤光片基板。
  7. 根据权利要求2所述的光配向特性检测方法,其中,所述根据所述待测材料类型确定所述第一光学器件中包含的偏光片的数量、各所述偏光片之间的光轴关系、各偏光片与第二光学器件之间的光学位置关系的步骤包括:
    所述待测材料类型为设置有已光固化配向膜的基板,相应地确定所述第一光学器件中包含两片偏光片,以及确定各所述偏光片位于所述基板的朝向或背对所述光线的方向,其中,所述两片偏光片的光轴相互垂直。
  8. 根据权利要求7所述的光配向特性检测方法,其中,所述设置有已光固化配向膜的基板为成盒后的液晶基板。
  9. 一种光配向特性检测装置,其中,所述装置包括:
    第一光学器件,包括至少一偏光片;
    第二光学器件,为设置有已光固化配向膜的待测材料;
    光源,用于向所述第一光学器件和第二光学器件形成的光学组合发出光线,所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角同时发生改变使所述光线透过所述光学组合;以及光线探测器,用于测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光强,所述光强用于确定所述配向膜的光配向特性。
  10. 根据权利要求9所述的光配向特性检测装置,其中,所述待测材料为包括第一区域和第二区域的基板,其中,所述第一区域为涂有PI的素玻璃基板,所述第二区域为设置有已光固化配向膜的阵列玻璃基板或彩色滤光片基板。
  11. 一种光配向特性检测系统,其中,所述系统包括光配向特性检测装置以及光配向特性处理装置;所述光配向特性检测装置包括:
    第一光学器件,包括至少一偏光片;
    第二光学器件,为设置有已光固化配向膜的待测材料;
    光源,用于向所述第一光学器件和第二光学器件形成的光学组合发出光线,所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角同时发生改变使所述光线透过所述光学组合;以及
    光线探测器,用于测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光强;
    所述光配向特性处理装置用于根据所述光线探测器获得的不同所述夹角情 况下的光强确定所述配向膜的光配向特性。
  12. 一种光配向特性检测方法,其中,所方法包括:
    形成具有第一光学器件和第二光学器件的光学组合,所述第一光学器件包括至少一偏光片,所述第二光学器件是设置有已光固化配向膜的待测材料;
    使光线透过所述光学组合,同时改变所述第一光学器件中偏光片的光轴与所述第二光学器件中配向膜的光轴之间的夹角;以及
    测量透过所述光学组合后的光线,以获得不同所述夹角情况下的光吸收量,从而获得所述配向膜的光配向特性。
PCT/CN2014/094058 2014-12-12 2014-12-17 一种光配向特性检测方法、装置及系统 WO2016090653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/433,645 US20160169792A1 (en) 2014-12-12 2014-12-17 A Photo-Alignment Characteristics Testing Method, A Device And A System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410770463.6A CN104460062B (zh) 2014-12-12 2014-12-12 一种光配向特性检测方法、装置及系统
CN201410770463.6 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016090653A1 true WO2016090653A1 (zh) 2016-06-16

Family

ID=52906362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094058 WO2016090653A1 (zh) 2014-12-12 2014-12-17 一种光配向特性检测方法、装置及系统

Country Status (3)

Country Link
US (1) US20160169792A1 (zh)
CN (1) CN104460062B (zh)
WO (1) WO2016090653A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334649B (zh) * 2015-12-04 2018-08-24 深圳市华星光电技术有限公司 液晶面板中液晶效率的测量方法
CN105739139B (zh) * 2016-05-12 2018-12-14 京东方科技集团股份有限公司 一种配向膜的检测方法及装置
CN105842889B (zh) * 2016-06-21 2019-09-06 京东方科技集团股份有限公司 光配向基板的检测装置和方法
CN106019721A (zh) * 2016-07-27 2016-10-12 京东方科技集团股份有限公司 光配向膜制作过程中偏光板的调节方法及装置
CN107065238B (zh) * 2017-01-22 2020-07-03 京东方科技集团股份有限公司 一种配向膜膜面检测装置及方法
CN113533036A (zh) * 2021-05-31 2021-10-22 康辉新材料科技有限公司 一种测试薄膜配向角的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160488B1 (en) * 1984-04-25 1991-06-12 Kanzaki Paper Manufacturing Co., Ltd Method for measuring orientation of constituents of sheets
JPH1026759A (ja) * 1996-07-12 1998-01-27 Nec Corp 液晶配向膜検査方法及び検査装置
US6317208B1 (en) * 1997-12-02 2001-11-13 Nec Corporation Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
JP2003156726A (ja) * 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd 配向均一性評価方法、及び配向均一性評価装置
CN101726884A (zh) * 2008-10-30 2010-06-09 大塚电子株式会社 液晶盒的倾角测定方法和装置
JP2010185920A (ja) * 2009-02-10 2010-08-26 Seiko Epson Corp 配向膜の検査装置、配向膜の検査方法及び電気光学装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328005A (ja) * 1995-05-26 1996-12-13 Hitachi Chem Co Ltd 液晶配向膜、液晶配向膜の処理方法、液晶挟持基板、液晶表示素子、液晶表示素子の製造方法及び液晶配向膜用材料
US5864403A (en) * 1998-02-23 1999-01-26 National Research Council Of Canada Method and apparatus for measurement of absolute biaxial birefringence in monolayer and multilayer films, sheets and shapes
IL145683A0 (en) * 2001-09-26 2002-06-30 Enoron Technologies Ltd Apparatus and method for measuring optically active materials
WO2003032029A1 (en) * 2001-10-09 2003-04-17 Koninklijke Philips Electronics N.V. Optical devices
US20060061770A1 (en) * 2004-09-22 2006-03-23 The Regents Of The University Of California Heterodyning time resolution boosting method and system
CN101484838B (zh) * 2006-06-30 2011-11-02 旭硝子株式会社 液晶显示面板
JP2010039366A (ja) * 2008-08-07 2010-02-18 Toshiba Mobile Display Co Ltd アレイ基板及び液晶表示パネル
KR20160009172A (ko) * 2014-07-15 2016-01-26 삼성디스플레이 주식회사 광배향막, 이의 제조방법 및 이를 포함하는 액정표시패널

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160488B1 (en) * 1984-04-25 1991-06-12 Kanzaki Paper Manufacturing Co., Ltd Method for measuring orientation of constituents of sheets
JPH1026759A (ja) * 1996-07-12 1998-01-27 Nec Corp 液晶配向膜検査方法及び検査装置
US6317208B1 (en) * 1997-12-02 2001-11-13 Nec Corporation Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
JP2003156726A (ja) * 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd 配向均一性評価方法、及び配向均一性評価装置
CN101726884A (zh) * 2008-10-30 2010-06-09 大塚电子株式会社 液晶盒的倾角测定方法和装置
JP2010185920A (ja) * 2009-02-10 2010-08-26 Seiko Epson Corp 配向膜の検査装置、配向膜の検査方法及び電気光学装置の製造方法

Also Published As

Publication number Publication date
CN104460062B (zh) 2018-09-18
CN104460062A (zh) 2015-03-25
US20160169792A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
WO2016090653A1 (zh) 一种光配向特性检测方法、装置及系统
TWI559057B (zh) A liquid crystal display device, and a liquid crystal display device
US8451445B2 (en) Apparatus and method for detecting array substrate
US9989454B2 (en) Method and apparatus for measuring parameters of optical anisotropy
JP5198980B2 (ja) 光学異方性パラメータ測定方法及び測定装置
JP3910352B2 (ja) プレチルト角検出方法及び検出装置
CN106595501A (zh) 测量光学薄膜厚度或均匀性的方法
KR20110066052A (ko) 액정표시장치의 배향막 형성방법 및 배향막 검사방법
JPH11160198A (ja) 液晶初期配向角測定方法及び液晶初期配向角測定装置
CN100381877C (zh) 检出对象的参数检出方法以及检出装置
Tanaka et al. Determination of director profile of twisted nematic liquid crystal cell with tilted surface alignment by renormalized transmission ellipsometry
TWI437220B (zh) 液晶預傾角量測系統與方法
CN106154593A (zh) 异向性量测系统、异向性量测方法及其校正方法
KR20080031589A (ko) 배향막의 러빙축 측정 장치 및 이를 이용한 러빙축 측정방법
KR100949485B1 (ko) 액정표시장치의 셀 갭 측정장치 및 그에 따른 측정방법
JP4728830B2 (ja) 光学的異方性パラメータ測定方法及び測定装置
JP3855080B2 (ja) 液晶素子の光学特性測定方法及び液晶素子の光学特性測定システム
JP4303075B2 (ja) 液晶性材料の物性測定方法及び液晶性材料の物性測定装置
JP2002311406A (ja) 液晶パネルパラメータ検出装置
Murai et al. P‐75: Useful Inspection Method of Rubbed Polyimide Film with Optical Anisotropy using Reflection Ellipsometry
JPH08201276A (ja) 分子配向角測定装置
JP3787344B2 (ja) 液晶素子のパラメータ検出方法及び検出装置
TW452649B (en) Azimuthal alignment technique for PEM ellipsometry at a fixed incident angle
KR20120045680A (ko) 엑스선 검출기용 액정셀의 배향막을 검사하는 방법 및 장비
JP2012032346A (ja) 光学素子評価方法および光学素子評価装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14433645

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907889

Country of ref document: EP

Kind code of ref document: A1